Table 2.0-1. List of LWG Field Sampling Events.

			Refere			Data U	
Study/Task Description	Task Round	Year	FSR or Equivalent	Data Report or SCSR	RI	BERA	BHHR
Physical Systems Investigations							
Sediment trend analysis (STA) survey	Pre-RI	2001	GeoSea Consulting 2001; SEA 2002a	NA	X		
Sediment profile imaging (SPI) survey	Pre-RI	2001	SEA 2002b	NA	X		
Multibeam bathymetric survey - Winter 2002	Pre-RI	2001-2002	DEA 2002a	NA	X		
Multibeam bathymetric survey - Summer 2002	1	2002	DEA 2003a	NA	X		
Multibeam bathymetric survey - May 2003	1	2003	SEA and DEA 2003; DEA 2003b	NA	X		
Multibeam bathymetric survey - February 2004	1	2004	Integral and DEA 2004; DEA 2004a	NA	X		
Multibeam bathymetric survey -February 2007	3A	2007	NA	Integral 2007h	X		
Multibeam bathymetric survey - January 2009	3	2009	DEA 2009	NA	X		
Nearshore deposition/erosion monitoring using sediment stakes	1	2002-2004	Anchor 2004a	NA			
Acoustic doppler current profiler (ADCP) survey - April 2002	Pre-RI	2002	DEA 2002b	Integral 2004a	X		
ADCP survey - May 2003	1	2003	DEA 2003c	Integral 2004a	X		
ADCP survey - January 2004	1	2004	DEA 2004b	Integral 2004a	X		
Hydrodynamic/sediment transport modeling	2	2005-2006	Integral 2006e	Integral et al. 2007	X		
Cultural resources analysis	$\frac{2}{2}$	2005-2000	AINW 2005	NA	X		
Side-scan sonar	3	2008	NA	Anchor QEA 2009	X		
Sediment Investigations							
Composite beach sediment and collocated surface sediment	1	2002	SEA et al. 2003	Integral 2004a	X	X	X
Shorebird foraging area and beach sediment chemistry	2A	2004	Integral 2005a	Integral 2005s, 2006a, 2008a	X	X	X
Surface sediment chemistry	2A	2004	Integral 2005a	Integral 2005s, 2006a, 2008a	X	X	X
Subsurface sediment chemistry	2A	2004	Integral and Anchor 2005	Integral 2005s, 2006b, 2008a	X	X	X
Benthic sediment toxicity (bioassays)	2A	2004	Integral 2005a	Windward 2005a		X	X
Natural attenuation (radioisotope cores)	2A	2004	Anchor 2005a; Integral and Anchor 2005	Anchor 2005b	X		
Sediment cores	2B	2005	Integral 2005b	Integral 2006c, 2008a	X	X	X
Groundwater pathway collocated sediment grabs	2B	2005	Integral 2006f	Integral 2006g	X	X	X
Benthic invertebrate collocated sediment chemistry and bioaccumulation	2B	2005	Windward and Integral 2006	Integral and Windward 2006b	X	X	X
Upstream/downstream surface and subsurface sediment samples	3	2007	Integral 2007f	Integral 2007g	X	X	X
Natural attenuation (radioisotope subsurface sediment cores)	3A	2007	Integral 2007f	Integral 2007h	X		
Sediment (Willamette Cove)	3B	2007	NA	Integral 2008d	X	X	X
Biota - collocated sediments	3B	2007	Integral and Windward 2008	Integral 2008b,c	X	X	X
Sediment and sediment toxicity bioassay testing	3B	2007-2008	Integral 2008f	Integral 2008e, Windward 2008b	X	X	
Sediment chemical mobility testing	3B	2008	Anchor and Integral 2008c	Integral 2009	X		
Tissue Investigations	D	2001	Ell. E. 1 . 10	NA			
Juvenile salmonid residence time survey	Pre-RI	2001	Ellis Ecological Services 2002	NA	X		
Juvenile salmonid mark/recapture pilot study	1	2002	SEA et al. 2003	Integral 2004b	X		
Aquatic plant and amphibian/reptile reconnaissance survey	1	2002	NA	Windward 2003a	X		

Table 2.0-1. List of LWG Field Sampling Events.

				ference		Data U	
Study/Task Description	Task Round	Year	FSR or Equivalent	Data Report or SCSR	RI	BERA	BHHR
Adult lamprey harvest reconnaissance survey	1	2002	Kennedy/Jenks 2003	NA	X		
uvenile lamprey and benthic infaunal biomass reconnaissance survey	1	2002	SEA and Windward 2003	NA	X		
Epibenthic invertebrate sampling using multiplates	1A	2002	Windward 2003b	Integral 2004a	X		
Collection of fish tissue for chemical analysis	1A	2002	SEA et al. 2003	Integral 2004a	X	X	X
Benthic infauna and clam sampling	1	2002	SEA et al. 2003	Integral 2004a	X	X	X
Sub-yearling Chinook tissue	2A	2005	Integral and Windward 2005a	Integral and Windward 2006a	X	X	
Multiplate epibenthic invertebrate tissue	2A	2005	Windward 2005b	Integral 2006h	X		
Benthic invertebrates and clam tissue	2	2005	Windward and Integral 2005a, Windward and Integral 2006	Integral and Windward 2006b	X	X	
Mussel and lamprey ammocoete tissue	2B	2005	Windward and Integral 2006	Windward and Integral 2007	X	X	
camprey ammocoete tissue	3	2006	Windward 2006a	Integral and Windward 2007a, Windward 2007a, 2008a	X	X	
Sturgeon tissue	3A	2007	Windward 2007b	Windward and Integral 2008	X	X	X
Fish and invertebrate tissue with collocated sediment	3B	2007	Integral and Windward 2008	Integral 2008b,c	X	X	X
Surface Water Investigations							
Surface water reconnaissance survey	2A	2004	Integral 2005c	NA	X		
Surface water event 1 - Fall 2004	2A	2004	Integral 2005c	Integral 2006d	X	X	X
urface water event 1 - Fall 2004 (XAD column)	2A	2004	Integral 2005c	Integral 2006d	X	X	X
urface water event 1 - Fall 2004 (XAD filter)	2A	2004	Integral 2005c	Integral 2006d	X	X	X
urface water event 2 - Winter 2005	2A	2005	Integral 2005d	Integral 2006d	X	X	X
urface water event 2 - Winter 2005 (XAD column)	2A	2005	Integral 2005d	Integral 2006d	X	X	X
urface water event 2 - Winter 2005 (XAD filter)	2A	2005	Integral 2005d	Integral 2006d	X	X	X
urface water event 3 - Summer 2005	2A	2005	Integral 2005e	Integral 2006d	X	X	X
urface water event 3 - Summer 2005 (XAD column)	2A	2005	Integral 2005e	Integral 2006d	X	X	X
urface water event 3 - Summer 2005 (XAD filter)	2A	2005	Integral 2005e	Integral 2006d	X	X	X
urface water January 2006 - high flow event	3	2006	Integral 200k	Integral 2006l	X	X	X
urface water January 2006 - high flow event (XAD column)	3	2006	Integral 200k	Integral 2006l	X	X	X
urface water January 2006 - high flow event (XAD filter)	3	2006	Integral 200k	Integral 2006l	X	X	X
urface water September 2006 - low flow event	3	2006	Integral 2006m	Integral 2007a	X	X	X
urface water September 2006 - low flow event (XAD column)	3	2006	Integral 2006m	Integral 2007a	X	X	X
urface water September 2006 - low flow event (XAD filter)	3	2006	Integral 2006m	Integral 2007a	X	X	X
urface water November 2006 - stormwater event	3	2006	Integral 2007b	Integral 2007a	X	X	X
urface water November 2006 - stormwater event (XAD column)	3	2006	Integral 2007b	Integral 2007a	X	X	v
urface water November 2006 - stormwater event (XAD filter)	3	2006	Integral 2007b	Integral 2007a	X	X	X
urface water Winter 2007 - high flow event	3	2007	Integral 2007c	Integral 2007d	X	X	X
Surface water Winter 2007 - high flow event (XAD column)	3	2007	Integral 2007c	Integral 2007d			
Surface water Winter 2007 - high flow event (XAD column)	3	2007	Integral 2007c	Integral 2007d	X X	X X	X X
Groundwater Investigations							
Seep reconnaissance survey	1	2002	GSI 2003a	NA	X		
Groundwater pilot study – mapping tools and sampling methods	2A	2002	NA	Integral 2005f (Appendix B)	X X	v	v
Groundwater prior study – mapping tools and sampling methods Groundwater pathway assessment transition zone water	2A 2A	2004-2003	Integral 2006f	Integral 2006g		X	X
Groundwater - Gunderson site	2A 3	2003	Integral 2007e	NA	X X	X	X
tormwater Investigations			•				
Stormwater Investigations		2007	Anchor and Integral 2007a	Anchor and Integral 2008a			

Table 2.0-1. List of LWG Field Sampling Events.

			Referen	nce		Data Us	se
Study/Task Description	Task Round	Year	FSR or Equivalent	Data Report or SCSR	RI	BERA	BHHRA
Stormwater outfalls (April 2007 storm event I)	3A	2007	Anchor and Integral 2007a	Anchor and Integral 2008a	X		
Stormwater outfalls (April 2007 storm event II)	3A	2007	Anchor and Integral 2007a	Anchor and Integral 2008a	X		
Stormwater outfalls (April 2007 storm event III)	3A	2007	Anchor and Integral 2007a	Anchor and Integral 2008a	X		
Stormwater outfalls (May 2007 storm event I)	3A	2007	Anchor and Integral 2007a	Anchor and Integral 2008a	X		
Stormwater outfalls (May 2007 storm event II) - grab samples	3A	2007	Anchor and Integral 2007a	Anchor and Integral 2008a	X		
Stormwater outfalls (June 2007 storm event I) - grab samples	3A	2007	Anchor and Integral 2007a	Anchor and Integral 2008a	X		
Stormwater outfalls (June 2007 storm event II)	3A	2007	Anchor and Integral 2007a	Anchor and Integral 2008a	X		
Stormwater outfalls (November 2007 storm event)	3B	2007	Anchor and Integral 2008b; Ash Creek	Anchor and Integral 2008a	X		
			Associates/ Newfields 2008	·			
Stormwater outfalls (November 2007 storm event)	3B	2007	Anchor and Integral 2008b; Ash Creek	Anchor and Integral 2008a	X		
			Associates/ Newfields 2008				
Stormwater outfalls (November 2007 storm event)	3B	2007	Anchor and Integral 2008b; Ash Creek Associates/ Newfields 2008	Anchor and Integral 2008a	X		
Stormwater outfalls (January 09, 2008 storm event)	3B	2008	Anchor and Integral 2008b; Ash Creek	Anchor and Integral 2008a	X		
a 44 47 44 4000			Associates/ Newfields 2008				
Stormwater outfalls (January 11, 2008 storm event)	3B	2008	Anchor and Integral 2008b; Ash Creek Associates/ Newfields 2008	Anchor and Integral 2008a	X		
Stammustan outfalls (January 15, 2009 stamm syant)	3B	2008		Anchor and Integral 2009 a			
Stormwater outfalls (January 15, 2008 storm event)	ЗD	2008	Anchor and Integral 2008b; Ash Creek Associates/ Newfields 2008	Anchor and Integral 2008a	X		
Stormwater outfalls (January 28, 2008 storm event)	3B	2008	Anchor and Integral 2008b; Ash Creek	Anchor and Integral 2008a	X		
Stormwater outrains (January 26, 2006 Storm event)	30	2008	Associates/ Newfields 2008	Anchor and Integral 2006a	Λ		
Stormwater outfalls (January 30, 2008 storm event)	3B	2008	Anchor and Integral 2008b; Ash Creek	Anchor and Integral 2008a	X		
Stormwater outland (sandary 50, 2000 storm event)	3 D	2000	Associates/ Newfields 2008	Thienor and integral 2000a	Α		
Sediment Trap Investigations							
Stormwater outfalls - sediment traps	3A	2007	Anchor and Integral 2007a	Anchor and Integral 2008a	X		
In-river sediment trap event 1	3	2007	Anchor 2007a	Anchor and Integral 2008c	X		
In-river sediment trap event 2	3	2007	Anchor 2007b	Anchor and Integral 2008c	X		
In-river sediment trap event 3	3	2007	Anchor 2007c	Anchor and Integral 2008c	X		
In-river sediment trap event 4	3	2007	Anchor 2008a	Anchor and Integral 2008c	X		
Stormwater outfalls - sediment traps	3B	2007-2008	Anchor and Integral 2008b	Anchor and Integral 2008a	X		

Notes:

BERA - baseline ecological risk assessment

BHHRA - baseline human health risk assessment

FSR - field sampling report

LWG - Lower Willamette Group

NA - not applicable

RI - remedial investigation

SCSR - site characterization summary report

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data U	se I									
Survey Name	Survey ID	RI	BERA	BHHRA	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
Sediments													
PGE Willamette River Sediment Investigation (RM 13.1-13.5) (URS 2010)	WLLGEC10	X			13-13.5	2010	38	0	182.9	Y (some)	N	N	Category 1 QA2
2009 Conoco Philips Pre-dredge Characterization (AMEC 2010a)	WLCPWL09	X			7.7	2009	14	0	350.5	Y (some)	N	N	Category 1 QA1
Sediment Characterization Report: Portland Ship Repair Yard (ERM-West 2009)	WLCPSK09	X			8-8.2	2009	14	0	382.2	Y	N	N	Category 1 QA2
RM 11E Focused Sediment Characterization – Bank Soil and Debris (GSI 2010a)	RM11E_BD	X			11.1-11.5	2009	22	0	25	N	N	N	Category 1 QA2
Arkema Draft Removal Action Area Characterization Report (Integral and Arcadis 2010)	C167-1103	X			7-7.4	2009	352	0	49.2	N	N	N	Category 1 QA2
Sediment Investigation Report Portland Gas Manufacturing Site (Anchor QEA 2009b)	WLLPGH09	X			12-12.3	2009	70	0	450	Y (some)	N	N	Category 1 QA2
RM11E sediment data (GSI 2009a)	RM11E	X	X		11-12	2009	199	0	436	N	N	N	Category 1 QA2
Willamette River FNC Post Office Bar Reach (RM2.2) Sediment Quality Evaluation (USACE 2009)	WLCPOB02	X			2.2-2.4	2009	12	0	182.9	N	Y (some)	Y (some)	Category 1 QA1; grainsize Category 2
T4 Abatement Phase 1 - Construction Phase 1 - Dredging and Capping (Anchor QEA 2009c)	WLCT4L08	X	X	X	4.6	2008	18	0	18.29	N	N	N	Category 1 QA2
2009 Interim Construction Report, Revetment SCM at BP Terminal 22T (URS 2009)	WLCARI08	X			4.8-4.9	2008	14	60.96	243.4	Y (some)	N	N	Category 1 QA1
Chevron Willbridge Terminal 2008/2009 Pre-Dredge Sed. Investigations (Arcadis 2009)	WLCCWI08	X			7.6-7.7	2008-2009	33	0	213.4	N	N	Y	Category 1 QA1
Northwest Pipe & Casing, International Terminals Slip Sed Data 2009 (CH2M Hill 2009)	WLCITG08	X			3.7	2008	24	0	259.1	Y (some)	N	N	Category 1 QA2
Downtown Portland Sediment Characterization Phase II Report (GSI and Hart Crowser 2010)	WLLASB10	X			12.1-15.1	2008-2010	59	0	370	N	N	N	Category 1 QA2
Downtown Portland Sediment Characterization Field and Data Report (GSI 2009b)	WLLASE08	X			12 - 16	2008	81 surface sediment, 36 subsurface	0	378	Y (some)	Y	N	Category 1 QA2
US Moorings, Portland, OR: RI 2008 Sediment Sampling (KTA/TEC 2010)	WLCMRD08	X			5.8-6.1	2008	56	0	609.6	N	N	N	Category 1 QA2
Memo: Zidell Sediment Data Qualifiers. Maul Foster Alongi, 5/2009 (MFA 2009)	WLCZDI07	X			13.5-14	2007	39	0	15	N	N	N	Category 1 QA1, grainsize Category 2
Sediment Data Report, Ash Grove Cement Company, Portland, OR (Parson Brinckerhoff 2005)	WLCACF05	X			2.8	2005	2	0	165	N	N	N	Category 1 QA1

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data Us	se									
Survey Name	Survey ID	RI	BERA	вннка	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
Post-Dredge Char., Glacier Northwest Cement Term., Portland, OR (Anchor 2004b)	WLCGWI04	X			11.1-11.3	2004	4	0	10	Y	Y (some)	N	Category 1 QA1
USEPA's PBDE data in LWG Sediment Grab Samples	B01-01-48B_SG, B01-01-59B_UD, B01-01- 67B_ColocSed, B01-01-68B_SG	X	X	X	1.2-23.2	2004-2007	100	0	30	N	N	N	Category 1 QA2
Dredge Characterization, Glacier Northwest Cement Term., Portland, OR (Anchor 2003)	WLCGWF03	X			11.2-11.3	2003	6	0	88.39	N	Y (some)	N	Category 1 QA1
Post-dredge sampling of Willamette River bottom at CLD Pacific Grain ^a (CLD 2002)	WLCPGH02	X			11.5	2002	1	0	30.48	Y (some)	Y (some)	N	Category 1 QA1
Pre-Dredge Sediment Sampling Goldendale Aluminum Company, Portland, OR (CH2M Hill 1999)	WLCGAB99	X			10.1	1999	2	0	10	N	Y	Y	Category 1 QA1
Gasco EE/CA (Anchor 2006d)	WLCGSG04	X	X		6.5	2005	16 subsurface sediment	0	610	N	N	Y - RAA- 02-20	Category 1 QA2
2005 Portland District O&M Sediment Characterization (Tetra Tech 2006)	WLCDRD05	X	X	X	2 - 11.7	2005	82 surface, 72 subsurface	0	421	N	N	Y - WR- PG-50, WR-VC-50	Category 1 QA2
ExxonMobil Beach Sediment Sheen Samples (Kleinfelder 2004a)	WLCEMH04	X			5.16	2003-2004	4 surface sediment	0	15	N	N	N	Category 1 QA1
Terminal 4 Early Action EE/CA Report (BB&L 2005)	WLCT4C04	X	X	X	4.5	2003-2004	5 sediment trap, 43 subsurface sediment	0	671	Y	N	N	Category 1 QA2
Corps Dredged Material O&M Characterization (Hart Crowser 2004)	WLCDRI03	X	X		3, 8-10, 15,	2003	19 subsurface composites, 2 surface reference	0	305	Y	N	N	Category 1 QA2
Gunderson Area 2 Sandy Beach (Kleinfelder 2004b)	WLCGNG03	X			9	2003	4 surface sediment	0	15	N	N	N	Category 1 QA1
International Terminal Sediment Data Report (Floyd Snider McCarthy 2003)	WLCITC03	X			4, 5	2003	20 subsurface sediment	0	518	N	Y	N	Category 1 QA1
ATOFINA Phase 2 Stage 1/2 In-River Investigation (Integral 2003)	WLCEAF02	X	X		8	2002-2003	211 subsurface sediment	0	1,305	N	N	N	Category 1 QA2
City Outfall Source Control Investigation (CH2M Hill 2004)	WLCOFJ02	X	X	X	5-10	2002	84 surface sediment	0	15	N	N	Y - Station	Category 1 QA2

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data U	se									
Survey Name	Survey ID	RI	BERA	вннка	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
Surface Water, Sediment, and Groundwater Sampling Report (Ecology & Environment 2003)	WLCMBI02	X			7, 8	2002	41 water grabs, 19 water SPMD, 11 subsurface sediment	30	35	N	N	Y - 14 samples	Category 1 QA2, petroleum Category 2
US Moorings RI Sediment Investigation (URS 2003)	WLCMRI02	X	X	X	6, 7	2002	2 surface, 3 subsurface sediment	0	90	Y	N	N	Category 1 QA2
City Outfall Pilot Project (CH2M Hill 2002)	WLCOFH02	X	X	X	9	2002	18 surface sediment	0	15	N	N	N	Category 1 QA2
MarCom Expanded Preliminary Assessment (Parametrix 2002)	WLCMCB02	X			6	2002	3 surface sediment	0	15	N	N	N	Category 1 QA1
GATX Linnton Terminal RI (KHM 2002a)	WLCGXB02	X			5	2002	2 surface sediment	0	15	N	N	N	Category 1 QA1
T4 Slip 3, Berth 410 Dredge Material (Hart Crowser 2002a)	WLCT4L01	X			5	2001	9 subsurface sediment	43	213	Y	Y	N	Category 1 QA1
Willamette Reference Area Phase 2 (Hart Crowser 2002b)	WLLRSI01	X			16, 19, 23, 24	2001	8 surface sediment	0	30	N	N	N	Category 1 QA1
Willamette Reference Area Phase 1 (Hart Crowser 2001a)	WLLRSH01	X			16, 17, 18, 19, 24	2001	9 surface sediment	0	10	N	N	N	Category 1 QA1, grain size Category 2
Cargill Irving Elevator Permit Applications (Harding ESE 2001)	WLCCIF01	X			12	2001	5 subsurface, 1 subsurface pore water	0	109	Y - 1 sample	Y	N	Category 1 QA1
T2/T5 2001 Dredge Characterization Study (Hart Crowser 2001b)	WLCT0F01	X			2, 10	2001	4 subsurface pore water, 7 subsurface sediment	0	240	Y	Y	N	Category 1 QA1
Chevron Dredging Permit Application (PNG 2001)	WLCCPF01	X			8	2001	15 subsurface sediment	30	244	N	Y	N	Category 1 QA1
Gasco Source Control Evaluation (Anchor 2001)	WLCGSD01	X	X	X	7	2001	18 subsurface sediment, 9 surface sediment	0	40	N	Y	Y - AN-2-1 to 2-4	Category 1 QA2

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data U	se I									
Survey Name	Survey ID	RI	BERA	BHHRA	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
McCormick & Baxter RI Phase 4 (Ecology & Environment 2001)	WLCMBA01	X			8	2001	32 subsurface sediment, 1 upriver reference surface sediment	0	38	N	N	Y - 13 samples	Category 1 QA1
Goldendale Aluminum Phase 2 (CH2M Hill 2001a)	WLCGAL00	X			11	2000	4 surface sediment	0	30	N	N	N	Category 1 QA1
Oregon Steel Mills Pre-Remedial Investigation Field Activities Data Report (Exponent 2001)	WLCOSJ00	X			2, 3	2000	1 subsurface sediment, 15 surface sediment	0	60	N	N	N	Category 1 QA1
Willbridge 60-in Outfall (KHM 2002b)	WLCWTI00	X			8	2000	13 subsurface sediment	61	229	N	N	N	Category 1 QA1
UPRR Albina Yard Expanded Preliminary Assessment Data Report (Jacobs Engineering 2000a)	WLCAYH00	X			11, 12	2000	3 subsurface sediment, 6 surface sediment	0	69	N	N	N	Category 1 QA1
Marine Finance Expanded Preliminary Assessment Data Report (Jacobs Engineering 2000b)	WLCMFH00	Х			6	2000	3 subsurface sediment, 6 surface sediment	0	66	N	N	N	Category 1 QA1
T1 South Sediment Study (SEA 2000)	WLCT1F00	X			11, 12	2000	9 surface pore water, 9 surface sediment	0	10	N	N	N	Category 1 QA1
Goldendale Aluminum Phase 1 (CH2M Hill 2001b)	WLCGAF00	X			11	2000	5 surface sediment, 1 reference surface sediment	0	30	N	Y	N	Category 1 QA1
Ross Island Phase I (Port) (Hart Crowser 2000a)	WLCRIL99	Х			15, 16	1999-2000	6 subsurface pore water, 20 subsurface sediment, 38 surface pore water, 41 surface sediment, 4 surface reference sediment	0	1,798	Y - 1 sample	N	N	Category 1 QA1

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data U	se									
Survey Name	Survey ID	RI	BERA	вннка	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
Willamette November Sediment Quality Evaluation (USACE 2000)	WLR1199	X			9, 10, 12	1999	9 subsurface sediment, 7 subsurface pore water, 1 surface sediment	0	386	N	N	N	Category 1 QA1, metals & conventionals Category 2
T5 1999 Berths 501-503 Sediment Characterization Study (Hart Crowser 1999a)	WLCT5K99	X			1, 2	1999	5 subsurface sediment, 5 subsurface pore water	0	182	Y - 2 samples	Y	N	Category 1 QA1, grain size Category 2
Ross Island Lagoon Baseline (Landau 2000a)	WLCRIJ99	X			16	1999	4 surface pore water, 12 surface sediment	0	10	Y - 1 sample	N	N	Category 1 QA1
Ross Island Phase 1 (Ross Island Sand & Gravel) (Landau 2000b)	WLCRIV99	X			15, 16	1999	4 surface sediment, 41 subsurface sediment	0	79	N	N	N	Category 1 QA2
GATX Linnton Terminal ESA (KHM 1999)	WLCGXV99	X			5	1999	4 surface sediment, 4 subsurface sediment	0	40	N	N	N	Category 1 QA1
McCormick & Baxter RI Phase 3 (Ecology & Environment 2001)	WLCMBJ99	X	X	X	8	1999	44 site and 4 upriver reference surface sediment	0	15	N	N	Y - 30 samples	Category 1 QA2
Willamette April Sediment Quality Evaluation (USACE 1999a)	WLR0499	X			3, 9, 10	1999	11 subsurface sediment, 3 pore water	0	366	N	N	N	Category 1 QA1, metals & conventionals Category 2

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data U	se									
Survey Name	Survey ID	RI	BERA	вннка	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
Portland Harbor Sediment Investigation (Weston 1998)	WR-WSI98	X	X	X	4 - 10	1997-1999	158 surface sediment, 28 surface pore water, 39 subsurface sediment	0	90	Y - 12 samples	Y - SD029, SD032	Y - SD76, 79, 82, 64, 65	Category 1 QA2
TOSCO 1999 Sediment Sampling Results (Exponent 1999a)	TOSCO99	X	X		8	1999	4 subsurface sediment, 1 surface reference	0	304	Y	N	N	Category 1 QA2
Elf Atochem 1999 Willamette River (Exponent 1999b)	WLRELF99	X			8	1998-1999	15 subsurface sediment, 13 surface sediment	0	90	N	N	N	Category 1 QA1
Willbridge Terminal Facility RI (KHM 2000)	WLRWTF98	X			8	1998	15 surface sediment	0	12.7	N	N	N	Category 1 QA1
T2/T4 Sediment Study (Hart Crowser 1999b)	PPTLDT24	X			6, 10	1998	3 subsurface pore water, 3 subsurface sediment	0	91	Y	Y	N	Category 1 QA1, grain size Category 2
Port of Portland T4 RI (Hart Crowser 2000b)	WLCT4J98	X			5	1998	18 subsurface sediment, 44 surface sediment, 2 surface reference sediment	0	128	N	N	N	Category 1 QA1
Sediment Characterization Local Sponsors' Berths (conducted with Corps) (Hart Crowser 1999c)	WLCT0I98	X			2, 5-8, 10-12	1998	7 subsurface pore water, 7 subsurface sediment, 12 surface pore water, 12 surface sediment	0	152	Y - 6 subsurface	N	N	Category 1 QA1
International Terminals Sediment Sampling Event (Schnitzer Steel Industries 1998)	WLCITH98	X			4	1998	5 surface sediment	0	15	N	N	N	Category 1 QA1

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data Us	se I									
Survey Name	Survey ID	RI	BERA	вннка	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
Portland Shipyard Sediment Investigation (SEA 1998)	PSYSEA98	X	X	X	8, 9, 10, 11	1998	65 subsurface sediment, 60 surface sediment, 61 surface pore water, 3 surface reference	0	490	N	N	N	Category 1 QA2, conventionals QA1
Portland Shipyard Environmental Audit (Dames & Moore 1998)	PSYD&M97	X	X	X	9	1997-1998	4 subsurface sediment, 8 surface	0	304	N	N	N	Category 1 QA2
Willamette River 1998 Data (Dames & Moore 1998)	WRD&M98	X	X	X	7, 8, 9, 10,	1998	12 surface sediment	0	10	N	N	N	Category 1 QA2
T4 Berth 416 1997 Sediment Characterization Study (Hart Crowser 1998)	WLCT4J97	X			5, 6	1997	4 subsurface sediment, 4 subsurface pore water	0	182	Y - 1 sample	Y	N	Category 1 QA1
Baseline Sediment Riedel (MFA 1997)	RIEDEL97	X			8	1997	19 subsurface sediment, 8 surface sediment	0	460	N	N	N	Category 1 QA1
CRCD - Willamette River Channel Deepening (USACE 1999b)	WLR0797	X			1-9, 11, 12	1997	18 surface sediment, 17 surface pore water, 50 subsurface sediment, 1 subsurface pore water	0	690	Y- 3 samples	Y - WRGC30, WRGC31	N	Category 1 QA1, grain size & conventionals Category 2
PAH in surface sediments (Battelle 2002)	WLCASF97	X	X	X	5, 6, 7, 8, 9	1997	37 surface sediment	0	10	N	N	Y - Sta 1	Category 1 QA2
T4 Berths 410,411 Maintenance Dredging (Hart Crowser 1997)	WLCT4E97	X			5	1997	3 subsurface sediment	0	152	N	Y	N	Category 1 QA1

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data U	se									
Survey Name	Survey ID	RI	BERA	BHHRA	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
BP Bulk Terminal 22T Supplemental Sediment and Revetment Investigation (URS 2007)	WLCBPE06	X			4.8 - 4.9	2003-2006	48 surface sediment, 66 subsuface sediment	0	1,036	N	Y	N	Mixture of Category 1 QA1 and Category 2
Gasco Phase 2 Offshore Investigation (Anchor 2008d)	WLCGSG07	X			6.1 - 6.4	2007	24 suburface sediment	0	457	N	N	N	Category 1 QA1
Gasco Phase 1 Offshore Investigation (Anchor 2007d)	WLCGSJ06	X			6.1 - 6.5	2006-2007	186 suburface sediment	0	582	N	N	N	Category 1 QA1
Sulzer Pump, 16 riparian samples (GeoDesign 2004)	WLCSPL03	X			10.2 - 10.3	2003	16 surface sediment	0	15	N	N	N	Category 1 NA
T4 Anchor Appendix G sediment data (Anchor 2008e)	WLCT4G06	X			4.4 - 4.7	2006-2007	76 surface sediment, 68 subsurface sediment	0	305	N	Y - 17 samples	N	Category 1 QA1
Willbridge Terminal 2002 Post-Dredging Sediment Characterization (PNG and Anchor 2002)	WLCWTG02	X			7.6 - 7.7	2002	17 surface sediment	0	15	N	N	N	Category 1 QA1
Zidell Waterfront Property RI: Riverbank Characterization (MFA 2004)	WLCZDH04	X			13.5 - 14	2004	50 surface sediment	0	15	N	N	N	Category 1 QA1
Zidell Waterfront Property RI (MFA 2003)	WLCZDI00	X			13.4 - 14.1	1997-2003	46 surface sediment, 46 suburface sediment, 19 surface pore water	0	320	N	N	N	Category 1 QA1
Blue Heron & West Linn (Ecology & Environment 2007)	WLFLH07	X			21.5 - 28.5	2007	19 surface sediment	0	10	N	N	N	Category 1 QA2
Biota							•						
USEPAs PBDEs in Osprey Eggs (USGS 2009)	WLRASE08	X	X		3-77.3	2008	15			Y	N	N	Category 1 QA2, PBDEs Category 2
USEPA PBDE in LWG R3 Fish Tissue	LWG03	X	X		1-12.1	2007	121			Y	N	N	Category 1 QA2

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data Us	se									
Survey Name	Survey ID	RI	BERA	вннка	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
ATSDR/EPA/ODHS Fish Contaminant Study (ODHS, USEPA and ASTDR 2003)	WLTASE03	X	X		lamprey - RM26, sturgeon - RM3.5-9.2, chinook - Clackamas Hatchery	2003	4 lamprey, up to 6 chinook fillet - skin on, up to 5 chinook whole body, up to 6 sturgeon fillet - skin off			Y - lamprey			Category 1 QA
Surface Water			•					1	1				T
Gasco Phase 2 Offshore Investigation (Anchor 2008d)	WLCGSG07	X			5.9-6.7	2007	360 (180 unfiltered; 180 filtered) surface water samples	Near-surface, mid-depth, near- bottom		N	-1		Category 1 QA1
Siltronic Supplemental In-River (SIR) transition zone water (MFA 2005b)	WLCSLH01	X			6.4-6.5	2005	22 surface water samples	1 ft above mudline		N	-		Category 1 QA2
City of Portland TSS Data (City of Portland 2006a)	WLC1200Z	X			1.1 - 20	1996-2006	2,520 composited surface water grabs	10 ft from surface		Y			None
Groundwater			· · · · · · · · · · · · · · · · · · ·	1									1
Siltronic Supplemental In-River Transition Zone Water (MFA 2005b)	WLCSLH01	X	X	X	6.4 - 6.8	2001-2005	76 TZW samples	up to 87 ft below mudline		N			Category 1 QA2
Gasco Phase 2 Offshore Investigation (Anchor 2008d)	WLCGSG07	X			6.4	2007	18 TZW samples	Unknown		N			Category 1 QA1
Stormwater/Seeps				1					l .				l .
Rhone-Poulenc Outfalls 22B and 22C Stormwater (AMEC 2003, 2004a, 2005)	WLCRPI04	X		X	6.8, 6.9	1993-2004	9 samples on 7 dates			N	N	N	Category 1 QA2

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

			Data U	se									
Survey Name	Survey ID	RI	BERA	вннка	River Mile(s)	Year	Number of Samples	Sample Interval Top (cm)	Sample Interval Bottom (cm)	Composite (Y/N)	Dredged (Y/N)	Capped (Y/N)	QA Category
GE Spring/Summer 2007 Stormwater Outfall Monitoring (AMEC 2007)	WLCGED07	X			9.6	2007	4 outfall water			N		ł	Category 1 QA2, Conventionals Category 2
T4 Spring 2007 Stormwater Outfall Monitoring (Ash Creek Associates/Newfields 2008)	WLCT4C07	X			4.2 - 5.1	2007	24 outfall water			N			Category 1 QA1, PCB Congeners QA2
Joint Source Control Strategy	See Table 4.4-5	X			2-10.8	2004-2008	See Table 4.4-5			See Table 4.4-5		1	Category 1 QA1 and QA2 (see Table 4.4-5)
Sediment Traps		•	•										
RM 11E Focused Sediment Characterization – In-River Sed Traps (GSI 2010b)	RM11E_ST	X			11-12	2009-2010	13				N	N	Category 1 QA2

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

by Other Parties Included in the RI Data Set.				l	1	I	I				
Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
Sediments				<u> </u>		I.	<u> </u>				<u> </u>
PGE Willamette River Sediment Investigation (RM 13.1-13.5) (URS 2010)	X	X		X	X	X		X		X	Petroleum
2009 Conoco Philips Pre-dredge Characterization (AMEC 2010a)	X	X	X	X	X	X				X	Petroleum
Sediment Characterization Report: Portland Ship Repair Yard (ERM-West 2009)	X	X	X	X	X	X					
RM 11E Focused Sediment Characterization – Bank Soil and Debris (GSI 2010a)	X	X	X	X	X	X		X		X	Petroleum
Arkema Draft Removal Action Area Characterization Report (Integral and Arcadis 2010)	X		X	X	X	X		X	X	X	Asbestos
Sediment Investigation Report Portland Gas Manufacturing Site (Anchor QEA 2009b)	X	X		X			X		X	X	Petroleum
RM11E sediment data (GSI 2009a)	X	X	X	X	X	X		X		X	Atterberg
Willamette River FNC Post Office Bar Reach (RM2.2) Sediment Quality Evaluation (USACE 2009)	X	X	X	X	X	X			X	X	Petroleum
T4 Abatement Phase 1 - Construction Phase 1 - Dredging and Capping (Anchor QEA 2009c)	X	X		X	X	X				X	Petroleum
2009 Interim Construction Report, Revetment SCM at BP Terminal 22T (URS 2009)	X	X		X						X	Petroleum
Chevron Willbridge Terminal 2008/2009 Pre-Dredge Sed. Investigations (Arcadis 2009)	X	X	X	X	X	X			X	X	Petroleum
Northwest Pipe & Casing, International Terminals Slip Sed Data 2009 (CH2M Hill 2009)	X	X		X	X						
Downtown Portland Sediment Characterization Phase II Report (GSI and Hart Crowser 2010)	X	X	X	X	X	X		X		X	Petroleum
Downtown Portland Sediment Characterization Field and Data Report (GSI 2009b)	X	X	X	X	X	X		X	X	X	Petroleum analyzed
US Moorings, Portland, OR: RI 2008 Sediment Sampling (KTA/TEC 2010)	X	X	X	X	X	X			X	X	Petroleum
Memo: Zidell Sediment Data Qualifiers. Maul Foster Alongi, 5/2009 (MFA 2009)	X	X	X	X	X						
Sediment Data Report, Ash Grove Cement Company, Portland, OR (Parson Brinckerhoff 2005)	X	X		X	X	X					

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
Post-Dredge Char., Glacier Northwest Cement Term., Portland, OR (Anchor 2004b)	X				X						
USEPA's PBDE data in LWG Sediment Grab Samples										X	PBDE congeners
Dredge Characterization, Glacier Northwest Cement Term., Portland, OR (Anchor 2003)	X	X		X	X	X				X	Petroleum
Post-dredge sampling of Willamette River bottom at CLD Pacific Grain ^a (CLD 2002)	X			X	X						
Pre-Dredge Sediment Sampling Goldendale Aluminum Company, Portland, OR (CH2M Hill 1999)	X	X		X	X	X					
Gasco EE/CA (Anchor 2006d)	X	X		X		X			X	X	TPH - diesel, residual range; cyanide
2005 Portland District O&M Sediment Characterization (Tetra Tech 2006)	X	X	X	X	X	X				X	TPH - gasoline, #2 diesel, motor oil
ExxonMobil Beach Sediment Sheen Samples (Kleinfelder 2004a)										X	Petroleum analyzed
Terminal 4 Early Action EE/CA Report (BB&L 2005)	X	X		X	X	X				X	TPH - gasoline, diesel, residual range
Corps Dredged Material O&M Characterization (Hart Crowser 2004)	X	X	X	X	X	X					
Gunderson Area 2 Sandy Beach (Kleinfelder 2004b)	X	X	X	X	X				X	X	Petroleum analyzed
International Terminal Sediment Data Report (Floyd Snider McCarthy 2003)	X	X	X	X	X	X					,
ATOFINA Phase 2 Stage 1/2 In-River Investigation (Integral 2003)	X					X					174 samples field screened for 4,4'-DDT, 40 samples lab tested for pesticides
City Outfall Source Control Investigation (CH2M Hill 2004)	X	X		X		X	X			X	Diesel, lube oil

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
Surface Water, Sediment, and Groundwater Sampling Report (Ecology & Environment 2003)		X		X							
US Moorings RI Sediment Investigation (URS 2003)	X	X	X	X	X	X					TPH - diesel, motor oil
City Outfall Pilot Project (CH2M Hill 2002)	X	X		X	X	X				X	Herbicides and petroleum also analyzed
MarCom Expanded Preliminary Assessment (Parametrix 2002)		X	X	X							SVOCs limited to PAHs
GATX Linnton Terminal RI (KHM 2002a)	X			X					X	X	Petroleum analyzed
T4 Slip 3, Berth 410 Dredge Material (Hart Crowser 2002a)	X	X		X	X	X					
Willamette Reference Area Phase 2 (Hart Crowser 2002b)	X	X	X	X	X	X					5 samples analyzed for conventionals only; pore water analyzed for butyltins
Willamette Reference Area Phase 1 (Hart Crowser 2001a)	X				X	X				X	Petroleum also analyzed
Cargill Irving Elevator Permit Applications (Harding ESE 2001)	X	X	X	X	X	X					Pore water analyzed for butyltins
T2/T5 2001 Dredge Characterization Study (Hart Crowser 2001b)	X	X	X	X	X	X					Pore water analyzed for butyltins
Chevron Dredging Permit Application (PNG 2001)	X	X	X	X	X	X			X	X	Petroleum analyzed
Gasco Source Control Evaluation (Anchor 2001)	X	X		X					X		SVOCs limited to PAHs

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
McCormick & Baxter RI Phase 4 (Ecology & Environment 2001)	X			X							SVOCs limited to PAHs and phenols
Goldendale Aluminum Phase 2 (CH2M Hill 2001a)	X			X							
Oregon Steel Mills Pre-Remedial Investigation Field Activities Data Report (Exponent 2001)	X	X		X	X					X	Petroleum analyzed
Willbridge 60-in Outfall (KHM 2002b)	X	X		X					X	X	Only one sample analyzed for metals; SVOCs, VOCs, and petroleum analyzed
UPRR Albina Yard Expanded Preliminary Assessment Data Report (Jacobs Engineering 2000a)	X	X	X	X	X					X	Petroleum analyzed
Marine Finance Expanded Preliminary Assessment Data Report (Jacobs Engineering 2000b)	X	X	X	X	X					X	Petroleum analyzed
T1 South Sediment Study (SEA 2000)	X	X	X	X	X	X			X		Pore water analyzed for butyltins
Goldendale Aluminum Phase 1 (CH2M Hill 2001b)	X	X	X	X	X	X			X		
Ross Island Phase I (Port) (Hart Crowser 2000a)	X	X	X	X	X	X			X	X	Pore water analyzed for butyltins, petroleum analyzed

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
Willamette November Sediment Quality Evaluation (USACE 2000)	X	X	X	X	X	X					Pore water analyzed for butyltins
T5 1999 Berths 501-503 Sediment Characterization Study (Hart Crowser 1999a)	X	X	X	X	X	X					Pore water analyzed for butyltins
Ross Island Lagoon Baseline (Landau 2000a)	X	X	X	X	X	X					Pore water analyzed for butyltins
Ross Island Phase 1 (Ross Island Sand & Gravel) (Landau 2000b)	X	X	X	X	X	X			X	X	Petroleum analyzed in subsurface only
GATX Linnton Terminal ESA (KHM 1999)	X	X		X	X	X			X		VOCs not analyzed in all samples
McCormick & Baxter RI Phase 3 (Ecology & Environment 2001)	х	X		X				X			SVOCs limited to PAHs and phenols; PCDD/Fs not analyzed in all samples
Willamette April Sediment Quality Evaluation (USACE 1999a)	X	X	X	X	X	X		X		X	All samples also analyzed for herbicides; 2 samples analyzed for PCDD/Fs; porewater analyzed for butyltins

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

Survey Name	Conventionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
Portland Harbor Sediment Investigation (Weston 1998)	X	X	X	X	X	X	X	X		X	Some samples analyzed for herbicides, PCDD/Fs, PCE congeners, and butyltins; pore water analyzed for butyltins and metals
TOSCO 1999 Sediment Sampling Results (Exponent 1999a)	X	X		X	X	X					
Elf Atochem 1999 Willamette River (Exponent 1999b)	X			X		X			X		
Willbridge Terminal Facility RI (KHM 2000)	X	X		X		X			X		SVOCs sometimes limited to PAH
T2/T4 Sediment Study (Hart Crowser 1999b)	X	X	X	X	X	X					
Port of Portland T4 RI (Hart Crowser 2000b)	X	X		X		X			X	X	Not all samples analyzed for metals or VOCs; petroleum analyzed
Sediment Characterization Local Sponsors' Berths (conducted with Corps) (Hart Crowser 1999c)	X	X	X	X	X	X					Pore water analyzed for butyltins
International Terminals Sediment Sampling Event (Schnitzer Steel Industries 1998)	X	X	X	X		X					

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

by Other Parties Included in the RI Data Set.	•		•		•	•		1		•	
Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
Portland Shipyard Sediment Investigation (SEA 1998)	X	X	X	X	X	X			X		Butyltins, pesticides, and VOCs not analyzed in all samples; pore water analyzed for butyltins
Portland Shipyard Environmental Audit (Dames & Moore 1998)	X	X	X	X	X				X		Butyltins and VOCs not analyzed in all samples; SVOCs sometimes limited to PAHs and phthalates
Willamette River 1998 Data (Dames & Moore 1998)	X	X	X	X	X						SVOCs limited to PAHs and phthalates; butyltins analyzed in 7 samples
T4 Berth 416 1997 Sediment Characterization Study (Hart Crowser 1998)	X	X	X	X	X	X					Porewater analyzed for butyltins
Baseline Sediment Riedel (MFA 1997)	X	X	X	X							Limited SVOCs analyses
CRCD - Willamette River Channel Deepening (USACE 1999b)	X	X	X	X	X	X					Pore water analyzed for butyltins
PAH in surface sediments (Battelle 2002)	X			X							
T4 Berths 410,411 Maintenance Dredging (Hart Crowser 1997)	X	X	X	X	X	X					Pore water analyzed for butyltins

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

by Other Parties Included in the RI Data Set.											
Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
BP Bulk Terminal 22T Supplemental Sediment and Revetment Investigation (URS 2007)	X	X		X	X	X				X	Herbicides
Gasco Phase 2 Offshore Investigation (Anchor 2008d)	X	X		X				X	X	X	Herbicides
Gasco Phase 1 Offshore Investigation (Anchor 2007d)	X	X		X					X		Grain size, atterburg limits
Sulzer Pump, 16 riparian samples (GeoDesign 2004)	X	X		X						X	TPH - diesel, heavy oil; SVOCs limited to PAH
T4 Anchor Appendix G sediment data (Anchor 2008e)	X	X		X	X	X				X	TPH - diesel, heavy oil
Willbridge Terminal 2002 Post-Dredging Sediment Characterization (PNG and Anchor 2002)	X	X	X	X	X	X			X		
Zidell Waterfront Property RI: Riverbank Characterization (MFA 2004)		X	X	X	X						SVOCs limited to PAH
Zidell Waterfront Property RI (MFA 2003)	X	X	X	X	X				X	X	TPH - diesel, heavy oil, lube oil, mineral spirits, Jet A, JP 4, kerosene, total petroleum hydrocarbons, and non- petroleum hydrocarbons
Blue Heron & West Linn (Ecology & Environment 2007)	X	X		X	X	X	X	X	X		
Biota				<u>-</u>							
USEPAs PBDEs in Osprey Eggs (USGS 2009)	X	X		X	X	X	X	X	X	X	PBDE congeners
USEPA PBDE in LWG R3 Fish Tissue										X	PBDE congeners

Table 2.0-2. Summary of Investigations Performed by Other Parties Included in the RI Data Set.

Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
ATSDR/EPA/ODHS Fish Contaminant Study (ODHS, USEPA and ASTDR 2003)		X		X	X	X	X	X		х	PBDEs
Surface Water						l	l			l	l .
Gasco Phase 2 Offshore Investigation (Anchor 2008d)	X	X									Field parameters; free, amenable, and total cyanide; TSS; TOC; iron; and sulfides
Siltronic Supplemental In-River (SIR) transition zone water (MFA 2005b)	X			X					X		Field parameters and VOCs (including napthalene and five SVOCs)
City of Portland TSS Data (City of Portland 2006a)	X										TSS
Groundwater									<u> </u>		<u> </u>
Siltronic Supplemental In-River Transition Zone Water (MFA 2005b)	X	X		X					X	X	Herbicides, field measurements, lube oil, and diesel range hydrocarbons
Gasco Phase 2 Offshore Investigation (Anchor 2008d)	X	X		X					X		
Stormwater/Seeps											
Rhone-Poulenc Outfalls 22B and 22C Stormwater (AMEC 2003, 2004a, 2005)	X	X		X	X	X		X	X	X	Herbicides, TPH - gas, diesel, and motor oil

Table 2.0-2. Summary of Investigations Performed

by Other Parties Included in the RI Data Set.

Survey Name	Conven- tionals	Metals	Butyltins	SVOCs	PCBs	Pesticides	PCB Congeners	PCDD/Fs	VOCs	Other	Other Parameters Analyzed
GE Spring/Summer 2007 Stormwater Outfall Monitoring (AMEC 2007)	X	X		X	X		X			X	TPH - diesel; SVOCs limited to PAH and phthalates
T4 Spring 2007 Stormwater Outfall Monitoring (Ash Creek Associates/Newfields 2008)	X	X		X	X	X	X			X	Total petroleum hydrocarbons
Joint Source Control Strategy	X	X		X	X	X	X			X	Analytes specific to each survey are listed in Table 4.4-5.
Sediment Traps	•	1	1	1	1	1	1	ı	1	1	
RM 11E Focused Sediment Characterization – In-River Sed Traps (GSI 2010b)	X	X	X	X	X	X	X	X		X	Petroleum

Notes:

^aTwo subsurface sediment samples collected from the CLD Pacific facility in 2009 were Category 2 data and were not used in the RI.

Risk evaluations database lockdown date: June 2, 2008 (in general) and RI database lockdown date: July 19, 2010.

For risk evaluation and nature and extent discussions, only data collected since May 1997 are used. Sediment samples collected from dredged or capped areas are removed for risk evaluations.

Risk evaluations use data with a Category 1 QA2 level of validation, and sediment samples must be collected from within the top 30.5 cm of the sediment horizon.

Nature and extent discussions use data with a Category 1 QA1 or QA2 level of validation. Surface sediments represent those collected from the top 40 cm.

Table 2.1-1. Summary of Sediment Types from 2000 STA Survey of Lower Willamette River from Willamette Falls to the Columbia River (RM 0 to 26).

Sediment Type	# of Samples	Percentage
Sandy gravel	2	0.20%
Gravelly sand	16	1.70%
Sand	305	32.60%
Muddy sand	180	19.30%
Sandy mud	296	31.60%
Mud	37	4.00%
Hard ground	99	10.60%
Total	935	100%

Table 2.2-1. Summary of RAOs, Data Gaps, and Sampling Locations.

Preliminary RAO	Data Gap	Sampling Locations ^a				
Reduce risks associated with direct contact with and incidental ingestion of contaminated sediments to acceptable levels (or ambient levels) for human health.	Sediment characteristics including grainsize and total organic content. River locations with potential for sediment contact (i.e., use areas).					
Reduce risks associated with eating contaminated fish to acceptable levels (or ambient levels) for human health.	Contaminant concentrations and lipids in tissues of species consumed by people. Rate of contaminant transfer between sediment and tissue. Location of fishing/collection areas.	Four fish species that have documented human consumption will be collected and analyzed. Samples will be collected from three areas: between RM 3 and 6; between RM 6 and 9; and below Willamette Falls. Each sample will be a composite of at least 5 fish.				
Reduce risks associated with ingestion of contaminated sediments to acceptable levels (or ambient levels) for fish, benthos, birds and mammals.	Areal extent of contamination in surface sediment. Species-specific rates of sediment ingestion. Occurrence/home ranges of target receptors. Sediment characteristics including grainsize and total organic content.	Sediment samples will be placed in nearshore areas where tissue samples will be collected to support the BERA. Also, the composite sediment data collected for input into the BHHRA will be used to evaluate potential risks to ecological receptors in those areas. Lastly, the nature and extent sediment samples will be used to evaluate potential risks to subtidal fish species and benthic infaunal communities.				
Reduce risks associated with ingestion of contaminated prey to acceptable levels (or ambient levels) for fish, benthic organisms, birds and mammals.	Contaminant concentrations in tissues of prey. Tissue contaminant concentrations in target receptors. Rate of prey consumption for various receptors. Home ranges of prey and target receptors. Rate of contaminant transfer between sediment and receptor, sediment and prey, and/or prey and receptor. Site-specific no- and low-effect levels in tissue.	Tissue samples for six fish species will be collected from locations in the ISA as well as from below Willamette Falls.				

Table 2.2-1. Summary of RAOs, Data Gaps, and Sampling Locations.

Preliminary RAO	Data Gap	Sampling Locations ^a
Promote remedial actions that do not limit current or planned waterway, municipal, commercial, industrial, recreational, or tribal ceremonial uses.	Location of areas requiring remediation. Volume of sediments requiring remediation Current and future uses of the river. Remedial technologies and associated constraints when applied on a site-specific basis.	All sampling contemplated for the RI/FS (i.e., subtidal sediments, intertidal sediments, fish tissues, benthic tissues) will be used to identify potential remediation areas
Promote remedial actions that are feasible for the physical system of this river.	Location of depositional, erosional, and variable areas of the river. Rate of accumulation of clean sediment in depositional areas and rate of sediment loss in erosional areas of the river. Physical characteristics of sediment (grainsize, organic carbon, water content, specific gravity). Potential for recontamination from ongoing upstream or permitted activities Hydrodynamics and sediment transport in river Seasonal changes in bathymetry	Sampling will include additional precision bathymetry surveys throughout the ISA and extending somewhat beyond the ISA, monitoring of sediment stake elevations in nearshore areas of the lower Willamette River (see Round 1A SAP), conventional sediment parameters at all sediment sampling locations, and current measurements along multiple transects within the ISA.
Promote remedial actions that are consistent and	Habitats available in the river	
integrated with natural resource damage assessment	Species occurrence and use.	
findings and restoration plans.	Resource agency habitat restoration goals/priorities.	

Notes:

BERA - baseline ecological risk assessment

BHHRA - baseline human health risk assessment

ISA - initial study area

RAO - remedial action objective

RM - river mile

SAP - sampling and analysis plan

^a Sampling locations are mapped in the Portland Harbor Round 1 Field Sampling Plan.

Table 2.3-1. Elements of Summary and Full Data Validations for Environmental Chemistry Data.

Element	Applicable Analytes	Summary Data Validation (QA1)	Full Data Validation (QA2)
Quality control analysis frequencies	all	X	X
Analysis holding times	all	X	X
Instrument performance check	organic compounds, ICP-MS metals		X
Initial instrument calibration	all		X
Continuing instrument calibration	all		X
Laboratory blanks	all	X	X
ICP interference check sample	metals		X
System monitoring compounds (surrogates)	organic compounds	X	X
Matrix spikes/matrix spike duplicates	all	X	X
Laboratory control samples	all	X	X
ICP serial dilution	metals		X
Field QA/QC (field blanks, field duplicates)	all	X	X
Internal standards	VOCs, SVOCs, ICP-MS metals		X
Pesticide cleanup checks	pesticides/PCBs		X
Target compound identification and quantitation (requires verification of reported results with raw data)	organic compounds		X
RLs	all	X	X

Notes:

ICP-MS - inductively coupled plasma-mass spectrometry

PCB - polychlorinated biphenyl

QA/QC - quality assurance/quality control

RL - reporting limit

SVOC - semivolatile organic compound

VOC - volatile organic compound

Table 2.3-2. Summary of All Category 1 and Category 2 Results in the RI Data Set.

Analyte Group	Category 1	Category 2 ^a	Grand Total
Grain Size	47,513	9	47,522
Atterberg Limits	475		475
Asbestos	22		
Conventionals	24,566	2,515	27,081
Metals	80,285	153	80,438
Butyltins	7,230	8	7,238
PCB Aroclors	41,053	80	41,133
PCB Congeners	241,033		241,033
PBDE Congeners	2,028	225	2,253
PCB Homologs	12,046		12,046
PCDD/Fs	24,659	17	24,676
PCDD/F Homologs	15,182	11	15,193
Pesticides	139,180	72	139,252
Herbicides	7,816	10	7,826
PAHs	159,975	396	160,371
Phthalates	28,492	6	28,498
SVOCs	120,641	87	120,728
Phenols	58,934	22	58,956
VOCs	91,343	480	91,823
Petroleum	13,770	57	13,827
Radioisotopes	444		444
Grand Total	1,116,687	4,148	1,120,813

Notes:

PAH - polycyclic aromatic hydrocarbon

PBDE - polybrominated diphenyl

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

SVOC - semivolatile organic compound

VOC - volatile organic compound

^a Conventionals include surface water total suspended solids data reported in the 1200Z permitting process.

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of S	Sediment Sample Counts in the RLL	vata Set.	Downtown	Multnomah		Ross Island		
	Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
Subsurface Sediment								
Grain Size < 0.075 mm			2		232			234
< 0.075 mm			2		63			63
>10 Phi clay			2		76			78
>9 Phi clay		17	61	11	977		3	1,069
8-9 Phi clay		17	63	11	1,053		3	1,147
9-10 Phi clay			2		76			78
Clay		2	62		551	14		629
Coarse sand		17	118	11	1,241	14	3	1,404
Coarse silt		17	63	11	1,053	1.4	3	1,147
Fine gravel Fine sand		17 17	116 118	11 11	1,049 1,241	14 14	3	1,210 1,404
Fine silt		17	63	11	1,053	14	3	1,147
Fines		19	128	11	1,627	14	3	1,802
Granule					24			24
Gravel		2	12		257			271
Mean grain size		2			19			21
Median grain size		2			19			21
Medium gravel		17	116	11	1,070	14	3	1,231
Medium sand Medium silt		17	118	11	1,241	14	3	1,404
Medium-fine gravel		17	63	11	1,053 24		3	1,147 24
Sand		2	10		165			177
Sieve 1 inch		-	10		233			1//
Sieve 1.5 inch					233			
Sieve 10			2		407			409
Sieve 100					15			15
Sieve 140			2		392			394
Sieve 2 inch					233			100
Sieve 20 Sieve 200			2 2		407 407			409 409
Sieve 200 Sieve 230			2		238			238
Sieve 3 inch					233			238
Sieve 3/4 inch					233			
Sieve 3/8 inch					233			
Sieve 4			2		407			409
Sieve 40			2		407			409
Sieve 60			2		407			409
Silt		2	62	1.1	551	14	2	629
Very coarse sand		17 17	118 118	11 11	1,238 1,238	14 14	3	1,401 1,401
Very fine sand Very fine silt		17	63	11	1,053	14	3	1,401
-		17	03		1,033		5	1,1-17
Atterberg Limits Liquid Limit					63			63
Plastic Limit					71			71
Plasticity Index					63			63
•								
Conventionals Acid Volatile Sulfides		9			25			34
Ammonia	•	7	14		220	14		255
Chloride		,	1-1		10	1.		233
Cyanide			57		145			202
Moisture					110			110
Nitrate					12			12
Nitrite					10			
pН					24			24
Phosphorus		17	15	1.1	1.002			15
Specific Gravity Sulfate		17	25	11	1,002			1,055
Sulfide		7	62		36 219	5		36 293
Total organic carbon		33	142	14	2,060	68	3	2,320
Total solids		36	146	14	2,238	74	3	2,511
Total volatile solids		7	-		158	14		179
Asbestos								
Amosite					4			
Asbestos					14			
Chrysotile					4			

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample	Counts in the Ki Data Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
Metals							
Aluminum	17	85	14	1,098		3	1,217
Antimony	24	117	14	1,300	71	3	1,529
Arsenic	33	173	14	1,636	73	3	1,932
Arsenic pentavalent				8			8
Arsenic trivalent				8			8
Barium		15		145			160
Beryllium		15		116			131
Cadmium	33	173	14	1,641	73	3	1,937
Calcium				89			89
Chromium	33	173	14	1,572	54	3	1,849
Chromium hexavalent				45			45
Cobalt				48			48
Copper	33	173	14	1,636	73	3	1,932
Iron		56		92			148
Lead	33	173	14	1,738	73	3	2,034
Magnesium	55	1,0	• •	99	, 5	5	99
Manganese				162			162
Mercury	33	173	14	1,514	73	3	1,810
Nickel	33	109	14	1,514	73	3	1,848
	33	109	14	99	13	3	
Potassium	17	0.4				2	99
Selenium	17	94		1,131	70	3	1,245
Silver	33	158	14	1,568	73	3	1,849
Sodium				99			99
Thallium		15		116			131
Tin				3			3
Titanium				27			27
Vanadium				48			48
Zinc	33	173	14	1,734	73	3	2,030
Butylins							
Butyllis Butyltin ion		49		367	35	3	454
•							
Dibutyltin ion		49		367	36	3	455
Tetrabutyltin		49		368	36	3	456
Tributyltin				6			6
Tributyltin ion		64		418	50	3	535
PCB Aroclors							
Aroclor 1016	33	99	14	1,515	66	3	1,730
Aroclor 1221	33	99	14	1,515	66	3	1,730
Aroclor 1232	33	99	14	1,515	66	3	1,730
Aroclor 1242	33	99	14	1,515	66	3	1,730
Aroclor 1248	33	99	14	1,515	66	3	1,730
Aroclor 1254	33	99	14	1,515	66	3	1,730
Aroclor 1260	33	99	14	1,515	66	3	1,730
Aroclor 1262	17	95	14	1,264		3	1,393
Aroclor 1268	17	95	14	1,264		3	1,393
Total PCB Aroclors	33	99	14	1,515	66	3	1,730
	33	,,,	14	1,515	00	3	1,730
PCB Congeners							
Total PCB TEQ (ND = 0)				151			151
PCB001				151			151
PCB002				151			151
PCB003				151			151
PCB004 & 010				151			151
PCB005 & 008				151			151
PCB006				151			151
PCB007 & 009				151			151
PCB011				151			151
PCB012 & 013				151			151
PCB012 & 013				151			151
PCB014 PCB015				151			151
PCB015 PCB016 & 032							151
				151			
PCB017				151			151
PCB018				151			151
PCB019				151			151
PCB020 & 021 & 033				151			151
PCB022				151			151
PCB023				151			151

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts in the RI Da	ata Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoon	Upriver	Grand Total
PCB024 & 027				151			151
PCB025				151			151
PCB026				151			151
PCB028				151			151
PCB029				151			151
PCB030 PCB031				151 151			151 151
PCB034				151			151
PCB035				151			151
PCB036				151			151
PCB037				151			151
PCB038				151			151
PCB039				151			151
PCB040				151			151
PCB041 & 064 & 071 & 072 PCB042 & 059				151 151			151 151
PCB042 & 039 PCB043 & 049				151			151
PCB044				151			151
PCB045				151			151
PCB046				151			151
PCB047				151			151
PCB048 & 075				151			151
PCB050				151			151
PCB051				151			151
PCB052 & 069				151			151
PCB053				151			151
PCB054 PCB055				151 151			151 151
PCB055 PCB056 & 060				151			151
PCB057				151			151
PCB058				151			151
PCB061 & 070				151			151
PCB062				151			151
PCB063				151			151
PCB065				151			151
PCB066 & 076				151			151
PCB067 PCB068				151 151			151 151
PCB008 PCB073				151			151
PCB074				151			151
PCB077				151			151
PCB078				151			151
PCB079				151			151
PCB080				151			151
PCB081				151			151
PCB082				151			151
PCB083				151 151			151
PCB084 & 092 PCB085 & 116				151			151 151
PCB086				151			151
PCB087 & 117 & 125				151			151
PCB088 & 091				151			151
PCB089				151			151
PCB090 & 101				151			151
PCB093				151			151
PCB094				151			151
PCB095 & 098 & 102 PCB096				151 151			151 151
PCB097				151			151
PCB099				151			151
PCB100				151			151
PCB103				151			151
PCB104				151			151
PCB105				151			151
PCB106 & 118				151			151
PCB107 & 109				151			151
PCB108 & 112				151			151
PCB110				151			151

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sedment Sample	Counts in the Ki Data Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
PCB111 & 115				151			151
PCB113				151			151
PCB114				151			151
PCB119				151			151
PCB120				151			151
PCB121				151			151
PCB122 PCB123				151 151			151 151
PCB123 PCB124				151			151
PCB124 PCB126				151			151
PCB127				151			151
PCB128 & 162				151			151
PCB129				151			151
PCB130				151			151
PCB131				151			151
PCB132 & 161				151			151
PCB133 & 142				151			151
PCB134 & 143				151			151
PCB135				151			151
PCB136				151			151
PCB137				151			151
PCB138 & 163 & 164				151			151
PCB139 & 149				151			151
PCB140				151			151
PCB141				151			151
PCB144				151			151
PCB145				151			151
PCB146 & 165				151			151
PCB147				151			151
PCB148				151			151
PCB150				151			151
PCB151				151			151
PCB152				151			151
PCB153				151			151
PCB154 PCB155				151 151			151 151
PCB155 PCB156				151			151
PCB150 PCB157				151			151
PCB157 PCB158 & 160				151			151
PCB159				151			151
PCB166				151			151
PCB167				151			151
PCB168				151			151
PCB169				151			151
PCB170				151			151
PCB171				151			151
PCB172				151			151
PCB173				151			151
PCB174				151			151
PCB175				151			151
PCB176				151			151
PCB177				151			151
PCB178				151			151
PCB179				151			151
PCB180				151			151
PCB181				151			151
PCB182 & 187				151			151 151
PCB183 PCB184				151 151			151
PCB184 PCB185				151			151
PCB185 PCB186				151			151
PCB188				151			151
PCB189				151			151
PCB190				151			151
PCB191				151			151
PCB192				151			151
PCB193				151			151
PCB194				151			151
				-			-

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts in the I	KI Data Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
PCB195				151			151
PCB196 & 203				151			151
PCB197				151			151
PCB198 PCB199				151 151			151 151
PCB200				151			151
PCB201				151			151
PCB202				151			151
PCB204				151			151
PCB205				151			151
PCB206				151			151
PCB207				151			151
PCB208 PCB209				151 151			151 151
Total PCB Congeners				151			151
PCB Homologs							
Dichlorobiphenyl homologs				151			151
Heptachlorobiphenyl homologs				151			151
Hexachlorobiphenyl homologs				151			151
Monochlorobiphenyl homologs				151			151
Nonachlorobiphenyl homologs				151			151
Octachlorobiphenyl homologs				151			151
Pentachlorobiphenyl homologs				151			151
Tetrachlorobiphenyl homologs				151			151
Trichlorobiphenyl homologs				151			151
PCDD/F Homologs	17	29		305		3	354
Heptachlorodibenzofuran homologs Heptachlorodibenzo-p-dioxin homologs	17	29		305		3	354
Hexachlorodibenzofuran homologs	17	29		306		3	355
Hexachlorodibenzo-p-dioxin homologs	17	29		305		3	354
Octachlorodibenzofuran	17	38		310		3	368
Octachlorodibenzo-p-dioxin	17	38		310		3	368
Pentachlorodibenzofuran homologs	17	29		306		3	355
Pentachlorodibenzo-p-dioxin homologs	17	29		306		3	355
Tetrachlorodibenzofuran homologs	17	29		305		3	354
Tetrachlorodibenzo-p-dioxin homologs Total PCDD/F	17 17	29 38		305 306		3	354 364
PCDD/Fs							
1,2,3,4,6,7,8-Heptachlorodibenzofuran	17	38		310		3	368
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	17	38		310		3	368
1,2,3,4,7,8,9-Heptachlorodibenzofuran	17	38		310		3	368
1,2,3,4,7,8-Hexachlorodibenzofuran	17	38		309		3	367
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	17	38		310		3	368
1,2,3,6,7,8-Hexachlorodibenzofuran	17	38		310		3	368
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	17	38		309		3	367
1,2,3,7,8,9-Hexachlorodibenzofuran	17	38		310		3	368
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	17	38 38		310		3	368
1,2,3,7,8-Pentachlorodibenzofuran 1,2,3,7,8-Pentachlorodibenzo-p-dioxin	17 17	38		310 310		3	368 368
2,3,4,6,7,8-Hexachlorodibenzofuran	17	38		310		3	368
2,3,4,7,8-Pentachlorodibenzofuran	17	38		310		3	368
2,3,7,8-Tetrachlorodibenzofuran	17	38		309		3	367
2,3,7,8-Tetrachlorodibenzo-p-dioxin	17	38		310		3	368
TCDD TEQ (ND = 0)	17	38		310		3	368
Total TCDD TEQ (ND = 0)	17	38		405		3	463
Pesticides							
2,4'-DDD	17	87	14	1,551		3	1,672
2,4'-DDE	17	87	14	1,551		3	1,672
2,4'-DDT	17	87 87	14	1,551	66	3	1,672
4,4'-DDD 4,4'-DDE	33 33	87 87	14 14	1,781 1,781	66 66	3	1,984 1,984
4,4'-DDE 4,4'-DDT	33	87	14	1,781	66	3	1,983
Aldrin	33	87	14	1,244	47	3	1,428
alpha-Endosulfan	28	87	14	1,175	33	3	1,340
alpha-Hexachlorocyclohexane	28	87	14	1,166	33	3	1,331
Atrazine				20			
alpha-Endosulfan alpha-Hexachlorocyclohexane	28	87	14	1,175 1,166	33	3	

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

ie 2.3-3. Summary of Seument Sample Counts in the	THE DAME DOLL	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
Azinphosmethyl				2			2
beta-Endosulfan	28	87	14	1,175	33	3	1,340
beta-Hexachlorocyclohexane	28	87	14	1,175	33	3	1,340
Chlordane (cis & trans)				72			72
Chlordane (technical)		16		42			58
Chlorpyrifos				2			2
cis-Chlordane	24	87	14	1,200	47	3	1,375
cis-Nonachlor	17	87	14	991		3	1,112
Coumaphos				2			2
delta-Hexachlorocyclohexane	28	87	14	1,172	33	3	1,337
Demeton				2			2
Diazinon				2			2
Dichlorvos B: 11:	22	07	1.4	2	47	2	2
Dieldrin Divertiere	33	87	14	1,244	47	3	1,428
Dimethoate Disulfoton				2 2			2 2
	20	87	14		33	2	1,340
Endosulfan sulfate	28			1,175	33	3	,
Endrin	28	87	14	1,190		3	1,355
Endrin aldehyde	28	87	14	1,175	33		1,340
Endrin ketone	19	87	14	1,150	33	3	1,306
EPN Estaman				2 2			2 2
Ethoprop							
Fensulfothion				2 2			2 2
Fenthion	22	07	14		47	2	
gamma-Hexachlorocyclohexane (Lindane)	33 33	87 87	14	1,244	47	3 3	1,428
Heptachlor		87 87		1,244	47	3	1,428
Heptachlor epoxide Hexachlorocyclohexanes	28	87	14	1,181 9	33	3	1,346 9
Malathion				2			2
	28	87	14	1,181	33	3	1,346
Methoxychlor Methyl parathion	28	0/	14	2	33	3	1,546
Mevinphos				2			2
Mirex	17	87	14	983		3	1,104
Oxychlordane	17	87	14	991		3	1,112
Parathion	17	67	14	2		3	2
Phorate				2			2
Prothiophos				2			2
Ronnel				2			2
Sulprofos				2			2
Tetrachlorvinphos				2			2
Total Chlordanes	33	87	14	1,224	47	3	1,408
Total Endosulfan	28	87	14	1,181	33	3	1,346
Total DDD	33	87	14	1,781	66	3	1,984
DDx	33	87	14	1,780	66	3	1,983
Total DDE	33	87	14	1,780	66	3	1,984
Total DDT	33	87	14	1,780	66	3	1,983
Total 4,4'-DDx	33	19	11	1,125	52	3	1,229
Toxaphene	28	87	14	1,181	33	3	1,346
Toxaphene Peak 1	20	07	11	14	33	3	1,510
Toxaphene Peak 2				14			
Toxaphene Peak 3				14			
Toxaphene Peak 4				14			
Toxaphene Peak 5				14			
trans-Chlordane	24	87	14	1,180	33	3	1,341
trans-Nonachlor	17	87	14	991	55	3	1,112
Trichloronate				2			2
erbicides							
2,4,5-T				186			186
2,4-D				186			186
2,4-DB				186			186
Dalapon				186			186
Dicamba				186			186
Dichloroprop				186			186
Dinoseb				186			186
MCPA				186			186
MCPP				186			186
Silvex				186			186

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts	in the Ri Butt Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
PAHs							
1,6,7-Trimethylnaphthalene		00	1.4	242		2	242
1-Methylnaphthalene 1-Methylphenanthrene		90	14	567 242		3	674 242
2,6-Dimethylnaphthalene				242			242
2-Methylnaphthalene	31	157	14	1,753	70	3	2,028
Acenaphthene	33	157	14	1,824	70	3	2,101
Acenaphthylene	33	157	14	1,821	70	3	2,098
Anthracene	33	157	14	1,821	70	3	2,098
Benzo(a)anthracene	33	157	14	1,824	70	3	2,101
Benzo(a)pyrene	33	157	14	1,824	70	3	2,101
Benzo(b)fluoranthene Benzo(b+k)fluoranthene	33 16	157	14	1,824 510	70 56	3	2,101 582
Benzo(e)pyrene	10	114		393	30	3	510
Benzo(g,h,i)perylene	33	157	14	1,824	70	3	2,101
Benzo(k)fluoranthene	33	157	14	1,824	70	3	2,101
C1-Chrysene		90		184		3	277
C1-Dibenzothiophene		32		184		3	219
C1-Fluoranthene/pyrene		90		184		3	277
C1-Fluorene		90		184		3	277
C1-Naphthalene				33			33
C1-Phenanthrene/anthracene		90		184		3	277
C2-Chrysene		90 32		184 184		3	277 219
C2-Dibenzothiophene C2-Fluoranthene/pyrene		32		151		3	186
C2-Fluorantinene/pyrene C2-Fluorene		90		184		3	277
C2-Naphthalene		90		184		3	277
C2-Phenanthrene/anthracene		90		184		3	277
C3-Chrysene		90		184		3	277
C3-Dibenzothiophene		32		184		3	219
C3-Fluoranthene/pyrene		32		151		3	186
C3-Fluorene		90		184		3	277
C3-Naphthalene		90		184		3	277
C3-Phenanthrene/anthracene		90		184		3	277
C4-Chrysene C4-Dibenzothiophene		90		184 11		3	277
C4-Dischizothiophiche C4-Naphthalene		90		184		3	277
C4-Phenanthrene/anthracene		90		184		3	277
Chrysene	33	157	14	1,824	70	3	2,101
Dibenzo(a,h)anthracene	33	157	14	1,823	70	3	2,100
Dibenzothiophene		90	14	263		3	370
Fluoranthene	33	157	14	1,824	70	3	2,101
Fluorene	33	157	14	1,821	70	3	2,098
High Molecular Weight PAH	33	157	14	1,824	70	3	2,101
Indeno(1,2,3-cd)pyrene	33 33	157 157	14 14	1,824 1,824	70 70	3	2,101 2,101
Low Molecular Weight PAH Naphthalene	33 34	157	14	1,824	70	3	2,101
Perylene	34	114	14	393	70	3	510
Phenanthrene	33	157	14	1,824	70	3	2,101
Pyrene	33	157	14	1,824	70	3	2,101
Total cPAHs	33	157	14	1,824	70	3	2,101
Total PAHs	33	157	14	1,824	70	3	2,101
Phthalates							
Bis(2-ethylhexyl) phthalate	24	63	14	1,635	70	3	1,809
Butylbenzyl phthalate	24	63	14	1,635	70	3	1,809
Dibutyl phthalate	24	63	14	1,635	70	3	1,809
Diethyl phthalate	24	63	14	1,629	70	3	1,803
Dimethyl phthalate	24	63	14	1,635	70	3	1,809
Di-n-octyl phthalate	24	63	14	1,629	70	3	1,803
SVOCs							
1,2,4-Trichlorobenzene	22	63	14	1,350	70	3	1,522
1,2-Dichlorobenzene	24	63	14	1,376	66	3	1,546
1,2-Diphenylhydrazine	24	62	1.4	20	52	2	1.500
1,3-Dichlorobenzene	24	63	14	1,353	52	3	1,509
1,4-Dichlorobenzene 2,4-Dinitrotoluene	25 19	64 63	14 14	1,424 1,177	66 37	3	1,596
2,4-Dinitrotoluene 2,6-Dinitrotoluene	19	63	14	1,177	37 37	3	1,313 1,313
2,0 Dilitiotottelle	17	0.5	17	1,1//	51	3	1,313

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts in the	RI Data Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoon	Upriver	Grand Total
2-Chloronaphthalene	19	63	14	1,188	37	3	1,324
2-Nitroaniline	19	63	14	1,177	37	3	1,313
3,3'-Dichlorobenzidine	19	63	14	1,177	37	3	1,313
3-Nitroaniline 4-Bromophenyl phenyl ether	19 19	63 63	14 14	1,177 1,177	37 37	3	1,313 1,313
4-Chloroaniline	19	63	14	1,177	37	3	1,313
4-Chlorophenyl phenyl ether	19	63	14	1,177	37	3	1,313
4-Nitroaniline	19	63	14	1,177	37	3	1,313
Acetophenone				20			
Aniline	17	55	14	1,075	37	3	1,201
Azobenzene	17	63	14	1,018		3	1,115
Benzaldehyde	24	5.4	1.4	20	70	2	1.460
Benzoic acid	24	54	14	1,304	70 70	3	1,469
Benzyl alcohol Bis(2-chloro-1-methylethyl) ether	24	63	14	1,308 91	70	3	1,482 91
Bis(2-chloro-1-methylethyl) ether Bis(2-chloroethoxy) methane	19	63	14	1,177	37	3	1,313
Bis(2-chloroethyl) ether	19	63	14	1,177	37	3	1,313
Bis(2-chloroisopropyl) ether	19	63	14	1,086	37	3	1,222
Caprolactam				20			,
Carbazole	17	63	14	1,127		3	1,224
Dibenzofuran	33	63	14	1,486	70	3	1,669
Diphenyl				262			262
Hexachlorobenzene	24	87	14	1,336	70	3	1,534
Hexachlorobutadiene	24	87	14	1,408	70	3	1,606
Hexachlorocyclopentadiene	19	63	14	1,172	37	3	1,308
Hexachloroethane	22 19	71 63	14 14	1,296	56 37	3	1,462 1,313
Isophorone Nitrobenzene	19	63	14	1,177 1,177	37	3	1,313
N-Nitrosodimethylamine	17	63	14	1,075	37	3	1,209
N-Nitrosodiphenylamine	24	63	14	1,311	70	3	1,485
N-Nitrosodipropylamine	19	63	14	1,177	37	3	1,313
Retene				11			11
Phenols							
2,3,4,5-Tetrachlorophenol	17	51	14	1,037		3	1,122
2,3,4,6-Tetrachlorophenol				34			,
2,3,4,6;2,3,5,6-Tetrachlorophenol coelution				520			520
2,3,5,6-Tetrachlorophenol	17	51	14	551		3	636
2,4,5-Trichlorophenol	19	51	14	1,218	37	3	1,342
2,4,6-Trichlorophenol	19	51	14	1,218	37	3	1,342
2,4-Dichlorophenol	19	63	14	1,219	37	3	1,355
2,4-Dimethylphenol	24 19	119 63	14 14	1,353	70 37	3	1,583
2,4-Dinitrophenol 2-Chlorophenol	19	63	14	1,214 1,219	37	3	1,350 1,355
2-Methylphenol	24	121	14	1,353	70	3	1,585
2-Nitrophenol	19	63	14	1,210	37	3	1,346
3- and 4-Methylphenol Coelution	2			71	56		129
3-Methylphenol				20			
4,6-Dinitro-2-methylphenol	19	63	14	1,219	37	3	1,355
4-Chloro-3-methylphenol	19	63	14	1,219	37	3	1,355
4-Methylphenol	22	121	14	1,265	14	3	1,439
4-Nitrophenol	19	63	14	1,217	37	3	1,353
m,p-Cresol	24	100	1.4	14	60	2	1.57.6
Pentachlorophenol Phenol	24 24	109 121	14 14	1,357 1,353	69 70	3	1,576 1,585
	24	121	14	1,333	70	3	1,363
VOCs	10	20			2.5		52 0
1,1,1,2-Tetrachloroethane	18	20		564	26		628
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	18 18	20 20		596 595	26 26		660 659
1,1,2-Trichloro-1,2,2-trifluoroethane	10	20		32	20		32
1,1,2-Trichloroethane	18	20		596	26		660
1,1-Dichloroethane	18	20		595	26		659
1,1-Dichloroethene	18	20		595	26		659
1,1-Dichloropropene				29	26		55
1,2,3-Trichlorobenzene				55	26		81
1,2,3-Trichloropropane	18	20		564	26		628
1,2,4,5-Tetrachlorobenzene				20			
1,2,4-Trimethylbenzene				33	26		59

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

bie 2.5-5. Summary of Sediment Sample Counts I	ii tic Ki Data Sct.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
1,2-Dibromo-3-chloropropane				60	26		86
1,2-Dichloroethane	18	20		595	26		659
1,2-Dichloropropane	18	20		595	26		659
1,3,5-Trimethylbenzene				33	26		59
1,3-Dichloropropane				29	26		55
1,4-Dichloro-trans-2-butene	18	20		534			572
1,4-Dioxane				4			
1-Methyl-4-isopropylbenzene				21	26		47
2,2-Dichloropropane				29	26		55
2-Chloroethyl vinyl ether	18	20		534	2.5		572
2-Chlorotoluene				29	26		55
4-Chlorotoluene	10	20		29	26		55
Acetone Acrolein	18 18	20 20		586 534	26		650 572
	18	20		534 534			572 572
Acrylonitrile Benzene	18	80		554 641	41		780
Bromobenzene	18	80		29	26		55
Bromochloromethane	18	20		588	26		652
Bromodichloromethane	18	20		595	26		659
Bromoform	18	20		595 595	26		659
Bromomethane	18	20		595 595	26		659
BTEX	18	80		655	41		794
Carbon disulfide	18	20		595	26		659
Carbon tetrachloride	18	20		595	26		659
Chlorobenzene	18	20		595	26		659
Chlorodibromomethane	18	20		595	26		659
Chloroethane	18	20		595	26		659
Chloroform	18	20		595	26		659
Chloromethane	18	20		595	26		659
cis-1,2-Dichloroethene	18	20		175	26		239
cis-1,3-Dichloropropene	18	20		596	26		660
Dichlorodifluoromethane	18	20		595	26		659
Ethylbenzene	18	80		655	41		794
Ethylene dibromide	18	20		569	26		633
Hexahydrobenzene				32			32
Isopropylbenzene	18	20		599	26		663
m,p-Xylene	18	80		642	41		781
Methyl acetate				32			32
Methyl iodide	18	20		534			572
Methyl isobutyl ketone	18	20		587	26		651
Methyl n-butyl ketone	18	20		596	26		660
Methyl tert-butyl ether	18	22		590			630
Methylcyclohexane				32			32
Methylene bromide	18	20		563	26		627
Methylene chloride	18	20		596	26		660
Methylethyl ketone	18	20		586	26		650
Methylisopropylbenzene				9			9
n-Butylbenzene				29	26		55
n-Propylbenzene				33	26		59
o-Xylene	18	80		642	41		781
Sec-butylbenzene				29	26		55
Styrene	18	20		596	26		660
tert-Butylbenzene				29	26		55
Tetrachloroethene	18	20		627	26		691
Toluene	18	80		642	41		781
trans-1,2-Dichloroethene	18	20		595	26		659
trans-1,3-Dichloropropene	18	20		596	26		660
Trichloroethene	18	20		627	41		706
Trichlorofluoromethane	18	20		596	26		660
Vinyl acetate	18	20		541			579
Vinyl chloride	18	20		596	26		660
Xylene	18	80		655	41		794
Petroleum							
C10-C12 Aliphatics		12		16			28
C10-C12 Aromatics		12		16			28
C12-C13 Aromatics		2					
C12-C16 Aliphatics		12		16			28
C12-C16 Aromatics		12		16			28

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data	Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoon	Upriver	Grand Total
C16-C21 Aliphatics		12		16			28
C16-C21 Aromatics		12		16			28
C21-C34 Aliphatics		12		16			28
C21-C34 Aromatics		12 2		16			28
C5-C6 Aliphatics C6-C8 Aliphatics		2					
C8-C10 Aliphatics		12		16			28
C8-C10 Aromatics		12		16			28
Decane		2					
Total Petroleum Hydrocarbons (Diesel)	17	107	14	1,232	52		1,422
Total Petroleum Hydrocarbons (Diesel, silica gel treated)		56	14	270		3	343
Dodecane Testal Petrology Hadronskop (Casalina)	10	2 93		002	10		1.012
Total Petroleum Hydrocarbons (Gasoline) Total Petroleum Hydrocarbons (Heavy-Oil)	18	93		883 31	19 52		1,013 83
Jet fuel A		15		1	52		68
JP-4 jet fuel				1	19		20
Kerosene		15		1	52		68
Lube oil				17	52		69
Mineral spirits		15		1	52		68
Motor oil		9		105			114
Naphtha distillate				1	19		20
Non-petroleum hydrocarbons n-Hexane		2		1	52		53
Octane		2					
Pencil pitch		-		16			16
Pentane		2					
Phytane				3			3
Pristane				3			3
Total Petroleum Hydrocarbons (Residual)	17	83	14	1,080			1,194
Total Petroleum Hydrocarbons (Residual, silica gel treated)	17	56	14	270	50	3	343
Total Petroleum Hydrocarbons Total Petroleum Hydrocarbons (silica gel treated)	17	107 56	14 14	1,232 270	52	3	1,422 343
		30	14	270		3	343
Radioisotopes				100			100
Beryllium-7				108 108			108 108
Cesium-137 Lead-210				108			108
Radium-226				108			108
Surface Sediment Grain Size							
< 0.075 mm				55		2	57
> 0.075 mm				10		2	12
>10 Phi clay		7		150		3	160
>9 Phi clay	21	90	17	890		50	1,068
8-9 Phi clay	21	97	17	1,041		53	1,229
9-10 Phi clay		7		150		3	160
Clay		28		382	38	7	455
Coarse said	21	110	17	1,159	14	71 52	1,392
Coarse silt Fine gravel	21 21	97 101	17 17	1,041 973		53 53	1,229 1,165
Fine sand	21	110	17	1,159	14	71	1,392
Fine silt	21	97	17	1,041		53	1,229
Fines	21	134	17	1,496	38	80	1,786
Gravel		31		450	14	20	515
Mean grain size				1			1
Median grain size				1			1
Medium gravel	21	101	17	973		53	1,165
Medium sand Medium silt	21 21	110 97	17 17	1,159 1,041	14	71 53	1,392 1,229
Sand	21	24	17	336	24	9	393
Sieve 10		4		49	47	,	49
Sieve 100				2			2
Sieve 140				47			47
Sieve 20				49			49
Sieve 200				49			49
Sieve 230				4			4
Sieve 4				49			49
Sieve 40				49			49

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts	in the KI Data Set.	Downtown	Multnomah		Ross Island					
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total			
Sieve 60				49			49			
Silt		28		387	38	7	460			
Very coarse sand	21	110	17	1,157	14	71	1,390			
Very fine sand	21	110	17	1,157	14	71	1,390			
Very fine silt	21	97	17	1,041		53	1,229			
Atterberg Limits										
Liquid Limit				26			26			
Plastic Limit Plasticity Index				55 26			55 26			
•				20			20			
Conventionals										
Acid Volatile Sulfides	4			76		40	80			
Ammonia		14	1	525		40	580			
Cyanide Moisture		12		43 2		2	55 4			
Oxidation-Reduction Potential				2		2	2			
Perchlorate				13			13			
pH				2			2			
Phosphorus		4					4			
Specific Gravity	17	10	15	807		27	876			
Sulfide		25	1	528		40	594			
Total organic carbon	25	201	17	1,715	40	77	2,075			
Total solids	25	200	17	1,499	40	74	1,855			
Total volatile solids				191		22	213			
Metals										
Aluminum	21	139	17	1,278		63	1,518			
Antimony	21	247	17	1,453	40	72	1,850			
Arsenic	25	231	17	1,629	40	77	2,019			
Arsenic pentavalent				11			11			
Arsenic trivalent				11			11			
Barium		36		259		10	305			
Beryllium	25	44		260	40	10	314			
Cadmium	25	267	17	1,593	40	72	2,014			
Calcium Chromium	25	263	17	155 1,580	14	1 66	156 1,965			
Chromium hexavalent	23	203	1	67	14	00	68			
Cobalt			1	155		10	165			
Copper	25	267	17	1,601	40	72	2,022			
Iron		12		174			186			
Lead	25	267	17	1,624	40	72	2,045			
Magnesium				155			155			
Manganese	4	5		307		10	326			
Mercury	25	261	17	1,571	40	72	1,986			
Methylmercury				5			5			
Nickel	25	242	17	1,559	40	72	1,955			
Potassium	21	1.47	7	155		26	155			
Selenium	21	147	7	1,236	40	36	1,447			
Silver	25	201	17	1,555	40	72	1,910 155			
Sodium Thallium	4	17		155 278		10	309			
Tin	4	17		16		10	16			
Titanium				75			75			
Vanadium				155		10	165			
Zinc	25	267	17	1,630	40	72	2,051			
Butyltins										
Butyltin ion	4	161	1	313	14	8	501			
Dibutyltin dichloride	-	101	•	5		O	5			
Dibutyltin ion	4	161	1	313	14	8	501			
Monobutyltin trichloride				5			5			
Tetrabutyltin	4	182	1	318	14	8	527			
Tributyltin		17		8			25			
Tributyltin chloride				5			5			
Tributyltin ion	4	173	1	354	14	8	554			
PBDE Congeners										
PBDE028	5	3	1	78	10	3	100			
PBDE047	5	3	1	78	10	3	100			
PBDE099	5	3	1	78	10	3	100			

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Analyte	Downstream	Downtown Reach	Multnomah Channel	Study Area	Ross Island Lagoon ^a	Upriver	Grand Total
PBDE100	5	3	1	78	10	3	100
PBDE153	5	3	1	78	10	3	100
PBDE154	5	3	1	78	10	3	100
PBDE183	5	3	1	78	10	3	100
PBDE209	5	3	1	78	10	3	100
PCB Aroclors							
Aroclor 1016	25	256	17	1,286	40	81	1,705
Aroclor 1221	25	256	17	1,285	40	81	1,704
Aroclor 1232	25	256	17	1,285	40	81	1,704
Aroclor 1242	25 25	256	17	1,286	40	81	1,705
Arcelor 1248	25 25	256	17	1,286	40	81	1,705
Aroclor 1254 Aroclor 1260	25 25	256 256	17 17	1,286	40 40	81 81	1,705 1,705
Aroclor 1260 Aroclor 1262	23	154	17	1,286 990	40	63	1,705
Aroclor 1268	21	154	17	990		63	1,245
Aroclors	25	256	17	1,287	40	81	1,706
PCB Congeners							
Total PCB TEQ (ND = 0)	4	8	2	269		26	309
PCB001	4	8	1	257		26	296
PCB002	4	8	1	257		26	296
PCB003	4	8	1	257		26	296
PCB004		3		11		10	24
PCB004 & 010	4	5	1	246		16	272
PCB005		3		11		10	24
PCB005 & 008	4	5	1	246		16	272
PCB006	4	8	1	257		26	296
PCB007		3		11		10	24
PCB007 & 009	4	5	1	246		16	272
PCB008		3		90		10	103
PCB009		3		11		10	24
PCB010		3		11		10	24
PCB011	4	8	1	257		26	296
PCB012						10	10
PCB012 & 013	4	8	1	257		16	286
PCB013						10	10
PCB014	4	8	1	257		26	296
PCB015	4	8	1	257		26	296
PCB016		3		11		10	24
PCB016 & 032	4	5	1	246		16	272
PCB017	4	8	1	257		26	296
PCB018	4	5	1	325		26	361
PCB018 & 030	4	3		11		26	14
PCB019	4	8	1	257		26	296
PCB020	4	3		246		10	13
PCB020 & 021 & 033	4	5	1	246		16	272
PCB020 & 028		3		11		10	14
PCB021		2		11		10	10
PCB021 & 033 PCB022	4	3 8	1	11		26	14
PCB022 PCB023	4 4	8	1	257 257		26 26	296 296
PCB025 PCB024	4	3	1	11		10	24
PCB024 PCB024 & 027	4	5	1	246		16	272
PCB024 & 027 PCB025	4	8	1	257		26	296
PCB026	4	5	1	246		26	282
PCB026 & 029	4	3	1	11		20	14
PCB027		3		11		10	24
PCB028	4	5	1	325		26	361
PCB029	4	5	1	246		26	282
PCB030	4	5	1	246		26	282
PCB031	4	8	1	257		26	296
PCB032	-1	3	-	11		10	24
PCB032		-				10	10
	4	8	1	257		26	296
	4						
PCB034							
PCB034 PCB035	4	8	1	257		26	296
PCB034							

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

	_	Downtown	Multnomah	G. 3. 4	Ross Island	** .	G 150 1
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
PCB039 PCB040	4 4	8 5	1 1	257 246		26 26	296 282
PCB040 & 041 & 071	4	3	1	240 11		20	282 14
PCB041		3		11		10	10
PCB041 & 064 & 071 & 072	4	5	1	246		16	272
PCB042		3		11		10	24
PCB042 & 059	4	5	1	246		16	272
PCB043				11		10	21
PCB043 & 049	4	5	1	246		16	272
PCB043 & 073 PCB044	4	3 5	1	325		26	361
PCB044 & 047 & 065	4	3	1	11		20	14
PCB045	4	5	1	246		26	282
PCB045 & 051		3		11			14
PCB046	4	8	1	257		26	296
PCB047	4	5	1	246		26	282
PCB048		3		11		10	24
PCB048 & 075	4	5	1	246		16	272
PCB049		2				10	10
PCB049 & 069	4	3	1	11		26	14
PCB050 PCB050 & 053	4	5 3	1	246 11		26	282 14
PCB050 & 053 PCB051	4	5	1	246		26	282
PCB052		3	•	90		10	103
PCB052 & 069	4	5	1	246		16	272
PCB053	4	5	1	246		26	282
PCB054	4	8	1	257		26	296
PCB055	4	8	1	257		26	296
PCB056		3	_	11		10	24
PCB056 & 060	4	5	1	246		16	272
PCB057 PCB058	4	8 8	1 1	257 257		26 26	296 296
PCB059	4	0	1	231		10	10
PCB059 & 062 & 075		3		11		10	14
PCB060		3		11		10	24
PCB061						10	10
PCB061 & 070	4	5	1	246		16	272
PCB061 & 070 & 074 & 076		3		11			14
PCB062	4	5	1	246		26	282
PCB063 PCB064	4	8	1	257 11		26 10	296 24
PCB064 PCB065	4	5	1	246		26	282
PCB066	7	3		90		10	103
PCB066 & 076	4	5	1	246		16	272
PCB067	4	8	1	257		26	296
PCB068	4	8	1	257		26	296
PCB069						10	10
PCB070						10	10
PCB071		2				10	10
PCB072 PCB073	4	3 5	1	11 257		10 26	24 293
PCB073 PCB074	4	5	1	246		26	282
PCB075		3	•	210		10	10
PCB076						10	10
PCB077	4	8	2	269		26	309
PCB078	4	8	1	257		26	296
PCB079	4	8	1	257		26	296
PCB080	4	8	1	257		26	296
PCB081	4	8	2	269		26	309
PCB082	4	8	1 1	257		26	296
PCB083 PCB083 & 099	4	5 3	1	246 11		26	282 14
PCB083 & 099 PCB084		3		11		10	24
PCB084 & 092	4	5	1	246		16	272
PCB085	•	-	-	0		10	10
PCB085 & 116	4	8	1	246		16	275
PCB085 & 116 & 117				11			11
PCB086	4	5	1	246		26	282

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts in the F		Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
PCB086 & 087 & 097 & 108 & 119 & 125 PCB087		3		11		10	14 10
PCB087 & 117 & 125	4	5	1	246		16	272
PCB088						10	10
PCB088 & 091	4	8	1	257		16	286
PCB089 PCB090	4	8	1	257		26 10	296 10
PCB090 & 101	4	5	1	246		16	272
PCB090 & 101 & 113		3		11			14
PCB091						10	10
PCB092	4	3 5	1	11 246		10	24
PCB093 PCB093 & 100	4	3	1	240		26	282
PCB093 & 095 & 098 & 100 & 102		-		11			11
PCB094	4	8	1	257		26	296
PCB095		3		245		10	13
PCB095 & 098 & 102 PCB096	4	5 8	1 1	246 257		16 26	272 296
PCB097	4	5	1	246		26	282
PCB098						10	10
PCB098 & 102		3					
PCB099	4	5	1	246		26	282
PCB100 PCB101	4	5	1	246 79		26 10	282 89
PCB101 PCB102				19		10	10
PCB103	4	8	1	257		26	296
PCB104	4	8	1	257		26	296
PCB105	4	8	2	348		26	388
PCB106 PCB106 & 118	4	3 5	2	11 258		10 16	24 285
PCB107	7	3	2	230		10	13
PCB107 & 109	4	5	1	246		16	272
PCB107 & 124				11			11
PCB108 PCB108 & 112	4	5	1	246		10 16	10
PCB108 & 112 PCB108 & 124	4	3	1	240		10	272
PCB109		J		11		10	21
PCB110	4	5	1	246		26	282
PCB110 & 115		3		11		10	14
PCB111 PCB111 & 115	4	3 5	1	11 246		10 16	24 272
PCB112	+	3	1	11		10	24
PCB113	4	5	1	246		26	282
PCB114	4	8	2	269		26	309
PCB115						10	10
PCB116 PCB117		3				10 10	10 13
PCB118		3		90		10	103
PCB119	4	5	1	246		26	282
PCB120	4	8	1	257		26	296
PCB121 PCB122	4	8	1 1	257 257		26 26	296 296
PCB123	4	8	2	269		26	309
PCB124	4	5	1	246		26	282
PCB125						10	10
PCB126 PCB127	4	8 8	2 1	269 257		26 26	309 296
PCB127 PCB128	4	0	1	79		20	296 79
PCB128 & 162	4	5	1	246		16	272
PCB128 & 166		3		11			14
PCB129	4	5	1	246		26	282
PCB129 & 138 & 160 & 163		2		11			11
PCB129 & 138 & 163 PCB130	4	3 8	1	257		26	296
PCB131	4	8	1	257		26	296
PCB132		3		11		10	24
PCB132 & 161	4	5	1	246		16	272
PCB133		3		11		10	24

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts	in the KI Data Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
PCB133 & 142	4	5	1	246		16	272
PCB134		3				10	13
PCB134 & 143	4	5	1	257		16	283
PCB135 PCB135 & 151	4	5 3	1	246		26	282
PCB135 & 151 PCB135 & 151 & 154		3		11			11
PCB136	4	8	1	257		26	296
PCB137	4	8	1	257		26	296
PCB138				79		10	89
PCB138 & 163 & 164	4	5	1	246		16	272
PCB139						10	10
PCB139 & 140	4	3		11		16	14
PCB139 & 149 PCB140	4 4	5 5	1 1	246 246		16	272 282
PCB140 PCB141	4	8	1	257		26 26	296
PCB142	+	3	1	11		10	24
PCB143		3		11		10	13
PCB144	4	8	1	257		26	296
PCB145	4	8	1	257		26	296
PCB146		3		11		10	24
PCB146 & 165	4	5	1	246		16	272
PCB147	4	5	1	246		26	282
PCB147 & 149		3		11			14
PCB148	4	8	1	257		26	296
PCB149		0		255		10	10
PCB150	4	8	1	257		26	296
PCB151 PCB152	4 4	5 8	1 1	246 257		26 26	282 296
PCB152 PCB153	4	5	1	325		26	361
PCB153 & 168	7	3		11		20	14
PCB154	4	8	1	246		26	285
PCB155	4	8	1	256		26	295
PCB156	4	5	2	269		26	306
PCB156 & 157		3					
PCB157	4	5	2	269		26	306
PCB158		3		11		10	24
PCB158 & 160	4	5	1	246		16	272
PCB159 PCB160	4	8 3	1	257		26 10	296 13
PCB161		3		11		10	24
PCB162		3		11		10	24
PCB163		3		11		10	10
PCB164		3		11		10	24
PCB165		3		11		10	24
PCB166	4	5	1	246		26	282
PCB167	4	8	2	269		26	309
PCB168	4	5	1	246		26	282
PCB169	4	8	2	269		26	309
PCB170	4	8	1	336		26	375
PCB171	4	5	1	246		26	282
PCB171 & 173 PCB172	4	3 8	1	11 257		26	14 296
PCB172 PCB173	4	5	1	246		26	282
PCB174	4	8	1	257		26	296
PCB175	4	8	1	257		26	296
PCB176	4	8	1	257		26	296
PCB177	4	8	1	257		26	296
PCB178	4	8	1	257		26	296
PCB179	4	8	1	257		26	296
PCB180	4	5	1	325		26	361
PCB180 & 193		3		11			14
PCB181	4	8	1	257		26	296
PCB182 PCB182 & 187	4	3 5	1	11		10	24
PCB182 & 187 PCB183	4	5 8	1 1	246 246		16 26	272 285
PCB183 PCB183 & 185	4	٥	1	246 11		20	285 11
PCB184	4	8	1	257		26	296
PCB185	4	8	1	246		26	285
	•	Ü	-				_50

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.5-5. Summary of Sediment Sample Counts in the	KI Data Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
PCB186	4	8	1	257		26	296
PCB187		3		90		10	103
PCB188	4	8	1	257		26	296
PCB189	4	8	2	269		26	309
PCB190 PCB191	4	8 8	1 1	257 257		26 26	296 296
PCB192	4	8	1	257		26	296
PCB193	4	5	1	246		26	282
PCB194	4	8	1	257		26	296
PCB195	4	8	1	257		26	296
PCB196		3		11		10	24
PCB196 & 203	4	5	1	246		16	272
PCB197	4	8	1	246		26	285 11
PCB197 & 200 PCB198	4	5	1	11 246		26	282
PCB198 & 199	4	3	1	11		20	14
PCB199	4	5	1	246		26	282
PCB200	4	5	1	246		26	282
PCB201	4	8	1	257		26	296
PCB202	4	8	1	257		26	296
PCB203		3		11		10	24
PCB204	4	8	1	257		26	296
PCB205	4	8	1	257		26	296
PCB206 PCB207	4	8 8	1	257 257		26 26	296 296
PCB207 PCB208	4	8	1	257		26	296
PCB209	4	8	1	257		26	296
Total PCB Congeners	4	8	1	257		26	296
PCB Homologs							
Dichlorobiphenyl homologs	4	8	1	257		26	296
Heptachlorobiphenyl homologs	4	8	1	257		26	296
Hexachlorobiphenyl homologs	4	8	1	257		26	296
Monochlorobiphenyl homologs	4	8	1	257		26	296
Nonachlorobiphenyl homologs	4	8 8	1	257		26	296
Octachlorobiphenyl homologs Pentachlorobiphenyl homologs	4	8	1 1	257 257		26 26	296 296
Tetrachlorobiphenyl homologs	4	8	1	257		26	296
Trichlorobiphenyl homologs	4	8	1	257		26	296
PCDD/F Homologs							
Heptachlorodibenzofuran homologs	21	52	2	232		39	346
Heptachlorodibenzo-p-dioxin homologs	21	52	2	232		39	346
Hexachlorodibenzofuran homologs	21	52	2	232		39	346
Hexachlorodibenzo-p-dioxin homologs	21	52	2	232		39	346
Octachlorodibenzofuran	21	62	2	235		48	368
Octachlorodibenzo-p-dioxin Pentachlorodibenzofuran homologs	21 21	62 52	2 2	235 232		49 39	369 346
Pentachlorodibenzo-p-dioxin homologs	21	52	2	232		39	346
Tetrachlorodibenzofuran homologs	21	52	2	232		39	346
Tetrachlorodibenzo-p-dioxin homologs	21	52	2	231		39	345
Total PCDD/F	21	62	2	232		39	356
PCDD/Fs							
1,2,3,4,6,7,8-Heptachlorodibenzofuran	21	62	2	235		49	369
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	21	62	2	235		49	369
1,2,3,4,7,8,9-Heptachlorodibenzofuran	21	62	2	235		49	369
1,2,3,4,7,8-Hexachlorodibenzofuran	21	62	2	235		49	369
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8-Hexachlorodibenzofuran	21 21	62 62	2 2	235 235		49 49	369 369
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	21	62	2	235		49	369
1,2,3,7,8,9-Hexachlorodibenzofuran	21	62	2	235		49	369
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	21	62	2	235		49	369
1,2,3,7,8-Pentachlorodibenzofuran	21	62	2	235		49	369
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	21	62	2	235		49	369
2,3,4,6,7,8-Hexachlorodibenzofuran	21	62	2	235		49	369
2,3,4,7,8-Pentachlorodibenzofuran	21	62	2	235		49	369
2,3,7,8-Tetrachlorodibenzofuran	21	62	2	235		49	369
2,3,7,8-Tetrachlorodibenzo-p-dioxin TCDD TEQ (ND = 0)	21 21	62 62	2 2	235 235		49 49	369 369
TODD TEQ (IND = 0)	21	02	2	233		77	307

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts in the	Ri Butt Bet.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
Total TCDD TEQ (ND = 0)	21	65	2	383		54	525
Pesticides							
2,4'-DDD	21	139	17	1,122		63	1,362
2,4'-DDE	21	139	17	1,121		63	1,361
2,4'-DDT	21	139	17	1,122		63	1,362
4,4'-DDD	25	145	17	1,269	40	81	1,577
4,4'-DDE	25	145	17	1,267	40	81	1,575
4,4'-DDT	25	145	17	1,269	40	81	1,577
Aldrin	25	141	17	1,205	14	77	1,479
alpha-Endosulfan	25	141	17	1,194	14	75	1,466
alpha-Hexachlorocyclohexane	25	141	17	1,185	14	75	1,457
beta-Endosulfan	25	141	17	1,194	14	75	1,466
beta-Hexachlorocyclohexane	25	141	17	1,194	14	75	1,466
Chlordane (cis & trans)				191		3	194
Chlordane (technical)		22		10			32
cis-Chlordane	21	141	17	1,180	14	77	1,450
cis-Nonachlor	21	139	17	1,059		63	1,299
delta-Hexachlorocyclohexane	25	141	17	1,192	14	75	1,464
Dieldrin	25	141	17	1,205	14	77	1,479
Endosulfan sulfate	25	141	17	1,193	14	75	1,465
Endrin	25	141	17	1,197	14	75	1,469
	25	141	17	1,194	14	75	1,466
Endrin aldehyde							
Endrin ketone	21	141	17	1,180	14	75 77	1,448
gamma-Hexachlorocyclohexane (Lindane)	25	141	17	1,205	14	77	1,479
Heptachlor	25	141	17	1,205	14	77	1,479
Heptachlor epoxide	25	141	17	1,194	14	75	1,466
Hexachlorocyclohexanes				9			9
Methoxychlor	25	141	17	1,194	14	75	1,466
Mirex	21	139	17	965		63	1,205
Oxychlordane	21	139	17	1,060		63	1,300
Total Chlordanes	25	141	17	1,203	14	77	1,477
Total Endosulfan	25	141	17	1,193	14	75	1,465
Total DDD	25	145	17	1,269	40	81	1,577
DDx	25	145	17	1,269	40	81	1,577
Total DDE	25	145	17	1,267	40	81	1,575
Total DDT	25	145	17	1,269	40	81	1,577
Total 4,4'-DDx	21	12	7	1,026	40	39	1,145
Toxaphene	25	141	17	1,193	14	75	1,465
•	21	141	17		14	77	
trans-Chlordane				1,182	14		1,452
trans-Nonachlor	21	139	17	1,059		63	1,299
Herbicides							
2,4,5-T			1	221		3	225
2,4-D			1	221		3	225
2,4-DB			1	221		3	225
Dalapon			1	221		3	225
Dicamba			1	221		3	225
Dichloroprop			1	221		3	225
Dinoseb			1	221		3	225
MCPA			1	221		3	225
MCPP			1	221		3	225
Silvex							
Silvex			1	221		3	225
PAHs							
1,6,7-Trimethylnaphthalene				56			56
1-Methylnaphthalene	4	111	10	277		32	434
1-Methylphenanthrene	·			56			56
2,6-Dimethylnaphthalene				56			56
2-Methylnaphthalene	25	192	17	1,536	40	71	1,881
* *	25	268	17	1,756	40	78	2,184
Acenaphthene							
Acenaphthylene	25	268	17	1,756	40	77	2,183
Anthracene	25	268	17	1,756	40	78	2,184
Benzo(a)anthracene	25	268	17	1,756	40	78	2,184
Benzo(a)pyrene	25	268	17	1,756	40	78	2,184
Benzo(b)fluoranthene	25	268	17	1,660	40	78	2,088
Benzo(b+k)fluoranthene	4	6		669	40	18	737
Benzo(e)pyrene	4	144	10	297		32	487
Benzo(g,h,i)perylene	25	268	17	1,756	40	77	2,183
Benzo(j+k)fluoranthene				35			35

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts in	the RI Data Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoon	Upriver	Grand Total
Benzo(k)fluoranthene	25	268	17	1,625	40	78	2,053
Benzofluoranthenes				35			35
C1-Chrysene	4	111	10	268		32	425
C1-Dibenzothiophene	4	99	10	268		32	413
C1-Fluoranthene/pyrene C1-Fluorene	4 4	111 111	10 10	268 268		32 32	425 425
C1-Naphthalene	4	111	10	62		32	62
C1-Phenanthrene/anthracene	4	111	10	268		32	425
C2-Chrysene	4	111	10	268		32	425
C2-Dibenzothiophene	4	99	10	268		32	413
C2-Fluoranthene/pyrene	4	99	10	241		32	386
C2-Fluorene	4	111	10	268		32	425
C2-Naphthalene	4	111	10	268		32	425
C2-Phenanthrene/anthracene C3-Chrysene	4 4	111 111	10 10	268 268		32 32	425 425
C3-Dibenzothiophene	4	99	10	268		32	413
C3-Fluoranthene/pyrene	4	99	10	241		32	386
C3-Fluorene	4	111	10	268		32	425
C3-Naphthalene	4	111	10	268		32	425
C3-Phenanthrene/anthracene	4	111	10	268		32	425
C4-Chrysene	4	111	10	268		32	425
C4-Dibenzothiophene				35			35
C4-Naphthalene	4	111	10	268		32	425
C4-Phenanthrene/anthracene	4	111	10	268	40	32	425
Chrysene Dibenzo(a,h)anthracene	25 25	268 268	17 17	1,756 1,756	40 40	78 78	2,184 2,184
Dibenzothiophene	4	111	10	268	40	32	425
Fluoranthene	25	268	17	1,767	40	78	2,195
Fluorene	25	268	17	1,756	40	78	2,184
High Molecular Weight PAH	25	268	17	1,756	40	78	2,184
Indeno(1,2,3-cd)pyrene	25	268	17	1,756	40	78	2,184
Low Molecular Weight PAH	25	268	17	1,756	40	78	2,184
Naphthalene	25	268	17	1,761	40	78	2,189
Perylene	4	144	10	297	40	32	487
Phenanthrene Pyrene	25 25	268 268	17 17	1,756 1,756	40 40	77 78	2,183 2,184
Total cPAHs	25 25	268	17	1,756	40	78 78	2,184
Total PAHs	25	268	17	1,756	40	78	2,184
Phthalates				,			, -
Bis(2-ethylhexyl) phthalate	21	95	17	1,552	40	72	1,797
Butylbenzyl phthalate	21	95	17	1,543	40	72	1,788
Dibutyl phthalate	21	95	17	1,542	40	72	1,787
Diethyl phthalate	21	95	17	1,538	40	72	1,783
Dimethyl phthalate	21	95	17	1,543	40	72	1,788
Di-n-octyl phthalate	21	95	17	1,538	40	72	1,783
SVOCs							
1,2,4-Trichlorobenzene	21	95	17	1,366	40	72	1,611
1,2-Dichlorobenzene	21	95	17	1,427	40	72	1,672
1,2-Diphenylhydrazine						10	10
1,3-Dichlorobenzene	21	95	17	1,424	40	72	1,669
1,4-Dichlorobenzene	21	95	17	1,432	40	72	1,677
2,4-Dinitrotoluene 2,6-Dinitrotoluene	21 21	91 91	17 17	1,325 1,325	14 14	63 63	1,531 1,531
2-Chloronaphthalene	21	106	17	1,325	14	63	1,546
2-Nitroaniline	21	91	17	1,325	14	63	1,531
3,3'-Dichlorobenzidine	21	91	17	1,325	14	63	1,531
3-Nitroaniline	21	91	17	1,325	14	63	1,531
4-Bromophenyl phenyl ether	21	91	17	1,325	14	63	1,531
4-Chloroaniline	21	91	17	1,325	14	63	1,531
4-Chlorophenyl phenyl ether	21	91	17	1,325	14	63	1,531
4-Nitroaniline	21	91	17	1,325	14	63	1,531
Aniline Azobenzene	21 21	91 89	17 17	1,120 1,002	14	63 53	1,326 1,182
Benzoic acid	21	93	17	1,002	38	72	1,635
Benzyl alcohol	21	95 95	17	1,394	40	72	1,642
Bis(2-chloro-1-methylethyl) ether	21	2	-,	233	2	10	247
Bis(2-chloroethoxy) methane	21	91	17	1,325	14	63	1,531

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

	D	Downtown	Multnomah	Study Amo	Ross Island	Umuimou	Crond Total
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
Bis(2-chloroethyl) ether	21	91	17	1,325	14	63	1,531
Bis(2-chloroisopropyl) ether	21	89	17	1,092	12	53	1,284
Carbazole	21 25	89 109	17 17	1,306	40	63 72	1,496
Dibenzofuran Diphenyl	25	109	17	1,534 91	40	12	1,797 91
Hexachlorobenzene	21	145	17	1,420	40	72	1,715
Hexachlorobutadiene	21	145	17	1,451	40	72	1,746
Hexachlorocyclopentadiene	21	91	17	1,319	14	63	1,525
Hexachloroethane	21	123	17	1,374	40	72	1,647
Isophorone	21	91	17	1,325	14	63	1,531
Nitrobenzene	21	91	17	1,325	14	63	1,531
N-Nitrosodimethylamine	21	91	17	1,137	14	63	1,343
N-Nitrosodiphenylamine	21	95	17	1,399	40	72	1,644
N-Nitrosodipropylamine	21	91	17	1,325	14	63	1,531
Pyridine				1			1
Phenols							
2,3,4,5-Tetrachlorophenol	21	89	17	1,024		63	1,214
2,3,4,6;2,3,5,6-Tetrachlorophenol coelution		0,	6	568		18	592
2,3,4,6-Tetrachlorophenol				149		10	159
2,3,5,6-Tetrachlorophenol	21	89	11	535		35	691
2,4,5-Trichlorophenol	21	91	17	1,381	14	63	1,587
2,4,6-Trichlorophenol	21	91	17	1,381	14	63	1,587
2,4-Dichlorophenol	21	89	17	1,398	14	63	1,602
2,4-Dimethylphenol	21	37	17	1,464	38	67	1,644
2,4-Dinitrophenol	21	89	17	1,360	14	63	1,564
2-Chlorophenol	21	89	17	1,381	14	63	1,585
2-Methylphenol	21	105	17	1,455	38	72	1,708
2-Nitrophenol	21	89	17	1,372	14	63	1,576
3- and 4-Methylphenol Coelution		4		42	24	7	77
3,4-Dichlorophenol	1	5		7			13
3,5-Dichlorophenol	1	5		7			13
4,6-Dinitro-2-methylphenol	21	89	17	1,380	14	63	1,584
4-Chloro-3-methylphenol	21	89	17	1,381	14	63	1,585
4-Methylphenol	21	101	17	1,418	14	65	1,636
4-Nitrophenol	21	89	17	1,378	14	63	1,582
Cresol				1	••		1
Pentachlorophenol	21	107	17	1,531	38	78	1,792
Phenol	21	105	17	1,455 17	40	72	1,710 17
Tetrachlorophenol				17			17
VOCs							
1,1,1,2-Tetrachloroethane	6	8	1	332	2	3	352
1,1,1-Trichloroethane	6	8	1	332	2	13	362
1,1,2,2-Tetrachloroethane	6	8	1	332	2	13	362
1,1,2-Trichloro-1,2,2-trifluoroethane				1		10	11
1,1,2-Trichloroethane	6	8	1	332	2	13	362
1,1-Dichloroethane	6	8	1	327	2	13	357
1,1-Dichloroethene	6	8	1	332	2	10	359
1,1-Dichloropropene		2 2		54	2	10	58
1,2,3-Trichlorobenzene	6	8	1	54 332	2 2	10 3	68 352
1,2,3-Trichloropropane	6	2	1	532 57	2	3	552 61
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane		2		54	2	10	68
1,2-Dichloroethane	6	8	1	332	2	13	362
1,2-Dichloroethene	U	0	1	8	2	13	8
1,2-Dichloropropane	6	8	1	332	2	13	362
1,3,5-Trimethylbenzene	O	2		57	2	13	61
1,3-Dichloropropane		2		54	2		58
1,3-Dichloropropene		-		8	-		8
1,4-Dichloro-trans-2-butene	6	6	1	279		3	295
1,4-Dioxane						10	10
1-Methyl-4-isopropylbenzene		2		37	2		41
2,2-Dichloropropane		2		54	2		58
2-Chloroethyl vinyl ether	6	6	1	279		3	295
2-Chlorotoluene		2		54	2		58
4-Chlorotoluene		2		54	2		58
Acetone	6	8	1	332	2	13	362
Acrolein	6	6	1	279		3	295

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data	a Set.	Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoon ^a	Upriver	Grand Total
Acrylonitrile	6	6	1	279		3	295
Benzene	6	24	1	405	28	17	481
Bromobenzene		2		54	2		58
Bromochloromethane	6	8	1	332	2	13	362
Bromodichloromethane	6	8	1	332	2	13	362
Bromoethane	-	0	4	1	2	12	1
Bromoform Bromomethane	6 6	8 8	1 1	332 332	2 2	13 13	362 362
BTEX	6	24	1	424	28	17	500
Butylbenzene	Ü	24		8	20	17	8
Carbon disulfide	6	8	1	329	2	13	359
Carbon tetrachloride	6	8	1	332	2	13	362
Chlorobenzene	6	8	1	341	2	13	371
Chlorodibromomethane	6	8	1	332	2	13	362
Chloroethane	6	8	1	335	2	13	365
Chloroform	6	8	1	332	2	13	362
Chloromethane	6	8	1	332	2	13	362
cis-1,2-Dichloroethene	6	8	1	138	2	10	165
cis-1,3-Dichloropropene	6	8	1	324	2	13	354
Dichlorodifluoromethane	6	8	1	332	2	13	362
Ethylbenzene Ethylono dibromido	6 6	24 8	1 1	424 332	28 2	17 13	500 362
Ethylene dibromide Hexahydrobenzene	O	٥	1	552	2	10	10
Isopropylbenzene	6	8	1	335	2	13	365
m,p-Xylene	6	24	1	395	28	17	471
Methyl acetate	0		-	270	20	10	10
Methyl iodide	6	6	1	279		3	295
Methyl isobutyl ketone	6	8	1	323	2	13	353
Methyl n-butyl ketone	6	8	1	332	2	13	362
Methyl tert-butyl ether	6	6	1	306		13	332
Methylcyclohexane						10	10
Methylene bromide	6	8	1	332	2	3	352
Methylene chloride	6	8	1	332	2	13	362
Methylethyl ketone	6	8	1	323	2	13	353
Methylisopropylbenzene n-Butylbenzene		2		17 46	2		17 50
n-Propylbenzene		2		57	2		61
o-Xylene	6	24	1	395	28	17	471
Sec-butylbenzene	· ·	2	-	54	2	-,	58
Styrene	6	8	1	332	2	13	362
tert-Butylbenzene		2		51	2		55
Tetrachloroethene	6	8	1	392	2	13	422
Toluene	6	24	1	396	28	17	472
trans-1,2-Dichloroethene	6	8	1	329	2	13	359
trans-1,3-Dichloropropene	6	8	1	329	2	13	359
Trichloroethene	6	12	1	392	28	17	456
Trichlorofluoromethane	6	8	1	332	2	13	362
Vinyl acetate	6	6 8	1	279	2	3	295
Vinyl chloride Xylene	6 6	8 24	1	332 424	2 28	13 17	362 500
	Ü	24	1	424	20	17	300
Petroleum							
C10-C12 Aliphatics				5			5
C10-C12 Aromatics				5			5
C12-C16 Aliphatics				5			5
C12-C16 Aromatics				5 5			5 5
C16-C21 Aliphatics C16-C21 Aromatics				5			5
C21-C34 Aliphatics				5			5
C21-C34 Aromatics				5			5
C8-C10 Aliphatics				5			5
C8-C10 Aromatics				5			5
Total Petroleum Hydrocarbons (Diesel)	17	61	11	859	26	43	1,017
Total Petroleum Hydrocarbons (Diesel, silica gel treated)		127	10	216		32	385
Fuel oil no. 2				1			1
Total Petroleum Hydrocarbons (Gasoline)	17	36	1	468	26	16	564
Total Petroleum Hydrocarbons (Heavy-Oil)		14		26	26	4	70
Jet fuel A		18		1	26	4	49
JP-4 jet fuel		14		1	26	4	45

Table 2.3-3. Summary of Sediment Sample Counts in the RI Data Set.

		Downtown	Multnomah		Ross Island		
Analyte	Downstream	Reach	Channel	Study Area	Lagoona	Upriver	Grand Total
Kerosene		18		1	26	4	49
Lube oil		14		143	26	4	187
Mineral spirits		18		1	26	4	49
Motor oil		22		27			49
Naphtha distillate		14		1	26	4	45
Non-petroleum hydrocarbons		14			26	4	44
Pencil pitch				44			44
Phytane				44			44
Pristane				44			44
Total Petroleum Hydrocarbons (Residual)	17	21	11	663		39	751
Total Petroleum Hydrocarbons (Residual, silica gel treated)		127	10	216		32	385
Total Petroleum Hydrocarbons	17	61	11	859	26	43	1,017
Total Petroleum Hydrocarbons (silica gel treated)		127	10	216		32	385
Radioisotopes							
Beryllium-7				111			111
Cesium-137				111			111
Lead-210				111			111
Radium-226				111			111

Notes:

BTEX - benzene, toluene, ethylbenzene, and total xylene

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

SVOC - semivolatile organic compound
Total TCDD TEQ - sum of PCDD/F and PCB congener TCDD TEQ

VOC - volatile organic compound

^a Data collected within Ross Island Lagoon were not presented in Section 5.

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Analyte	# of LWG Samples
Grain Size	
Coarse sand	44
Medium sand	44
Fine sand	44
Coarse silt	44
Medium silt	44
Fine silt	44
Very fine silt	44
>9 Phi clay	44
8-9 Phi clay	44
Fine gravel	44
Fines	44
Medium gravel	44
Very coarse sand	44
Very fine sand	44
Conventionals	
Specific Gravity	40
Sulfide	1
Total organic carbon	51
Total solids	52
Total solids	32
Metals	
Aluminum	50
Antimony	50
Arsenic	50
Cadmium	50
Chromium	50
Chromium hexavalent	45
Copper	50
Lead	50
Mercury	50
Nickel	50
Selenium	50
Silver	50
Zinc	50
2-Methylnaphthalene	49
Acenaphthene	49
Acenaphthylene	49
Anthracene	49
Benzo(a)anthracene	49
Benzo(a)pyrene	49
Benzo(b)fluoranthene	49
Benzo(g,h,i)perylene	49
Benzo(k)fluoranthene	49
Chrysene	49
Dibenzo(a,h)anthracene	49
Fluoranthene	49
Fluorene	49
High Molecular Weight PAH	49
Indeno(1,2,3-cd)pyrene	49
Low Molecular Weight PAH	49
Naphthalene	51
Phenanthrene	49

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts. Analyte	# of LWG Samples
	49
Pyrene Total cPAHs	49 49
Total PAHs	49 49
Total FAMS	49
Butyltins	
Butyltin ion	48
Dibutyltin ion	48
Tetrabutyltin	48
Tributyltin ion	48
PCB Aroclors	
Aroclor 1016	48
Aroclor 1221	48
Aroclor 1232	48
Aroclor 1242	48
Aroclor 1248	48
Aroclor 1254	48
Aroclor 1260	48
Aroclor 1262	48
Aroclor 1268	48
Total PCB Aroclors	48
PCB Congeners	
Total PCB TEQ ($ND = 0$)	52
PCB001	52
PCB002	52
PCB003	52
PCB004 & 010	52
PCB005 & 008	52
PCB006	52
PCB007 & 009	52
PCB011	52
PCB012 & 013	52
PCB014	52
PCB015	52
PCB016 & 032	52
PCB017	52
PCB018	52
PCB019	52
PCB020 & 021 & 033	52
PCB022	52
PCB023	52
PCB024 & 027	52
PCB025	52
PCB026	52
PCB028	52
PCB029	52
PCB030	52
PCB031	52
PCB034	52
PCB035	52
PCB036	52
PCB037	52
PCB038	52

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.	
Analyte	# of LWG Samples
PCB039	52
PCB040	52
PCB041 & 064 & 071 & 072	52
PCB042 & 059	52
PCB043 & 049	52
PCB044	52
PCB045	52
PCB046	52
PCB047	52
PCB048 & 075	52
PCB050	52
PCB050	52
PCB052 & 069	52
PCB053	52
PCB054	52
PCB055	52 52
PCB056 & 060	52 53
PCB057	52
PCB058	52 53
PCB061 & 070	52
PCB062	52
PCB063	52
PCB065	52
PCB066 & 076	52
PCB067	52
PCB068	52
PCB073	52
PCB074	52
PCB077	52
PCB078	52
PCB079	52
PCB080	52
PCB081	52
PCB082	52
PCB083	52
PCB084 & 092	52
PCB085 & 116	52
PCB086	52
PCB087 & 117 & 125	52
PCB088 & 091	52
PCB089	52
PCB090 & 101	52
PCB093	52
PCB094	52
PCB095 & 098 & 102	52
PCB096	52
PCB097	52
PCB099	52
PCB100	52
PCB103	52
PCB104	52
PCB105	52
PCB106 & 118	52

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.	
Analyte	# of LWG Samples
PCB107 & 109	52
PCB108 & 112	52
PCB110	52
PCB111 & 115	52
PCB113	52
PCB114	52
PCB119	52
PCB120	52
	52
PCB121	
PCB122	52 52
PCB123	52 52
PCB124	52 52
PCB126	52
PCB127	52
PCB128 & 162	52
PCB129	52
PCB130	52
PCB131	52
PCB132 & 161	52
PCB133 & 142	52
PCB134 & 143	52
PCB135	52
PCB136	52
PCB137	52
PCB138 & 163 & 164	52
PCB139 & 149	52
PCB140	52
PCB141	52
PCB144	52
PCB145	52
PCB146 & 165	52
PCB147	52
PCB148	52
PCB150	52 52
PCB151	52 52
PCB152	52 52
PCB153	52 52
PCB154	52 52
PCB155	52
PCB156	52
PCB157	52
PCB158 & 160	52
PCB159	52
PCB166	52
PCB167	52
PCB168	52
PCB169	52
PCB170	52
PCB171	52
PCB172	52
PCB173	52
PCB174	52
PCB175	52
- · · ·	~ ~

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.	
Analyte	# of LWG Samples
PCB176	52
PCB177	52
PCB178	52
PCB179	52
PCB180	52
PCB181	52
PCB182 & 187	52
PCB183	52
PCB184	52
PCB185	52
PCB186	52
PCB188	52
PCB189	52
PCB190	52
PCB191	52
PCB192	52
PCB193	52
PCB194	52
PCB195	52
PCB196 & 203	52
PCB197	52
PCB198	52
PCB199	52
PCB200	52
PCB201	52
PCB202	52
PCB204	52
PCB205	52
PCB206	52
PCB207	52
PCB208	52
PCB209	52
Total PCB Congeners	52
PCB Homologs	
Dichlorobiphenyl homologs	52
Heptachlorobiphenyl homologs	52
Hexachlorobiphenyl homologs	52
Monochlorobiphenyl homologs	52
Nonachlorobiphenyl homologs	52
Octachlorobiphenyl homologs	52
Pentachlorobiphenyl homologs	52
Tetrachlorobiphenyl homologs	52
Trichlorobiphenyl homologs	52
1110moroophonji nomorogo	32

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Analyte	# of LWG Samples
	# 01 L WG Samples
PCDD/F Homologs	40
Heptachlorodibenzofuran homologs	48 48
Heptachlorodibenzo-p-dioxin homologs Hexachlorodibenzofuran homologs	48
Hexachlorodibenzo-p-dioxin homologs	48
	48
Octachlorodibenzofuran	48
Octachlorodibenzo-p-dioxin	
Pentachlorodibenzofuran homologs	48 48
Pentachlorodibenzo-p-dioxin homologs	48
Tetrachlorodibenzofuran homologs Tetrachlorodibenzo-p-dioxin homologs	48
Total PCDD/F	48
Total FCDD/F	40
PCDD/Fs	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	48
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	48
1,2,3,4,7,8,9-Heptachlorodibenzofuran	48
1,2,3,4,7,8-Hexachlorodibenzofuran	48
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	48
1,2,3,6,7,8-Hexachlorodibenzofuran	48
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	48
1,2,3,7,8,9-Hexachlorodibenzofuran	48
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	48
1,2,3,7,8-Pentachlorodibenzofuran	48
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	48
2,3,4,6,7,8-Hexachlorodibenzofuran	48
2,3,4,7,8-Pentachlorodibenzofuran	48
2,3,7,8-Tetrachlorodibenzofuran	48
2,3,7,8-Tetrachlorodibenzo-p-dioxin	48
TCDD TEQ (ND = 0)	48
Total TCDD TEQ ($ND = 0$)	52
Pesticides	
2,4'-DDD	50
2,4'-DDE	50
2,4'-DDT	50
4,4'-DDD	50
4,4'-DDE	50
4,4'-DDT	50
Aldrin	50
alpha-Endosulfan	50
alpha-Hexachlorocyclohexane	50
beta-Endosulfan	50
beta-Hexachlorocyclohexane	50
cis-Chlordane	50
cis-Nonachlor	50
delta-Hexachlorocyclohexane	50
Dieldrin	50
Endosulfan sulfate	50
Endrin	50
Endrin aldehyde	50
Endrin ketone	50
gamma-Hexachlorocyclohexane (Lindane)	50
Heptachlor	50

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Heptachlor epoxide 50 Methoxychlor 50 Mirex 50 Oxychlordane 50 Total Chlordanes 50 Total Endosulfan 50 Total DDD 50 DDx 50 Total DDE 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2,4,5-T 47 2,4-D 47 Dalapon 47 Dicamba 47 Dichoroprop 47 MCPA 47 MCPP 47 Silvex 47 Phthalates 49 Bis(2-ethylhexyl) phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 Di-2-Chloronaphtalene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene	Analyte	# of LWG Samples
Mirex 50 Oxychlordane 50 Total Endosulfan 50 Total DDD 50 DDx 50 Total DDE 50 Total DDT 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2,4,5-T 47 2,4-D 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 MCPA 47 MCPA 47 MCPP 47 Silvex 47 Phthalates 49 Bis(2-ethylhexyl) phthalate 49 Bitylbenzyl phthalate 49 Dibutyl phthalate 49 Directyl phthalate 49 Directyl phthalate 49 Directyl phthalate 49 Directyl phthalate 49 Dinethyl phthalate 49	Heptachlor epoxide	50
Oxychlordane 50 Total Chlordanes 50 Total DDD 50 DDx 50 Total DDE 50 Total DDT 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2,4,5-T 47 2,4-D 47 2,4-DB 47 Dalapon 47 Dichloroprop 47 Dichloroprop 47 MCPA 47 MCPA 47 MCPA 47 MCPA 47 Phthalates 49 Bix(2-ethylhexyl) phthalate 49 Biyl phthalate 49 Dibutyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 1,2-Dichlorobenzene 49 1,2-Dichlorobenzene 49		
Total Chlordanes 50 Total Endosulfan 50 Total DDD 50 DDX 50 Total DDE 50 Total DDT 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2,4,5-T 47 2,4-D 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 MCPA 47 MCPA 47 MCPA 47 MCPA 47 MCPA 47 MCPB 47 Silvex 47 Phthalate 49 Butylbenzyl phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Di-n-octyl phthalate 49 1,2-4-		
Total DDD 50 DDx 50 DDx 50 Total DDE 50 Total DDT 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2.4.5-T 47 2.4-D 47 2.4-DB 47 Dalapon 47 Dichloroprop 47 Dichloroprop 47 MCPA 47 MCPP 47 Silvex 47 Phthalate Bis(2-ethylhexyl) phthalate 49 Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Di-n-octyl phthalate 49 Di-n-octyl phthalate 49 Di-n-octyl phthalate 49 1,2-4-Trichlorobenzene 49 1,2-Dichlorobenzene		
Total DDD 50 DDx 50 Total DDE 50 Total DDT 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2.4.5-T 47 2.4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPA 47 MCPB 47 Silvex 47 Phthalate Bis(2-ethylhexyl) phthalate 49 Bis(2-ethylhexyl) phthalate 49 Dibutyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Di-o-octyl phthalate 49 Di-norbyl phthalate 49 Di-norbyl phthalate 49 1,2,4-Trichlorobenzene 19 1,2-Di-hlorobenzene		50
DDx 50 Total DDT 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2.4,5-T 47 2,4-D 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 MCPA 47 MCPA 47 MCPP 47 Silvex 47 Phthalates Bix(2-ethylhexyl) phthalate 49 Dibutyl phthalate 49 Dibutyl phthalate 49 Dien-octyl phthalate 49 Di-n-octyl phthalate 49 1,2,4-Trichlorobenzene 49 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,4-Dichl	Total Endosulfan	50
Total DDE 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2,4,5-T 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dicamba 47 Dichloroprop 47 MCPA 47 MCPA 47 MCPA 47 MCPA 47 MCPB 47 Silvex 47 Phthalate Bis(2-ethylhexyl) phthalate 49 Bist(2-ethylhexyl) phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Dienoctyl phthalate 49 Dienoctyl phthalate 49 Dienoctyl phthalate 49 Dienoctyl phthalate 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene	Total DDD	50
Total DDT 50 Toxaphene 50 trans-Chlordane 50 trans-Nonachlor 50 Herbicides 2,4,5-T 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dicamba 47 Dichloroprop 47 MCPA 47 MCPA 47 MCPA 47 MCPA 47 MCPB 47 Silvex 47 Phthalate Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Dibutyl phthalate 49 Dimethyl phthalate 49 Dien-octyl phthalate 49 Di-n-octyl phthalate 49 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,2-Dichlorobenzene 49 1,4-Dichlorobenzene 49 2,4-Dinitrotoluene	DDx	50
Toxaphene trans-Chlordane trans-Chlordane trans-Nonachlor 50 trans-Nonachlor 50 Herbicides 2,4,5-T 47 2,4-D 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPR 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Bis(2-ethylhexyl) phthalate 49 Dibutyl phthalate 49 Dibutyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 Di-n-octyl phthalate 49 VOCS 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 49 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49	Total DDE	50
trans-Chlordane trans-Nonachlor 50 Herbicides 2,4,5-T 47 47 2,4-D 47 2,4-D 47 Dalapon 47 Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPA 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Dibutyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 SVOCs 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,2-Dichlorobenzene 49 1,4-Dichlorobenzene 49 1,4-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,3-Dichlorobenzene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3,3'-Dichlorobenzidine 49 3,3'-Dichlorobenzidine 49 4-Chloronaphthalene 49 4-Chloronaphthalene 49 4-Chloronaniline 49 4-Chlorophenyl phenyl ether 49 4-Chloronaniline 49 4-Chlorophenyl phenyl ether 49 4-Chloronaniline 49 4-Chlorophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Robenzene 49 Benzyl alcohol 49	Total DDT	50
trans-Nonachlor Herbicides 2,4,5-T 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dicamba 47 Dichloroprop 47 MCPA 47 MCPA 47 MCPP 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Bis(2-ethylhexyl) phthalate 49 Dibutyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Di-n-octyl phthalate 49 Di-n-octyl phthalate 49 Di-n-octyl phthalate 49 1,2-4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,-Nitroaniline 49	Toxaphene	50
Name	trans-Chlordane	50
2,4,5-T 47 2,4-D 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPP 47 Silvex 47 Phthalate Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Diethyl phthalate 49 Di-n-octyl phthalate 49 Di-noctyl phthalate 49 SVOCS 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 49 1,4-Dichlorobenzene 49 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3,Nitroaniline 49 4-Bromophenyl phenyl ether 49 <t< td=""><td>trans-Nonachlor</td><td>50</td></t<>	trans-Nonachlor	50
2,4-D 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPB 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Bistylbenzyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Dien-octyl phthalate 49 Di-n-octyl phthalate 49 SVOCs *** 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 49 1,4-Dichlorobenzene 49 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Chlorophenyl phenyl ether 49	Herbicides	
2,4-D 47 2,4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPA 47 MCPP 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Dibethyl phthalate 49 Diethyl phthalate 49 Di-n-octyl phthalate 49 SVOCs 3 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3,Nitroaniline 49 4-Chlorophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 <	2,4,5-T	47
2,4-DB 47 Dalapon 47 Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPP 47 Silvex 47 Phthalate Bis(2-ethylhexyl) phthalate 49 Bis(2-ethylhexyl) phthalate 49 Dibutyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 1,2-Dichlorobenzene 49 1,2-Pichlorobenzene 49 1,3-Dichlorobenzene 49 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49		47
Dalapon 47 Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPP 47 Silvex 47 Phthalate Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Dimethyl phthalate 49 Di-n-octyl phthalate 49 Di-n-octyl phthalate 49 SVOCs 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Chlorophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitr		47
Dicamba 47 Dichloroprop 47 Dinoseb 47 MCPA 47 MCPP 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 SVOCs ************************************		47
Dinoseb 47 MCPA 47 MCPP 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Dimethyl phthalate 49 Di-n-octyl phthalate 49 Di-n-octyl phthalate 49 SVOCs *** ****I.2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,7-Nitroaniline 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Niline 49 4-Zobenzene 49 <	•	47
Dinoseb 47 MCPA 47 MCPP 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Dimethyl phthalate 49 Di-n-octyl phthalate 49 Di-n-octyl phthalate 49 SVOCs *** ****I.2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,7-Nitroaniline 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Niline 49 4-Zobenzene 49 <	Dichloroprop	47
MCPP 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Dimethyl phthalate 49 Din-octyl phthalate 49 Di-n-octyl phthalate 49 SVOCs *** 1,2,4-Trichlorobenzene 49 1,3-Dichlorobenzene 49 1,3-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49		47
MCPP 47 Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Diethyl phthalate 49 Dimethyl phthalate 49 Din-octyl phthalate 49 Di-n-octyl phthalate 49 SVOCs *** 1,2,4-Trichlorobenzene 49 1,3-Dichlorobenzene 49 1,3-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-R		
Silvex 47 Phthalates Bis(2-ethylhexyl) phthalate 49 Butylbenzyl phthalate 49 Dibutyl phthalate 49 Dimethyl phthalate 49 Dimethyl phthalate 49 Din-octyl phthalate 49 Di-n-octyl phthalate 49 SVOCs *** 1,2,4-Trichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Niline 49 4-Niline 49 4-Dinitrotoluene 49 3-Nitroaniline	MCPP	
Bis(2-ethylhexyl) phthalate Butylbenzyl phthalate Dibutyl phthalate Diethyl phthalate Diethyl phthalate Dinethyl phthalate Dinethyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate SVOCs 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine 3-Nitroaniline 49 4-Romophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitroaniline 49 4-Chlorophenyl phenyl ether 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Romophenyl phenyl ether 49 4-Nitroaniline 49 4-Romophenyl phenyl ether		
Bis(2-ethylhexyl) phthalate Butylbenzyl phthalate Dibutyl phthalate Diethyl phthalate Diethyl phthalate Dinethyl phthalate Dinethyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate SVOCs 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine 3-Nitroaniline 49 4-Romophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitroaniline 49 4-Chlorophenyl phenyl ether 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Romophenyl phenyl ether 49 4-Nitroaniline 49 4-Romophenyl phenyl ether	Dhthalatas	
Butylbenzyl phthalate Dibutyl phthalate Diethyl phthalate Diethyl phthalate Dimethyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate SVOCs 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Nitroaniline 3,3'-Dichlorobenzidine 3-Nitroaniline 49 4-Bromophenyl phenyl ether 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Rzobenzene 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40		40
Dibutyl phthalate 49 Diethyl phthalate 49 Dimethyl phthalate 49 Di-n-octyl phthalate 49 SVOCs 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
Diethyl phthalate 49 Dimethyl phthalate 49 Di-n-octyl phthalate 49 SVOCs 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Sobenzene 49 Benzoic acid 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49	· · · · · ·	
Dimethyl phthalate 49 Di-n-octyl phthalate 49 SVOCs *** 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Nitroaniline 49 4-Sobenzene 49 Benzoic acid 49 Benzola acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
Di-n-octyl phthalate 49 SVOCs 49 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
SVOCs 1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
1,2,4-Trichlorobenzene 49 1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		47
1,2-Dichlorobenzene 49 1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		40
1,3-Dichlorobenzene 49 1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
1,4-Dichlorobenzene 51 2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
2,4-Dinitrotoluene 49 2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
2,6-Dinitrotoluene 49 2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
2-Chloronaphthalene 49 2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
2-Nitroaniline 49 3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
3,3'-Dichlorobenzidine 49 3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49	-	
3-Nitroaniline 49 4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
4-Bromophenyl phenyl ether 49 4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
4-Chloroaniline 49 4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
4-Chlorophenyl phenyl ether 49 4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
4-Nitroaniline 49 Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
Aniline 49 Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
Azobenzene 49 Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
Benzoic acid 49 Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
Benzyl alcohol 49 Bis(2-chloroethoxy) methane 49		
Bis(2-chloroethoxy) methane 49		
Bis(2-chloroethyl) ether 49		
	Bis(2-chloroethyl) ether	49

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.	
Analyte	# of LWG Samples
Bis(2-chloroisopropyl) ether	49
Carbazole	49
Dibenzofuran	49
Hexachlorobenzene	50
Hexachlorobutadiene	50
Hexachlorocyclopentadiene	49
Hexachloroethane	50
Isophorone	49
Nitrobenzene	49
N-Nitrosodimethylamine	49
N-Nitrosodiphenylamine	49
N-Nitrosodipropylamine	49
Phenols	
2,3,4,5-Tetrachlorophenol	44
2,3,5,6-Tetrachlorophenol	44
2,4,5-Trichlorophenol	32
2,4,6-Trichlorophenol	44
2,4-Dichlorophenol	49
2,4-Dienolophenol	49
2,4-Dinitrophenol	49
2-Chlorophenol	49
2-Methylphenol	49
2-Nitrophenol	49
4,6-Dinitro-2-methylphenol	49
4-Chloro-3-methylphenol	49
4-Methylphenol	49
4-Nitrophenol	49
Pentachlorophenol	44
Phenol	49
THEHOI	7)
VOCs	
1,1,1,2-Tetrachloroethane	48
1,1,1-Trichloroethane	48
1,1,2,2-Tetrachloroethane	48
1,1,2-Trichloroethane	48
1,1-Dichloroethane	48
1,1-Dichloroethene	48
1,2,3-Trichloropropane	48
1,2-Dichloroethane	48
1,2-Dichloropropane	48
1,4-Dichloro-trans-2-butene	48
2-Chloroethyl vinyl ether	48
Acetone	48
Acrolein	48
Acrylonitrile	48
Benzene	48
Bromochloromethane	48
Bromodichloromethane	48
Bromoform	48
Bromomethane	48
BTEX	48
Carbon disulfide	48
Carbon tetrachloride	48

Table 2.3-4. Summary of LWG Sediment Trap Sample Counts.

Analyte	# of LWG Samples
Chlorobenzene	48
Chlorodibromomethane	48
Chloroethane	48
Chloroform	48
Chloromethane	48
cis-1,2-Dichloroethene	48
cis-1,3-Dichloropropene	48
Dichlorodifluoromethane	48
Ethylbenzene	48
Ethylene dibromide	48
Isopropylbenzene	48
m,p-Xylene	48
Methyl iodide	48
Methyl isobutyl ketone	48
Methyl n-butyl ketone	48
Methyl tert-butyl ether	48
Methylene bromide	48
Methylene chloride	48
Methylethyl ketone	48
o-Xylene	48
Styrene	48
Tetrachloroethene	48
Toluene	48
trans-1,2-Dichloroethene	48
trans-1,3-Dichloropropene	48
Trichloroethene	48
Trichlorofluoromethane	48
Vinyl acetate	48
Vinyl chloride	48
Xylene	48
Petroleum	
Total Petroleum Hydrocarbons (Diesel)	47
Total Petroleum Hydrocarbons (Gasoline)	49
Total Petroleum Hydrocarbons (Residual)	47
Total Petroleum Hydrocarbons	47

Notes:

BTEX - benzene, toluene, ethylbenzene, and total xylene

cPAH - carcinogenic polycyclic aromatic hydrocarbon

LWG - Lower Willamette Group

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

SVOC - semivolatile organic compound

Total TCDD TEQ - sum of PCDD/F and PCB congener TCDD TEQ

VOC - volatile organic compound

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

Analyte		\$\text{surface water}\$ 46 46 46 46 46 46 46 46 46 4	surfa water f	from particulates D from XAD		Crand Total
Part	46 46 42 46 46 46 46 47 46 48	\$\text{surface water}\$ 46 46 46 46 46 46 46 46 46 4	surfa water f	surface ace water from particulates D from XAD	surface water 12 3 15 23 180 180 180 180 180 3 180 23 180 23 180 180 180	Crand Total
Surface Surf	46 46 42 46 46 6 46 46 46 42 42 42	46 46 42 46 46 46 46 46 46 46	water f	ace water from particulates D from XAD	Surface water	12 3 15 144 180 180 180 180 180 180 180 180 180 120 54 3 3 130 20 144 3 15 180 144
Name	46 46 42 46 46 6 46 46 46 42 42 42	46 46 42 46 46 46 46 46 46 46	water f	from particulates D from XAD	Surface water	12 3 15 144 180 180 180 180 180 180 180 180 180 120 54 3 3 130 20 144 3 15 180 144
Nambre Surface Surface Surface Sub From Xab	46 46 42 46 46 6 46 46 46 42 42 42	46 46 42 46 46 46 46 46 46 46	e XAI	D from XAD	Surface water	12 3 15 144 180 180 180 180 180 180 180 180 180 120 54 3 3 130 20 144 3 15 180 144
Analysis	46 46 42 46 46 6 46 46 46 42 42 42	46 46 42 46 46 46 46 46 46 46			12 3 15 23 180 180 180 180 180 3 180 22 23 3 15 180	12 3 15 144 180 180 180 180 180 180 180 180 180 120 54 3 3 130 20 144 3 15 180 144
Consequence	46 46 42 46 38 4 46 6 46 46 46 42 42 42	46 46 42 46 38 4 46 6 46 46 46	colun	mn filter	12 3 15 23 180 180 180 180 180 3 180 180 23 180 180 23 180 180 180 180 180 180 180 180	12 3 15 144 180 180 180 180 114 360 143 180 120 54 3 3 130 20 144 3 15 180
Alkalaning Bicarborate	46 42 46 38 4 46 6 46 46 46 42 42	46 42 46 38 4 46 6 46 46 46			3 15 23 180 180 180 180 180 23 180 180 3 3 3 22 23 3 15 180	3 15 144 180 180 180 180 114 360 143 180 120 54 3 3 130 20 144 3 15 180
Bicationate	46 42 46 38 4 46 6 46 46 46 42 42	46 42 46 38 4 46 6 46 46 46			3 15 23 180 180 180 180 180 23 180 180 3 3 3 22 23 3 15 180	3 15 144 180 180 180 180 114 360 143 180 120 54 3 3 130 20 144 3 15 180
Conductivity	46 42 46 38 4 46 6 46 46 46 42 42	46 42 46 38 4 46 6 46 46 46			15 23 180 180 180 180 180 23 180 180 3 3 22 23 3 15 180	15 144 180 180 180 180 180 114 360 143 180 120 54 3 3 130 20 144 3 15 180 144
Condictivity	46 42 46 38 4 46 6 46 46 46 42 42	46 42 46 38 4 46 6 46 46 46			23 180 180 180 180 186 23 180 180 3 3 22 23 3 15 180	144 180 180 180 180 180 114 360 143 180 120 54 3 3 130 20 144 3 15 180 144
Cyanide (dissolved)	46 42 46 38 4 46 6 46 46 46 42 42	46 42 46 38 4 46 6 46 46 46			180 180 180 180 180 186 23 180 180 3 3 22 23 3 15 180	180 180 180 180 114 360 143 180 120 54 3 3 130 20 144 3 15 180
Cyanide amenable to chlorination	42 46 38 4 46 6 46 46 46 42 42 42	38 4 46 46 6 46 46 46 42			180 180 180 186 23 180 180 3 3 3 22 23 3 15 180	180 180 114 360 143 180 120 54 3 130 20 144 3 15 180
Cyanide amenable to thorization (dissolved)	42 46 38 4 46 6 46 46 46 42 42 42	38 4 46 46 6 46 46 46 42			180 186 23 180 180 180 3 3 22 23 3 15 180	180 114 360 143 180 180 120 54 3 3 130 20 144 3 15 180 144
Depth	42 46 38 4 46 6 46 46 46 42 42 42	38 4 46 46 6 46 46 46 42			186 23 180 180 3 3 22 23 3 15 180	114 360 143 180 180 120 54 3 3 130 20 144 3 15 180 144
Dissolved organic carbon 25 25 25 26 3 4 4 4 4 4 4 4 4 4	42 46 38 4 46 6 46 46 46 42 42 42	38 4 46 46 6 46 46 46 42			23 180 180 3 3 22 23 3 15 180	360 143 180 180 120 54 3 3 130 20 144 3 15 180 144
Dissolved oxygen 23 25 26	46 46 6 46 46 46 42 42	46 38 4 46 6 46 46 46 42			23 180 180 3 3 22 23 3 15 180	143 180 180 120 54 3 3 130 20 144 3 15 180 144
Free cyanide	38 4 46 6 46 46 46 42 42 42	38 4 46 6 46 46 46			180 180 3 3 22 23 3 15 180	180 180 120 54 3 3 130 20 144 3 15 180
Free cyanide (dissolved)	46 6 46 46 46 42 42	46 6 46 46 46 42			180 3 3 22 23 3 15 180	180 120 54 3 3 130 20 144 3 15 180
Hardness as CaCO3 (dissolved)	46 6 46 46 46 42 42	46 6 46 46 46 42			3 22 23 3 15 180	120 54 3 3 130 20 144 3 15 180 144
Nitrate Nitrite Nitrit Nitrite Nitrite Nitrite Nitrite Nitrite Nitrite Nitrite Nitrite	46 6 46 46 42 42	46 6 46 46 46 42			3 22 23 3 15 180	3 3 130 20 144 3 15 180
Nitrite	6 46 46 42 42	6 46 46 42			3 22 23 3 15 180	3 130 20 144 3 15 180 144
Oxidation-Reduction Potential	6 46 46 42 42	6 46 46 42			22 23 3 15 180	130 20 144 3 15 180 144
Perchlorate	6 46 46 42 42	6 46 46 42			23 3 15 180	20 144 3 15 180 144
pH 24 25 26 4 Salinity <t< td=""><td>46 46 42 42</td><td>46 46 42</td><td></td><td></td><td>3 15 180</td><td>144 3 15 180 144</td></t<>	46 46 42 42	46 46 42			3 15 180	144 3 15 180 144
Salinity Sulfate <	46 42 42	46 42			3 15 180	3 15 180 144
Sulfate Sulfate <t< td=""><td>42 42</td><td>42</td><td></td><td></td><td>180</td><td>180 144</td></t<>	42 42	42			180	180 144
Temperature	42 42	42				144
Total dissolved solids 25 25 24 4 14 40 4 Total organic carbon 25 25 24 4 14 40 40 Total suspended solids 25 25 24 4 14 40 40 Total suspended solids w/0.45 um filter 5 24 4 14 40 16 3 Turbidity 6 7 8 8 8 8 8 8 9 8 8 9	42 42	42			23	
Total organic carbon 25	42					
Total suspended solids 25 25 24 4 14 40 4 Total suspended solids w/0.45 um filter 5 5 4 5 16 3 Turbidity 6 6 6 6 4		42			102	174
Total suspended solids w/0.45 um filter 16 3 Turbidity 4	42				183 2,711	357 2,885
Turbidity 4 Metals 5 24 4 14 40 4 Aluminum (dissolved) 25 24 4 14 40 4 Aluminum (dissolved) 25 24 4 14 40 4	38				2,711	54
Aluminum 25 24 4 14 40 4 Aluminum (dissolved) 25 24 4 14 40 4	46					46
Aluminum (dissolved) 25 24 4 14 14 40 40 40 4						
	42				4	153
Antimony	42					149
	42 42				7	181 177
	42				59	233
	42				3	177
Barium					4	4
Beryllium Survival Su					4	4
	42				7	181
	42	42			3	177
Calcium Calcium (dissolved)					15	15
	42	42			50	224
Chromium (dissolved) 25 25 24 4 14 14 40 40 4	42					174
	6					20
Cobalt					4	4
	42				53	227
Copper (dissolved) 25 25 24 4 14 40 4 Iron	42	42			3 195	177 195
Iron Iron (dissolved)					193	183
	42	42			7	181
	42				3	177
Magnesium University of the control					15	15
Magnesium (dissolved)		-			3	3
Manganese Circle D					19	19
Manganese (dissolved) Manganese (dissolved) 14 15 16 17 18 18 19 19 19 19 19 19 19 19	42	42			3	180
·	42				15	189 177
		42			7	181
Nickel (dissolved) 25 25 24 4 14 40 40 40					3	177

Table 2.3-5. Summary of Surface Water Sample											Sampling Da											Other Parties	
	LW	VG - Noveml	ber 2004	L	WG - March	2005		LWG - July 2	2005 surface	LV	VG - January	2006 surface	LW	G - Septemb	er 2006 surface	LW	G - Novembe	er 2006 surface	LWG	- January-M	arch 2007 surface		
	surface	surface water fron XAD	n particulates from XAD	surface	surface water from XAD	surface water particulates from XAD	surface	surface water from XAD	water particulates from XAD	surface	surface water from XAD	water particulates from XAD	surface	surface water from XAD	water particulates from XAD	surface	surface water from XAD	water particulates from XAD	surface	surface water from XAD	water particulates from XAD	surface	
Analyte	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	Grand Total
Potassium Potassium (dissolved)																						15 3	15
Selenium	25			25			24			4			14			40			42			4	178
Selenium (dissolved)	25			25			24			4			14			40			42				174
Silver (disselved)	25 25			25 25			24			4			14 14			40			42 42			7	181
Silver (dissolved) Sodium	23			23			24			4			14			40			42			15	177 15
Sodium (dissolved)																						3	3
Thallium	25																					4	29
Thallium (dissolved) Vanadium	25																					4	25 4
Zinc	25			25			24			4			14			40			42			53	227
Zinc (dissolved)	25			25			24			4			14			40			42			3	177
Butyltins																							
Butyltin ion Dibutyltin ion	25 25			25 25			24 24			4			14 14			40			42 42			3	177 177
Tetrabutyltin	25			25			24			4			14			40			42			3	177
Tributyltin ion	25			25			24			4			14			40			42			3	177
PCB Aroclors	21			17			1.6															-	
Aroclor 1016 Aroclor 1221	21			17 17			16 16															7	61
Aroclor 1232	21			17			16															7	61
Aroclor 1242	21			17			16															7	61
Aroclor 1248	21			17 17			16															7	61
Aroclor 1254 Aroclor 1260	21			17			16 16															7	61
Aroclor 1262	21			17			16															4	58
Aroclor 1268	21			17			16															4	58
Total PCB Aroclors PCB Congeners	21			17			16															7	61
Total PCB TEQ (ND = 0)		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB001		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB002		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB003 PCB004		8	8		8	8		8	7		3	3		14 14	14 14		40	40		40	40	4	245 245
PCB005		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB006		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB007		8	8		8	8		8	7		3	3		14	14 14		40	40 40		40	40	4	245 245
PCB008 PCB009		8	8		8	8		8	7		3	3		14 14	14		40	40		40	40	4	245
PCB010		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB011		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB012 PCB012 & 013		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB013		0	8		8	8		0	,		3	3		14	14		40	40		40	40	4	4
PCB014		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB015		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB016 PCB017		8	8		8	8		8	7		3	3		14 14	14 14		40	40 40		40	40	4	245 245
PCB018		0	0		0	U		0	,		3			17	17		-10	-70		-10	-70	4	4
PCB018 & 030		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB019		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB020 PCB020 & 028		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB021		0	Ü		0	· ·		0	,		3	,		17	17		-10	-70		-10	-70	4	4
PCB021 & 033		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB022		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB023 PCB024		8	8		8	8		8	7		3	3		14 14	14 14		40	40		40	40	4	245 245
PCB024 PCB025		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB026						1		_				_			1						-	4	4

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

				1	****		ı				Sampling D					T =			I			Other Parties	_
	LW	VG - Novemb			WG - March			LWG - July 2	surface	L	WG - Januar	surface	LW	G - Septemb	surface	LW	VG - Novembe	surface	LWG	- January-M	surface		
Analyte	surface water	surface water from XAD column	surface water particulates from XAD filter	surface water	surface water from XAD column	surface water particulates from XAD filter	surface water	surface water from XAD column	water particulates from XAD filter	surface water	surface water from XAD column	water particulates from XAD filter	surface water	surface water from XAD column	water particulates from XAD filter	surface water	surface water from XAD column	water particulates from XAD filter	surface water	surface water from XAD column	water particulates from XAD filter	surface water	Grand Total
PCB026 & 029		8	8		8	8		8	7		3	3		14	14		40	40		40	40	water	241
PCB027		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB028																						4	4
PCB029																						4	4
PCB030		0	0		0			0	_		2	2					10	10		40	10	4	4
PCB031 PCB032		8	8		8	8		8	7		3	3		14 14	14 14		40	40		40	40	4	245 245
PCB032 PCB033		8	8		8	8		8	/		3	3		14	14		40	40		40	40	4	4
PCB034		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB035		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB036		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB037		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB038		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB039		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB040		0	0						_		_	2					40	10		40	10	4	4
PCB040 & 041 & 071		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB041 PCB042		8	8	1	8	8		8	7		3	3	1	14	14		40	40		40	40	4	245
PCB042 PCB043		8	8	1	8	8		8	7		3	3	 	14	14		40	40		40	40	4	245
PCB044		0	0		0	0		0	,		3	3		17	14		40	40		40	40	4	4
PCB044 & 047 & 065		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB045																						4	4
PCB045 & 051		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB046		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB047																						4	4
PCB048		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB049		0	0		0	0		0	7		2	2		1.4	1.4		40	40		40	40	4	4
PCB049 & 069 PCB050		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB050 & 053		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB051		0	0		0	0		0	,		3	3		17	14		40	40		40	40	4	4
PCB052		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB053																						4	4
PCB054		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB055		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB056		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB057		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB058		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB059 PCB059 & 062 & 075		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB060		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB061									,													4	4
PCB061 & 070 & 074 & 076		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB062																						4	4
PCB063		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB064		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB065		-									_						40	4.0		40	10	4	4
PCB066		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB067 PCB068		8	8		8	8		8	7		3	3		14 14	14 14		40	40		40	40	4	245 245
PCB068 PCB069		٥	0	1	0	•		0	/		3	3	1	14	14		40	40		40	40	4	245
PCB009 PCB070		+																				4	4
PCB071																						4	4
PCB072		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB073		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB074																						4	4
PCB075		1																				4	4
PCB076			_		_			_	_		_	1			1							4	4
PCB077		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB078	1	8	8]	8	8	l	8	7		3	3	1	14	14	l	40	40		40	40	4	245

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

																						Other	
	LV	VG - Novemb	er 2004	L	WG - March	1 2005	1	LWG - July 2	2005	L	Sampling Da WG - January	rte 7 2006	LW	G - Septemb	er 2006	LV	VG - Novemb	er 2006	LWG	- January-M	arch 2007	Parties	
									surface			surface			surface			surface			surface		
		surface water from	surface water particulates	1	surface water from	surface water particulates		surface water from	water particulates		surface water from	water particulates		surface water from	water particulates		surface water from	water particulates		surface water from	water particulates		
	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD	from XAD	surface	
Analyte	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	Grand Total
PCB080		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB081 PCB082		8	8		8	8		8	7		3	3		14 14	14 14		40	40		40	40	4	245 245
PCB083		0	8		0	0		0	,		3	3		14	14		40	40		40	40	4	4
PCB083 & 099		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB084 PCB085		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB085 PCB085 & 116 & 117		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB086						Ü		Ů														4	4
PCB086 & 087 & 097 & 108 & 119 & 125		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB087																						4	4
PCB088 PCB088 & 091		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB089		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB090		1																				4	4
PCB090 & 101 & 113 PCB091		8	8		8	8		8	7		3	3		14	14	-	40	40	-	40	40	4	241
PCB091 PCB092		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB093						0		Ü														4	4
PCB093 & 095 & 098 & 100 & 102		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB094 PCB095		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB095 PCB096		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB097									,													4	4
PCB098																						4	4
PCB099 PCB100																						4	4
PCB101																						4	4
PCB102																						4	4
PCB103		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB104 PCB105		8	8		8	8		8	7		3	3		14 14	14 14		40	40		40	40	4	245 245
PCB106		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB107																						4	4
PCB107 & 124		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	241
PCB108 PCB109		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB110																						4	4
PCB110 & 115		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB111 PCB112		8	8		8	8		8	7		3	3		14 14	14 14		40	40		40	40	4	245 245
PCB113		0	8		0	8		0	,		3	3		14	14		40	40		40	40	4	4
PCB114		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB115																						4	4
PCB116 PCB117																						4	4
PCB118		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB119																						4	4
PCB120		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB121 PCB122		8	8		8	8		8	7		3	3		14 14	14 14	-	40	40	-	40	40	4	245 245
PCB123		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB124																						4	4
PCB125		0	0	-	0	0		0	7		2	2		1.4	1.4		40	40		40	40	4	4
PCB126 PCB127		8	8		8	8		8	7		3	3		14 14	14 14	-	40	40	-	40	40 40	4	245 245
PCB127 PCB128 & 166		8	8		8	8		8	7		3	3		14	14		40	40		40	40	-T	241
PCB129																						4	4
PCB129 & 138 & 160 & 163		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB130	1	8	8	1	8	8	I	8	7	l	3	3	1	14	14	1	40	40	1	40	40	4	245

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

Table 2.3-5. Summary of Surface Water Sar											6	-4-										Other	
	LA	WG - Novemb	er 2004	L	WG - March	2005	1	LWG - July 2	2005		Sampling Da WG - Januar		LW	/G - Septemb	er 2006	LW	/G - Novembe	er 2006	LWG	- January-Ma	arch 2007	Parties	1
									surface			surface			surface		surface	surface			surface		
	surface	surface water from XAD	surface water particulates from XAD	surface	surface water from XAD	surface water particulates from XAD	surface	surface water from XAD	water particulates from XAD	surface	surface water from XAD	water particulates from XAD	surface	surface water from XAD	water particulates from XAD	surface	water from XAD	water particulates from XAD	surface	surface water from XAD	water particulates from XAD	au uf a aa	
Analyte	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	surface water	Grand Total
PCB132		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB133		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB134																						4	4
PCB134 & 143		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB135		0	0		0	0		0	7		2	2		1.4	1.4		40	40		40	40	4	4
PCB135 & 151 & 154 PCB136		8	8		8	8		8	7	+	3	3		14 14	14 14		40	40		40	40	4	241 245
PCB130 PCB137		8	8		8	8		8	7	+	3	3		14	14		40	40		40	40	4	245
PCB138					Ü	0			,												.0	4	4
PCB139																						4	4
PCB139 & 140		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB140			1			_			_		_	_								10		4	4
PCB141		8	8		8	8	1	8	7		3	3		14	14		40	40		40	40	4	245
PCB142		8	8		8	8		8	7	+	3	3		14	14		40	40		40	40	4	245
PCB143 PCB144	+	8	8		8	8	1	8	7	+	3	3	1	14	14		40	40		40	40	4	245
PCB144 PCB145		8	8		8	8		8	7	+	3	3		14	14		40	40		40	40	4	245
PCB146		8	8		8	8		8	7	†	3	3		14	14		40	40		40	40	4	245
PCB147																						4	4
PCB147 & 149		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB148		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB149		0			0	0		0		-	2	2					10	10		40	40	4	4
PCB150 PCB151		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB151 PCB152		8	8		8	8		8	7	+	3	3		14	14		40	40		40	40	4	245
PCB153		8	8		0	8		8	,	+	,	3		14	14		40	40		40	40	4	4
PCB153 & 168		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB154																						4	4
PCB155		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB156					_			_		<u> </u>	_											4	4
PCB156 & 157		8	8		8	8		8	7	<u> </u>	3	3		14	14		40	40		40	40		241
PCB157 PCB158		8	8		8	8		8	7	+	3	3		14	14		40	40		40	40	4	245
PCB159		8	8		8	8		8	7	+	3	3		14	14		40	40		40	40	4	245
PCB160					Ü	0			,												.0	4	4
PCB161		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB162		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB163																						4	4
PCB164		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB165 PCB166		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB100 PCB167		8	8		8	8		8	7	\vdash	3	3		14	14		40	40		40	40	4	245
PCB168		0	0		0	0		0	,	 	3	3		14	14		40	40		40	40	4	4
PCB169		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB170		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB171																						4	4
PCB171 & 173		8	8		8	8		8	7	<u> </u>	3	3		14	14		40	40		40	40		241
PCB172		8	8		8	8		8	7	<u> </u>	3	3		14	14		40	40		40	40	4	245
PCB173 PCB174		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB174 PCB175		8	8		8	8		8	7	\vdash	3	3		14	14		40	40		40	40	4	245
PCB175		8	8		8	8	<u> </u>	8	7	 	3	3	<u> </u>	14	14		40	40		40	40	4	245
PCB177		8	8		8	8		8	7	†	3	3		14	14		40	40		40	40	4	245
PCB178		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB179		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB180			1																			4	4
PCB180 & 193		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB181		8	8		8	8	-	8	7	+	3	3	-	14	14		40	40		40	40	4	245
PCB182 PCB183		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB183 & 185		8	8		8	8		8	7	\vdash	3	3		14	14		40	40		40	40		241
1 CD103 & 103		0	0	l	0	0	1	0	/		3	3	I	14	14	l	40	40	l	40	40		∠+1

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

											Sampling Da											Other Parties	
	LV	VG - Novemb	er 2004	L	WG - March	2005		LWG - July 2	005	L	WG - Januar	2006	LW	G - Septemb	er 2006	LW	VG - Novembe	er 2006	LWG	- January-Ma	arch 2007		
		surface water from	-	e	surface water from	-	e	surface water from	surface water particulates		surface water from	surface water particulates		surface water from	surface water particulates		surface water from	surface water particulates	e	surface water from	surface water particulates		
Analyta	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	Crand Total
Analyte	water		1	water	1		water	_	7	water	+		water			water			water	_			Grand Total
PCB184 PCB185		8	8		8	8		8	/		3	3		14	14		40	40		40	40	4	245
PCB185	+	8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB180 PCB187		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB188		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB189		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB190		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB191		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB192		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB193																						4	4
PCB194		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB195		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB196		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB197																						4	4
PCB197 & 200		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB198																						4	4
PCB198 & 199		8	8		8	8		8	7		3	3		14	14		40	40		40	40		241
PCB199																						4	4
PCB200																						4	4
PCB201		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB202		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB203		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB204		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB205		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB206		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB207		8	8		8	8		8	7		3	3		14 14	14 14		40	40		40	40	4	245 245
PCB208 PCB209		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
Total PCB Congeners		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCB Homologs		0	0		0	0		0	,		3	3		1-7	14		70	40		40	40		243
Dichlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
Heptachlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
Hexachlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
Monochlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		29	40	4	234
Nonachlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
Octachlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
Pentachlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
Tetrachlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
Trichlorobiphenyl homologs		8	8		8	8		8	7		3	3		14	14		40	40		40	40	4	245
PCDD/Fs																							
1,2,3,4,6,7,8-Heptachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
1,2,3,4,7,8,9-Heptachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
1,2,3,4,7,8-Hexachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8-Hexachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
1,2,3,6,7,8-Hexachlorodibenzoruran 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin		6	6		6	6		6	6		3	3		14 14	14 14		22 22	22		22 22	22	4	162 162
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin 1,2,3,7,8,9-Hexachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22 22		22	22 22	4	162
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
1,2,3,7,8-Pentachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
1,2,3,7,8-Pentachlorodibenzo-p-dioxin		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
2,3,4,6,7,8-Hexachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
2,3,4,7,8-Pentachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
2,3,7,8-Tetrachlorodibenzofuran		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
2,3,7,8-Tetrachlorodibenzo-p-dioxin		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
TCDD TEQ (ND = 0)		6	6		6	6		6	6		3	3		14	14		22	22		22	22	4	162
Total TCDD TEQ (ND = 0)		8	8	1	8	8		8	8	 	3	3		14	14	 	40	40		40	40	4	246

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

Part	Second Total
Surface Surface valet Su	158 158 158 162 158
Second Content	158 158 158 162 158
Probate Prob	158 158 158 162 158
No.	158 158 158 158 158 162 162 158 158 158 158 158 158 158
September of the member of t	158 158 158 162 162 158 158 158 158 158 158 158 158
International control of the contr	158 158 158 162 162 158 158 158 158 158 158 158 158
Hospitalizationalescontinus homology 6 6 6 6 6 6 6 6 6	158 158 162 162 158 158 158 158 158 158 158 178 178 178 178 178 178 178
Hougheroldstaney-glosinal houndage	162 162 158 158 158 158 158 158 158 274
Octobin-policy Control	162 158 158 158 158 158 158 158
Pentachtendhenonhangs	158 158 158 158 158 158 274
Postalenderidenze-pedicinal homology 6 6 6 6 6 6 6 6 6	158 158 158 158 158 274 274
Testackbordikenconfurns homology	158 158 158 158 274 274
Terachrotherox-p-dioxin horology Final PCDDF	158 158 274 274
Total PRODET Frobletiske 1	158 274 274
Perticities	274
2.4-DDE	274
2.4-DDT 19 8 8 17 8 8 16 8 8 13 3 14 14 18 26 26 14 26 26 44 4.4-DDD (dissolved) 19 8 8 17 8 8 16 8 8 16 8 8 3 3 14 14 18 26 26 26 14 26 26 26 4.4-DDD (dissolved) 19 8 8 17 8 8 16 8 8 16 8 8 3 3 14 14 18 26 26 26 14 26 26 26 4.4-DDE (dissolved) 19 8 8 17 8 8 16 8 8 16 8 8 16 18 18	
4.4-DDD (dissolved) 4.4-DDE (dissolved) 4.4-DDF (dissolved) 4.4-DD	27.4
4.4-DDE	
4.4-DDE (dissolved) 4.4-DDT (277
4.4-DDF (dissolved) 4.4-DDF (
4.4-DDT (dissolved)	
Althorized Fig. F	
Alpha-Endosulfan 19	3
Alpha-Hexachlorocyclohexane 19	274
Alpha-Hexachlorocyclohexane (dissolved) 19	274
Deta-Endosulfan 19	274
Deta-Hexachlorocyclohexane 19	
cis-Chlordane 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 cis-Chlordane (dissolved) 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 14 26 26 14 26 26 14 26 26 14 26 26 14 26 26 26 14 26 26 26 14 26 26 26 14 26 26 26 14 26 26 26 14 26 26 26 14 26 26 26 14 26 26 26 14 26 26 26 14 26 26 14 26 26 14 26 26 14 26 26 <td></td>	
Cis-Chlordane (dissolved) Image: Chlordane (dissolved) Im	274
cis-Nonachlor 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 delta-Hexachlorocyclohexane 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 Dieldrin 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 Dieldrin (dissolved) 19 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 Endosulfan (dissolved) 19 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 Endr	3
Dieldrin 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 Dieldrin (dissolved) Image: Control of the c	274
Dieldrin (dissolved) Image: Control of the control of th	274
Endosulfan (dissolved) Image: Control of the control of	274
Endosulfan sulfate 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26	
Endrin 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 26 Endrin (dissolved) 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 Endrin aldehyde 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 26	•
Endrin (dissolved) 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26	
Endrin aldehyde 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 4	
	274
Endrin ketone 19 8 8 17 8 8 16 8 8 3 3 14 14 18 26 26 14 26 26 4	274
	274
	274
	274
	3 274
	3 3
	56
	274
Total Chlordanes 19 8 8 17 8 8 16 8 8 3 3 3 14 14 18 26 26 14 26 26	274
	3
	274
	277
	3
	277
	277
	3
	277
	3
Toxaphene 19 17 16 16 1 18 18 14 1 14 1 1 1 1 1 1 1 1 1 1 1 1	3 207

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

											Sampling Da	ate										Other Parties	
	LV	VG - Novemb	er 2004	L	WG - March	2005		LWG - July 2	005	L	WG - Januar		LW	/G - Septemb	er 2006	LV	VG - Novembe	er 2006	LWG	- January-M	arch 2007		1
									surface			surface			surface			surface			surface		
		surface	surface water		surface	surface water		surface	water		surface	water		surface	water		surface	water		surface	water		
		water from			water from	particulates		water from	particulates		water from	particulates		water from	particulates		water from	particulates		water from	1 -		
	surface	XAD	from XAD filter	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD	from XAD	surface	XAD column	from XAD	surface	
Analyte	water	column	_	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water		filter	water	Grand Total
trans-Chlordane trans-Chlordane (dissolved)	19	8	8	17	8	8	16	8	8		3	3		14	14	18	26	26	14	26	26	3	274
trans-Nonachlor	19	8	8	17	8	8	16	8	8		3	3		14	14	18	26	26	14	26	26	4	274
Herbicides			Ü		Ü	Ü	10		Ü					1.		10	20	20		20	20		
2,4,5-T	25			25			24			4			14			40			42				174
2,4-D	25			25			24			4			14			40			42				174
2,4-DB	25			25			24						14			40			42				170
Dalapon Dicamba	25 25			25 25			24						14 14			40			42 42				170 170
Dichloroprop	25			25			24			4			14			40			42				170
Dinoseb	25			25			24			7			14			40			42				170
MCPA	25			25			24						14			40			42				170
MCPP	25			25			24						14			40			42				170
Silvex	25			25			24			4			14			40			42			_	174
PAHs																							
1-Methylnaphthalene		0	0	2.5	0	0	2.1	0	0	4	-	2				40	22	22	40		22	10	10
2-Methylnaphthalene	25 25	8	8	25 25	8	8	24	8	8	4	3	3	14	14	14 14	40	22	22	42	22	22	18	362
Acenaphthene Acenaphthylene	25	8	8	25	8	8	24	8	8	4	3	3	14 14	14 14	14	40	22 22	22	42 42	22 22	22 22	54 54	398 398
Anthracene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Benzo(a)anthracene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	35	379
Benzo(a)pyrene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Benzo(b)fluoranthene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Benzo(b+k)fluoranthene																						9	9
Benzo(g,h,i)perylene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Benzo(j+k)fluoranthene	25	8	8	25	8	8	24	8	8	4	3	3	1.4	14	14	40	22	22	42	22	22	E 1	170
Benzo(k)fluoranthene Chrysene	25 25	8	8	25 25	8	8	24	8	8	4	3	3	14 14	14	14	40	22	22	42 42	22	22	54 35	228 379
Dibenzo(a,h)anthracene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Fluoranthene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Fluorene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
High Molecular Weight PAH	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Indeno(1,2,3-cd)pyrene	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Low Molecular Weight PAH	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Naphthalene	25 25	8	8	25 25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	77	421
Phenanthrene Pyrene	25	8	8	25	8	8	24 24	8	8	4	3	3	14 14	14 14	14 14	40	22 22	22	42 42	22	22 22	54 54	398 398
Total cPAHs	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Total PAHs	25	8	8	25	8	8	24	8	8	4	3	3	14	14	14	40	22	22	42	22	22	54	398
Phthalates																							
Bis(2-ethylhexyl) phthalate	25	8	8	25	8	8	24	8	8	4			14			40			42			8	230
Butylbenzyl phthalate	25	8	8	25	8	8	24	8	8	4			14			40			42			8	230
Dibutyl phthalate	25	8	8	25	8	8	24	8	8	4			14			40			42			8	230
Diethyl phthalate	25 25	8	8	25 25	8	8	24	8	8	4	-		14 14			40			42 42			8	230 230
Dimethyl phthalate Di-n-octyl phthalate	25	8	8	25	8	8	24 24	8	8	4			14			40			42			8	230
SVOCs	2.5	0	6	23	0	8	24	8	8	7			14			40			42			0	230
1,2,4-Trichlorobenzene	25			25			24			4			14			40			42			31	205
1,2-Dichlorobenzene	25			25			24			4			14			40			42			31	205
1,2-Diphenylhydrazine																						4	4
1,3-Dichlorobenzene	25			25			24			4			14			40			42			31	205
1,4-Dichlorobenzene	25			25			24			4			14			40			42			31	205
2,4-Dinitrotoluene	25			25			24			4	1		14	1		40	1		42			5	179
2,6-Dinitrotoluene	25 25			25 25			24			4	-	+	14 14			40			42			5	179
2-Chloronaphthalene 2-Nitroaniline	25			25		+	24			4	1		14	1		40	+	-	42 42			15 5	189 179
3,3'-Dichlorobenzidine	25			25			24			4	 	 	14			40			42			5	179
3-Nitroaniline	25			25			24			4			14			40			42			5	179
4-Bromophenyl phenyl ether	25			25			24			4			14			40			42			5	179
4-Chloroaniline	25			25			24			4			14			40			42			5	179
4-Chlorophenyl phenyl ether	25	1		25		-	24	1		4			14			40			42	1		5	179

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

											Sampling Da	ite										Other Parties	
	LW	/G - Novem	ber 2004	L	WG - March	2005	ì	LWG - July 2	2005		WG - January		LW	'G - Septemb	er 2006	LW	VG - Novembe	er 2006	LWG	- January-Ma	arch 2007		
		surface water from	m particulates		surface water from	surface water particulates		surface water from	-		surface water from	surface water particulates		surface water from	-		surface water from	surface water particulates		surface water from	surface water particulates		
Amalinta	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface water	XAD column	from XAD filter	surface	Grand Total
Analyte 4-Nitroaniline	25	Corum			Column	inter	24	COLUMN	Inter		CORGIIII	111101	14	COLUMN	Illica	40	Column	Inter	42	Column	Inter	water 5	179
4-Nitroaniline Aniline	25			25 25			24		+	4	ļ!		14			40			42		+	4	179
Azobenzene	25		+	25	+		24			4	<u> </u>		14			40			42		-	4	174
Benzoic acid	25		+	25	+		24		+	4			14			40			42		-	8	182
Benzyl alcohol	25			25	+		24		+	4	 		14			40			42		+	8	182
Bis(2-chloro-1-methylethyl) ether	25		+	1 23	+					<u> </u>						-10			12		 	4	4
Bis(2-chloroethoxy) methane	25			25	 		24			4			14			40			42			5	179
Bis(2-chloroethyl) ether	25			25	 		24			4			14			40			42			5	179
Bis(2-chloroisopropyl) ether	25			25			24			4			14			40			42			1	175
Carbazole	25			25			24			4			14			40			42			4	178
Dibenzofuran	25			25			24			4			14			40			42			18	192
Hexachlorobenzene	25	8	8	26	8	8	24	8	8	4	3	3	14	14	14	42	26	26	42	26	26	8	371
Hexachlorobenzene (dissolved)				1																		3	3
Hexachlorobutadiene	25	8	8	26	8	8	24	8	8	4	3	3	14	14	14	42	26	26	42	26	26	31	394
Hexachlorocyclopentadiene	25			25			24			4			14			40			42			5	179
Hexachloroethane	25			26			24			4			14			40			42			8	183
Isophorone	25			25			24			4			14			40			42			5	179
Nitrobenzene	25			25			24			4			14			40			42			5	179
N-Nitrosodimethylamine	25		+	25	+		24			4			14			40			42			4	178
N-Nitrosodiphenylamine	25		+	25	+		24		 	4			14			40			42		 	8	182
N-Nitrosodipropylamine	25		+	25	+		24			4			14			40			42		 	5	179
Retene	23		+	23	+		27		+		 		17			70			7∠		+	10	10
Phenols			+	+	+				+	 	 				+			+			+	10	10
2,3,4,5-Tetrachlorophenol			+	+	+				+												+	4	4
2,3,4,6-Tetrachlorophenol			+	25	+	 	24	+	+	4	 		14	+	+	40		+	42	+	+	4	153
2,4,5-Trichlorophenol	25		+	25	+		24		+	4	 		14			40			42		+	5	179
2,4,6-Trichlorophenol	25		+	25	+		24		+	4	 		14			40			42		+	5	179
2,4-Dichlorophenol	25		+	25	+		24		+	4	 		14			40			42		+	5	179
2,4-Dimethylphenol	25		+	25	+		24		+	4	 		14			40			42		+	8	182
2,4-Dinitrophenol	25		+	25	+		24		+	4	 		14		1	40		1	42	+	+	5	179
2,4-Dinitrophenol 2-Chlorophenol	25		+	25	+'		24		+	4	 		14			40			42	-	+	5	179
2-Methylphenol	25		+	25	+		24		+	4	 		14			40		 	42	-	+	8	182
	25		+	25	+		24		+	4	 		14			40		 	42	-	+	5	179
2-Nitrophenol 3- and 4-Methylphenol Coelution	23		+	23	+'		24		+	4	 		14			40			42		+	4	4
	25			25	 		24		+	<u> </u>	ļ'		1.4			40			40		 	5	
4,6-Dinitro-2-methylphenol	25			25	 		24		+	4	ļ'		14			40			42		 		179
4-Chloro-3-methylphenol	25			25	 	 	24	 	+	4	 '		14	 	ļ	40		+	42	 	 	5	179
4-Methylphenol	25			25	 		24		+	4	 '		14			40			42	-	 	4	178
4-Nitrophenol	25			25	 		24		+	4	 '		14			40			42	-	 	5	179
Pentachlorophenol	25			25	 		24		 	4	<u> </u> '		14			40			42		 	35	209
Phenol	25			25	 		24		 	4	 		14			40			42	-	 	8	182
VOCs				 	-				1	 	ļ'										-		22
1,1,1,2-Tetrachloroethane				 	-				 	 	ļ'										 	23	23
1,1,1-Trichloroethane				 	 				 	 	<u> </u> '										 	27	27
1,1,2,2-Tetrachloroethane				_	 				1	<u> </u>	ļ'										 	27	27
1,1,2-Trichloro-1,2,2-trifluoroethane				ļ	<u> </u>				1	<u> </u>	<u> </u>										 	4	4
1,1,2-Trichloroethane				↓	 '				 	<u> </u>	<u> </u> '										 	27	27
1,1-Dichloroethane				↓	 '				 	<u> </u>	<u> </u> '										 	27	27
1,1-Dichloroethene				ļ	<u> </u>				1	<u> </u>	<u> </u> '										<u> </u>	27	27
1,1-Dichloropropene				ļ	<u> </u>				1	<u> </u>	<u> </u> '										<u> </u>	23	23
1,2,3-Trichlorobenzene				ļ	<u> </u>				1	<u> </u>	<u> </u>										 	27	27
1,2,3-Trichloropropane					<u> </u>				<u> </u>	<u> </u>	ļ'										<u> </u>	23	23
1,2,4-Trimethylbenzene				↓	<u> </u>				↓		<u> </u> '										<u> </u>	23	23
1,2-Dibromo-3-chloropropane				<u> </u>						<u> </u>	<u> </u>										ļ	27	27
1,2-Dichloroethane											<u>'</u>											27	27
1,2-Dichloropropane											<u>'</u>											27	27
1,3,5-Trimethylbenzene					<u> </u>																	23	23
1,3-Dichloropropane																						23	23
1,4-Dioxane					1				l l	İ	'											4	4
1-Methyl-4-isopropylbenzene																						23	23
2,2-Dichloropropane																						23	23
2-Chlorotoluene				1	1					1	1											23	23

Table 2.3-5. Summary of Surface Water Sample Counts in the RI Data Set. a,b

Table 2.3-5. Summary of Surface Water Sample	Counts in the Ki Di	ita Sct.																				Other	
	1.0	VG - Novemb	er 2004	T	WG - March	2005	ı	LWG - July 2	2005	т.	Sampling Da WG - Januar		LW	VG - Septemb	er 2006	LV	/G - Novemb	er 2006	LWG	- January-Ma	arch 2007	Parties	-
	L	VG - Novemb	CI 2004	-	VVG - March	2003		L WG - July 2	surface		VV G - Sanuar	surface	DV	уст вертення	surface	L.V.	G - Novemb	surface	LWG	- Januar y-1412	surface		
		surface	surface water		surface	surface water		surface	water		surface	water		surface	water		surface	water		surface	water		1
	surface	water from XAD	particulates from XAD	surface	water from XAD	particulates from XAD	surface	water from XAD	particulates from XAD	surface	water from XAD	particulates from XAD	surface	water from XAD	particulates from XAD	surface	water from XAD	particulates from XAD	surface	water from XAD	particulates from XAD		1
Analyte	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	water	column	filter	surface water	Grand Total
4-Chlorotoluene																						23	23
Acetone																						27	27
Acrylonitrile																						23	23
Benzene																						30	30
Bromobenzene																						23	23
Bromochloromethane																						27	27
Bromodichloromethane																						27	27
Bromoform																						27	27
Bromomethane																						27	27
BTEX																						30	30
Carbon disulfide																						27	27
Carbon tetrachloride																						27	27
Chlorobenzene																						27	27
Chlorodibromomethane																						27	27
Chloroethane																						27	27
Chloroform																						27	27
Chloromethane																						27	27
cis-1,2-Dichloroethene																						27	27
cis-1,3-Dichloropropene																						27	27
Dichlorodifluoromethane																						27	27
Ethylbenzene																						30 27	30 27
Ethylene dibromide																							4
Hexahydrobenzene Isopropylbenzene																						4 27	27
m,p-Xylene																						30	30
Methyl acetate																						4	4
Methyl isobutyl ketone																						27	27
Methyl n-butyl ketone																						27	27
Methyl tert-butyl ether																						27	27
Methylcyclohexane																						4	4
Methylene bromide																						23	23
Methylene chloride																						27	27
Methylethyl ketone																						27	27
n-Butylbenzene																						23	23
n-Propylbenzene																						23	23
o-Xylene																						30	30
Sec-butylbenzene																						23	23
Styrene																						27	27
tert-Butylbenzene																						23	23
Tetrachloroethene																						27	27
Toluene																						30	30
trans-1,2-Dichloroethene																						27	27
trans-1,3-Dichloropropene																						27	27
Trichloroethene								1														30	30
Trichlorofluoromethane								1														27	27
Vinyl chloride																						27	27
Xylene				ļ				1					1									30	30
Grand Total	3,902	2,026	2,026	3,847	2,026	2,026	3,688	2,026	1,856	444	762	762	1,642	3,556	3,556	5,324	8,806	8,806	5,748	8,769	8,780	9,791	90,169

BTEX - benzene, toluene, ethylbenzene, and total xylene LWG - Lower Willamette Group

PAH - polycyclic aromatic hydrocarbon PCB - polychlorinated biphenyl

RI - remedial investigation

SVOC - semivolatile organic compound

Total TCDD TEQ - sum of PCDD/F and PCB congener TCDD TEQ

VOC - volatile organic compound

XAD - Amberlite® XAD®-2 is a hydrophobic crosslinked polystyrene copolymer resin

XAD filter - a 0.5mm glass fiber filter cartridge

^a LWG surface water samples were collected by peristaltic pump. Non-LWG surface water samples were collected using either a grab sampler or pumping device.

^b With the exception of City of Portland-generated total suspended solids data, no other non-LWG surface water data are included in Section 5.

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

			Stormwater ^a			Stormwa	ter Outfall Sed	iment Trap	
Analyte	LWG	GE	Port of Portland Terminal 4	City's Basin 53	Additional Data from Other Parties	LWG	Port of Portland Terminal 4	Additional Data from Other Parties	
Conventionals	Eiig	- GL		Duomee	1 11 11 11 11	LIIG		1 41 1100	Granu Total
Alkalinity					2				2
Chloride					2				2
Conductivity	51				16				67
Cyanide					2				2
Dissolved organic carbon	119	6	26						151
Flow					8				8
Hardness as CaCO3					4				4
Nitrate					2				2
Nitrite					2				2
pH	56				51				107
Phosphorus					2				2
Sulfate					2				2
Temperature	56				16				72
Total dissolved solids					6				6
Total organic carbon	141	6	26	4	11	40	5		233
Total solids						44	6	1	51
Total suspended solids	146	8	26		89				269
Turbidity	56		26		8				90
•									
Metals									
Aluminum	121		27		33	19	5		205
Aluminum (dissolved)	82		27		3				112
Antimony	121	8	27		64	19	5		244
Antimony (dissolved)	82	8	27		2				119
Arsenic	123	8	27		88	19	5		270
Arsenic (dissolved)	82	8	27		31				148
Barium					61				61
Barium (dissolved)					12				12
Beryllium		8			32				40
Beryllium (dissolved)		8							8
Cadmium	121	8	27		98	19	5		278
Cadmium (dissolved)	82	8	27		33				150
Calcium					27				27
Chromium	121	8	27		114	19	5		294
Chromium (dissolved)	82	8	27		33				150
Chromium hexavalent					19				19
Cobalt					9				9
Copper	121	8	27		140	19	5		320
Copper (dissolved)	82	8	27		41				158
Iron					28				28
Iron (dissolved)					1				1
Lead	121	8	27		141	19	5		321
Lead (dissolved)	82	8	27		41				158
Magnesium					27				27
Manganese					105				105
Manganese (dissolved)					30				30
Mercury	126	8	27		86	19	5		271
Mercury (dissolved)	84	8	27		25				144
Molybdenum					9				9
Nickel	121	8	27		103	19	5		283
Nickel (dissolved)	82	8	27		27				144
Potassium					18				18
Selenium	121	8	27		61	19	5		241
Selenium (dissolved)	82	8	27		20				137
Silver	121	7	27		76	19	5		255
Silver (dissolved)	82	8	27		23				140
Sodium					18				18
Thallium		8			44				52
Thallium (dissolved)		8			12				20
Tin					18				18
Vanadium					29				29
Vanadium (dissolved)					1				1
Zinc	121	8	27		145	19	5		325
Zinc (dissolved)	82	8	27		41				158
•									

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

			Stormwater ^a			Stormwa	ter Outfall Sed		_
Analyte	LWG	GE	Port of Portland Terminal 4	City's Basin 53	Additional Data from Other Parties	LWG	Port of Portland Terminal 4	Additional Data from Other Parties	
Butyltins									
Tributyltin ion					2				2
PCB Aroclors Aroclor 1016		6	26		50		4	1	87
Aroclor 1016 Aroclor 1016 (dissolved)		5	18		30		4	1	23
Aroclor 1221		6	26		52		4	1	89
Aroclor 1221 (dissolved)		5	18		50		4		23
Aroclor 1232 Aroclor 1232 (dissolved)		6 5	26 18		50		4	1	87 23
Aroclor 1242		6	26		64		4	1	101
Aroclor 1242 (dissolved)		5	18						23
Aroclor 1248		6	26		64		4	1	101
Aroclor 1248 (dissolved) Aroclor 1254		5 6	18 26		64		4	1	23 101
Aroclor 1254 Aroclor 1254 (dissolved)		5	18		04		4	1	23
Aroclor 1260		6	26		64		4	1	101
Aroclor 1260 (dissolved)		5	18						23
Aroclor 1262 Aroclor 1262 (dissolved)			26 18		2		4	1	33 18
Aroclor 1262 (dissolved) Aroclor 1268			26		2		4	1	33
Aroclor 1268 (dissolved)			18		-		-		18
Total PCB Aroclors		6	26		64		4	1	101
Total PCB Aroclors (dissolved)		5	18						23
PCB Congeners									
Total PCB TEQ (ND = 0)	103	8	27			35	6		179
Total PCB TEQ (ND = 0) (dissolved) PCB001	11 103	8 8	9 27			35	6		28 179
PCB001 (dissolved)	11	8	9			33	O		28
PCB002	103	8	27			35	6		179
PCB002 (dissolved)	11	8	9						28
PCB003	103 11	8 8	27 9			35	6		179 28
PCB003 (dissolved) PCB004	11	8	9						28 8
PCB004 & 010	103	Ü	27			35	6		171
PCB004 & 010 (dissolved)	11		9						20
PCB004 (dissolved)		8							8
PCB005 PCB005 & 008	103	8	27			35	6		8 171
PCB005 & 008 (dissolved)	11		9			33	O		20
PCB005 (dissolved)		8							8
PCB006	103	8	27			35	6		179
PCB006 (dissolved) PCB007	11	8 8	9						28 8
PCB007 PCB007 & 009	103	٥	27			35	6		8 171
PCB007 & 009 (dissolved)	11		9				-		20
PCB007 (dissolved)		8							8
PCB008		8							8
PCB008 (dissolved) PCB009		8 8							8 8
PCB009 (dissolved)		8							8
PCB010		8							8
PCB010 (dissolved)	100	8	25			25			8
PCB011 PCB011 (dissolved)	103 11	8 8	27 9			35	6		179 28
PCB012 & 013	103	8	27			35	6		179
PCB012 & 013 (dissolved)	11	8	9			-	•		28
PCB014	103	8	27			35	6		179
PCB014 (dissolved)	11	8	9			25	ć		28
PCB015 PCB015 (dissolved)	103 11	8 8	27 9			35	6		179 28
PCB016	11	8	9						8
PCB016 & 032	103		27			35	6		171
PCB016 & 032 (dissolved)	11	_	9						20
PCB016 (dissolved) PCB017	103	8 8	27			35	6		8 179
I CD01 /	105	٥	41			33	O		1/9

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

			Stormwater ^a		Additional	Stormwa	ter Outfall Sed		_
			Port of Portland	City's	Additional Data from Other		Port of Portland	Additional Data from Other	
Analyte PCP017 (discolated)	LWG	<u>GE</u> 8	Terminal 4	Basin 53	Parties	LWG	Terminal 4	Parties	Grand Total
PCB017 (dissolved) PCB018	11 103	8	27			35	6		28 171
PCB018 & 030	103	8	21			33	Ü		8
PCB018 & 030 (dissolved)		8							8
PCB018 (dissolved)	11		9						20
PCB019	103	8	27			35	6		179
PCB019 (dissolved)	11	8	9						28
PCB020 & 021 & 033	103		27			35	6		171
PCB020 & 021 & 033 (dissolved)	11		9						20
PCB020 & 028		8							8
PCB020 & 028 (dissolved)		8							8
PCB021 & 033		8							8
PCB021 & 033 (dissolved)	102	8	27			25			8
PCB022	103	8	27			35	6		179
PCB022 (dissolved)	11 103	8	9			25			28
PCB023		8 8	27 9			35	6		179
PCB023 (dissolved) PCB024	11	8	9						28 8
PCB024 & 027	103	o	27			35	6		171
PCB024 & 027 PCB024 & 027 (dissolved)	11		9			33	Ü		20
PCB024 & 027 (dissolved) PCB024 (dissolved)	11	8	,						8
PCB025	103	8	27			35	6		179
PCB025 (dissolved)	11	8	9			55	O		28
PCB026	103	O	27			35	6		171
PCB026 & 029		8	_,				-		8
PCB026 & 029 (dissolved)		8							8
PCB026 (dissolved)	11		9						20
PCB027		8							8
PCB027 (dissolved)		8							8
PCB028	103		27			35	6		171
PCB028 (dissolved)	11		9						20
PCB029	103		27			35	6		171
PCB029 (dissolved)	11		9						20
PCB030	103		27			35	6		171
PCB030 (dissolved)	11		9						20
PCB031	103	8	27			35	6		179
PCB031 (dissolved)	11	8	9						28
PCB032		8							8
PCB032 (dissolved)	102	8	27			25			8
PCB034	103	8 8	27 9			35	6		179 28
PCB034 (dissolved) PCB035	11 103	8	9 27			35	6		28 179
PCB033 PCB035 (dissolved)	103	8	9			33	6		28
PCB036	103	8	27			35	6		179
PCB036 (dissolved)	11	8	9			33	O		28
PCB037	103	8	27			35	6		179
PCB037 (dissolved)	11	8	9			33	Ü		28
PCB038	103	8	27			35	6		179
PCB038 (dissolved)	11	8	9						28
PCB039	103	8	27			35	6		179
PCB039 (dissolved)	11	8	9						28
PCB040	103		27			35	6		171
PCB040 & 041 & 071		8							8
PCB040 & 041 & 071 (dissolved)		8							8
PCB040 (dissolved)	11		9						20
PCB041 & 064 & 071 & 072	103		27			35	6		171
PCB041 & 064 & 071 & 072 (dissolved)	11		9						20
PCB042		8							8
PCB042 & 059	103		27			35	6		171
PCB042 & 059 (dissolved)	11	_	9						20
PCB042 (dissolved)		8							8
PCB043		8							8
PCB043 & 049	103		27			35	6		171
PCB043 & 049 (dissolved)	11	0	9						20
PCB043 (dissolved)	102	8	27			25	-		8
PCB044	103		27			35	6		171

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

			Stormwater ^a		Additional	Stormwa	ter Outfall Sed	iment Trap Additional	
			Port of Portland	City's	Data from Other		Port of Portland	Data from Other	
Analyte	LWG	GE	Terminal 4	Basin 53	Parties	LWG	Terminal 4	Parties	Grand Total
PCB044 & 047 & 065		8							8
PCB044 & 047 & 065 (dissolved)		8	_						8
PCB044 (dissolved)	11		9			2.5			20
PCB045	103		27			35	6		171
PCB045 & 051		8							8
PCB045 & 051 (dissolved)		8	_						8
PCB045 (dissolved)	11		9			2.5			20
PCB046	103	8	27			35	6		179
PCB046 (dissolved)	11	8	9			25			28
PCB047	103		27			35	6		171
PCB047 (dissolved)	11		9						20
PCB048	102	8	25			2.5			8
PCB048 & 075	103		27			35	6		171
PCB048 & 075 (dissolved)	11		9						20
PCB048 (dissolved)		8							8
PCB049 & 069		8							8
PCB049 & 069 (dissolved)	102	8	25			2.5	_		8
PCB050	103		27			35	6		171
PCB050 & 053		8							8
PCB050 & 053 (dissolved)		8							8
PCB050 (dissolved)	11		9			2.5	_		20
PCB051	103		27			35	6		171
PCB051 (dissolved)	11	0	9						20
PCB052	102	8	25			2.5	_		8
PCB052 & 069	103		27			35	6		171
PCB052 & 069 (dissolved)	11		9						20
PCB052 (dissolved)	102	8	25			2.5	_		8
PCB053	103		27			35	6		171
PCB053 (dissolved)	11		9			2.5	_		20
PCB054	103	8	27			35	6		179
PCB054 (dissolved)	11	8	9				_		28
PCB055	103	8	27			35	6		179
PCB055 (dissolved)	11	8	9						28
PCB056		8					_		8
PCB056 & 060	103		27			35	6		171
PCB056 & 060 (dissolved)	11		9						20
PCB056 (dissolved)	102	8	25			2.5			8
PCB057	103	8	27			35	6		179
PCB057 (dissolved)	11	8	9				_		28
PCB058	103	8	27			35	6		179
PCB058 (dissolved)	11	8	9						28
PCB059 & 062 & 075		8							8
PCB059 & 062 & 075 (dissolved)		8							8
PCB060		8							8
PCB060 (dissolved)		8							8
PCB061 & 070	103		27			35	6		171
PCB061 & 070 & 074 & 076		8							8
PCB061 & 070 & 074 & 076 (dissolved)		8							8
PCB061 & 070 (dissolved)	11		9						20
PCB062	103		27			35	6		171
PCB062 (dissolved)	11		9						20
PCB063	103	8	27			35	6		179
PCB063 (dissolved)	11	8	9						28
PCB064		8							8
PCB064 (dissolved)		8							8
PCB065	103		27			35	6		171
PCB065 (dissolved)	11		9						20
PCB066		8							8
PCB066 & 076	103		27			35	6		171
PCB066 & 076 (dissolved)	11		9						20
PCB066 (dissolved)		8							8
PCB067	103	8	27			35	6		179
PCB067 (dissolved)	11	8	9						28
PCB068	103	8	27			35	6		179
PCB068 (dissolved)	11	8	9						28
PCB072		8							8

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

	Stormwater ^a					Stormwater Outfall Sediment Trap			
Analyte	LWG	GE	Port of Portland Terminal 4	City's Basin 53	Additional Data from Other Parties	LWG	Port of Portland Terminal 4	Additional Data from Other Parties	Grand Total
PCB072 (dissolved)	Emg	8		Duom ee	T till tiles			1 41 4165	8
PCB073	103	8	27			35	6		179
PCB073 (dissolved)	11	8	9			33	o o		28
PCB074	103	0	27			35	6		171
PCB074 (dissolved)	11		9			55	Ü		20
PCB077	103	8	27			35	6		179
PCB077 (dissolved)	11	8	9						28
PCB078	103	8	27			35	6		179
PCB078 (dissolved)	11	8	9						28
PCB079	103	8	27			35	6		179
PCB079 (dissolved)	11	8	9						28
PCB080	103	8	27			35	6		179
PCB080 (dissolved)	11	8	9						28
PCB081	103	8	27			35	6		179
PCB081 (dissolved)	11	8	9						28
PCB082	103	8	27			35	6		179
PCB082 (dissolved)	11	8	9						28
PCB083	103		27			35	6		171
PCB083 & 099		8							8
PCB083 & 099 (dissolved)		8							8
PCB083 (dissolved)	11		9						20
PCB084		8							8
PCB084 & 092	103		27			35	6		171
PCB084 & 092 (dissolved)	11		9						20
PCB084 (dissolved)		8							8
PCB085 & 116	103		27			35	6		171
PCB085 & 116 & 117		8							8
PCB085 & 116 & 117 (dissolved)		8							8
PCB085 & 116 (dissolved)	11		9						20
PCB086	103		27			35	6		171
PCB086 & 087 & 097 & 108 & 119 & 125		8							8
PCB086 & 087 & 097 & 108 & 119 & 125									
(dissolved)		8							8
PCB086 (dissolved)	11		9						20
PCB087 & 117 & 125	103		27			35	6		171
PCB087 & 117 & 125 (dissolved)	11		9						20
PCB088 & 091	103	8	27			35	6		179
PCB088 & 091 (dissolved)	11	8	9						28
PCB089	103	8	27			35	6		179
PCB089 (dissolved)	11	8	9			25	-		28
PCB090 & 101	103		27			35	6		171
PCB090 & 101 & 113		8							8
PCB090 & 101 & 113 (dissolved)	1.1	8	0						8
PCB090 & 101 (dissolved)	11	0	9						20
PCB092		8							8
PCB092 (dissolved)	102	8	27			25			8
PCB093	103	0	27			35	6		171
PCB093 & 095 & 098 & 100 & 102		8							8
PCB093 & 095 & 098 & 100 & 102 (dissolved) PCB093 (dissolved)	11	8	9						8 20
PCB093 (dissolved) PCB094	11 103	0	9 27			25	6		179
		8				35	6		
PCB094 (dissolved) PCB095 & 098 & 102	11 103	8	9 27			35	6		28 171
	11		9			33	Ü		20
PCB095 & 098 & 102 (dissolved) PCB096	103	8	27			35	6		179
		8	9			33	Ü		
PCB096 (dissolved) PCB097	11 103	٥	27			35	6		28 171
PCB097 PCB097 (dissolved)	103		9			55	U		20
PCB097 (dissolved) PCB099	103		9 27			35	6		171
PCB099 PCB099 (dissolved)	103		9			33	o		20
PCB100 PCB100	103		9 27			35	6		171
PCB100 PCB100 (dissolved)	103		9			33	o		20
PCB100 (dissolved) PCB103	103	0	9 27			35	6		20 179
PCB103 PCB103 (dissolved)	103	8 8	9			33	U		28
PCB103 (dissolved) PCB104	103	8	27			35	6		28 179
PCB104 (dissolved)	103	8	9			55	U		28

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

			Stormwater ^a		Additional	Stormwa	ter Outfall Sed	iment Trap Additional	_
			Port of Portland	City's	Data from Other		Port of Portland	Data from Other	
Analyte	LWG	GE	Terminal 4	Basin 53	Parties	LWG	Terminal 4	Parties	Grand Total
PCB105	103	8	27			35	6		179
PCB105 (dissolved) PCB106	11	8	9						28 8
PCB106 PCB106 & 118	103	8	27			35	6		8 171
PCB106 & 118 (dissolved)	11		9			33	Ü		20
PCB106 (dissolved)	- 11	8	,						8
PCB107 & 109	103		27			35	6		171
PCB107 & 109 (dissolved)	11		9						20
PCB107 & 124		8							8
PCB107 & 124 (dissolved)		8							8
PCB108 & 112	103		27			35	6		171
PCB108 & 112 (dissolved)	11		9						20
PCB109		8							8
PCB109 (dissolved)	102	8	25			2.5			8
PCB110	103	0	27			35	6		171
PCB110 & 115		8							8 8
PCB110 & 115 (dissolved) PCB110 (dissolved)	11	0	9						20
PCB110 (dissolved)	11	8	,						8
PCB111 & 115	103	O	27			35	6		171
PCB111 & 115 (dissolved)	11		9			33	O		20
PCB111 (dissolved)		8							8
PCB112		8							8
PCB112 (dissolved)		8							8
PCB113	103		27			35	6		171
PCB113 (dissolved)	11		9						20
PCB114	103	8	27			35	6		179
PCB114 (dissolved)	11	8	9						28
PCB118		8							8
PCB118 (dissolved)	102	8	27			25			8
PCB119	103 11		27 9			35	6		171 20
PCB119 (dissolved) PCB120	103	8	27			35	6		20 179
PCB120 (dissolved)	11	8	9			33	Ü		28
PCB121	103	8	27			35	6		179
PCB121 (dissolved)	11	8	9						28
PCB122	103	8	27			35	6		179
PCB122 (dissolved)	11	8	9						28
PCB123	103	8	27			35	6		179
PCB123 (dissolved)	11	8	9						28
PCB124	103		27			35	6		171
PCB124 (dissolved)	11		9						20
PCB126	103	8	27			35	6		179
PCB126 (dissolved)	11	8	9			25			28
PCB127	103	8	27 9			35	6		179
PCB127 (dissolved) PCB128 & 162	11 103	8	9 27			35	6		28 171
PCB128 & 162 PCB128 & 162 (dissolved)	103		9			33	0		20
PCB128 & 166	11	8	,						8
PCB128 & 166 (dissolved)		8							8
PCB129	103		27			35	6		171
PCB129 & 138 & 160 & 163		8							8
PCB129 & 138 & 160 & 163 (dissolved)		8							8
PCB129 (dissolved)	11		9						20
PCB130	103	8	27			35	6		179
PCB130 (dissolved)	11	8	9						28
PCB131	103	8	27			35	6		179
PCB131 (dissolved)	11	8	9						28
PCB132		8	4-			0	_		8
PCB132 & 161	103		27			35	6		171
PCB132 & 161 (dissolved)	11		9						20
PCB132 (dissolved)		8							8
PCB133	102	8	27			25	6		8
PCB133 & 142 PCB133 & 142 (dissolved)	103 11		27 9			35	6		171 20
1 CD 133 0C 142 (UISSUIVEU)	11	8	7						8

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

			Stormwater ^a		Additional	Stormwa	ter Outfall Sed	iment Trap Additional	_
			Port of Portland	City's	Data from Other		Port of Portland	Data from Other	
Analyte	LWG	GE	Terminal 4	Basin 53	Parties	LWG	Terminal 4	Parties	Grand Total
PCB134 & 143	103	8	27			35	6		179
PCB134 & 143 (dissolved)	11	8	9 27			25	6		28
PCB135 PCB135 & 151 & 154	103	8	21			35	6		171 8
PCB135 & 151 & 154 PCB135 & 151 & 154 (dissolved)		8							8
PCB135 (dissolved)	11	o	9						20
PCB136	103	8	27			35	6		179
PCB136 (dissolved)	11	8	9						28
PCB137	103	8	27			35	6		179
PCB137 (dissolved)	11	8	9						28
PCB138 & 163 & 164	103		27			35	6		171
PCB138 & 163 & 164 (dissolved)	11		9						20
PCB139 & 140		8							8
PCB139 & 140 (dissolved)	102	8	27			25			8
PCB139 & 149 PCB139 & 149 (dissolved)	103 11		27 9			35	6		171 20
PCB139 & 149 (dissolved)	103		27			35	6		171
PCB140 (dissolved)	11		9			33	Ü		20
PCB141	103	8	27			35	6		179
PCB141 (dissolved)	11	8	9			55	· ·		28
PCB142		8							8
PCB142 (dissolved)		8							8
PCB144	103	8	27			35	6		179
PCB144 (dissolved)	11	8	9						28
PCB145	103	8	27			35	6		179
PCB145 (dissolved)	11	8	9						28
PCB146		8							8
PCB146 & 165	103		27			35	6		171
PCB146 & 165 (dissolved)	11	0	9						20
PCB146 (dissolved) PCB147	103	8	27			35	6		8 171
PCB147 PCB147 & 149	103	8	21			33	0		8
PCB147 & 149 PCB147 & 149 (dissolved)		8							8
PCB147 (dissolved)	11	o	9						20
PCB148	103	8	27			35	6		179
PCB148 (dissolved)	11	8	9						28
PCB150	103	8	27			35	6		179
PCB150 (dissolved)	11	8	9						28
PCB151	103		27			35	6		171
PCB151 (dissolved)	11		9						20
PCB152	103	8	27			35	6		179
PCB152 (dissolved)	11	8	9						28
PCB153	103		27			35	6		171
PCB153 & 168		8							8
PCB153 & 168 (dissolved)	11	8	0						8
PCB153 (dissolved) PCB154	11 103		9 27			35	6		20 171
PCB154 PCB154 (dissolved)	113		9			33	0		20
PCB155	103	8	27			35	6		179
PCB155 (dissolved)	11	8	9			33	O		28
PCB156	103	Ü	27			35	6		171
PCB156 & 157		8							8
PCB156 & 157 (dissolved)		8							8
PCB156 (dissolved)	11		9						20
PCB157	103		27			35	6		171
PCB157 (dissolved)	11		9						20
PCB158		8							8
PCB158 & 160	103		27			35	6		171
PCB158 & 160 (dissolved)	11	_	9						20
PCB158 (dissolved)	100	8	27			2.5	_		8
PCB159	103	8	27			35	6		179
PCB159 (dissolved)	11	8	9						28
PCB161 PCB161 (dissolved)		8 8							8 8
PCB161 (dissolved) PCB162		8							8
		U							8

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

				Additional Stormwater Outfall Sedim			_		
			Port of Portland	City's	Data from Other		Port of Portland	Additional Data from Other	
Analyte	LWG	GE	Terminal 4	Basin 53	Parties	LWG	Terminal 4	Parties	Grand Total
PCB164 PCB164 (dissolved)		8 8							8 8
PCB165		8							8
PCB165 (dissolved)		8							8
PCB166	103		27			35	6		171
PCB166 (dissolved)	11		9						20
PCB167	103	8	27			35	6		179
PCB167 (dissolved)	11	8	9						28
PCB168	103		27			35	6		171
PCB168 (dissolved)	11		9						20
PCB169	103	8	27			35	6		179
PCB169 (dissolved)	11	8	9			2.5			28
PCB170	103	8	27			35	6		179
PCB170 (dissolved)	11	8	9			25			28
PCB171	103	0	27			35	6		171
PCB171 & 173		8							8
PCB171 & 173 (dissolved)	11	8	0						8 20
PCB171 (dissolved) PCB172	11 103	8	9 27			35	6		20 179
PCB172 PCB172 (dissolved)	11	8	9			33	Ü		28
PCB172 (dissolved) PCB173	103	0	27			35	6		171
PCB173 (dissolved)	11		9			33	Ü		20
PCB174 (dissolved)	103	8	27			35	6		179
PCB174 (dissolved)	11	8	9			33	O		28
PCB175	103	8	27			35	6		179
PCB175 (dissolved)	11	8	9			55	· ·		28
PCB176	103	8	27			35	6		179
PCB176 (dissolved)	11	8	9						28
PCB177	103	8	27			35	6		179
PCB177 (dissolved)	11	8	9						28
PCB178	103	8	27			35	6		179
PCB178 (dissolved)	11	8	9						28
PCB179	103	8	27			35	6		179
PCB179 (dissolved)	11	8	9						28
PCB180	103		27			35	6		171
PCB180 & 193		8							8
PCB180 & 193 (dissolved)		8							8
PCB180 (dissolved)	11		9						20
PCB181	103	8	27			35	6		179
PCB181 (dissolved)	11	8	9						28
PCB182	100	8	25			2.5			8
PCB182 & 187	103		27			35	6		171
PCB182 & 187 (dissolved) PCB182 (dissolved)	11	8	9						20 8
PCB182 (dissolved) PCB183	103	0	27			35	6		8 171
PCB183 & 185	103	8	21			33	Ü		8
PCB183 & 185 (dissolved)		8							8
PCB183 (dissolved)	11	0	9						20
PCB184	103	8	27			35	6		179
PCB184 (dissolved)	11	8	9			55	· ·		28
PCB185	103	-	27			35	6		171
PCB185 (dissolved)	11		9						20
PCB186	103	8	27			35	6		179
PCB186 (dissolved)	11	8	9						28
PCB187		8							8
PCB187 (dissolved)		8							8
PCB188	103	8	27			35	6		179
PCB188 (dissolved)	11	8	9						28
PCB189	103	8	27			35	6		179
PCB189 (dissolved)	11	8	9						28
PCB190	103	8	27			35	6		179
PCB190 (dissolved)	11	8	9						28
PCB191	103	8	27			35	6		179
PCB191 (dissolved)	11	8	9						28
PCB192	103	8	27			35	6		179
PCB192 (dissolved)	11	8	9						28

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

	Stormwater ^a					Stormwa			
			Port of Portland	City's	Additional Data from Other		Port of Portland	Additional Data from Other	_
Analyte	LWG	GE	Terminal 4	Basin 53	Parties	LWG	Terminal 4	Parties	Grand Total
PCB193	103		27			35	6		171
PCB193 (dissolved)	11	0	9			25			20
PCB194	103 11	8 8	27 9			35	6		179 28
PCB194 (dissolved) PCB195	103	8	27			35	6		28 179
PCB195 (dissolved)	11	8	9			33	Ü		28
PCB196	• • • • • • • • • • • • • • • • • • • •	8							8
PCB196 & 203	103	O	27			35	6		171
PCB196 & 203 (dissolved)	11		9						20
PCB196 (dissolved)		8							8
PCB197	103		27			35	6		171
PCB197 & 200		8							8
PCB197 & 200 (dissolved)		8							8
PCB197 (dissolved)	11		9						20
PCB198	103		27			35	6		171
PCB198 & 199		8							8
PCB198 & 199 (dissolved)		8							8
PCB198 (dissolved)	11		9				_		20
PCB199	103		27			35	6		171
PCB199 (dissolved)	11		9			25			20
PCB200 (disselved)	103		27 9			35	6		171 20
PCB200 (dissolved) PCB201	11 103	8	27			35	6		20 179
PCB201 (dissolved)	11	8	9			33	Ü		28
PCB202	103	8	27			35	6		179
PCB202 (dissolved)	11	8	9			55	· ·		28
PCB203		8							8
PCB203 (dissolved)		8							8
PCB204	103	8	27			35	6		179
PCB204 (dissolved)	11	8	9						28
PCB205	103	8	27			35	6		179
PCB205 (dissolved)	11	8	9						28
PCB206	103	8	27			35	6		179
PCB206 (dissolved)	11	8	9						28
PCB207	103	8	27			35	6		179
PCB207 (dissolved)	11	8	9			25			28
PCB208	103	8	27			35	6		179
PCB208 (dissolved) PCB209	11 103	8	9			25	6		28 179
PCB209 PCB209 (dissolved)	103	8 8	27 9			35	6		28
Total PCB Congeners	103	8	27			35	6		179
Total PCB Congeners (dissolved)	11	8	9			33	Ü		28
	••	Ü							20
PCB Homologs	103	0	27			25			179
Dichlorobiphenyl homologs Dichlorobiphenyl homologs (dissolved)	103	8	27 9			35	6		28
Heptachlorobiphenyl homologs	103	8	27			35	6		179
Heptachlorobiphenyl homologs (dissolved)	11	8	9			33	Ü		28
Hexachlorobiphenyl homologs	103	8	27			35	6		179
Hexachlorobiphenyl homologs (dissolved)	11	8	9			55	· ·		28
Monochlorobiphenyl homologs	103	8	27			35	6		179
Monochlorobiphenyl homologs (dissolved)	11	8	9						28
Nonachlorobiphenyl homologs	103	8	27			35	6		179
Nonachlorobiphenyl homologs (dissolved)	11	8	9						28
Octachlorobiphenyl homologs	103	8	27			35	6		179
Octachlorobiphenyl homologs (dissolved)	11	8	9						28
Pentachlorobiphenyl homologs	103	8	27			35	6		179
Pentachlorobiphenyl homologs (dissolved)	11	8	9						28
Tetrachlorobiphenyl homologs	103	8	27			35	6		179
Tetrachlorobiphenyl homologs (dissolved)	11	8	9			2.5	_		28
Trichlorobiphenyl homologs	103	8	27 9			35	6		179
Trichlorobiphenyl homologs (dissolved)	11	8	9						28

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

	Stormwater ^a Additiona					Stormwa	ter Outfall Sed	
Analyte	LWG	GE	Port of Portland Terminal 4	City's Basin 53	Additional Data from Other Parties	LWG	Port of Portland Terminal 4	Additional Data from Other Parties Grand Total
PCDD/Fs	LWG	GE	Terminar 4	Dasin 55	Tarties	LWG	Terminar 4	Parties Grand Total
1,2,3,4,6,7,8-Heptachlorodibenzofuran 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin 1,2,3,4,7,8,9-Heptachlorodibenzofuran					3 3 3			3 3 3
1,2,3,4,7,8-Hexachlorodibenzofuran 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8-Hexachlorodibenzofuran					3 3 3			3 3 3
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin 1,2,3,7,8,9-Hexachlorodibenzofuran 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin					3 3 3			3 3 3
1,2,3,7,8-Pentachlorodibenzofuran 1,2,3,7,8-Pentachlorodibenzo-p-dioxin 2,3,4,6,7,8-Hexachlorodibenzofuran					3 3 3			3 3 3
2,3,4,7,8-Pentachlorodibenzofuran 2,3,7,8-Tetrachlorodibenzofuran 2,3,7,8-Tetrachlorodibenzo-p-dioxin					3 3 3			3 3 3
TCDD TEQ (ND = 0) Total TCDD TEQ (ND = 0) Total TCDD TEQ (ND = 0) (dissolved)	103 11	8	27 9		3	35	6	3 182 28
PCDD/F Homologs Heptachlorodibenzofuran homologs					3			3
Heptachlorodibenzo-p-dioxin homologs Hexachlorodibenzofuran homologs Hexachlorodibenzo-p-dioxin homologs					3 3 3			3 3 3
Octachlorodibenzofuran Octachlorodibenzo-p-dioxin					3 3 3			3 3
Pentachlorodibenzofuran homologs Pentachlorodibenzo-p-dioxin homologs Tetrachlorodibenzofuran homologs					3 3			3 3 3
Tetrachlorodibenzo-p-dioxin homologs Total PCDD/F					3			3 3
Pesticides								
2,4'-DDD (dissalved)	11 2		23		6	29	4	73 18
2,4'-DDD (dissolved) 2,4'-DDE 2,4'-DDE (dissolved)	11 2		16 23 16		6	29	4	73 18
2,4'-DDT 2,4'-DDT (dissolved) 4,4'-DDD	11 2 11		23 16 23		6 25	29 29	4	73 18 92
4,4'-DDD (dissolved) 4,4'-DDE 4,4'-DDE (dissolved)	2 11 2		16 23 16		15 25 15	29	4	33 92 33
4,4'-DDT 4,4'-DDT (dissolved)	11 2		23 16		25 15	29	4	92 33
Aldrin Aldrin (dissolved) alpha-Endosulfan	11 2 11		23 16 23		11 1 11	29 29	4	78 19 78
alpha-Endosulfan (dissolved) alpha-Hexachlorocyclohexane alpha-Hexachlorocyclohexane (dissolved)	2 11 2		16 23 16		1 11 1	29	4	19 78 19
beta-Endosulfan beta-Endosulfan (dissolved) beta-Hexachlorocyclohexane	11 2 11		23 16 23		11 1 11	29 29	4	78 19 78
beta-Hexachlorocyclohexane (dissolved) Bromoxynil	2		16		1 2	29	4	19 2
Chlordane (technical) Chlordane (technical) (dissolved) Chlordecone			12 9		4 2			16 9 2
cis-Chlordane cis-Chlordane (dissolved) cis-Nonachlor	11 2 11		23 16 23		11 1 4	29 29	4	78 19 71
cis-Nonachlor (dissolved) delta-Hexachlorocyclohexane	2 11		16 23		11	29	4	18 78
delta-Hexachlorocyclohexane (dissolved) Dieldrin	2 11		16 23		1 10	29	4	19 77

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

	Stormwater ^a					Stormwater Outfall Sediment Trap			
Analyte	LWG	GE	Port of Portland Terminal 4	City's Basin 53	Additional Data from Other Parties	LWG	Port of Portland Terminal 4	Additional Data from Other Parties	Grand Total
Dieldrin (dissolved)	2	- GE	16			2.110			18
Endosulfan sulfate	11		23		11	29	4		78
Endosulfan sulfate (dissolved)	2		16		1				19
Endrin	11		23		11	29	4		78
Endrin (dissolved)	2		16		1				19
Endrin aldehyde	11		23		11	29	4		78
Endrin aldehyde (dissolved)	2		16						18
Endrin ketone	11		23		11	29	4		78
Endrin ketone (dissolved)	2		16		1				19
gamma-Hexachlorocyclohexane (Lindane) gamma-Hexachlorocyclohexane (Lindane,	11		23		11	29	4		78
dissolved)	2		16		1	20			19
Heptachlor	11		23		11	29	4		78
Heptachlor (dissolved)	2		16		1	20	4		19
Heptachlor epoxide	11		23		11	29	4		78
Heptachlor epoxide (dissolved)	2		16		1				19
Isobenzan	11		23		2	29	4		2
Methoxychlor Methoxychlor (dissolved)	11 2		23 16		11 1	29	4		78 19
Mirex	11		23		2	29	4		69
Mirex (dissolved)	2		23 16		2	29	4		18
Oxychlordane	11		23		4	29	4		71
Oxychlordane (dissolved)	2		16		4	29	4		18
Total Chlordanes	11		23		11	29	4		78
Total Chlordanes (dissolved)	2		16		1	/	-		19
Total Endosulfan	11		23		11	29	4		78
Total Endosulfan (dissolved)	2		16		1				19
Total DDD	11		23		25	29	4		92
Total DDD (dissolved)	2		16		15				33
DDx	11		23		25	29	4		92
DDx (dissolved)	2		16		15				33
Total DDE	11		23		25	29	4		92
Total DDE (dissolved)	2		16		15				33
Total DDT	11		23		25	29	4		92
Total DDT (dissolved)	2		16		15				33
Total 4,4'-DDx					2				2
Toxaphene	11		23		9	29	4		76
Toxaphene (dissolved)	2		16		1				19
trans-Chlordane	11		23		11	29	4		78
trans-Chlordane (dissolved)	2		16		1				19
trans-Nonachlor	11		23		4	29	4		71
trans-Nonachlor (dissolved)	2		16						18
Herbicides									
2,4,5-T	89				3	17			109
2,4,5-T (dissolved)	10				1				11
2,4-D	89				3	17			109
2,4-D (dissolved)	10				1				11
2,4-DB	89				3	17			109
2,4-DB (dissolved)	10				1				11
Dalapon	89				3	17			109
Dalapon (dissolved)	10				1				11
Dicamba	89				3	17			109
Dicamba (dissolved)	10				1				11
Dichloroprop	89				3	17			109
Dichloroprop (dissolved)	10				1	17			11
Dinoseb	89				3	17			109
Dinoseb (dissolved)	10				1	17			11
MCPA MCPA (dissolved)	89 10				3	17			109
MCPA (dissolved) MCPP	10 89				1 3	17			11 109
MCPP MCPP (dissolved)	89 10				3 1	17			109
Silvex	89				3	17			109
Silvex (dissolved)	10				3 1	1/			119
Sirva (dissorred)	10								**

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

	Stormwater ^a					Stormwater Outfall Sediment Trap			
Analyte	LWG	GE	Port of Portland Terminal 4	City's Basin 53	Additional Data from Other Parties	LWG	Port of Portland Terminal 4	Additional Data from Other Parties	Grand Total
Polycyclic Aromatic Hydrocarbons									
1-Methylnaphthalene					31				31
2-Methylnaphthalene	103	8	29	4	53	22	5		224
2-Methylnaphthalene (dissolved)	11	8	21						40
Acenaphthene	103	8	29	4	105	22	5		276
Acenaphthene (dissolved)	11	8	21						40
Acenaphthylene	103	8	29	4	105	22	5		276
Acenaphthylene (dissolved)	11	8	21						40
Anthracene	103	8	29	4	105	22	5		276
Anthracene (dissolved)	11	8	21						40
Benzo(a)anthracene	103	8	29	4	105	22	5		276
Benzo(a)anthracene (dissolved)	11	8	21						40
Benzo(a)pyrene	103	8	29	4	105	22	5		276
Benzo(a)pyrene (dissolved)	11	8	21						40
Benzo(b)fluoranthene	103	8	29	4	91	22	5		262
Benzo(b)fluoranthene (dissolved)	11	8	21						40
Benzo(b+k)fluoranthene					3				3
Benzo(g,h,i)perylene	103	8	29	4	105	22	5		276
Benzo(g,h,i)perylene (dissolved)	11	8	21	-			-		40
Benzo(k)fluoranthene	103	8	29	4	91	22	5		262
Benzo(k)fluoranthene (dissolved)	11	8	21	-	71	22	5		40
Benzofluoranthenes	- 11	0	21		15				15
Chrysene	103	8	29	4	105	22	5		276
Chrysene (dissolved)	11	8	21	4	103	22	3		40
Dibenzo(a,h)anthracene	103	8	29	4	105	22	5		276
	103	8	29	4	103	22	3		40
Dibenzo(a,h)anthracene (dissolved)				4	105	22	-		
Fluoranthene	103	8	29	4	105	22	5		276
Fluoranthene (dissolved)	11	8	21		105	22	_		40
Fluorene	103	8	29	4	105	22	5		276
Fluorene (dissolved)	11	8	21		105		_		40
High Molecular Weight PAH	103	8	29	4	105	22	5		276
High Molecular Weight PAH (dissolved)	11	8	21						40
Indeno(1,2,3-cd)pyrene	103	8	29	4	105	22	5		276
Indeno(1,2,3-cd)pyrene (dissolved)	11	8	21						40
Low Molecular Weight PAH	103	8	29	4	105	22	5		276
Low Molecular Weight PAH (dissolved)	11	8	21						40
Naphthalene	103	8	29	4	112	22	5		283
Naphthalene (dissolved)	11	8	21						40
Phenanthrene	103	8	29	4	105	22	5		276
Phenanthrene (dissolved)	11	8	21						40
Pyrene	103	8	29	4	105	22	5		276
Pyrene (dissolved)	11	8	21						40
Total cPAHs	103	8	29	4	105	22	5		276
Total cPAHs (dissolved)	11	8	21						40
Total PAHs	103	8	29	4	105	22	5		276
Total PAHs (dissolved)	11	8	21						40
Phthalates	40	_	2.5		0.4		_		106
Bis(2-ethylhexyl) phthalate	48	7	26	4	84	22	5		196
Bis(2-ethylhexyl) phthalate (dissolved)	8	7	6				_		21
Butylbenzyl phthalate	48	7	26	4	84	22	5		196
Butylbenzyl phthalate (dissolved)	8	7	6						21
Dibutyl phthalate	48	7	26	4	84	22	5		196
Dibutyl phthalate (dissolved)	8	7	6						21
Diethyl phthalate	48	7	26	4	79	22	5		191
Diethyl phthalate (dissolved)	8	7	6						21
Dimethyl phthalate	48	7	26	4	80	22	5		192
Dimethyl phthalate (dissolved)	8	7	6						21
Di-n-octyl phthalate	48	7	26	4	83	22	5		195
Di-n-octyl phthalate (dissolved)	8	7	6						21

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

	Stormwater ^a				Additional Stormwater Outfall Sedin			ment Trap Additional	
			Port of Portland	City's	Data from Other		Port of Portland	Data from Other	
Analyte	LWG	GE	Terminal 4	Basin 53	Parties	LWG	Terminal 4	Parties	Grand Total
Semivolatile Organic Compounds				4	24				20
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene				4 4	34 34				38 38
1,3-Dichlorobenzene				4	34 34				38
1,4-Dichlorobenzene				4	34 34				38
2,4-Dinitrotoluene				4	17				21
2,6-Dinitrotoluene				4	17				21
2-Chloronaphthalene				4	17				21
2-Nitroaniline				4	17				21
3,3'-Dichlorobenzidine				4	16				20
3-Nitroaniline				4	17				21
4-Bromophenyl phenyl ether				4	17				21
4-Chloroaniline				4	17				21
4-Chlorophenyl phenyl ether				4	17				21
4-Nitroaniline				4	17				21
Aniline				·	8				8
Benzoic acid				4	17				21
Benzyl alcohol				4	17				21
Bis(2-chloroethoxy) methane				4	17				21
Bis(2-chloroethyl) ether				4	17				21
Bis(2-chloroisopropyl) ether				4	17				21
Carbazole				·	15				15
Dibenzofuran	68		8	4	24	22	5		131
Dibenzofuran (dissolved)	11		8	·	2.		5		19
Hexachlorobenzene	11		23	4	19	29	4		90
Hexachlorobenzene (dissolved)	2		16	·			·		18
Hexachlorobutadiene	11		23	4	34	29	4		105
Hexachlorobutadiene (dissolved)	2		16		٥.		·		18
Hexachlorocyclopentadiene	-		10	4	17				21
Hexachloroethane	11		23	4	17	29	4		88
Hexachloroethane (dissolved)	2		16				·		18
Isophorone	-		10	4	17				21
Nitrobenzene				4	17				21
N-Nitrosodimethylamine				·	8				8
N-Nitrosodiphenylamine				4	17				21
N-Nitrosodipropylamine				4	17				21
Phenols					0				0
2,3,4,6-Tetrachlorophenol				4	8				8
2,4,5-Trichlorophenol				4	18				22
2,4,6-Trichlorophenol				4 4	18				22 22
2,4-Dichlorophenol				4	18 18				22
2,4-Dimethylphenol 2,4-Dinitrophenol				4	18				22
				4	2				2
2,6-Dichlorophenol				4					
2-Chlorophenol				4 4	18 18				22 22
2-Methylphenol 2-Nitrophenol				4	18				22
3- and 4-Methylphenol Coelution				4	14				18
4,6-Dinitro-2-methylphenol				4	18				22
4-Chloro-3-methylphenol				4	18				22
4-Methylphenol				4	11				11
4-Nitrophenol				4	18				22
Pentachlorophenol				4	29				33
Phenol				4	18				22
Tetrachlorophenol				7	2				2
					-				-
Volatile Organic Compounds					22				22
1,1,1,2-Tetrachloroethane					23				23
1,1,1-Trichloroethane					23				23
1,1,2,2-Tetrachloroethane					23				23
1,1,2-Trichloroethane					23				23
1,1-Dichloroethane					23				23
1,1-Dichloroethene					23				23
1,1-Dichloropropene					23				23
1,2,3-Trichlorobenzene					23				23
1,2,3-Trichloropropane					23				23

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

			Stormwater Outfall Sediment Trap						
			Stormwater ^a Port of Portland	City's	Additional Data from Other		Port of Portland	Additional Data from Other	_
Analyte	LWG	GE	Terminal 4	Basin 53	Parties	LWG	Terminal 4	Parties	Grand Total
1,2,4-Trimethylbenzene					28				28
1,2-Dibromo-3-chloropropane					23				23
1,2-Dichloroethane					23				23
1,2-Dichloropropane					23				23
1,3,5-Trimethylbenzene					28				28
1,3-Dichloropropane					23				23
1-Methyl-4-isopropylbenzene					23				23
2,2-Dichloropropane					23				23
2-Chlorotoluene					23				23
2-Ethyl-1-hexanol					2				2
4-Chlorotoluene					23				23
Acetone					30				30
Acrylonitrile					6				6
Benzene					29				29
Bromobenzene					23				23
Bromochloromethane					23				23
Bromodichloromethane					23				23
Bromoform					23				23
Bromomethane					23				23
BTEX					29				29
Carbon disulfide					18				18
Carbon tetrachloride					23				23
Chlorobenzene					23				23
Chlorodibromomethane					23				23
Chloroethane					29				29
Chloroform					23				23
					23				
Chloromethane									23
cis-1,2-Dichloroethene					23				23
cis-1,3-Dichloropropene					23				23
Dichlorodifluoromethane					23				23
Ethylbenzene					29				29
Ethylene dibromide					23				23
Isobutyl alcohol					2				2
Isopropylbenzene					29				29
m,p-Xylene					19				19
Methyl iodide					2				2
Methyl isobutyl ketone					22				22
Methyl n-butyl ketone					22				22
Methyl tert-butyl ether					16				16
Methylene bromide					23				23
Methylene chloride					23				23
Methylethyl ketone					28				28
n-Butylbenzene					23				23
n-Propylbenzene					27				27
o-Xylene					19				19
Sec-butylbenzene					28				28
Styrene					22				22
tert-Butylbenzene					23				23
Tetrachloroethene					23				23
Toluene					29				29
trans-1,2-Dichloroethene					23				23
trans-1,3-Dichloropropene					23				23
Trichloroethene					23				23
Trichlorofluoromethane					23				23
Vinyl chloride					23				23
Xylene					29				29
J									

Table 2.3-6. Summary of Stormwater Sample Counts in the RI Data Set.

			Stormwater ^a			Stormwa	ter Outfall Sed	iment Trap	
Analyte	LWG	GE	Port of Portland Terminal 4	City's Basin 53	Additional Data from Other Parties	LWG	Port of Portland Terminal 4	Additional Data from Other Parties	Grand Total
Petroleum									
Total Petroleum Hydrocarbons (Diesel)		8			80				88
Total Petroleum Hydrocarbons (Diesel, dissolved)		8							8
Total Petroleum Hydrocarbons (Gasoline)					46				46
Total Petroleum Hydrocarbons (Heavy Oil)					70				70
Oil And Grease					38				38
Total Petroleum Hydrocarbons (Residual)					11				11
Total Petroleum Hydrocarbons		8	30		83				121
Total Petroleum Hydrocarbons (dissolved)		8							8
Grand Total	28,098	3,535	10,515	284	8,888	8,528	1,492	12	61,352

BTEX - benzene, toluene, ethylbenzene, and total xylene

GE - General Electric

LWG - Lower Willamette Group

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl PCDD/F - dioxin/furan

RI - remedial investigation

Total TCDD TEQ - sum of PCDD/F and PCB congener TCDD TEQ

^a GE and Terminal 4 stormwater data are considered part of the LWG's complete stormwater data set. Other stormwater data are available to confirm loading calculations in the fate and transport model. Sediment trap data collected by other parties are not included in Section 5.

Tuble 2.5 7. Summary of Transition Zone	•		LWG			(Other Parties		
		≤ 38 cm	BML	> 38 c	m BML	≤38 cm BML	> 38 cm BML		•
	Push	Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe ^a	Push Probe ^a		
Analyte	filtered	unfiltered	unfiltered	filtered	unfiltered	unfiltered	unfiltered	Unknown	Grand Total
Conventionals									
Alkalinity	13	65	36	8	31			13	166
Calcium carbonate							76		76
Carbon dioxide						1	77		78
Chloride	13	65	36	8	31		76	13	242
Conductivity		51		7	26	41	97		222
Cyanide		11	10		3	13	11	13	61
Cyanide amenable to chlorination								13	13
Dissolved organic carbon								13	13
Dissolved oxygen						40	97		137
Ethane						1	77		78
Ethylene						1	77		78
Free cyanide								13	13
Methane						1	77		78
Nitrate							76		76
Nitrite							76		76
Oxidation-Reduction Potential		44			18	41	97		200
Perchlorate	5	17	12	1	7				42
pH	13	67	36	8	32	41	97		294
Phosphorus							74		74
Sulfate	13	65	36	8	31		76	13	242
Sulfide							76	13	89
Temperature						41	97		138
Total dissolved solids		50			19				69
Total organic carbon							76	13	89
Total suspended solids							55		55
Turbidity		51			18		36		105
Metals									
Aluminum	57	60	35	12	24				188
Antimony	57	60	35	12	24	13	11		212
Arsenic	60	64	39	19	31	13	11		237
Barium	57	60	35	12	24				188
Beryllium	57	60	35	12	24				188

	•		LWG				Other Parties		
		≤ 38 cm	BML	> 38 c	em BML	≤38 cm BML	> 38 cm BMI	1	•
	Push	Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe ^a	Push Probe ^a		
Analyte	filtered	unfiltered	unfiltered	filtered		unfiltered	unfiltered	Unknown	Grand Total
Cadmium	57	60	35	12	24				188
Calcium	69	67	43	20	26			18	243
Chromium	62	65	39	13	25	13	11		228
Cobalt						13	11		24
Copper	50	53	39	19	25	13	11		210
Iron	57	60	35	12	24	13	15	18	234
Lead	60	64	39	19	31	13	11		237
Magnesium	69	67	43	20	26	13	11	18	267
Manganese	69	69	43	20	32	13	15	18	279
Mercury	57	60	35	12	24				188
Nickel	57	60	35	12	24	13	11		212
Potassium	69	67	43	20	26			18	243
Selenium	57	60	35	12	24	13	11		212
Silver	57	60	35	12	24	13	11		212
Sodium	69	67	43	20	26			18	243
Thallium	57	60	35	12	24				188
Titanium						13	11		24
Vanadium						13	11		24
Zinc	60	64	39	19	31	13	11		237
PCDD/Fs									
1,2,3,4,6,7,8-Heptachlorodibenzofuran	3	3							6
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	3	3							6
1,2,3,4,7,8,9-Heptachlorodibenzofuran	3	3							6
1,2,3,4,7,8-Hexachlorodibenzofuran	3	3							6
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	3	3							6
1,2,3,6,7,8-Hexachlorodibenzofuran	3	3							6
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	3	3							6
1,2,3,7,8,9-Hexachlorodibenzofuran	3	3							6
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	3	3							6
1,2,3,7,8-Pentachlorodibenzofuran	3	3							6
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	3	3							6
2,3,4,6,7,8-Hexachlorodibenzofuran	3	3							6
2,3,4,7,8-Pentachlorodibenzofuran	3	3							6

	•		LWG				Other Parties	
		≤ 38 cn	n BML	> 38 c	m BML	≤38 cm BMI	> 38 cm BML	
	Push	Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe ^a	Push Probe ^a	
Analyte	filtered	unfiltered	unfiltered	filtered		unfiltered	unfiltered	Unknown Grand Total
2,3,7,8-Tetrachlorodibenzofuran	3	3						6
2,3,7,8-Tetrachlorodibenzo-p-dioxin	3	3						6
TCDD TEQ (ND = 0)	3	3						6
Total TCDD TEQ ($ND = 0$)	3	3						6
PCDD/F Homologs								
Heptachlorodibenzofuran homologs	3	3						6
Heptachlorodibenzo-p-dioxin homologs	3	3						6
Hexachlorodibenzofuran homologs	3	3						6
Hexachlorodibenzo-p-dioxin homologs	3	3						6
Octachlorodibenzofuran	3	3						6
Octachlorodibenzo-p-dioxin	3	3						6
Pentachlorodibenzofuran homologs	3	3						6
Pentachlorodibenzo-p-dioxin homologs	3	3						6
Tetrachlorodibenzofuran homologs	3	3						6
Tetrachlorodibenzo-p-dioxin homologs	3	3						6
Total PCDD/F	3	3						6
Pesticides								
2,4'-DDD	4	6	4	1	4			19
2,4'-DDE	4	6	4	1	4			19
2,4'-DDT	4	6	4	1	4			19
4,4'-DDD	8	10	8	1	4			31
4,4'-DDE	8	10	8	1	4			31
4,4'-DDT	8	10	8	1	4			31
Total DDD	8	10	8	1	4			31
DDx	8	10	8	1	4			31
Total DDE	8	10	8	1	4			31
Total DDT	8	10	8	1	4			31
Total 4,4'-DDx	8	10	8	1	4			31
Herbicides								
2,4,5-T	6	7	2	1	2			18
2,4-D	6	7	2	1	2			18
2,4-DB			2					2

Table 2.5-7. Summary of Transition Zone			LWG			(Other Parties		
		≤ 38 cm	BML	> 38 c	em BML	≤38 cm BML	> 38 cm BML	4	_
	Push	Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe a	Push Probe ^a		
Analyte	filtered	unfiltered	unfiltered	filtered	unfiltered	unfiltered	unfiltered	Unknowi	Grand Total
Dalapon			2						2
Dicamba			2						2
Dichloroprop	6	7	2	1	2				18
Dinoseb			2						2
MCPA			2						2
MCPP			2						2
Silvex	6	7	2	1	2				18
Polycyclic Aromatic Hydrocarbons									
2-Methylnaphthalene	39	42	24	11	17		11	13	157
Acenaphthene	39	42	24	11	17	13	11	13	170
Acenaphthylene	39	42	24	11	17	13	11	13	170
Anthracene	39	42	24	11	17	13	11	13	170
Benzo(a)anthracene	39	42	24	11	17	13	11	13	170
Benzo(a)pyrene	39	42	24	11	17	13	11	13	170
Benzo(b)fluoranthene	39	42	24	11	17	13	11	13	170
Benzo(g,h,i)perylene	39	42	24	11	17	13	11	13	170
Benzo(k)fluoranthene	39	42	24	11	17	13	11	13	170
Chrysene	39	42	24	11	17	13	11	13	170
Dibenzo(a,h)anthracene	39	42	24	11	17	13	11	13	170
Fluoranthene	39	42	24	11	17	13	11	13	170
Fluorene	39	42	24	11	17	13	11	13	170
High Molecular Weight PAH	39	42	24	11	17	13	11	13	170
Indeno(1,2,3-cd)pyrene	39	42	24	11	17	13	11	13	170
Low Molecular Weight PAH	39	42	24	11	17	13	11	13	170
Naphthalene	39	70	43	11	32	41	115	18	369
Phenanthrene	39	42	24	11	17	13	11	13	170
Pyrene	39	42	24	11	17	13	11	13	170
Total cPAHs	39	42	24	11	17	13	11	13	170
Total PAHs	39	41	24	11	17	13	11	13	169

Tuole 2.3 7. Summary of Transition Zone			LWG				Other Parties		
		≤ 38 cm	BML	> 38 (em BML	≤38 cm BMI	> 38 cm BML		•
	Push	Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe ^a	Push Probe a		
Analyte	filtered	unfiltered	unfiltered		unfiltered	unfiltered	unfiltered	Unknown	Grand Total
Phthalates									
Bis(2-ethylhexyl) phthalate							11		11
Butylbenzyl phthalate							11		11
Dibutyl phthalate							11		11
Diethyl phthalate							11		11
Dimethyl phthalate							11		11
Di-n-octyl phthalate							11		11
Semivolatile Organic Compounds									
1,2,4-Trichlorobenzene		62	39		31	41	115	18	306
1,2-Dichlorobenzene		62	39		31	41	115	18	306
1,3-Dichlorobenzene		62	39		31	41	115	18	306
1,4-Dichlorobenzene		62	39		27	41	115	18	302
2,4-Dinitrotoluene							11		11
2,6-Dinitrotoluene							11		11
2-Chloronaphthalene							11		11
2-Nitroaniline							11		11
3,3'-Dichlorobenzidine							11		11
3-Nitroaniline							11		11
4-Bromophenyl phenyl ether							11		11
4-Chloroaniline							11		11
4-Chlorophenyl phenyl ether							11		11
4-Nitroaniline							11		11
Benzoic acid							11		11
Benzyl alcohol							11		11
Bis(2-chloroethoxy) methane							11		11
Bis(2-chloroethyl) ether							11		11
Bis(2-chloroisopropyl) ether							11		11
Carbazole							11		11
Dibenzofuran	39	42	24	11	17		11	13	157
Hexachlorobenzene							11		11
Hexachlorobutadiene		62	39		31	41	115	18	306
Hexachlorocyclopentadiene							11		11
Hexachloroethane							11		11

Table 2.5-7. Sulfilliary of Transition Zone	o water sample	counts in the i	LWG			(Other Parties	
		≤ 38 cm	BML	> 38 (em BML	≤38 cm BMI	> 38 cm BML	
	Push	Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe ^a	Push Probe ^a	
Analyte	filtered	unfiltered	unfiltered	filtered		unfiltered	unfiltered	Unknown Grand Tota
Isophorone							11	11
Nitrobenzene							11	11
N-Nitrosodimethylamine							11	11
N-Nitrosodiphenylamine							11	11
N-Nitrosodipropylamine							11	11
Pyridine							11	11
Phenols								
2,4,5-Trichlorophenol							11	11
2,4,6-Trichlorophenol							11	11
2,4-Dichlorophenol							11	11
2,4-Dimethylphenol							11	11
2,4-Dinitrophenol							11	11
2-Chlorophenol							11	11
2-Methylphenol							11	11
2-Nitrophenol							11	11
3- and 4-Methylphenol Coelution							11	11
4,6-Dinitro-2-methylphenol							11	11
4-Chloro-3-methylphenol							11	11
4-Nitrophenol							11	11
Pentachlorophenol							11	11
Phenol							11	11
Volatile Organic Compounds								
1,1,1,2-Tetrachloroethane		70	39		31	41	113	18 312
1,1,1-Trichloroethane		70	39		31	41	113	18 312
1,1,2,2-Tetrachloroethane		70	39		31	41	113	18 312
1,1,2-Trichloroethane		70	39		31	41	113	18 312
1,1-Dichloroethane		70	39		31	41	113	18 312
1,1-Dichloroethene		70	39		31	41	113	18 312
1,1-Dichloropropene						41	113	154
1,2,3-Trichlorobenzene						41	113	154
1,2,3-Trichloropropane		70	39		31	41	113	18 312
1,2,4-Trimethylbenzene						41	113	154
1,2-Dibromo-3-chloropropane						41	113	154

	•	Lounts III the P	LWG			(Other Parties		
		≤ 38 cm	BML	> 38 c	m BML	≤ 38 cm BML	> 38 cm BML		•
	Push	Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe ^a	Push Probe ^a		
Analyte	filtered	unfiltered	unfiltered	filtered	unfiltered	unfiltered	unfiltered	Unknown	Grand Total
1,2-Dichloroethane		70	39		31	41	113	18	312
1,2-Dichloropropane		70	39		31	41	113	18	312
1,3,5-Trimethylbenzene						41	113		154
1,3-Dichloropropane						41	113		154
1,4-Dichloro-trans-2-butene		70	39		31			18	158
1,4-Difluorobenzene		8			4				12
1-Methyl-4-isopropylbenzene						41	113		154
2,2-Dichloropropane						41	113		154
2-Chloroethyl vinyl ether		70	39		31			18	158
2-Chlorotoluene						41	113		154
4-Chlorotoluene						41	113		154
Acetone		70	39		31	41	113	18	312
Acrolein		70	39		31			18	158
Acrylonitrile		70	39		31	41	113	18	312
Benzene		70	43		31	41	113	18	316
Bromobenzene						41	113		154
Bromochloromethane		70	39		31	41	113	18	312
Bromodichloromethane		70	39		31	41	113	18	312
Bromoform		70	39		31	41	113	18	312
Bromomethane		70	39		31	41	113	18	312
BTEX		70	43		31	41	113	18	316
Carbon disulfide		70	39		31	41	113	18	312
Carbon tetrachloride		70	39		31	41	113	18	312
Chlorobenzene		70	39		31	41	113	18	312
Chlorodibromomethane		70	39		31	41	113	18	312
Chloroethane		70	39		31	41	113	18	312
Chloroform		70	39		31	41	113	18	312
Chloromethane		70	39		31	41	113	18	312
cis-1,2-Dichloroethene		62	35		24	41	113		275
cis-1,3-Dichloropropene		70	39		31	41	113	18	312
Dichlorodifluoromethane		70	39		31	41	113	18	312
Ethylbenzene		70	43		31	41	113	18	316
Ethylene dibromide		70	39		31	41	113	18	312
Isopropylbenzene		70	39		31	41	113	18	312

Table 2.3-7. Summary of Transition Zone wa			LWG				Other Parties		
		≤ 38 cm	BML	> 38 (em BML	≤38 cm BMI	> 38 cm BMI		_
	Push	Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe ^a	Push Probe ^a	ı	
Analyte	filtered	unfiltered	unfiltered	filtered	unfiltered	unfiltered	unfiltered	Unknow	n Grand Total
m,p-Xylene		70	43		31	41	113	18	316
Methyl iodide		70	39		31			18	158
Methyl isobutyl ketone		70	39		31	41	113	18	312
Methyl n-butyl ketone		70	39		31	41	113	18	312
Methyl tert-butyl ether		70	39		31	41	113	18	312
Methylene bromide		70	39		31	41	113	18	312
Methylene chloride		70	39		31	41	113	18	312
Methylethyl ketone		70	39		31	41	113	18	312
n-Butylbenzene						41	113		154
n-Propylbenzene						41	113		154
o-Xylene		70	43		31	41	113	18	316
Sec-butylbenzene						41	113		154
Styrene		70	39		31	41	113	18	312
tert-Butylbenzene						41	113		154
Tetrachloroethene		70	39		31	41	113	18	312
Toluene		70	43		31	41	113	18	316
trans-1,2-Dichloroethene		70	39		31	41	113	18	312
trans-1,3-Dichloropropene		70	39		31	41	113	18	312
Trichloroethene		70	39		31	41	113	18	312
Trichlorofluoromethane		70	39		31	41	113	18	312
Vinyl acetate		70	39		31			18	158
Vinyl chloride		70	39		31	41	113	18	312
Xylene		70	43		31	41	113	18	316
Petroleum									
Total Petroleum Hydrocarbons (Diesel)	36	38	21	12	17		11		135
Total Petroleum Hydrocarbons (Gasoline)		39	24		18				81
Lube Oil							11		11
Total Petroleum Hydrocarbons (Residual)	36	38	21	12	17				124
Total Petroleum Hydrocarbons	36	38	21	12	17				124
Grand Total	2,471	7,057	3,938	654	3,029	3,451	10,118	1,524	32,242

Final Remedial Investigation Report February 8, 2016

Table 2.3-7. Summary of Transition Zone Water Sample Counts in the RI Data Set.

•			LWG			(Other Parties	
		≤ 38 cm	n BML	> 38 (m BML	≤ 38 cm BML	> 38 cm BML	
	Pusl	n Probe ^a	Small Volume Peeper	Push	Probe ^a	Push Probe ^a	Push Probe ^a	
Analyte	filtered	unfiltered	unfiltered	filtered	unfiltered	unfiltered	unfiltered	Unknown Grand Total

Notes:

^a Push probes were collected using Trident[®] samplers.

BML - below mudline

BTEX - benzene, toluene, ethylbenzene, and total xylene

PAH - polycyclic aromatic hydrocarbon

PCDD/F - dioxin/furan

SVOC - semivolatile organic compound

Total TCDD TEQ - sum of PCDD/F and PCB congener TCDD TEQ

VOC - volatile organic compound

Table 2.3-8. Biota Sample and Analysis Summary for the RI Data Set.

							Num	ber of Sam	ples				
			Conven-				PCB			PCDD/F			
Species	Tissue Type	Task Description	tionals	Metals	Butyltins	Aroclors	Congeners	PBDEs	PCDD/Fs	Homologs	Pesticides	PAHs	SVOCs
Black crappie	Fillet	Round 1 tissue samples	4	4		4					4		4
Black crappie	Fillet without skin	Round 1 tissue samples		4									
Black crappie	Whole body	Round 1 tissue samples	4	4		4	4		4	4	4		4
Brown bullhead	Fillet without skin	Round 1 tissue samples	6	12		6					6	6	6
Brown bullhead	Whole body	Round 1 tissue samples	9	9		9	9		9	9	9	9	9
Carp	Fillet	Round 3B biota	9	9	9		9	9	9	9	9	9	9
Carp	Body without fillet	Round 3B biota						9					
Carp	Fillet	Round 1 tissue samples	6	6		6					6		6
Carp	Fillet without skin	Round 1 tissue samples		6									
Carp	Whole body	Round 1 tissue samples	6	6		6	6		6	6	6	6	6
Carp	Whole body	Round 1A tissue samples	-	1		-	-		-	-	-	-	-
Carp	Whole body (calculated)	Round 3B biota	9	9	9		9		9	9	9	9	9
Chinook (adult)	Fillet	ODHS/USEPA/ATSDR Fish Contaminant Study (ODHS et al. 2003)	3	3		3	3	3	3	3	3	3	3
Chinook (adult)	Fillet without skin	ODHS/USEPA/ATSDR Fish Contaminant Study (ODHS et al. 2003)		3		J	3	3	3	3			
Chinook (adult)	Whole body	ODHS/USEPA/ATSDR Fish Contaminant Study (ODHS et al. 2003)	4	4		4	4	4	4	4	4	4	4
Chinook (juvenile)	Stomach contents	Round 2A tissue, juvenile chinook	-	-		-	6	7	6	7	6	6	6
Chinook (juvenile)	Whole body	Round 2A tissue, juvenile chinook	12	12	11		12		12	12	12	12	12
Chinook (juvenile)	Whole body	Round 1A tissue samples	7	7	11	7	12		12	12	7	7	7
Clam	Body without shell	Round 2A benthic tissue	33	28	25	,	31		32	29	31	29	32
Clam	Body without shell	Round 3B biota	10	10	10		10	6	10	10	10	10	10
Clam	Body without shell	Round 1 tissue samples	2	3	2	3	10	U	10	10	3	3	3
Clam	Depurated w/o shell	Round 3B biota	5	5	4	3	5		5	5	5	5	5
Crayfish	Whole body	Round 3B biota	9	9	9		9		9	9	9	9	9
	Whole body		27	27	9	27	10		10	10	27	27	27
Crayfish Lab clam	Body without shell	Round 1 tissue samples Round 2A benthic tissue	39	39	39	21	39		39	39	39	39	39
	5		39 14	39 14	39 14	14	39 14		39 11	39	39 14	39 14	39 14
Lab clam	Body without shell	2005 O&M Dredge Sediment Characterization (Tetra Tech 2006)	14	14	14	14	14		11	1	14	14	14
Lamprey, ammocoetes	Whole body	Round 2B tissue, lamprey	1	_	1		1		1	1	1	4	1
Lamprey, ammocoetes	Whole body	Round 3 lamprey tissue composites	6	5	1		6		6	6	6	4	6
Lamprey, macropthalmia	Whole body	Round 3 lamprey tissue composites	3	3		_	3		3	3	3	3	3
Largescale sucker	Whole body	Round 1 tissue samples	6	6	20	6	20		20	20	6	6	6
Lumbriculus variegatus	Whole body	Round 2A benthic tissue	39	39	39	1.4	39		39	39	39	39	39
Lumbriculus variegatus	Whole body	2005 O&M Dredge Sediment Characterization (Tetra Tech 2006)	14	14	14	14	14		11	-	14	14	14
Multiplate invertebrates	Whole body	Round 2A tissue, multiplate	2	2	_		7		-/	7	7	_	7
Mussel	Body without shell	Round 2B tissue, freshwater mussel	7	7	7	_	7		7	7	7	7	7
Northern pikeminnow	Whole body	Round 1 tissue samples	6	6		6					6		6
Osprey	Whole egg	USEPA's PBDEs in osprey eggs	15	15		15	15	15	15	10	15		15
Pacific lamprey	Whole body	ODHS/USEPA/ATSDR Fish Contaminant Study (ODHS et al. 2003)	4	4		4	4	4	4	4	4	4	4
Peamouth	Whole body	Round 1 tissue samples	4	4		4					4		4
Sculpin	Whole body	Round 3B biota	16	16	16		16		16	16	16	16	16
Sculpin	Whole body	Round 1 tissue samples	26	27		26	9		9	9	26	26	26
Smallmouth bass	Fillet	Round 3B biota	18	18	18		18	18	18	18	18	18	18
Smallmouth bass	Body without fillet	Round 3B biota						18					
Smallmouth bass	Fillet	Round 1 tissue samples	5	5		5					5		5
Smallmouth bass	Fillet without skin	Round 1 tissue samples		5									
Smallmouth bass	Whole body	Round 1 tissue samples	20	20		20	20		20	20	20	20	20
Smallmouth bass	Whole body (calculated)	Round 3B biota	18	18	18		18		18	18	18	18	18
Sturgeon	Fillet without skin	ODHS/USEPA/ATSDR Fish Contaminant Study (ODHS et al. 2003)	5	5		5	5	5	5	5	5	5	5
Sturgeon (juvenile)	Stomach contents	Round 3A juvenile sturgeon	3	3			1		1		1	3	1
Sturgeon (juvenile)	Whole body	Round 3A juvenile sturgeon	15	15	15		15		15	15	15	15	15

Notes:

ATSDR - Agency for Toxic Substances and Disease Registry

USEPA - U.S. Environmental Protection Agency ODHS - Oregon Department of Human Services

PAH - polycyclic aromatic hydrocarbon PBDE - polybrominated diphenyl ether PCB - polychlorinated biphenyl PCDD/Fs - dioxins/furans RI - remedial investigation

SVOC - semivolatile organic compound

Part	Table 2.3-9a. Summary of Biota Sample	Counts in RI Da	ata Set (LW	G Data).	1		1				1		1		1	1	Lamprey.	Lamprey,	1	1	1	1	1	1	1	1						
Part																			Largescale	Lumbriculus	Multiplate		Northern									
Professor Prof		I		pie		bullhead		Ca	1		Chinook, j	ivenile	C	lam	Crayfish		tes	almia	sucker	variegatus	invertebrates		pikeminnow	Peamouth	Sculpin		Smallmo	uth bass		Sturgeon,	juvenile	
Mathematical Angle Mathema				whole		whole				whole	stomach	whole	body	depurated	whole		whole	whole						whole	whole			fillet	whole	stomach	whole	Grand
Property 1	Analyte	fillet						fillet						-					whole body	whole body	whole body		whole body				fillet					
Section 1		4		4	6	0	0	15		6		10	15	5	26	25	7	2	6	25		7	6	4	12	10	22		20	2	15	202
March	•												1	3				3			2			1		1				3		
Marie 4	Metals																															
Second Column																		,								1				,		
Description	· · · · · · · · · · · · · · · · · · ·					_												,				· '				1				,		
Column		-4		4	0	, ,	,	13		0		17	41	3	30	33	3	3	U	33	2	,	0	4	42	10	23		20	3	13	
Column	Beryllium																															
Property 1		4		4	6	9	9	15		6		19	41	5	36	35	5	3	6	35	2	7	6	4	42	18	23		20	3	15	
Column		4		4	6	9	9	15		6		19	41	5	36	35	5	3	6	35	2	7	6	4	42	18	23		20	3	15	
Major		-		-	0			15		0		1)		3	30	33	3	,	Ü	33		,		-	72	10	23		20	3	13	
Traingle 1		4		4	6	9	9	15		6		19	41	5	36	35	5	3	6	35	2	7	6	4	42	18	23		20	3	15	
Marging		4		A		0	0	15		6		10	41	5	26	25		2	-	25	2	7	-	A	42	10	22		20	2	15	
Second S		4		4	0	9	9	15		0	+ +	19	41	3	36	33	3	3	0	33			0	4	42	18	23		20	3	13	
Section A		4		4	6	9	9	15		6		7	13	5	36				6				6	4	42	18	23		20			233
Note	7		4						6													7				1		5		3		
Selection		4		4	6	9	9	15		6		19	41	5	36	35	5	3	6	35	2	7	6	4	42	18	23		20	3	15	
Sheet A		4		4	6	9	9	15		6		19	41	5	36	35	5	3	6	35	2	7	6	4	42	18	23		20	3	15	
Tablem							9											3				7		4						3		
Variable																																
Design		4		4	6	9	9	15		6		7	13	5	36				6				6	4	42	18	23		20			
The plane		4		4	6	9	9	15		6		19	41	5	36	35	5	3	6	35	2	7	6	4	42	18	23		20	3	15	
Delisophisms																																
Tempolinics	-																								_							
Trigonius	· ·							_														,				1						
Aracher 1751	,														9							7										
Archord 1732																																
Anchor 1732																								•	-							
Archer 128					~	_																		<u> </u>								
Arriver 154						9							3											4			5					
Annels 1260						_																		1	_							
Archor 126						_		_																· ·								
Total PCB Americes					~																			<u> </u>								
FCB Congeners 1																								· ·								
Total PCB TEQ (ND = 0 0 0 0 0 0 0 0 0 0		4		4	6	9		6		6		7	3		27				6				6	4	26		5		20			139
PCB002				4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18		20	1	15	311
PCB003																					,	7								1		
PCB006																		3			7	7								1		
PCB006								_										3			7	7		<u> </u>	_					1		
PCB007	PCB005					9	9					12	41	5	19	35	7	3		35	· ·	· ·			25	18	18		20	1	15	311
PCB008																														1		
PCB009						_		_	-									,					1	1		1						
PCB010								_										-			· ·	· ·										
PCB012 & 013			-									12										<u>'</u>			25					1		311
PCB014 4 9 9 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB015 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB016 3 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB017 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>																		,						-						1		
PCB015 4 9 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB016 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB017 4 9 9 9 6 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB018 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB018 4									1													· '			_							
PCB017 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 7 25 18 18 20 1 15 311 PCB018 9 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB018 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB018 4 9 9 9 6 6 12 40 5 19 35 7 3 34 7 7 25 18 18 20 1 15 311 PCB023 4 9																						7			25					1		
PCB018 PCB018 & 030 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB019 4 9 9 9 6 6 12 40 5 19 35 7 3 34 7 7 25 18 18 20 1 15 311 PCB020 & 028 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 309 PCB021 & 033 3 4 9 9 9 6 6 12 41 5 19 35 7 7 25 18 18 20 1 15 311 PCB023 4 9								_														· · ·										
PCB018 & 030 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 18 18 20 1 15 311 PCB019 4 9 9 9 6 6 12 40 5 19 35 7 3 34 7 7 25 18 18 20 1 15 309 PCB020 & 028 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 309 PCB021 & 033 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB023 4 9				4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18		20	1	15	
PCB019 4 9 9 9 6 6 12 40 5 19 35 7 3 34 7 7 25 18 18 20 1 15 309 PCB020 & 028 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB021 & 033 4 9 9 9 6 6 12 41 5 19 35 7 7 7 25 18 18 20 1 15 311 PCB021 & 033 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB023 4 9 9				4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18		20	1	15	
PCB021 & 033 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB022 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB023 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB023 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB023 4 9						_		_																		1						
PCB022 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 7 25 18 18 20 1 15 311 PCB023 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 25 18 18 20 1 15 311 PCB023 1 4 9 9 9 6 6 12 41 5 19 35 7 7 7 25 18 18 20 1 15 311 PCB023 1 4 9 9 9 6 6 12 41 5 19 35 7 7 7 25 18 18 20 1 15 311												12						-			· ·	,			25							
PCB023 4 9 9 9 6 6 12 41 5 19 35 7 3 35 7 7 7 25 18 18 20 1 15 311																							-	-								
									1									-								1				1		
	PCB024							_				12										· ·			25				20	1	15	311

Table 2.3-9a. Summary of Biota Sample Counts in RI I	Data Set (LW	G Data).			1						1		1	Т	II omnuor	I ammuar				Г	T	1							
															ammocoe	Lamprey, macropth	Largescale	Lumbriculus	Multiplate		Northern								
	Black crapp	ie	Brown bu	illhead		C	arp		Chinook,	, juvenile	(Clam	Crayfish	Lab clam	tes	almia	sucker	variegatus	invertebrates	Mussel	pikeminnow	Peamouth	Sculpin		Smallmouth	bass	Stu	ırgeon, juvenile	
	fillet		fillet		body		fillet		_					body						body				body			_		
Analyte fillet	without skin	whole body	without skin	whole body	without fillet	fillet	without skin	whole body	stomach contents		body without she	depurated w/o shell	whole body	without shell	whole body	whole body	whole body	whole body	whole body	without shell	whole body	whole body	whole body	without fillet		fillet who shout skin bod		omach whole ntents body	Grand Total
PCB025	зин	4	SKIII	9	9	9	Simi	6	6	12	41	5	19	35	7	3	whole body	35	7	7	whole body	body	25	18	18	20	_	1 15	311
PCB026 & 029		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB027		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB028																													0
PCB031		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB032 PCB033		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB033		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB035		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB036		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB037		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB038		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB039 PCB040 & 041 & 071		4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20		1 15 1 15	311 311
PCB042		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB043		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB044																													0
PCB044 & 047 & 065		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB045 & 051 PCB046		4		9	9	9	+	6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20		1 15 1 15	311
PCB046 PCB048		4		9	9	9	+	6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB049									Ů	12				55	,	,		55	,	,			20	-10	10		·		0
PCB049 & 069		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB050 & 053		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB052		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB054 PCB055		4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20		1 15 1 15	311
PCB056		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB057		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB058		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB059 & 062 & 075		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB060		4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20		1 15 1 15	311
PCB061 & 070 & 074 & 076 PCB063		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB064		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB066		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB067		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB068 PCB070		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB070 PCB072		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB073		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB074																													0
PCB077		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB078		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB079 PCB080		4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20		1 15 1 15	311 311
PCB081		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB082		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB083 & 099		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB084		4		9	9	9		6	6	12	41	5	19	35	7	3		35 35	7	7			25	18	18	20		1 15	311
PCB085 & 116 & 117 PCB086 & 087 & 097 & 108 & 119 & 125		4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35	7	7			25 25	18 18	18 18	20		1 15 1 15	311
PCB087								0	Ü	12		3	17	33		3		33	,	,			23	10	10	20	,	1 15	0
PCB088 & 091		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB089		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB090		4		0	0	0		-		10	41	-	10	25	7	2		25	7	7			25	10	10	26	`	1 15	0
PCB090 & 101 & 113 PCB092		4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20		1 15 1 15	311
PCB092 & 095 & 098 & 100 & 102		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB094		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB095																													0
PCB096		4		9	9	9	1	6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311
PCB097					1		1			-	1	-	1	-							-						-		0
PCB099 PCB101					+	1	+			1	+	1	1	 	1						 								0
PCB101 PCB103		4		9	9	9	1	6	6	12	41	5	19	35	7	3		35	7	7	<u> </u>		25	18	18	20)	1 15	311
PCB104		4		9	9	9	1	6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB105		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20		1 15	311
PCB106		4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20)	1 15	311

Table 2.3-9a. Summary of Biota Sample C	Counts in RI	Data S	Set (LWG Data).	1										I	1	Lamprey,	Lamprev	7.							1					т —
																ammocoe	macroptl	h Largescale		Multiplate		Northern								
			k crappie		bullhead			Carp		Chinook	, juvenile	Cl	am	Crayfish		tes	almia	sucker	variegatus	invertebrate		-	v Peamouth	Sculpin	.	Smallm	outh bass	Sturgeon	, juvenile	-
			fillet ithout whole	fillet without	whol	body le withou		fillet without	whole	stomach	whole	body	depurated	whole	body without	whole	whole				body withou		whole	whole	body without		fillet whole	stomach	whole	Grand
Analyte	fillet		skin body	skin	body				body	contents		without shel	-	body	shell	body	body	whole body	whole body	whole body	shell	whole body		body	fillet	fillet	without skin body	contents		Total
PCB107 & 124			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB109 PCB110			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB110 & 115			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB111 PCB112			4		9		9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1	15 15	311 311
PCB114			4		9	_	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB118			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB119 PCB120			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB121			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB122			4		9		9		6	6		41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB123 PCB126			4		9		9		6	6	12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1	15 15	311 311
PCB127			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB128			4		9	9	9		6	6	12	41	5	10	35	7	3		35	7	7			25	19	19	20	1	15	311
PCB128 & 166 PCB129 & 138 & 160 & 163			4		9	_	9		6	6	12	41	5	19 19	35 35	7	3		35	7	7		1	25 25	18 18	18 18	20 20	1	15 15	311
PCB130			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB131 PCB132	-		4	1	9		9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1	15 15	311 311
PCB133			4		9		9		6	6		41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB134 & 143			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB135 & 151 & 154 PCB136			4		9		9		6	6	12 12	41	5	19	35	7	3		35 35	7	7			25 25	18	18	20	1	15 15	311 311
PCB130 PCB137			4		9		9		6	6	12	41	5	19 19	35 35	7	3		35	7	7			25	18 18	18 18	20	1	15	311
PCB138																														0
PCB139 & 140			4		9		9		6	6		41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB141 PCB142			4		9		9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1	15 15	311 311
PCB144			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB145			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB146 PCB147 & 149			4		9		9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1	15 15	311 311
PCB148			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB149											10	41	_	10	25	_			25	_				25	10	10	20		1.5	0
PCB150 PCB151			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB152			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB153											10	4.1	_	10	25	_			25	_				25	10	10	20		1.5	0
PCB153 & 168 PCB155			4		9		9		6	6	12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1	15 15	311 311
PCB156			4		9				6	Ü	12		J	10	55	,			55	,	,			9	10	10	20		- 10	58
PCB156 & 157						9	9			6	12	41	5	9	35	7	3		35	7	7			16	18	18		1	15	253
PCB157 PCB158			4		9	_	9		6	6	12	41	5	10 19	35	7	3		35	7	7			9 25	18	18	20	1	15	58 311
PCB159			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB161			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB162 PCB164			4	1	9		9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7		-	25 25	18 18	18 18	20 20	1	15 15	311 311
PCB165			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB166											1.0	41	_	10	2.5	1	_		2.5	_	_				10	10	-		1.5	0
PCB167 PCB168			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB169			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7		1	25	18	18	20	1	15	311
PCB170			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB171 & 173 PCB172	-		4		9		9		6	6		41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1	15 15	311 311
PCB174			4		9		9		6	6		41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB175			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB176 PCB177			4		9		9		6	6		41	5	19	35 35	7	3		35 35	7	7			25 25	18	18	20	1	15	311 311
PCB1// PCB178			4	+	9		9		6	6		41	5	19 19	35	7	3		35	7	7			25	18 18	18 18	20	1	15 15	311
PCB179			4		9		9		6	6		41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB180											10	41	-	10	25	↓ T	2		25	7	7			25	10	10	20		1.5	0
PCB180 & 193 PCB181			4	1	9		9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7		-	25 25	18 18	18 18	20	1	15 15	311 311
PCB182			4		9		9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1	15	311
PCB183																														0

Table 2.3-9a. Summary of Biota Sample Co	unts in RI Dat	a Set (LWC	G Data).							1		1		1	T	ly	IT	Т	1	1		ı	1	1				T	
																	Lamprey, macropth	1	Lumbriculus	Multiplate		Northern							
	Bl	ack crappi	e	Brown bu	ullhead		C	arp		Chinook,	juvenile	C	lam	Crayfish	Lab clam	tes	almia	sucker	variegatus	invertebrates	Mussel	pikeminnow	Peamouth	Sculpin		Smallmouth bass		Sturgeon, juvenile	e
		fillet		fillet		body		fillet							body						body				body				
Analyte	fillet	without skin	whole body	without skin	whole body	withou fillet		without skin	whole body	stomach contents	whole body	body without shel	depurated w/o shell	whole body	without shell	whole body	whole body	whole body	whole body	whole body	without shell	whole body	whole body	whole body	without fillet	fillet fillet without s		stomach whole contents body	
PCB183 & 185			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB184			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB186			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	311
PCB187			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB188 PCB189			4		9	9	9		6	6	12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1 15 1 15	_
PCB199			4		9	9	9		6	6	12 12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	_
PCB191			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB192			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	311
PCB194			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	_
PCB195 PCB196			4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1 15 1 15	
PCB196 PCB197 & 200			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB198 & 199			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB201			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB202			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	_
PCB203 PCB204			4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1 15 1 15	311 311
PCB204 PCB205			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB206			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB207			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	_
PCB208			4		9	9	9		6	6	12	41	5	19	35	7	3		35	7	7			25	18	18	20	1 15	
PCB209 Total PCB Congeners			4		9	9	9		6	6	12 12	41	5	19 19	35 35	7	3		35 35	7	7			25 25	18 18	18 18	20	1 15 1 15	
PBDE Congeners			4		, ,	,	, ,		0	0	12	41	3	17	33	,	3		33	,	,			23	10	16	20	1 13	311
PBDE001																													0
PBDE002																													0
PBDE003																													0
PBDE007 PBDE008 & PBDE011																													0
PBDE010																													0
PBDE012																													0
PBDE012 & 013																													0
PBDE013 PBDE015																													0
PBDE017																													0
PBDE017 & 025																													0
PBDE025																													0
PBDE028 & PBDE033 PBDE030																													0
PBDE030 PBDE032																													0
PBDE035																													0
PBDE037																													0
PBDE047																													0
PBDE049 PBDE051																													0
PBDE051 PBDE066	+ +					1			1						<u> </u>						1								0
PBDE071																													0
PBDE075	\bot					1																							0
PBDE077 PBDE079						1			1																				0
PBDE079 PBDE085						1			+					1															0
PBDE099						L			L																				0
PBDE100																													0
PBDE105																													0
PBDE116 PBDE119																													0
PBDE119 & 120																													0
PBDE126																													0
PBDE128																													0
PBDE140	+					1			-	1					-	1			-			1							0
PBDE140 PBDE153						1			+	1		1		 	 	1		-	-		1							+	0
PBDE154																													0
PBDE155																													0
PBDE181									1																				0
PBDE183						1			-	ļ				1		1													0
PBDE190 PBDE203						1			+	1		1		 	-	1		-	-		1							+	0
1 DDE203						1		1	1	1	l	1	1	1	1	1	1	1	1	1	l	ı	1	1				I	U

Table 2.3-9a. Summary of Biota Sample Count	ts in RI D	ata Set (LW	G Data).	ı		T									П	II omnuor	Lammur					_	1	1					
																ammocoe	Lamprey, macropth	Largescale Lumbricul	us Multipla	ate	Northern	ı							
		Black crapp	ie	Brown b	ullhead		Ca	ırp		Chinook, juve	nile	Cla	m C	Crayfish	Lab clam	tes	almia	sucker variegatu	invertebr	ates Mu	ssel pikeminno	w Peamouth	Sculpin		Smallmouth bass		Sturgeon, j	uvenile	
		fillet without	whole	fillet without	whole	body without		fillet without	whole	stomach wh	ole boo	dy	depurated	whole	body without	whole	whole				dy nout	whole	whole	body without	fillet	whole	stomach	whole	Grand
Analyte	fillet	skin	body	skin	body	fillet	fillet	skin	body	contents bo	ly withou	ıt shell	w/o shell	body	shell	body	body	whole body whole bod	ly whole bo	ody sł	ell whole boo	y body	body	fillet	fillet without skin	body	contents	body	Total
PBDE206																													0
PBDE207																													0
PBDE208 PBDE209																													0
PCB Homologs																													
Dichlorobiphenyl homologs			4		9	9	9		6	6 1	2 41		5	19	35	7	3	35	7	7			25	18	18	20	1	15	311
Heptachlorobiphenyl homologs			4		9	9	9		6		2 41		5	19	35	7	3	35	7	7			25	18	18	20	1	15	311
Hexachlorobiphenyl homologs			2		9	9	9		6		2 41		5	19	35	7	3	35	7	7			25	18	18	20	1	15	311
Monochlorobiphenyl homologs Nonachlorobiphenyl homologs			4		9	9	9		5 6		2 38		5	19 19	35 35	7	3	32 35	7	7			23 25	18 18	18 18	10	1	15 15	282 311
Octachlorobiphenyl homologs			4		9	9	9		6		2 41		5	19	35	7	3	35	7	7			25	18	18	20	1	15	311
Pentachlorobiphenyl homologs			4		9	9	9		6		2 41		5	19	35	7	3	35	7	7			25	18	18	20	1	15	311
Tetrachlorobiphenyl homologs			4		9	9	9		6		2 41		5	19	35	7	3	35	7	7			25	18	18	20	1	15	311
Trichlorobiphenyl homologs			4		9	9	9		6	6 1	2 41		5	19	35	7	3	35	7	7			25	18	18	20	1	15	311
PCDD/Fs 1,2,3,4,6,7,8-Heptachlorodibenzofuran			4		9	9	9		6	1	2 39)	5	19	35	7	3	35	7				25	18	18	20		15	302
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
1,2,3,4,7,8,9-Heptachlorodibenzofuran			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
1,2,3,4,7,8-Hexachlorodibenzofuran			4		9	9	9		6	1	2 39)	5	19	35	7	3	35	7	7			25	18	18	20		15	302
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
1,2,3,6,7,8-Hexachlorodibenzofuran			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin 1,2,3,7,8,9-Hexachlorodibenzofuran			4		9	9	9		6		2 39		5	19 19	35 35	7	3	35 35	7				25 25	18 18	18 18	20		15 15	302 302
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
1,2,3,7,8-Pentachlorodibenzofuran			4		9	9	9		6		2 39)	5	19	35	7	3	35	7	7			25	18	18	20		15	302
1,2,3,7,8-Pentachlorodibenzo-p-dioxin			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
2,3,4,6,7,8-Hexachlorodibenzofuran			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
2,3,4,7,8-Pentachlorodibenzofuran 2,3,7,8-Tetrachlorodibenzofuran			4		9	9	9		6		2 39		5	19 19	35 35	7	3	35 35	7	7			25 25	18 18	18 18	20		15 15	302 302
2,3,7,8-Tetrachlorodibenzo-p-dioxin			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
TCDD TEQ (ND = 0)			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
Total TCDD TEQ (ND = 0)			4		9	9	9		6	6 1	2 42		5	19	35	7	3	35	7	7			25	18	18	20	1	15	312
PCDD/F Homologs																	_							4.0	10	• • •			***
Heptachlorodibenzofuran homologs Heptachlorodibenzo-p-dioxin homologs			4		9	9	9		6		2 39		5	19 19	35 35	7	3	35 35	7	7			25 25	18 18	18 18	20		15 15	302 302
Hexachlorodibenzofuran homologs			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
Hexachlorodibenzo-p-dioxin homologs			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
Octachlorodibenzofuran			4		9	9	9		6	1	2 39)	5	19	35	7	3	35	7	7			25	18	18	20		15	302
Octachlorodibenzo-p-dioxin			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
Pentachlorodibenzofuran homologs			4		9	9	9		6		2 39		5	19	35 35	7	3	35 35	7	7			25 25	18	18	20		15	302 302
Pentachlorodibenzo-p-dioxin homologs Tetrachlorodibenzofuran homologs			4		9	9	9		6		2 39		5	19 19	35	7	3	35	7	7			25	18 18	18 18	20		15 15	302
Tetrachlorodibenzo-p-dioxin homologs			4		9	9	9		6		2 39		5	19	35	7	3	35	7	7			25	18	18	20		15	302
Total PCDD/Fs			4		9	9	9		6		2 39)	5	19	35	7	3	35	7	7			25	18	18	20		15	302
Pesticides																													
2,4'-DDD	4		4	6	9	9	15		6		9 44		5	36	35	7	3	6 35	7	7	6	4	42	18	23	20	1	15	392
2,4'-DDE 2,4'-DDT	4		4	6	9	9	15 15		6		9 44		5	36 36	35 35	7	3	6 35 6 35	7	7	6	4	42 42	18 18	23 23	20	1	15 15	392 392
4,4'-DDD	4		4	6	9	9	15		6) 44		5	36	35	7	3	6 35	7	7		4	42	18	23	20	1	15	392
4,4'-DDE	4		4	6	9	9	15		6) 44		5	36	35	7	3	6 35	7	7	6	4	42	18	23	20	1	15	392
4,4'-DDT	4		4	6	9	9	15		6) 44		5	36	35	7	3	6 35	7	7		4	42	18	23	20	1	15	392
Aldrin	4		4	6	9	9	15		6) 44		5	36	35	7	3	6 35	7	7	Ü	4	42	18	23	20	1	15	392
alpha-Endosulfan alpha-Hexachlorocyclohexane	4		4	6	9	9	15 15		6		9 44		5	36 36	35 35	7	3	6 35 6 35	7	7		4 4	42 42	18 18	23 23	20	1	15 15	392 392
beta-Endosulfan	4		4	6	9	9	15		6) 44		5	36	35	7	3	6 35	7	7		4	42	18	23	20	1	15	392
beta-Hexachlorocyclohexane	4		4	6	9	9	15		6) 44		5	36	35	7	3	6 33	7	7		4	42	18	23	20	1	15	390
cis-Chlordane	4		4	6	9	9	15		6	6 1) 44		5	36	35	7	3	6 35	7	7	6	4	42	18	23	20	1	15	392
cis-Nonachlor	4		4	6	9	9	15		6		9 44		5	36	35	7	3	6 35	7	7	Ü	4	42	18	23	20	1	15	392
delta-Hexachlorocyclohexane	4		4	6	9	9	15		6) 44		5	36	35	7	3	6 35	7	7		4	42	18	23	20	1	15	392
Dieldrin Endosulfan sulfate	4		4	6	9	9	15 15		6) 44		5	36 36	35 35	7	3	6 35 6 35	7	7		4	42 42	18 18	23 23	20	1	15 15	392 392
Endosulian sunate Endrin	4		4	6	9	9	15		6		9 44		5	36	35	7	3	6 35	7	7	Ü	4	42	18	23	20	1	15	392
Endrin aldehyde	4		4	6	9	9	15		6		9 44		5	36	35	7	3	6 35	7	7	Ü	4	42	18	23	20	1	15	392
Endrin ketone	4		4	6	9	9	15		6	6 1	9 44		5	36	35	7	3	6 35	7	7		4	42	18	23	20	1	15	392
gamma-Hexachlorocyclohexane (Lindane)	4		4	6	9	9	15		6		9 44		5	36	35	7	3	6 35	7	7	0	4	42	18	23	20	1	15	392
Heptachlor	4		4	6	9	9	15		6) 44		5	36	35	7	3	6 35	7	7		4	42	18	23	20	1	15	392
Heptachlor epoxide Methoxychlor	4		4	6	9	9	15 15		6		9 44		5	36 36	35 35	7	3	6 35 6 35	7	7	6	4 4	42 42	18 18	23 23	20	1	15 15	392 392
Mirex	4		4	6	9		6		6		7 3		3	27	رر		,	6 33		'	6	4	26	10	5	20	1	1.0	139
·						•	<u> </u>			l								1						1					

Table 2.3-9a. Summary of Biota Sample Cour	nts in RI I	Data Set (LWG	Data).												1	Lamprey,	Lamprev.	.1			1			1				$\overline{}$		$\overline{}$
				_			_									ammocoe	macropth	Largescale	Lumbriculus	Multiplate		Northern								
		Black crappie fillet		Brown b	ullhead	h a da	Ca	rp fillet		Chinook	juvenile	Cl	am	Crayfish		tes	almia	sucker	variegatus	invertebrates	Mussel	pikeminnow	Peamouth	Sculpin	h. de	Smallm	nouth bass	Sturge	eon, juvenil	le
			whole	fillet without	whole	body without		without	whole	stomach	whole	body	depurated	whole	body without	whole	whole				body without		whole	whole	body without		fillet wh	ole stomac	ch whole	le Grai
Analyte	fillet	skin	body	skin	body	fillet	fillet	skin	body	contents	body	without shell	w/o shell	body	shell	body	body	whole body	whole body	whole body	shell	whole body	body	body	fillet	fillet	without skin bo	dy conten	nts body	ly Tota
Oxychlordane	4		4	6	9	9	15		6	6	19	44	5	36	35	7	3	6	35	7	7	6	4	42	18	23		20 1	15	
Total Chlordanes Total Endosulfan	4		4	6	9	9	15 15		6	6	19 19	44 44	5	36 36	35 35	7	3	6	35 35	7	7	6	4	42 42	18 18	23 23		20 1	15 15	
Total DDD	4		4	6	9	9	15		6	6	19	44	5	36	35	7	3	6	35	7	7	6	4	42	18	23		20 1	15	
DDx	4		4	6	9	9	15		6	6	19	44	5	36	35	7	3	6	35	7	7	6	4	42	18	23		20 1	15	
Total DDE	4		4	6	9	9	15		6	6	19	44	5	36	35	7	3	6	35	7	7	6	4	42	18	23		20 1	15	
Total DDT	4		4	6	9	9	15		6	6	19	44	5	36	35	7	3	6	35	7	7	6	4	42	18	23		20 1	15	
Total 4,4'-DDx	4		4	6	9		6		6	6	19	34		27	35	7	3	6	35	7		6	4	26		5		20		27
Toxaphene trans-Chlordane	4		4	6	9	9	6 15		6	6	19 19	44	5	27 36	35	7	3	6	35	7	7	6	4	26 42	18	5 23		20 1	15	15
trans-Nonachlor	4		4	6	9	9	15		6	6	19	44	5	36	35	7	3	6	35	7	7	6	4	42	18	23		20 1	15	
PAHs				0			13				1)			30	33	,			33	,	,	- U	7	72	10	23	 			
1-Methylnaphthalene						9	9					10	5											16	18	18				8
2-Methylnaphthalene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Acenaphthene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Acenaphthylene	-			6	9	9	9		6	6	19	42	5	36	35	4	3	6	35	1	7			42	18	18		20 3	15	
Anthracene Benzo(a)anthracene				6	9	9	9		6	6	19 19	42 42	5	36 36	35 35	4	3	6	35 35		7			42 42	18 18	18 18		20 3	15 15	
Benzo(a)pyrene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7	†	 	42	18	18		20 3	15	
Benzo(b)fluoranthene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Benzo(b+k)fluoranthene																														
Benzo(e)pyrene												10	5																	1
Benzo(g,h,i)perylene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Benzo(j+k)fluoranthene					0	0	0			6	10	42	-	26	25	4	2		25		7			42	10	10		2	1.5	24
Benzo(k)fluoranthene C1-Chrysene				6	9	9	9		6		19	42 10	5	36	35	4	3	6	35		7			42	18	18	+	20 3	15	34
C1-Dibenzothiophene												10	5																	1
C1-Fluoranthene/pyrene												10	5															-		1
C1-Fluorene												10	5																	1
C1-Phenanthrene/anthracene												10	5																	1
C2-Chrysene												10	5																	1
C2-Dibenzothiophene												10	5																	1
C2-Fluoranthene/pyrene C2-Fluorene												10 10	5																	1
C2-Fiuorene C2-Naphthalene												10	5																	1
C2-Phenanthrene/anthracene												10	5															_	-+	1
C3-Chrysene												10	5																	1
C3-Dibenzothiophene												10	5																	1
C3-Fluoranthene/pyrene												10	5																	1
C3-Fluorene												10	5																	1
C3-Naphthalene C3-Phenanthrene/anthracene												10 10	5																	1
C4-Chrysene												10	5														+	_	_	1
C4-Chrysche C4-Naphthalene												10	5														+			1
C4-Phenanthrene/anthracene												10	5																	1
Chrysene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Dibenzo(a,h)anthracene	1			6	9	9	9		6	6	19	42	5	36	35	4	3	6	35	1	7			42	18	18	 	20 3	15	
Dibenzothiophene				-		9	9				10	10	5	2.5	25				25	1	-	<u> </u>	<u> </u>	16	18	18	+	10 2		8
Fluoranthene Fluorene				6	9	9	9		6	6	19 19	42 42	5	36 36	35 35	4	3	6	35 35		7			42 42	18 18	18 18		20 3	15 15	
High Molecular Weight PAH				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Indeno(1,2,3-cd)pyrene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7	†	 	42	18	18		20 3	15	
Low Molecular Weight PAH				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Naphthalene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Perylene			•	-								10	5				-													1
Phenanthrene				6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Pyrene	1			6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7			42	18	18		20 3	15	
Total PAHs	-			6	9	9	9		6	6	19	42	5	36	35	4	3	6	35		7	1	1	42	18	18		20 3	15	
Total PAHs hthalates	+			6	9	9	9		6	6	19	42	5	36	35	4	3	6	35	-	7		-	42	18	18	+	20 3	15	35
Bis(2-ethylhexyl) phthalate	1	+		6	9	9	9		6	1	15	41	4	36	35	4	1	6	35	1	7		-	42	18	18	+	20	15	33
Butylbenzyl phthalate				6	9	9	9		6		15	41	4	36	35	4	1	6	35		7			42	18	18		20	15	
Dibutyl phthalate				6	9	9	9		6		15	41	4	36	35	4	1	6	35		7			42	18	18		20	15	
Diethyl phthalate	1			6	9	9	9		6		15	41	4	36	35	4	1	6	35		7			42	18	18		20	15	
	1			6	9	9	9		6		15	41	4	36	35	4	1	6	35		7			42	18	18		20	15	33
Dimethyl phthalate				0																										
Dimethyl phthalate Di-n-octyl phthalate				6	9	9	9		6		15	41	4	36	35	4	1	6	35		7			42	18	18	1	20	15	33
Dimethyl phthalate									6		15	41	4	36	35 35	4	1	6	35 35		7			42	18			20	15	

Table 2.3-9a. Summary of Biota Sample Cour	III KI L	Data Set (LW)	G Data).												Lamprey,	Lamprey	,												\neg
															ammocoe	macropth		Lumbriculus	Multiplate		Northern								
		Black crappi	ie	Brown b	oullhead		Ca	rp		Chinook, juvenile	C	lam	Crayfish	Lab clam	tes	almia	sucker	variegatus	invertebrates	Mussel	pikeminnow	Peamouth	Sculpin		Smallm	outh bass	Stur	geon, juvenile	e
		fillet		fillet		body		fillet						body						body				body					
		without	whole	without	whole	without			hole	stomach whole	body	depurated	whole	without	whole	whole				without		whole	whole	without		fillet		nach whole	
Analyte	fillet	skin	body	skin	body	fillet	fillet	skin b	ody	contents body	without she	ll w/o shell	body	shell	body	body	whole body	whole body	whole body	shell	whole body	body	body	fillet	fillet	without skin	·	ents body	
1,2-Diphenylhydrazine				6	9				6	7	3		27				6			_			26				20		110
1,3-Dichlorobenzene				6	9	9	9		6	15	41	4	36	35	4	1	6	35		7			42	18	18		20	15	
1,4-Dichlorobenzene				6	9	9	9		6	15 7	41	4	36	35	4	1	6	35		7			42 42	18	18		20	15	336
2,4-Dinitrotoluene 2,6-Dinitrotoluene				6	9	9	9		6	7	13 13	4	36 36				6						42	18 18	18 18		20		203
2-Chloronaphthalene				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
2-Nitroaniline				6	9	9	9		6	7	13	4	36				6						42	18	18		20	-	203
3.3'-Dichlorobenzidine				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
3-Nitroaniline				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
4-Bromophenyl phenyl ether				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
4-Chloroaniline				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
4-Chlorophenyl phenyl ether				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
4-Nitroaniline				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
Aniline				6	9	9	9		5		10	4	36	1							1		16	18	18		20		160
Azobenzene				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
Benzoic acid				6	9	9	9		6	1.5	10	4	36	25	.			25		_			16	18	18		20	- 15	161
Benzyl alcohol				6	9	9	9		6	15 7	41	4	36 27	35	4	1	6	35		7			42	18	18		20	15	
Bis(2-chloro-1-methylethyl) ether Bis(2-chloroethoxy) methane				6	9	9	9		6	7	13	4	36				6						26 42	18	18		20		203
Bis(2-chloroethyl) ether				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
Bis(2-chloroisopropyl) ether				U	7	9	9		U	,	10	4	9				0						16	18	18		20	-	93
Carbazole				6	9	ĺ			6	7	3		27				6						26	10			20		110
Dibenzofuran				6	9	9	9		6	19	42	5	36	35			6	35					42	18	18		20		315
Diphenyl																													(
Hexachlorobenzene	4		4	6	9	9	15		6	6 19	45	5	36	35	7	3	6	35	7	7	6	4	42	18	23		20 1	15	393
Hexachlorobutadiene	4		4	6	9	9	15		6	6 19	41	5	36	35	7	3	6	35	7	7	6	4	42	18	23		20 1	15	
Hexachlorocyclopentadiene				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
Hexachloroethane	4		4	6	9	9	15		6	15	41	4	36	35	4	1	6	35		7	6	4	42	18	23		20	15	
Isophorone				6	9	9	9		6		10	4	36										16	18	18		20		161
Nitrobenzene				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
N-Nitrosodimethylamine N-Nitrosodiphenylamine				6	9	9	9		6	15	13 41	4	36 36	35	4	1	6	35		7			42 42	18 18	18 18		20	15	203 336
N-Nitrosodipropylamine				6	9	9	9		6	7	13	4	36	33	4	1	6	33		,			42	18	18		20	13	203
Retene				U	7	7	, ,		U	,	13	1	30				0						42	10	16		20	-	200
Phenols																													+
2,3,4,5-Tetrachlorophenol	1			6	9	9	9		6	7	13	4	36				6		1				42	18	18		20		203
2,3,4,6-Tetrachlorophenol						9	9				10	4	9										16	18	18				93
2,3,5,6-Tetrachlorophenol				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
2,4,5-Trichlorophenol				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
2,4,6-Trichlorophenol				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
2,4-Dichlorophenol				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
2,4-Dimethylphenol				6	9	9	9		6	15	41	4	36	35	4	1	6	35		7			42	18	18		20	15	
2,4-Dinitrophenol				6	9	9	9		6	7	13	4	36				6						42	18	18		20		203
2-Chlorophenol	-			6	9	9	9		6	7	13	4	36	25	4	1	6	25	1	7			42	18	18		20	- 15	203
2-Methylphenol				6	9	9	9		6	15	41 10	4	36 36	35	4	1	6	35	-	/	-		42 16	18 18	18 18		20	15	336
2-Nitrophenol 4,6-Dinitro-2-methylphenol	-			6	9	9	9		6	7	13	4	36	-	-		6						42	18	18		20		203
4-Chloro-3-methylphenol				6	9	9	9		6	7	13	4	36		+		6		†			+	42	18	18		20	_	203
4-Methylphenol	+			6	9	9	9		6	15	41	4	36	35	4	1	6	35	1	7	+		42	18	18		20	15	
4-Nitrophenol	1			6	9	9	9		6	7	13	4	36	33		1	6	33		,			42	18	18		20	13	203
Pentachlorophenol	1			6	9	9	9		6	15	41	4	36	35	4	1	6	35	1	7			42	18	18		20	15	
Phenol	1			6	9	9	9		6	15	41	4	36	35	4	1	6	35		7			42	18	18		20	15	
Grand Total	252	4	1.044	822	2.996	2,943	3.321	6 2.0		1,362 4,359	12,682	1.689	8,614	10.181	1.861	821	798	10.168	1,655	2.023	384	256	10,474	5.886	6.201	5	6,680 310		

Notes:

LWG - Lower Willamette Group
PAH - polycyclic aromatic hydrocarbon
PBDE - polybrominated diphenyl ether
PCB - polychlorinated biphenyl
PCDD/F - dioxin/furan
SVOC - semivolatile organic compound
Total TCDD TEQ - sum of PCDD/F and PCB congener TCDD TEQ

Table 2.3-9b. Summary of Biota Sample Cou		Chinook, adult		Lab clam	Lumbriculus variegatus	adult	adult	Carp		Clam	Osprey	Smallmouth Bass	Smallmouth Bass	
	fillet	fillet without skin	whole body	body without shell	whole body		fillet without skin	body without fillet	fillet	body without shell	whole egg	body without fillet	fillet	Grand Total
Conventionals														
Lipids	3		4	11	11	4	5				15			53
Moisture						-					15			15
Total solids				11	11						10			22
Metals														
Aluminum	3		4			4	5							16
Antimony	3		4	11	11	4	5							38
Arsenic	3		4	11	11	4	5							38
Barium	3		4	11	11	4	5							16
Beryllium	3		4			4	5							16
Cadmium	3		4	11	11	4	5			+		1		38
Calcium	3		4	11	11	4	5			+		1		16
Chromium	3		4	11	11	4	5							38
Cobalt	3		4	11	11	4	5							16
	3		4	1.1	11		5							38
Copper	3			11	11	4								
Iron			4	1.1	1.1	4	5							16
Lead	3		4	11	11	4	5							38
Magnesium	3		4			4	5							16
Manganese	3		4	4.4	4.4	4	5							16
Mercury		3	4	11	11	4	5				15			53
Nickel	3		4	11	11	4	5							38
Potassium	3		4			4	5							16
Selenium	3		4			4	5							16
Silver	3		4	11	11	4	5							38
Sodium	3		4			4	5							16
Thallium	3		4			4	5							16
Vanadium	3		4			4	5							16
Zinc	3		4	11	11	4	5							38
Butyltins														1
Butyltin ion				11	11									22
Dibutyltin ion				11	11									22
Tetrabutyltin				11	11									22
Tributyltin ion				11	11									22
PCB Aroclors														i
Aroclor 1016	3		4	11	11	4	5							38
Aroclor 1221	3		4	11	11	4	5							38
Aroclor 1232	3		4	11	11	4	5							38
Aroclor 1242	3		4	11	11	4	5							38
Aroclor 1248	3		4	11	11	4	5					1		38
Aroclor 1254	3		4	11	11	4	5			1		1		38
Aroclor 1254 + Aroclor 1260			•			 					15			15
Aroclor 1260 Aroclor 1260	3		4	11	11	4	5				15	1		53
Aroclor 1262	3		4	11	11	4	5				13	+		38
Aroclor 1268	3		4	11	11	4	5	-		+		+		38

Table 2.3-9b. Summary of Biota Sample Coun		or (1 ton 2 tr o 2			Lumbriculus	Lamprey,	Sturgeon,					Smallmouth	Smallmouth	
		Chinook, adult	t	Lab clam	variegatus	adult	adult	Carp		Clam	Osprey	Bass	Bass	
		fillet without	whole	body without		whole	fillet without	body without		body without		body without		Grand
	fillet	skin	body	shell	whole body	body	skin	fillet	fillet	shell	whole egg	fillet	fillet	Total
Total PCB Aroclors	3		4	11	11	4	5				15			53
PCB Congeners														
Total PCB congener TEQ (ND = 0)	3	3	4	11	11	4	5				15			56
PCB001	3	3	4	11	11	4	5				10			51
PCB002	3	3	4			4	5				10			29
PCB003	3	3	4			4	5				10			29
PCB004	3	3	4			4	5				10			29
PCB005	3	3	4	11	11	4	5				10			51
PCB006	3	3	4			4	5				10			29
PCB007	3	3	4			4	5				10			29
PCB008	3	3	4	11	11	4	5				10			51
PCB009	3	3	4			4	5				10			29
PCB010	3	3	4			4	5				10			29
PCB011	3	3	4			4	5				10			29
PCB012 & 013	3	3	4			4	5				10			29
PCB014	3	3	4			4	5				10			29
PCB015	3	3	4			4	5				10			29
PCB016	3	3	4			4	5				10			29
PCB017	3	3	4			4	5				10			29
PCB018				11	11									22
PCB018 & 030	3	3	4			4	5				10			29
PCB019	3	3	4			4	5				10			29
PCB020 & 028	3	3	4			4	5				10			29
PCB021 & 033	3	3	4			4	5				10			29
PCB022	3	3	4			4	5				10			29
PCB023	3	3	4			4	5				10			29
PCB024	3	3	4			4	5				10			29
PCB025	3	3	4			4	5				10			29
PCB026 & 029	3	3	4			4	5				10			29
PCB027	3	3	4			4	5				10			29
PCB028				11	11									22
PCB028 & 031											5			5
PCB031	3	3	4	11	11	4	5				10			51
PCB032	3	3	4			4	5				10			29
PCB033				11	11									22
PCB034	3	3	4			4	5				10			29
PCB035	3	3	4	1		4	5				10			29
PCB036	3	3	4			4	5				10			29
PCB037	3	3	4	11	11	4	5				10			51
PCB038	3	3	4	1		4	5				10			29
PCB039	3	3	4			4	5				10			29
PCB040 & 041 & 071	3	3	4	1		4	5				10			29
PCB042	3	3	4	1		4	5				15			34
PCB043	3	3	4			4	5				10			29

					Lumbriculus	Lamprey,	Sturgeon,					Smallmouth	Smallmouth	
		Chinook, adult	t	Lab clam	variegatus	adult	adult	Carp		Clam	Osprey	Bass	Bass	Í
		fillet without	whole	body without		whole		body without		body without		body without		Grand
	fillet	skin	body	shell	whole body	body	skin	fillet	fillet	shell	whole egg	fillet	fillet	Total
PCB044				11	11						5			27
PCB044 & 047 & 065	3	3	4			4	5				10			29
PCB045 & 051	3	3	4			4	5				10			29
PCB046	3	3	4			4	5				10			29
PCB048	3	3	4			4	5				10			29
PCB049				11	11						5			27
PCB049 & 069	3	3	4			4	5				10			29
PCB050 & 053	3	3	4			4	5				10			29
PCB052	3	3	4	11	11	4	5				15			56
PCB054	3	3	4			4	5				10			29
PCB055	3	3	4			4	5				10			29
PCB056	3	3	4	11	11	4	5				10			51
PCB056 & 060											5			5
PCB057	3	3	4			4	5				10			29
PCB058	3	3	4			4	5				10			29
PCB059 & 062 & 075	3	3	4			4	5				10			29
PCB060	3	3	4	11	11	4	5				10			51
PCB061 & 070 & 074 & 076	3	3	4			4	5				10			29
PCB063	3	3	4			4	5				10			29
PCB064	3	3	4			4	5				15			34
PCB066	3	3	4	11	11	4	5				10			51
PCB066 & 095											5			5
PCB067	3	3	4			4	5				10			29
PCB068	3	3	4			4	5				10			29
PCB070				11	11									22
PCB070 & 076											5			5
PCB072	3	3	4			4	5				10			29
PCB073	3	3	4			4	5				10			29
PCB074				11	11						5			27
PCB077	3	3	4	11	11	4	5				10			51
PCB078	3	3	4			4	5				10			29
PCB079	3	3	4			4	5				10			29
PCB080	3	3	4			4	5				10			29
PCB081	3	3	4	11	11	4	5				10			51
PCB082	3	3	4			4	5				10			29
PCB083 & 099	3	3	4			4	5				10			29
PCB084	3	3	4			4	5				10			29
PCB085 & 116 & 117	3	3	4			4	5				10			29
PCB086 & 087 & 097 & 108 & 119 & 125	3	3	4			4	5				10			29
PCB087				11	11						5			27
PCB088 & 091	3	3	4			4	5				10			29
PCB089	3	3	4			4	5				10			29
PCB090				11	11									22
PCB090 & 101 & 113	3	3	4			4	5				10			29

Table 2.3-9b. Summary of Biota Sample Coun		Chinook, adult	t	Lab clam	Lumbriculus variegatus	adult	adult	Carp body without		Clam body without	Osprey	Smallmouth Bass body without	Smallmouth Bass	Grand
	fillet	skin	body	shell	whole body	body	skin	fillet	fillet	shell	whole egg	fillet	fillet	Total
PCB092	3	3	4		<u> </u>	4	5				10	1		29
PCB093 & 095 & 098 & 100 & 102	3	3	4			4	5				10			29
PCB094	3	3	4			4	5				10			29
PCB095				11	11	-	-							22
PCB096	3	3	4			4	5				10			29
PCB097				11	11	-	-				5			27
PCB099				11	11						5			27
PCB101				11	11						5			27
PCB103	3	3	4			4	5				10			29
PCB104	3	3	4			4	5				10			29
PCB105	3	3	4	11	11	4	5				15			56
PCB106	3	3	4			4	5				10			29
PCB107 & 124	3	3	4			4	5				10			29
PCB109	3	3	4			4	5				10			29
PCB110				11	11						5			27
PCB110 & 115	3	3	4			4	5				10			29
PCB111	3	3	4			4	5				10			29
PCB112	3	3	4			4	5				10			29
PCB114	3	3	4	11	11	4	5				10			51
PCB118	3	3	4	11	11	4	5				15			56
PCB119		3	•	11	11	•					10			22
PCB120	3	3	4	11	11	4	5				10			29
PCB121	3	3	4			4	5				10			29
PCB122	3	3	4			4	5				10			29
PCB123	3	3	4	11	11	4	5				10			51
PCB126	3	3	4	11	11	4	5				10			51
PCB127	3	3	4			4	5				10			29
PCB128			•	11	11	•					5			27
PCB128 & 166	3	3	4			4	5				10			29
PCB129 & 138 & 160 & 163	3	3	4			4	5				10			29
PCB130	3	3	4			4	5				10			29
PCB131	3	3	4			4	5				10			29
PCB132	3	3	4	11	11	4	5				10			51
PCB133	3	3	4			4	5				10			29
PCB134 & 143	3	3	4			4	5				10			29
PCB135 & 151 & 154	3	3	4			4	5				10			29
PCB136	3	3	4			4	5				10			29
PCB137	3	3	4			4	5				10			29
PCB138		_	-	11	11						5			27
PCB139 & 140	3	3	4	11		4	5				10			29
PCB141	3	3	4	11	11	4	5				15			56
PCB142	3	3	4			4	5				10			29
PCB144	3	3	4			4	5				10			29
PCB145	3	3	4			4	5				10			29

Table 2.3-9b. Summary of Biota San		Chinook, adul	lt	Lab clam	Lumbriculus variegatus	adult	adult	Carp		Clam	Osprey	Bass	Smallmouth Bass	Const
	fillet	fillet without skin	body	body without shell	whole body		skin	body without fillet	fillet	body without shell	whole egg	body without fillet	fillet	Grand Total
PCB146	3	3	4	1	Wiloic Soug	4	5	1		32222	15	1	1	34
PCB147 & 149	3	3	4			4	5				10			29
PCB148	3	3	4			4	5				10			29
PCB149	3	3		11	11	 	3				5			27
PCB150	3	3	4	11	11	4	5				10			29
PCB151	3	3		11	11	 	3				5			27
PCB152	3	3	4	11	11	4	5				10			29
PCB153		3		11	11		3				5			27
PCB153 & 168	3	3	4	11	11	4	5				10			29
PCB155 & 100	3	3	4			4	5				10			29
PCB156	3	3	4	11	11	4	5				10		 	51
PCB156 & 157	3	3	4	11	11	+ +	,				10			0
PCB156 & 171				+	1						5			5
PCB157	3	3	4	11	11	4	5				10			51
PCB158	3	3	4	11	11	4	5				15			56
PCB159	3	3		11	11	-	5				10			29
PCB161	3	3	4			4	5				10			29
PCB162	3	3	4			4	5							29
		3	4								10			29
PCB164	3	3	4			4	5				10			
PCB165	3	3	4	11	11	4	5				10			29
PCB166	2	2	4	11	11	4	-				10			22
PCB167	3	3	4	11	11	4	5				10			51
PCB168	2	2	4	11	11	1					10			22
PCB169	3	3	4	11	11	4	5				10			51
PCB170	3	3	4	11	11	4	5				10			51
PCB170 & 190	2	2	4			1					5			5
PCB171 & 173	3	3	4			4	5				10			29
PCB172	3	3	4	4.4		4	5				15			34
PCB174	3	3	4	11	11	4	5				15			56
PCB175	3	3	4			4	5				10			29
PCB176	3	3	4			4	5				10			29
PCB177	3	3	4	11	11	4	5				15			56
PCB178	3	3	4			4	5				15			34
PCB179	3	3	4			4	5	1			15			34
PCB180				11	11						5			27
PCB180 & 193	3	3	4			4	5				10			29
PCB181	3	3	4			4	5				10			29
PCB182	3	3	4		1	4	5	1			10			29
PCB183				11	11						5			27
PCB183 & 185	3	3	4			4	5				10			29
PCB184	3	3	4	11	11	4	5				10			51
PCB186	3	3	4			4	5				10			29
PCB187	3	3	4	11	11	4	5				15			56
PCB188	3	3	4			4	5		-		10			29

Table 2.3-9b. Summary of Biota Sample Count	Is in Ki Bata St	et (Non Ewo D	αια).		Lumbriculus	Lamprey,	Sturgeon,					Smallmouth	Smallmouth	
		Chinook, adult	t	Lab clam	variegatus	adult	adult	Carp		Clam	Osprey	Bass	Bass	
		fillet without	whole	body without		whole	fillet without	body without		body without		body without		Grand
	fillet	skin	body	shell	whole body	body	skin	fillet	fillet	shell	whole egg	fillet	fillet	Total
PCB189	3	3	4	11	11	4	5				10			51
PCB190	3	3	4			4	5				10			29
PCB191	3	3	4			4	5				10			29
PCB192	3	3	4			4	5				10			29
PCB194	3	3	4	11	11	4	5				15			56
PCB195	3	3	4	11	11	4	5				15			56
PCB196	3	3	4			4	5				10			29
PCB197 & 200	3	3	4			4	5				10			29
PCB198 & 199	3	3	4			4	5				10			29
PCB200											5			5
PCB201	3	3	4	11	11	4	5				15			56
PCB202	3	3	4			4	5				10			29
PCB203	3	3	4	11	11	4	5				15			56
PCB204	3	3	4			4	5				10			29
PCB205	3	3	4			4	5				10			29
PCB206	3	3	4	11	11	4	5				15			56
PCB207	3	3	4			4	5				10			29
PCB208	3	3	4			4	5				10			29
PCB209	3	3	4	11	11	4	5				10			51
Total PCB Congeners	3	3	4	11	11	4	5				15			56
PBDE Congeners														
PBB101											15			15
PBDE001	3	3	4			3								13
PBDE002	3	3	4			3								13
PBDE003	3	3	4			3								13
PBDE007	3	3	4			3	1							14
PBDE008 & PBDE011	3	3	4			3	1							14
PBDE010	3	3	4			3	1							14
PBDE012	3	3	4			3								13
PBDE012 & 013							1							1
PBDE013	3	3	4			3								13
PBDE015	3	3	4			3	1							14
PBDE017	3	3	4			3					15			28
PBDE017 & 025						1	5							6
PBDE025	3	3	4			3								13
PBDE028								9	9	6	15	18	18	75
PBDE028 & PBDE033	3	3	4			4	5							19
PBDE030	3	3	4			4	5							19
PBDE032	3	3	4			4	5							19
PBDE035	3	3	4			4	5							19
PBDE037	3	3	4			4	5							19
PBDE047	3	3	4			4	5	9	9	6	15	18	18	94
PBDE049	3	3	4			4	5				15			34
PBDE051						1	5							6

		Chinook, adult	whole	Lab clam	Lumbriculus variegatus	Lamprey, adult whole	Sturgeon, adult	Carp body without		Clam body without	Osprey	Smallmouth Bass body without	Smallmouth Bass	Grand
	fillet	skin	body	shell	whole body	body	skin	fillet	fillet	shell	whole egg	fillet	fillet	Total
PBDE066	3	3	4	Ì		4	5				15			34
PBDE071	3	3	4			4	5							19
PBDE075	3	3	4			4	5							19
PBDE077	3	3	4			4	5							19
PBDE079						1	5							6
PBDE085	3	3	4			4	5				15			34
PBDE099	3	3	4			4	5	9	9	6	15	18	18	94
PBDE100	3	3	4			4	5	9	9	6	15	18	18	94
PBDE105	3	3	4			4	5							19
PBDE116	3	3	4			4	5							19
PBDE119	3	3	4			3	_							13
PBDE119 & 120						1	5							6
PBDE126	3	3	4			4	5							19
PBDE128						1	5							6
PBDE138											15			15
PBDE138 & PBDE166	3	3	4			4	5							19
PBDE140	3	3	4			4	5							19
PBDE153	3	3	4			4	5	9	9	6	15	18	18	94
PBDE154	3	3	4			4	5	9	9	6		18	18	79
PBDE154 & PBB153											15			15
PBDE155	3	3	4			4	5							19
PBDE181	3	3	4			4	5							19
PBDE183	3	3	4			4	5	9	9	6	15	18	18	94
PBDE190	3	3	4			4	5				15			34
PBDE203						1	5							6
PBDE206	3	3	4			4	5							19
PBDE207	3	3	4			4	5							19
PBDE208	3	3	4			4	5							19
PBDE209	3	3	4			4	5	9	9	6	15	18	18	94
PCB Homologs														
Dichlorobiphenyl homologs	3	3	4			4	5				10			29
Heptachlorobiphenyl homologs	3	3	4			4	5				15			34
Hexachlorobiphenyl homologs	3	3	4			4	5				15			34
Monochlorobiphenyl homologs	3	3	4			4	5				10			29
Nonachlorobiphenyl homologs	3	3	4			4	5				15			34
Octachlorobiphenyl homologs	3	3	4			4	5				15			34
Pentachlorobiphenyl homologs	3	3	4			4	5				15			34
Tetrachlorobiphenyl homologs	3	3	4			4	5				15			34
Trichlorobiphenyl homologs	3	3	4			4	5				15			34

Table 2.3-90. Summary of Blota Sample Counts in		Chinook, adult	Í	Lab clam	Lumbriculus variegatus	Lamprey,	Sturgeon, adult	Carp		Clam	Osprey	Smallmouth Bass	Smallmouth Bass	
	fillet	fillet without skin	whole body	body without shell	whole body	whole body	fillet without skin	body without fillet	fillet	body without shell	whole egg	body without fillet	fillet	Grand Total
PCDD/Fs														
1,2,3,4,6,7,8-Heptachlorodibenzofuran	3	3	4			4	5				10			29
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	3	3	4			4	5				10			29
1,2,3,4,7,8,9-Heptachlorodibenzofuran	3	3	4			4	5				10			29
1,2,3,4,7,8-Hexachlorodibenzofuran	3	3	4			4	5				10			29
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	3	3	4			4	5				10			29
1,2,3,6,7,8-Hexachlorodibenzofuran	3	3	4			4	5				10			29
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	3	3	4			4	5				10			29
1,2,3,7,8,9-Hexachlorodibenzofuran	3	3	4			4	5				10			29
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	3	3	4			4	5				10			29
1,2,3,7,8-Pentachlorodibenzofuran	3	3	4			4	5				10			29
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	3	3	4			4	5				10			29
2,3,4,6,7,8-Hexachlorodibenzofuran	3	3	4			4	5				10			29
2,3,4,7,8-Pentachlorodibenzofuran	3	3	4			4	5				10			29
2,3,7,8-Tetrachlorodibenzofuran	3	3	4			4	5				10			29
2,3,7,8-Tetrachlorodibenzo-p-dioxin	3	3	4			4	5				10			29
TCDD TEQ (ND = 0)	3	3	4			4	5				10			29
Total TCDD TEQ (ND = 0)	3	3	4	11	11	4	5				15			56
PCDD/F Homologs														
Heptachlorodibenzofuran homologs	3	3	4			4	5				10			29
Heptachlorodibenzo-p-dioxin homologs	3	3	4			4	5				10			29
Hexachlorodibenzofuran homologs	3	3	4			4	5				10			29
Hexachlorodibenzo-p-dioxin homologs	3	3	4			4	5				10			29
Octachlorodibenzofuran	3	3	4			4	5				10			29
Octachlorodibenzo-p-dioxin	3	3	4			4	5				10			29
Pentachlorodibenzofuran homologs	3	3	4			4	5				10			29
Pentachlorodibenzo-p-dioxin homologs	3	3	4			4	5				10			29
Tetrachlorodibenzofuran homologs	3	3	4			4	5				10			29
Tetrachlorodibenzo-p-dioxin homologs	3	3	4			4	5				10			29
Total PCDD/F	3	3	4			4	5				10			29

Table 2.3-9b. Summary of Biota Sample Counts		Chinook, adult		Lab clam	Lumbriculus variegatus	Lamprey,	Sturgeon, adult	Carp		Clam	Osprey	Smallmouth Bass	Smallmouth Bass	
	fillet	fillet without whole body without skin body shell w		whole body	whole body			body without body without fillet fillet shell		whole egg	body without fillet			
Pesticides														
2,4'-DDD	3		4	11	11	4	5				5			43
2,4'-DDE	3		4	11	11	4	5				5			43
2,4'-DDT	3		4	11	11	4	5				5			43
4,4'-DDD	3		4	11	11	4	5				15			53
4,4'-DDE	3		4	11	11	4	5				15			53
4,4'-DDT	3		4	11	11	4	5				15			53
Aldrin	3		4	11	11	4	5				5			43
alpha-Endosulfan	3		4	11	11	4	5				5			43
alpha-Hexachlorocyclohexane	3		4	11	11	4	5				15			53
beta-Endosulfan	3		4	11	11	4	5				5			43
beta-Hexachlorocyclohexane	3		4	11	11	4	5				15			53
Chlorothalonil											15			15
cis-Chlordane	3		4	11	11	4	5				15			53
cis-Nonachlor				11	11						15			37
Dacthal											15			15
delta-Hexachlorocyclohexane	3		4	11	11	4	5				5			43
Dieldrin	3		4	11	11	4	5				15			53
Dimethyl tetrachlorophthalate											15			15
Endosulfan sulfate	3		4	11	11	4	5				5			43
Endrin	3		4	11	11	4	5				5			43
Endrin aldehyde	3		4	11	11	4	4				5			42
Endrin ketone	3		4	11	11	4	5				5			43
gamma-Hexachlorocyclohexane (Lindane)	3		4	11	11	4	5				15			53
Heptachlor	3		4	11	11	4	5				5			43
Heptachlor epoxide	3		4	11	11	4	5				15			53
Methoxychlor	3		4	11	11	4	5				5			43
Mirex				11	11						15			37
Oxychlordane				11	11						15			37
Total Chlordanes	3		4	11	11	4	5				15			53
Total Endosulfan	3		4	11	11	4	5				5			43
Total DDD	3		4	11	11	4	5				15			53
DDx	3		4	11	11	4	5				15			53
Total DDE	3		4	11	11	4	5				15			53
Total DDT	3		4	11	11	4	5				15			53
Total 4,4'-DDx	3		4	11	11	4	5							38
Toxaphene				11	11	•	-							22
trans-Chlordane	3		4	11	11	4	5				15	1	1	53
trans-Nonachlor			•	11	11	· ·	<u> </u>				15	1		37

		Chinook, adult		Lab clam	Lumbriculus variegatus	Lamprey,	Sturgeon, adult	Carp		Clam	Osprey	Smallmouth Bass	Smallmouth Bass	
		fillet without		body without	_			_		body without		body without		Grand
	fillet			whole body			fillet	fillet		whole egg	fillet	fillet	Total	
PAHs														
1-Methylnaphthalene	3		4			4	5							16
2-Methylnaphthalene	3		4	11	11	4	5							38
Acenaphthene	3		4	11	11	4	5							38
Acenaphthylene	3		4	11	11	4	5							38
Anthracene	3		4	11	11	4	5							38
Benzo(a)anthracene	3		4	11	11	4	5							38
Benzo(a)pyrene	3		4	11	11	4	5							38
Benzo(a)pyrene Benzo(b)fluoranthene	3		4	11	11	4	5							38
Benzo(b+k)fluoranthene	3		4	11	11	4	5							16
· · · · · · · · · · · · · · · · · · ·	3		4			4	3							0
Benzo(e)pyrene	2		4	1.1	1.1	4								
Benzo(g,h,i)perylene	3		4	11	11	4	5			1				38
Benzo(j+k)fluoranthene	2		4	1.1	1.1	4	_							0
Benzo(k)fluoranthene	3		4	11	11	4	5							38
C1-Chrysene														0
C1-Dibenzothiophene														0
C1-Fluoranthene/pyrene														0
C1-Fluorene														0
C1-Phenanthrene/anthracene														0
C2-Chrysene														0
C2-Dibenzothiophene														0
C2-Fluoranthene/pyrene														0
C2-Fluorene														0
C2-Naphthalene														0
C2-Phenanthrene/anthracene														0
C3-Chrysene														0
C3-Dibenzothiophene														0
C3-Fluoranthene/pyrene														0
C3-Fluorene														0
C3-Naphthalene														0
C3-Phenanthrene/anthracene														0
C4-Chrysene														0
C4-Naphthalene														0
C4-Phenanthrene/anthracene										1				0
Chrysene	3		4	11	11	4	5			1				38
Dibenzo(a,h)anthracene	3		4	11	11	4	5							38
Dibenzothiophene	3		+	11	11	+ +	1			1		+		0
Fluoranthene	3		4	11	11	4								38
	3			11	11	1	5							38
Fluorene			4			4				1				
High Molecular Weight PAH	3		4	11	11	4	5							38
Indeno(1,2,3-cd)pyrene	3		4	11	11	4	5							38
Low Molecular Weight PAH	3		4	11	11	4	5			1				38
Naphthalene	3		4	11	11	4	5							38 0

Table 2.3-9b. Summary of Biota Sample Cou	IIIS III KI Data Se	et (Noil-LWG Data	ι).		Lumbriculus	I amprey	Sturgeon,					Smallmouth	Smallmouth	ļ
		Chinook, adult		Lab clam	variegatus	adult	adult	Carp		Clam	Osprey	Bass	Bass	1
			whole	body without	-	whole		body without		body without	Ospicy	body without		Grand
	fillet		body	shell	whole body	body	skin	fillet	fillet	shell	whole egg	fillet	fillet	Total
Phenanthrene	3		4	11	11	4	5							38
Pyrene	3		4	11	11	4	5							38
Total cPAHs	3		4	11	11	4	5							38
Total PAHs	3		4	11	11	4	5							38
Phthalates			•	11	11									30
Bis(2-ethylhexyl) phthalate				11	11									22
Butylbenzyl phthalate				11	11									22
Dibutyl phthalate				11	11									22
Diethyl phthalate				11	11									22
Dimethyl phthalate				11	11									22
Di-n-octyl phthalate				11	11									22
SVOCs				11	11									22
1,2,4-Trichlorobenzene	3		4	11	11	4	5							38
1,2-Dichlorobenzene	3		4	11	11	4	5							38
	3		4	10	10	4	3							20
1,2-Diphenylhydrazine	2		4			4	-							
1,3-Dichlorobenzene	3		4	11	11	4	5							38
1,4-Dichlorobenzene	3		4	11	11	4	5							38
2,4-Dinitrotoluene	3		4	11	11	4	5							38
2,6-Dinitrotoluene	3		4	11	11	4	5							38
2-Chloronaphthalene	3		4	11	11	4	5							38
2-Nitroaniline				11	11									22
3,3'-Dichlorobenzidine				11	11									22
3-Nitroaniline				11	11									22
4-Bromophenyl phenyl ether	3		4	11	11	4	5							38
4-Chloroaniline				11	11									22
4-Chlorophenyl phenyl ether	3		4	11	11	4	5							38
4-Nitroaniline				11	11									22
Aniline				11	11									22
Azobenzene				1	1									2
Benzoic acid				11	11									22
Benzyl alcohol				11	11									22
Bis(2-chloro-1-methylethyl) ether														0
Bis(2-chloroethoxy) methane	3		4	11	11	4	5							38
Bis(2-chloroethyl) ether	3		4	11	11	4	5							38
Bis(2-chloroisopropyl) ether	3		4	11	11	4	5							38
Carbazole	3		4	11	11	4	5							38
Dibenzofuran	3		4	11	11	4	5							38
Diphenyl	3		4			4	5							16
Hexabromocyclododecane											15			15
Hexachlorobenzene	3		4	11	11	4	5				15			53
Hexachlorobutadiene	3		4	11	11	4	5				5			43
Hexachlorocyclopentadiene			•	11	11						-			22
Hexachloroethane	3		4	11	11	4	5							38
Isophorone			•	11	11		1							22
		1		1 **	1 **	1	1	1				1		

	ounts in Ki Data Se	Chinook, adult		Lab clam	Lumbriculus variegatus	Lamprey,	Sturgeon, adult	Carp		Clam	Osprey	Smallmouth Bass	Bass	~ .
	fillet	fillet without skin	whole body	body without shell	whole body	whole body	fillet without skin	body without fillet	fillet	body without shell	whole egg	body without fillet	fillet	Grand Total
Nitrobenzene				11	11									22
N-Nitrosodimethylamine				11	11									22
N-Nitrosodiphenylamine	3		4	11	11	4	5							38
N-Nitrosodipropylamine				11	11									22
Octachlorostyrene										15				15
Retene	3		4			4	5							16
Phenols														
2,3,4,5-Tetrachlorophenol				11	11									22
2,3,4,6-Tetrachlorophenol				11	11									22
2,3,5,6-Tetrachlorophenol				11	11									22
2,4,5-Trichlorophenol	2		4	11	11	2	5							35
2,4,6-Trichlorophenol	2		4	11	11	2	5							35
2,4-Dichlorophenol	2		4	11	11	2	5							35
2,4-Dimethylphenol	2		4	11	11	3	5							36
2,4-Dinitrophenol				11	11									22
2-Chlorophenol	2		4	11	11	2	5							35
2-Methylphenol				11	11									22
2-Nitrophenol	2		4	11	11	2	5							35
4,6-Dinitro-2-methylphenol				11	11									22
4-Chloro-3-methylphenol				11	11									22
4-Methylphenol				11	11									22
4-Nitrophenol				11	11									22
Pentachlorophenol				11	11									22
Phenol	2		4	11	11	2	5							35
VOCs														
1,2,3,4-Tetrachlorobenzene											15			15
1,2,4,5-Tetrachlorobenzene											15			15
Pentachlorobenzene											15			15
Grand Total	1,052	723	1,416	2,189	2,189	1,397	1,744	72	72	63	3,040	144	144	14,245

Notes:

LWG - Lower Willamette Group

PAH - polycyclic aromatic hydrocarbon

PBDE - polybrominated diphenyl ether

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

SVOC - semivolatile organic compound

Total TCDD TEQ - sum of PCDD/F and PCB congener TCDD TEQ

Table 2.3-10. Number of Individual Fish or Invertebrates per Sample in the RI Data Set.

Species	Tissue	Sample	Number of Individuals per Composite
Black crappie	Fillet	LWG01FZ0306TSBCFLC10	5
Black crappie	Fillet	LWG01FZ0306TSBCFLC20	5
Black crappie	Fillet	LWG01FZ0609TSBCFLC10	5
Black crappie	Fillet	LWG01FZ0609TSBCFLC20	5
Black crappie	Fillet without skin	LWG01FZ0306TSBCFSC10	5
Black crappie	Fillet without skin	LWG01FZ0306TSBCFSC20	5
Black crappie	Fillet without skin	LWG01FZ0609TSBCFSC10	5
Black crappie	Fillet without skin	LWG01FZ0609TSBCFSC20	5
Black crappie	Whole body	LWG01FZ0306TSBCWBC10	5
Black crappie	Whole body	LWG01FZ0306TSBCWBC20	5
Black crappie	Whole body	LWG01FZ0609TSBCWBC10	5
Black crappie	Whole body	LWG01FZ0609TSBCWBC20	5
Brown bullhead	Fillet without skin	LWG01FZ0306TSBBFLC10	5
Brown bullhead	Fillet without skin	LWG01FZ0306TSBBFLC20	5
Brown bullhead	Fillet without skin	LWG01FZ0306TSBBFLC30	5
Brown bullhead	Fillet without skin	LWG01FZ0306TSBBFSC10	5
Brown bullhead	Fillet without skin	LWG01FZ0306TSBBFSC20	5
Brown bullhead	Fillet without skin	LWG01FZ0306TSBBFSC30	5
Brown bullhead	Fillet without skin	LWG01FZ0609TSBBFLC10	5
Brown bullhead	Fillet without skin	LWG01FZ0609TSBBFLC20	5
Brown bullhead	Fillet without skin	LWG01FZ0609TSBBFLC30	5
Brown bullhead	Fillet without skin	LWG01FZ0609TSBBFSC10	5
Brown bullhead	Fillet without skin	LWG01FZ0609TSBBFSC20	5
Brown bullhead	Fillet without skin	LWG01FZ0609TSBBFSC30	5
Brown bullhead	Whole body	LWG0120R001TSBBWBC10	5
Brown bullhead	Whole body	LWG0120R001TSBBWBC20	5
Brown bullhead	Whole body	LWG0128R001TSBBWBC00	5
Brown bullhead	Whole body	LWG01FZ0306TSBBWBC10	5
Brown bullhead	Whole body	LWG01FZ0306TSBBWBC20	5
Brown bullhead	Whole body	LWG01FZ0306TSBBWBC30	5
Brown bullhead	Whole body	LWG01FZ0609TSBBWBC10	5
Brown bullhead	Whole body	LWG01FZ0609TSBBWBC20	5
Brown bullhead	Whole body	LWG01FZ0609TSBBWBC30	5
Carp	Body without fillet	LW3-CP0004-C10B	5
Carp	Body without fillet	LW3-CP0004-C20B	5
Carp	Body without fillet	LW3-CP0004-C30B	5
Carp	Body without fillet	LW3-CP0408-C10B	5
Carp	Body without fillet	LW3-CP0408-C20B	5
Carp	Body without fillet	LW3-CP0408-C30B	5
Carp	Body without fillet	LW3-CP0812-C11B	5
Carp	Body without fillet	LW3-CP0812-C20B	5
Carp	Body without fillet	LW3-CP0812-C30B	5
Carp	Fillet	LW3-CP0004-C10F	5
Carp	Fillet	LW3-CP0004-C20F	5
Carp	Fillet	LW3-CP0004-C30F	5
Carp	Fillet	LW3-CP0408-C10F	5
Carp	Fillet	LW3-CP0408-C20F	5
Carp	Fillet	LW3-CP0408-C30F	5
Carp	Fillet	LW3-CP0812-C11F	5
Carp	Fillet	LW3-CP0812-C20F	5
Carp	Fillet	LW3-CP0812-C30F	5
Carp	Fillet	LWG01FZ0306TSCPFLC10	5
Carp	Fillet	LWG01FZ0306TSCPFLC20	5
Carp	Fillet	LWG01FZ0306TSCPFLC30	5 5
Carp	Fillet Fillet	LWG01FZ0609TSCPFLC10 LWG01FZ0609TSCPFLC20	
Carp			5
Carp	Fillet without skip	LWG01FZ0609TSCPFLC30	5
Carp	Fillet without skin	LWG01FZ0306TSCPFSC10	5
Carp	Fillet without skin	LWG01FZ0306TSCPFSC20	5
Carp	Fillet without skin	LWG01FZ0306TSCPFSC30	5
Carp	Fillet without skin	LWG01FZ0609TSCPFSC10	5 5
Carp	Fillet without skin	LWG01FZ0609TSCPFSC20	S

Table 2.3-10. Number of Individual Fish or Invertebrates per Sample in the RI Data Set.

Species	Tissue	Sample	Number of Individuals per Composite
Carp	Fillet without skin	LWG01FZ0609TSCPFSC30	5
Carp	Whole body	LWG01FZ0306TSCPWBC10	5
Carp	Whole body	LWG01FZ0306TSCPWBC20	5
Carp	Whole body	LWG01FZ0306TSCPWBC30	5
Carp	Whole body	LWG01FZ0609TSCPWBC10	5
Carp	Whole body	LWG01FZ0609TSCPWBC20	5
Carp	Whole body	LWG01FZ0609TSCPWBC30	5
Carp	Whole body	LWG1AFZ0609TSCPWB	1
Chinook, adult	Fillet	WLTASE03CFH03254200	3
Chinook, adult	Fillet	WLTASE03CFH03254201	3
Chinook, adult	Fillet	WLTASE03CFH03254202	3
Chinook, adult	Fillet without skin	WLTASE03CFH03254210	3
Chinook, adult	Fillet without skin	WLTASE03CFH03254211	3
Chinook, adult	Fillet without skin	WLTASE03CFH03254212	3
Chinook, adult	Whole body	WLTASE03CFH03254220	3
Chinook, adult	Whole body	WLTASE03CFH03254221	3
Chinook, adult	Whole body	WLTASE03CFH03254222	3
Chinook, adult	Whole body	WLTASE03CFH03254223	3
Chinook, juvenile	Stomach contents	LW2-T01 SC	90
Chinook, juvenile	Stomach contents	LW2-T01-NOAA SC	40
Chinook, juvenile	Stomach contents Stomach contents	LW2-T02 SC	90
Chinook, juvenile	~	LW2-T02-NOAA SC	42
Chinook, juvenile Chinook, juvenile	Stomach contents Stomach contents	LW2-T03 SC	72 90
Chinook, juvenile	Whole body	LW2-T04 SC LW2-T01-REP1	30
Chinook, juvenile	Whole body	LW2-T01-REP2	30
Chinook, juvenile	Whole body	LW2-T01-REF3	30
Chinook, juvenile	Whole body	LW2-T02-REP1	30
Chinook, juvenile	Whole body	LW2-T02-REP2	30
Chinook, juvenile	Whole body	LW2-T02-REP3	30
Chinook, juvenile	Whole body	LW2-T03-REP1	24
Chinook, juvenile	Whole body	LW2-T03-REP2	21
Chinook, juvenile	Whole body	LW2-T03-REP3	27
Chinook, juvenile	Whole body	LW2-T04-REP1	30
Chinook, juvenile	Whole body	LW2-T04-REP2	30
Chinook, juvenile	Whole body	LW2-T04-REP3	30
Chinook, juvenile	Whole body	LWG1A02R102TSSCWBC00	15
Chinook, juvenile	Whole body	LWG1A02R112TSSCWBC00	14
Chinook, juvenile	Whole body	LWG1A02R113TSSCWBC00	15
Chinook, juvenile	Whole body	LWG1A03R118TSSCWBC00	11
Chinook, juvenile	Whole body	LWG1A03R125TSSCWBC00	13
Chinook, juvenile	Whole body	LWG1A04R126TSSCWBC00	12
Chinook, juvenile	Whole body	LWG1A26R111TSSCWBC00	12
Clam	Body without shell	LW2-BTFC001	106
Clam	Body without shell	LW2-BTFC002	96
Clam	Body without shell	LW2-BTFC003	71
Clam	Body without shell	LW2-BTFC004	102
Clam	Body without shell	LW2-BTFC005	56
Clam Clam	Body without shell Body without shell	LW2-BTFC006 Rep 1	171
Clam	Body without shell	LW2-BTFC006 Rep 2 LW2-BTFC007	171 39
Clam	Body without shell	LW2-BTFC007 LW2-BTFC008	62
Clam	Body without shell	LW2-BTFC009	63
Clam	Body without shell	LW2-BTFC010	108
Clam	Body without shell	LW2-BTFC010	32
Clam	Body without shell	LW2-BTFC012	50
Clam	Body without shell	LW2-BTFC013	89
Clam	Body without shell	LW2-BTFC014	36
Clam	Body without shell	LW2-BTFC015	32
Clam	Body without shell	LW2-BTFC016	34
Clam	Body without shell	LW2-BTFC017	37
Clam	Body without shell	LW2-BTFC018	16
	•		

Table 2.3-10. Number of Individual Fish or Invertebrates per Sample in the RI Data Set.

Table 2.3-10. Number of	individual Fish of invertebrates per	Sample in the Ki Data Set.	Number of Individuals
Species	Tissue	Sample	per Composite
Clam	Body without shell	LW2-BTFC019	41
Clam	Body without shell	LW2-BTFC020	52
Clam	Body without shell	LW2-BTFC021	37
Clam	Body without shell	LW2-BTFC022	49
Clam	Body without shell	LW2-BTFC023	35
Clam	Body without shell	LW2-BTFC024	110
Clam	Body without shell	LW2-BTFC025	22
Clam	Body without shell	LW2-BTFC026	50
Clam	Body without shell	LW2-BTFC027 Rep 1	75
Clam	Body without shell	LW2-BTFC027 Rep 2	75
Clam	Body without shell	LW2-BTFC028	42
Clam	Body without shell	LW2-BTFC029	10
Clam	Body without shell	LW2-BTFC030	69
Clam	Body without shell	LW2-BTFC031	41
Clam	Body without shell	LW2-BTFC032	5
Clam	Body without shell	LW2-BTFC033	14
Clam	Body without shell	LW3-CA01E-C01	15
Clam	Body without shell	LW3-CA02W-C00	14
Clam	Body without shell	LW3-CA03W-C00	Unknown
Clam	Body without shell	LW3-CA04W-C00	Unknown
Clam	Body without shell	LW3-CA05E-C00	14
Clam	Body without shell	LW3-CA05W-C00	Unknown
Clam	Body without shell	LW3-CA10W-C00	15
Clam	Body without shell	LW3-CA11E-C00	10
Clam	Body without shell	LW3-CA12E-C00	11
Clam Clam	Body without shell	LW3-CA12W-C00 LWG0106R002TSCAWBC00	Unknown Unknown
Clam	Body without shell Body without shell	LWG0100R00213CAWBC00 LWG0107R003TSCAWBC00	Unknown
Clam	Body without shell	LWG0107R005TSCAWBC00 LWG0107R006TSCAWBC00	Unknown
Clam	Depurated w/o shell	LW3-CA01E-C00D	Unknown
Clam	Depurated w/o shell	LW3-CA01E-C00D LW3-CA02W-C00D	Unknown
Clam	Depurated w/o shell	LW3-CA10W-C00D	Unknown
Clam	Depurated w/o shell	LW3-CA11E-C00D	Unknown
Clam	Depurated w/o shell	LW3-CA12E-C00D	Unknown
Crayfish	Whole body	LW3-CR01E-Alt-C00	7
Crayfish	Whole body	LW3-CR01W-C00	8
Crayfish	Whole body	LW3-CR05W-C00	6
Crayfish	Whole body	LW3-CR06W-C00	7
Crayfish	Whole body	LW3-CR08W-C00	10
Crayfish	Whole body	LW3-CR10W-C00	9
Crayfish	Whole body	LW3-CR11E-C01	8
Crayfish	Whole body	LW3-CR12E-C00	8
Crayfish	Whole body	LW3-CR12W-C00	9
Crayfish	Whole body	LWG0102R001TSCRWBC00	8
Crayfish	Whole body	LWG0102R015TSCRWBC00	8
Crayfish	Whole body	LWG0103R001TSCRWBC00	8
Crayfish	Whole body	LWG0103R002TSCRWBC00	9
Crayfish	Whole body	LWG0103R003TSCRWBC00	8
Crayfish	Whole body	LWG0103R004TSCRWBC00	8
Crayfish	Whole body	LWG0103R005TSCRWBC00	9
Crayfish	Whole body	LWG0103R032TSCRWBC00	9
Crayfish	Whole body	LWG0104R002TSCRWBC00	9
Crayfish	Whole body	LWG0104R003TSCRWBC00	8
Crayfish	Whole body	LWG0104R004TSCRWBC10	9
Crayfish	Whole body	LWG0104R004TSCRWBC20	10
Crayfish	Whole body	LWG0105R001TSCRWBC00	8
Crayfish	Whole body	LWG0105R003TSCRWBC00	8
Crayfish	Whole body	LWG0106R001TSCRWBC00	11
Crayfish	Whole body	LWG0106R004TSCRWBC10	9
Crayfish	Whole body	LWG0106R004TSCRWBC20	8
Crayfish	Whole body	LWG0106R031TSCRWBC00	8 9
Crayfish	Whole body	LWG0107R003TSCRWBC00	7

Table 2.3-10. Number of Individual Fish or Invertebrates per Sample in the RI Data Set.

Crayfish	Table 2.5-10. Number of	Individual Fish of invertebrates per	i Sample in the Ki Data Set.	Number of Individuals
Crayfish	Species	Tissue	Sample	
Crayfish	Crayfish	Whole body	LWG0107R004TSCRWBC00	9
Crayfish	Crayfish	Whole body	LWG0107R006TSCRWBC00	8
Crayfish	Crayfish	Whole body	LWG0108R001TSCRWBC00	9
Crayfish	Crayfish	Whole body	LWG0108R002TSCRWBC00	9
Crayfish	Crayfish	Whole body	LWG0108R003TSCRWBC00	8
Lab clam	Crayfish	Whole body	LWG0109R001TSCRWBC10	8
Lab clam	Crayfish	Whole body	LWG0109R001TSCRWBC20	9
Lab clam	Crayfish	Whole body	LWG0109R002TSCRWBC00	8
Lab clam		•	LW2-BTLC001	
Lab clam		•	LW2-BTLC002	
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam		•		
Lab clam Body without shell LW2-BTLC019 183 Lab clam Body without shell LW2-BTLC019 183 Lab clam Body without shell LW2-BTLC020 177 Lab clam Body without shell LW2-BTLC021 177 Lab clam Body without shell LW2-BTLC022 177 Lab clam Body without shell LW2-BTLC023 183 Lab clam Body without shell LW2-BTLC024 177 Lab clam Body without shell LW2-BTLC025 177 Lab clam Body without shell LW2-BTLC026 177 Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC029-2 177 Lab clam Body without shell LW2-BTLC029-1 177 Lab clam Body without shell LW2-BTLC029-1 177 Lab clam Body without shell LW2-BTLC030-1 177 Lab clam Body without shell </td <td></td> <td>•</td> <td></td> <td></td>		•		
Lab clam Body without shell LW2-BTLC019 183 Lab clam Body without shell LW2-BTLC020 177 Lab clam Body without shell LW2-BTLC021 177 Lab clam Body without shell LW2-BTLC022 177 Lab clam Body without shell LW2-BTLC023 183 Lab clam Body without shell LW2-BTLC024 177 Lab clam Body without shell LW2-BTLC025 177 Lab clam Body without shell LW2-BTLC026 177 Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLCC703 183 Lab clam Body without shell		•		
Lab clam		•		
Lab clam Body without shell LW2-BTLC021 177 Lab clam Body without shell LW2-BTLC022 177 Lab clam Body without shell LW2-BTLC023 183 Lab clam Body without shell LW2-BTLC024 177 Lab clam Body without shell LW2-BTLC025 177 Lab clam Body without shell LW2-BTLC026 177 Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC029 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCTRL 022406 183 Lab clam Body without shell <td></td> <td>•</td> <td></td> <td></td>		•		
Lab clam Body without shell LW2-BTLC022 177 Lab clam Body without shell LW2-BTLC023 183 Lab clam Body without shell LW2-BTLC024 177 Lab clam Body without shell LW2-BTLC025 177 Lab clam Body without shell LW2-BTLC026 177 Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC029 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 031906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without s		•		
Lab clam Body without shell LW2-BTLC023 183 Lab clam Body without shell LW2-BTLC024 177 Lab clam Body without shell LW2-BTLC025 177 Lab clam Body without shell LW2-BTLC026 177 Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC039 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body wit		•		
Lab clam Body without shell LW2-BTLC024 177 Lab clam Body without shell LW2-BTLC025 177 Lab clam Body without shell LW2-BTLC026 177 Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCTRL 011906 177 Lab clam Body without shell LW2-BTLCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 122006 183 Lab clam Body wit		•		
Lab clam Body without shell LW2-BTLC025 177 Lab clam Body without shell LW2-BTLC026 177 Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC039 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam		•		
Lab clam Body without shell LW2-BTLC026 177 Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC029 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam		•		
Lab clam Body without shell LW2-BTLC027-1 177 Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC029 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 102706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05DayOCf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC04Clam Unknown Lab clam Body without shell WLCDRD05WRVC06Clam Unknown Unknown Lab clam Body without shell WLCDRD0		•		
Lab clam Body without shell LW2-BTLC027-2 177 Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC029 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050TrlCf Unknown Lab clam Body without shell WLCDRD05Dtay0Cf Unknown Lab clam Body without shell WLCDRD05DxpCCf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC04Clam Unknown Lab clam Body without shell WLCDRD05WRVC04Clam Unknown Lab clam Body without shell WLCDRD05WRVC04Clam Unknown Lab clam Body without shell WLCDRD05WRVC06Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Unknown Unknown Lab clam Body without		•		
Lab clam Body without shell LW2-BTLC028 177 Lab clam Body without shell LW2-BTLC029 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05D8VC0TCf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC04Clam Unknown		•		
Lab clam Body without shell LW2-BTLC029 177 Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC026Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Unknown Lab clam Body without shell WLCDRD05WRVC06Clam Unknown Unknow		•		
Lab clam Body without shell LW2-BTLC030 177 Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without shell LW2-BTLCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC049Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown		•		
Lab clam Body without shell LW2-BTLC031 177 Lab clam Body without shell LW2-BTLC032 177 Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 011906 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown		•		
Lab clam Body without shell LW2-BTLC032 L33 L33 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 102205 177 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC06Clam Unknown Lab clam Body without shell WLCDRD05WRVC018Clam Unknown Lab clam Body without shell WLCDRD05WRVC018Clam Unknown Lab clam Body without shell WLCDRD05WRVC018Clam Unknown		•		
Lab clam Body without shell LW2-BTLC033 183 Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05DayOCf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC04GClam Unknown Lab clam Body without shell WLCDRD05WRVC04GClam Unknown Lab clam Body without shell WLCDRD05WRVC04GClam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC06Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC06Clam Unknown Lab clam Body without shell WLCDRD05WRVC018Clam Unknown Lab clam Body without shell WLCDRD05WRVC018Clam Unknown Lab clam Body without shell WLCDRD05WRVC018Clam Unknown		•		
Lab clam Body without shell LW2-BTLCCTRL 011906 177 Lab clam Body without shell LW2-BTLCTRL 022406 183 Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Lab clam Body without shell WLCDRD05WRVC018Clam Unknown		•		
Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell		
Lab clam Body without shell LW2-BTLCTZ 012706 183 Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	LW2-BTLCCTRL 022406	183
Lab clam Body without shell LW2-BTLCTZ 122205 177 Lab clam Body without shell WLCDRD050178G Unknown Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Lab clam Body without shell WLCDRD05WRVC118Clam Lonknown	Lab clam			
Lab clam Lab clam Body without shell WLCDRD050184G Unknown Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Unknown Unknown Unknown	Lab clam	•		177
Lab clam Lab clam Body without shell WLCDRD05CtrlCf Unknown Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD050178G	Unknown
Lab clam Lab clam Body without shell WLCDRD05Day0Cf Unknown Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Lab clam Body without shell WLCDRD05WRVC028Clam Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD050184G	Unknown
Lab clam Lab clam Body without shell WLCDRD05WRVC011Clam Unknown Unknown Unknown Unknown Lab clam Body without shell WLCDRD05WRVC029Clam Unknown	Lab clam	Body without shell	WLCDRD05CtrlCf	Unknown
Lab clam Lab clam Body without shell WLCDRD05WRVC028Clam Unknown	Lab clam	Body without shell	WLCDRD05Day0Cf	Unknown
Lab clam Lab clam Body without shell WLCDRD05WRVC029Clam Unknown	Lab clam	Body without shell	WLCDRD05WRVC011Clam	Unknown
Lab clam Body without shell WLCDRD05WRVC043Clam Unknown Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC108Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD05WRVC028Clam	Unknown
Lab clam Body without shell WLCDRD05WRVC046Clam Unknown Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC108Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD05WRVC029Clam	Unknown
Lab clam Body without shell WLCDRD05WRVC057Clam Unknown Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC108Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD05WRVC043Clam	Unknown
Lab clam Body without shell WLCDRD05WRVC066Clam Unknown Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC108Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD05WRVC046Clam	Unknown
Lab clam Body without shell WLCDRD05WRVC072Clam Unknown Lab clam Body without shell WLCDRD05WRVC108Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD05WRVC057Clam	Unknown
Lab clam Body without shell WLCDRD05WRVC108Clam Unknown Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD05WRVC066Clam	Unknown
Lab clam Body without shell WLCDRD05WRVC118Clam Unknown	Lab clam	Body without shell	WLCDRD05WRVC072Clam	Unknown
·		•		
Lamprey, adult Whole body WLTASE03WF03214300 30		•		
	Lamprey, adult	Whole body	WLTASE03WF03214300	30

Table 2.3-10. Number of Individual Fish or Invertebrates per Sample in the RI Data Set.

Table 2.5 10. Ivaliber of man	ividual I isii of ilivera	ebrates per Sample in the RI Data Set.	Number of Individuals
Species	Tissue	Sample	per Composite
Lamprey, adult	Whole body	WLTASE03WF03214301	30
Lamprey, adult	Whole body	WLTASE03WF03214302	30
Lamprey, adult	Whole body	WLTASE03WF03214303	30
Lamprey, ammonocoetes	Whole body	LW2-BTFLamp Comp	10
Lamprey, ammonocoetes	Whole body	LW3-LTA-Comp1	7
Lamprey, ammonocoetes	Whole body	LW3-LTA-Comp2	28
Lamprey, ammonocoetes	Whole body	LW3-LTA-Comp3	19
Lamprey, ammonocoetes	Whole body	LW3-LTA-Comp4	49 44
Lamprey, ammonocoetes Lamprey, ammonocoetes	Whole body Whole body	LW3-LTA-Comp5-1 LW3-LTA-Comp5-2	44
Lamprey, macropthalmia	Whole body	LW3-LTM-Comp3-2 LW3-LTM-Comp1	6
Lamprey, macropthalmia	Whole body	LW3-LTM-Comp2	6
Lamprey, macropthalmia	Whole body	LW3-LTM-Comp3	9
Largescale sucker	Whole body	LWG0103R014TSLSWBC10	5
Largescale sucker	Whole body	LWG0103R014TSLSWBC20	4
Largescale sucker	Whole body	LWG0105R006TSLSWBC00	4
Largescale sucker	Whole body	LWG0107R009TSLSWBC00	6
Largescale sucker	Whole body	LWG0108R010TSLSWBC00	6
Largescale sucker	Whole body	LWG0109R006TSLSWBC00	6
Largescale sucker	Whole body	LWG01FZ0306TSLSWBC10	1
Largescale sucker	Whole body	LWG01FZ0306TSLSWBC20	2
Lumbriculus variegatus	Whole body	LW2-BTLW001	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW002	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW003	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW004	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW005	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW006-1	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW006-2	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW007	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW008	Unknown Unknown
Lumbriculus variegatus Lumbriculus variegatus	Whole body Whole body	LW2-BTLW009 LW2-BTLW010	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW010 LW2-BTLW011	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW012	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW013	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW014	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW015	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW016	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW017	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW018	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW019	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW020	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW021	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW022	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW023	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW024	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW025	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW026	Unknown
Lumbriculus variegatus	Whole body Whole body	LW2-BTLW027-1 LW2-BTLW027-2	Unknown Unknown
Lumbriculus variegatus Lumbriculus variegatus	Whole body	LW2-BTLW027-2 LW2-BTLW028	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW028 LW2-BTLW029	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW030	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW031	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW032	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLW033	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLWCTRL 011106	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLWCTRL 030106	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLWTZ 020106	Unknown
Lumbriculus variegatus	Whole body	LW2-BTLWTZ 121405	Unknown
Lumbriculus variegatus	Whole body	WLCDRD050176G	Unknown
Lumbriculus variegatus	Whole body	WLCDRD050187G	Unknown

Table 2.3-10. Number of Individual Fish or Invertebrates per Sample in the RI Data Set.

Table 2.5-10. Ivaliber of in	dividual Fish of hiverter	orates per Sample in the R1 Data Set.	Number of Individuals
Species	Tissue	Sample	per Composite
Lumbriculus variegatus	Whole body	WLCDRD05CtrlLv	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05Day0Lv	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC011Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC028Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC029Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC043Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC046Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC057Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC066Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC072Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC118Worm	Unknown
Lumbriculus variegatus	Whole body	WLCDRD05WRVC118Worm	Unknown
Multiplate invertebrates	Whole body	LW2-MIT001	Unknown
Multiplate invertebrates	Whole body	LW2-MIT002	Unknown
Multiplate invertebrates	Whole body	LW2-MIT003/005/006	Unknown Unknown
Multiplate invertebrates	Whole body	LW2-MIT004	Unknown
Multiplate invertebrates Multiplate invertebrates	Whole body	LW2-MIT007 LW2-MIT008/010	Unknown
Multiplate invertebrates	Whole body	LW2-MIT009	Unknown
Northern pikeminnow	Whole body Whole body	LWG0103R014TSNPWBC10	5
Northern pikeminnow	Whole body	LWG0103R014TSNPWBC20	5
Northern pikeminnow	Whole body	LWG0105R01415IN WBC20 LWG0105R006TSNPWBC00	5
Northern pikeminnow	Whole body	LWG0103R000TSNFWBC00	5
Northern pikeminnow	Whole body	LWG0107R00913N1 WBC00 LWG0108R010TSNPWBC00	3
Northern pikeminnow	Whole body	LWG0108R01015N1 WBC00 LWG0109R006TSNPWBC00	4
Osprey	whole egg	WLRASE08MC-10B	1
Osprey	whole egg	WLRASE08MC-10B	1
Osprey	whole egg	WLRASE08MC-20	1
Osprey	whole egg	WLRASE08MC-2B	1
Osprey	whole egg	WLRASE08MC-9	1
Osprey	whole egg	WLRASE08W11	1
Osprey	whole egg	WLRASE08W23	1
Osprey	whole egg	WLRASE08W28	1
Osprey	whole egg	WLRASE08W30B	1
Osprey	whole egg	WLRASE08W30C	1
Osprey	whole egg	WLRASE08W32	1
Osprey	whole egg	WLRASE08W3B	1
Osprey	whole egg	WLRASE08W6	1
Osprey	whole egg	WLRASE08W7A	1
Osprey	whole egg	WLRASE08W9B	1
Peamouth	Whole body	LWG0103R014TSPMWBC00	5
Peamouth	Whole body	LWG0105R006TSPMWBC00	5
Peamouth	Whole body	LWG0107R009TSPMWBC00	4
Peamouth	Whole body	LWG0108R010TSPMWBC00	5
Peamouth	Whole body	LWG0109R006TSPMWBC00	5
Sculpin	Whole body	LW3-SP01E-C00	8
Sculpin	Whole body	LW3-SP01W-C00	12
Sculpin	Whole body	LW3-SP03E-C00	7
Sculpin	Whole body	LW3-SP04W-C00	9
Sculpin	Whole body	LW3-SP05E-C00	10
Sculpin	Whole body	LW3-SP06W-C00	20
Sculpin	Whole body	LW3-SP07E-C00	11
Sculpin	Whole body	LW3-SP07W-C00	10
Sculpin	Whole body	LW3-SP08E-C00	20
Sculpin	Whole body	LW3-SP08W-C00	10
Sculpin	Whole body	LW3-SP09W-C00	10
Sculpin	Whole body	LW3-SP10E-C00	11
Sculpin	Whole body	LW3-SP10W-C00	8
Sculpin	Whole body	LW3-SP11E-C00	12
Sculpin	Whole body	LW3-SP12E-C00	10
Sculpin	Whole body	LW3-SP12W-ALT-C01	32 12
Sculpin	Whole body	LWG0102R001TSSPWBC00	14

Table 2.3-10. Number of Individual Fish or Invertebrates per Sample in the RI Data Set.

Species	Tissue	Sample	Number of Individuals per Composite
Sculpin	Whole body	LWG0102R001TSSPWBC10	12
Sculpin	Whole body	LWG0102R015TSSPWBC00	17
Sculpin	Whole body	LWG0103R001TSSPWBC00	17
Sculpin	Whole body	LWG0103R002TSSPWBC10	21
Sculpin	Whole body	LWG0103R002TSSPWBC20	18
Sculpin	Whole body	LWG0103R004TSSPWBC10	19
Sculpin	Whole body	LWG0103R004TSSPWBC20	20
Sculpin	Whole body	LWG0103R005TSSPWBC00	13
Sculpin	Whole body	LWG0103R032TSSPWBC00	24
Sculpin	Whole body	LWG0103R034TSSPWBC00	19
Sculpin	Whole body	LWG0104R002TSSPWBC00	22
Sculpin	Whole body	LWG0104R003TSSPWBC00	20
Sculpin	Whole body	LWG0104R004TSSPWBC00	18
Sculpin	Whole body	LWG0105R001TSSPWBC00	21
Sculpin	Whole body	LWG0105R020TSSPWBC00	23
Sculpin	Whole body	LWG0106R001TSSPWBC00	17
Sculpin	Whole body	LWG0106R002TSSPWBC10	19
Sculpin	Whole body	LWG0106R002TSSPWBC20	19
Sculpin	Whole body	LWG0106R004TSSPWBC00	22
Sculpin	Whole body	LWG0107R003TSSPWBC00	16
Sculpin	Whole body	LWG0107R006TSSPWBC00	15
Sculpin	Whole body	LWG0108R001TSSPWBC00	19
Sculpin	Whole body	LWG0108R002TSSPWBC00	21
Sculpin	Whole body	LWG0108R003TSSPWBC00	18
Sculpin	Whole body	LWG0109R001TSSPWBC00	20
Sculpin	Whole body	LWG0109R002TSSPWBC00	19
Smallmouth bass Smallmouth bass	Body without fillet Body without fillet	LW3-SB010E-C00B	5 5
	•	LW3-SB011E-C00B	5
Smallmouth bass Smallmouth bass	Body without fillet	LW3-SB011E-C00B	5
Smallmouth bass	Body without fillet Body without fillet	LW3-SB011W-C00B LW3-SB02E-C00B	5
Smallmouth bass	Body without fillet	LW3-SB02E-C00B	5
Smallmouth bass	Body without fillet	LW3-SB03W-C00B	5
Smallmouth bass	Body without fillet	LW3-SB04E-C01B	5
Smallmouth bass	Body without fillet	LW3-SB04W-C00B	5
Smallmouth bass	Body without fillet	LW3-SB05W-C00B	5
Smallmouth bass	Body without fillet	LW3-SB06E-C00B	5
Smallmouth bass	Body without fillet	LW3-SB06W-C00B	5
Smallmouth bass	Body without fillet	LW3-SB07E-C00B	5
Smallmouth bass	Body without fillet	LW3-SB07W-C00B	5
Smallmouth bass	Body without fillet	LW3-SB08E-C00B	5
Smallmouth bass	Body without fillet	LW3-SB08W-C00B	5
Smallmouth bass	Body without fillet	LW3-SB09E-C00B	5
Smallmouth bass	Body without fillet	LW3-SB09W-C00B	5
Smallmouth bass	Fillet	LW3-SB010E-C00F	5
Smallmouth bass	Fillet	LW3-SB010W-C00F	5
Smallmouth bass	Fillet	LW3-SB011E-C00F	5
Smallmouth bass	Fillet	LW3-SB011W-C00F	5
Smallmouth bass	Fillet	LW3-SB02E-C00F	5
Smallmouth bass	Fillet	LW3-SB03E-C00F	5
Smallmouth bass	Fillet	LW3-SB03W-C00F	5
Smallmouth bass	Fillet	LW3-SB04E-C01F	5
Smallmouth bass	Fillet	LW3-SB04W-C00F	5
Smallmouth bass	Fillet	LW3-SB05W-C00F	5
Smallmouth bass	Fillet	LW3-SB06E-C00F	5
Smallmouth bass	Fillet	LW3-SB06W-C00F	5
Smallmouth bass	Fillet	LW3-SB07E-C00F	5
Smallmouth bass	Fillet	LW3-SB07W-C00F	5
Smallmouth bass	Fillet	LW3-SB08E-C00F	5
Smallmouth bass	Fillet	LW3-SB08W-C00F	5
Smallmouth bass	Fillet	LW3-SB09E-C00F	5
Smallmouth bass	Fillet	LW3-SB09W-C00F	5

Table 2.3-10. Number of Individual Fish or Invertebrates per Sample in the RI Data Set.

Species	Individual Fish or Invertebrates pe	Sample III tile Ki Data Set.	Number of Individuals per Composite
Smallmouth bass	Fillet	LWG0103R014TSSBFLC00	5
Smallmouth bass	Fillet	LWG0105R006TSSBFLC00	5
Smallmouth bass	Fillet	LWG0106R024TSSBFLC00	3
Smallmouth bass	Fillet	LWG0108R032TSSBFLC00	5
Smallmouth bass	Fillet	LWG0109R006TSSBFLC00	5
Smallmouth bass	Fillet without skin	LWG0103R014TSSBFSC00	5
Smallmouth bass	Fillet without skin	LWG0105R006TSSBFSC00	5
Smallmouth bass	Fillet without skin	LWG0106R024TSSBFSC00	3
Smallmouth bass	Fillet without skin	LWG0108R032TSSBFSC00	5
Smallmouth bass	Fillet without skin	LWG0109R006TSSBFSC00	5
Smallmouth bass	Whole body	LWG0103R014TSSBWBC00	5
Smallmouth bass	Whole body	LWG0104R023TSSBWBC10	5
Smallmouth bass	Whole body	LWG0104R023TSSBWBC20	5
Smallmouth bass	Whole body	LWG0104R023TSSBWBC30	5
Smallmouth bass	Whole body	LWG0105R006TSSBWBC00	5
Smallmouth bass	Whole body	LWG0105R000TSSBWBC00	1
Smallmouth bass	Whole body	LWG0100R024133BWBC00 LWG0107R009TSSBWBC10	5
Smallmouth bass	Whole body	LWG0107R009TSSBWBC10	5
Smallmouth bass	Whole body	LWG0107R009TSSBWBC30	5
Smallmouth bass	Whole body	LWG0107R009133BWBC30 LWG0108R010TSSBWBC10	4
Smallmouth bass	Whole body	LWG0108R010TSSBWBC10	5
Smallmouth bass	Whole body	LWG0108R010TSSBWBC20	5
Smallmouth bass	Whole body	LWG0108R010133BWBC30 LWG0108R032TSSBWBC00	5
Smallmouth bass	Whole body	LWG0108R032TSSBWBC00 LWG0109R006TSSBWBC00	2
Smallmouth bass	•	LWG0109R00013SBWBC00 LWG0120R001TSSBWBC10	5
Smallmouth bass	Whole body Whole body	LWG0120R001TSSBWBC10	5
Smallmouth bass	•	LWG0120R001TSSBWBC20 LWG0120R001TSSBWBC30	5
Smallmouth bass	Whole body Whole body	LWG0120R001133BWBC30 LWG0128R001TSSBWBC10	5
Smallmouth bass	•		5
	Whole body	LWG0128R001TSSBWBC20 LWG0128R001TSSBWBC30	5
Smallmouth bass	Whole body Fillet without skin		1
Sturgeon (adult)	Fillet without skin	WLTASE03ISA03334750	1
Sturgeon (adult)		WLTASE03ISA03334751	1
Sturgeon (adult)	Fillet without skin	WLTASE03ISA03354100	1
Sturgeon (adult)	Fillet without skin Fillet without skin	WLTASE03ISA03354101	1
Sturgeon (adult)		WLTASE03ISA03354102	2
Sturgeon (juvenile)	Stomach contents	LW3-SG001005-COMP	1
Sturgeon (juvenile)	Stomach contents	LW3-SG003-01	
Sturgeon (juvenile)	Stomach contents	LW3-SG004-01	1
Sturgeon (juvenile)	Whole body	LW3-STWB001-01	1
Sturgeon (juvenile)	Whole body	LW3-STWB001-02	1
Sturgeon (juvenile)	Whole body	LW3-STWB001-03	1
Sturgeon (juvenile)	Whole body	LW3-STWB002-01	1
Sturgeon (juvenile)	Whole body	LW3-STWB002-02	1
Sturgeon (juvenile)	Whole body	LW3-STWB002-03	1
Sturgeon (juvenile)	Whole body	LW3-STWB003-01	1
Sturgeon (juvenile)	Whole body	LW3-STWB003-02	1
Sturgeon (juvenile)	Whole body	LW3-STWB003-03	1
Sturgeon (juvenile)	Whole body	LW3-STWB004-01	1
Sturgeon (juvenile)	Whole body	LW3-STWB004-02	1
Sturgeon (juvenile)	Whole body	LW3-STWB004-03	1
Sturgeon (juvenile)	Whole body	LW3-STWB005-01	1
Sturgeon (juvenile)	Whole body	LW3-STWB005-02	1
Sturgeon (juvenile)	Whole body	LW3-STWB005-03	1

Table 3.1-1. Portland Harbor Vertical Datum Conversion Table.

River Mile	NAVD88 Elevation	NGVD29/47 Elevation	CRD Elevation		
	10.0'	6.8'	5.4'		
0.4	0.0'	-3.2'	-4.6'		
	-10.0'	-13.2'	-14.6'		
	10.0'	6.8'	5.4'		
1.3	0.0'	-3.2'	-4.7'		
	-10.0'	-13.2'	-14.7'		
	10.0'	6.7'	4.9'		
5	0.0'	-3.3'	-5.1'		
	-10.0'	-13.3'	-15.1'		
	10.0'	6.5'	4.7'		
9.8	0.0'	-3.5'	-5.3'		
	-10.0'	-13.5'	-15.3'		
	10.0'	6.5'	4.6'		
12.8	0.0'	-3.5'	-5.4'		
	-10.0'	-13.5'	-15.4'		
_	10.0'	6.5'	4.6'		
15.6	0.0'	-3.5'	-5.4'		
	-10.0'	-13.5'	-15.4'		

CRD - Columbia River datum

NAVD88 - North American Vertical Datum of 1988

NGVD29/47 - National Geodetic Vertical Datum of 1929 through the Pacific Northwest Supplemental Adjustment of 1947

Table 3.1-2. Summary of ADCP Transect Time, Location, and Approximate Total Flow.^a

Transect	ADCP File	River Mile	Time (UTC)	Water Level CRD (Morrison Street Gauge)	Flow (ft ³ /s)	Location Description
1	A109018R.000	1	1:13	10.87	35405	Columbia Slough
2	A109017R.000	2	1:05	10.9	34727	2
3	A109016R.000	2.5	0:48	10.92	34886	
4	A109000R.000	3.1	18:50	11.47	69170	Multnomah Channel
5	A109015R.000	4	0:42	10.92	67098	
6	A109001R.000	4.6	19:23	11.41	70928	Into Terminal 4 Slip 3
7	A109012R.000	5.8	23:57	10.99	66452	St. Johns Bridge
8	A109010R.000	6.3	23:37	11.05	71113	Off Gasco
9	A109002R.000	6.8	20:11	11.18	71356	Into Willamette Cove
10	A109009R.000	7.8	23:00	11.1	67447	Off Willbridge Terminal
11	A109005R.000	8	21:14	11.27	68181	Downstream of PSY
12	A109003R.000	8	~20:45	11.31	-479	Swan Island Lagoon (mouth)
13	A109004R.000	8	21:00	11.29	183	Swan Island Lagoon (upper end)
14	A109008R.000	9.6	22:34	11.16	65452	Across deep hole in channel
15	A109007R.000	10	22:22	11.18	67643	
16	A109006R.000	11	22:04	11.19	69461	

ADCP - acoustic doppler current profiler

CRD - Columbia River datum

UTC - Coordinated Universal Time

^a The ADCP survey was conducted by David Evans & Associates, Inc. during a high water event on April 19, 2002 (DEA 2002b).

Table 3.1-3. Summary of Discharge Measurements Calculations in the May 2003 and January 2004 ADCP Surveys near Multnomah Channel.

May 2003 Survey - 6 passes over tidal cycle

Transect Location	Transect Number	Pass Number	Discharge (Q) (ft³/sec)	Multnomah Channel (Q) Calculated Transect 5 - Transect 3 (ft³/sec)	Multnomah Channel (Q) Measured (ft³/sec)
RM 2.5 - downstream of MC	3	1	18923		
RM 3.1 - entrance of MC	4	1	33542		
RM 4.0 - upstream of MC	5	1	32581		
Within MC		1		13658	18693
RM 2.5 - downstream of MC	3	2	17882		
RM 3.1 - entrance of MC	4	2	36525		
RM 4.0 - upstream of MC	5	2	35737		
Within MC		2		17855	18542
RM 2.5 - downstream of MC	3	3	17662		
RM 3.1 - entrance of MC	4	3	35058		
RM 4.0 - upstream of MC	5	3	35005		
Within MC		3		17343	18194
RM 2.5 - downstream of MC	3	4	8839		
RM 3.1 - entrance of MC	4	4	21442		
RM 4.0 - upstream of MC	5	4	18358		
Within MC		4		9519	18535
RM 2.5 - downstream of MC	3	5	17995		
RM 3.1 - entrance of MC	4	5	-496		
RM 4.0 - upstream of MC	5	5	3706		
Within MC		5		-14289	15190
RM 2.5 - downstream of MC	3	6	10001		
RM 3.1 - entrance of MC	4	6	34004		
RM 4.0 - upstream of MC	5	6	36369		
Within MC		6		26368	18789

January 2004 Survey-2 passes, number one on rising tide and number two on falling tide

Transect Location	Transect Pass Number Number		Discharge (Q) (ft ³ /sec)	Multnomah Channel (Q) Calculated Transect 5 - Transect 3 (ft ³ /sec)	Multnomah Channel (Q) Measured (ft³/sec)
RM 2.5 - downstream of MC	3	1	97739		
RM 3.1 - entrance of MC	4	1	126700		
RM 4.0 - upstream of MC	5	1	125474		
Within MC	17	1		27735	31242
RM 2.5 - downstream of MC	3	2	99838		
RM 3.1 - entrance of MC	4	2	130580		
RM 4.0 - upstream of MC	5	2	130738		
Within MC	17	2		30900	31720

Notes:

ADCP - acoustic doppler current profiler

MC - Multnomah Channel

Table 3.1-4. 2002-2009 Bathymetric Change as Percent Area by River Mile Segment.

	4. 2002 2007 Bathyme							Ri	iver Mile								
	Bathymetric Change (ft)	0-1	1-2	Multnomah Channel below RM 3	2-3	Multnomah Channel above RM 3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	RM 11 to End of Nav. Channel	End of Nav. Channel to RM 11.8	Mean % Change
East Side	Channel																
	>5	0	0	NA	0	NA	0	1	0	2	2	0	0	0	0	0	0
Shoaling	2 to 5	1	23	NA	17	NA	2	3	1	6	7	3	0	4	2	1	5
oal	1 to 2	6	29	NA	49	NA	10	15	4	3	21	6	2	6	4	1	12
\mathbf{Sh}	.25 to 1	29	24	NA	23	NA	38	37	16	14	43	33	3	10	13	3	22
	0 to .25	23	5	NA	4	NA	12	6	11	19	10	23	8	5	9	13	11
0.0	25 to 0	16	5	NA	3	NA	9	5	17	24	9	15	21	6	15	22	13
nin	-1 to25	15	9	NA	3	NA	15	13	33	24	7	14	37	20	29	52	21
Deepening	-2 to -1	6	3	NA	0	NA	6	10	13	6	1	4	19	18	15	6	8
Dec	-5 to -2	4	1	NA	0	NA	6	8	5	2	0	1	8	28	11	2	6
	<-5	0	0	NA	0	NA	3	2	0	0	0	0	1	2	3	0	1
Cum. No	Change (+/- 0.25')	39	10	NA	7	NA	21	11	28	43	19	39	29	11	24	35	24
Navigatio	onal Channel																
	> 5	0	0	NA	0	NA	0	0	1	0	0	0	16	5	0	NA	2
Shoaling	2 to 5	0	13	NA	26	NA	0	8	2	2	2	24	34	9	3	NA	10
oal	1 to 2	2	9	NA	32	NA	9	22	4	3	26	29	14	8	14	NA	14
\mathbf{Sh}	.25 to 1	6	25	NA	25	NA	59	46	23	15	40	23	11	20	17	NA	26
	0 to .25	9	20	NA	6	NA	23	13	23	24	16	9	5	12	11	NA	14
ad	25 to 0	24	22	NA	6	NA	7	5	23	28	10	7	7	19	25	NA	15
. in	-1 to25	52	11	NA	5	NA	2	4	21	24	6	6	11	25	26	NA	16
be	-2 to -1	7	1	NA	0	NA	0	2	3	3	1	1	2	1	2	NA	2
Deepening	-5 to -2	1	0	NA	0	NA	0	1	0	0	0	0	0	0	0	NA	0
	<-5	0	0	NA	0	NA	0	0	0	0	0	0	0	0	0	NA	0
Cum. No	Change (+/- 0.25')	32	42	NA	12	NA	31	18	46	52	26	16	12	31	37	NA	30
West Side	e Channel																
	>5	0	0	0	0	0	0	1	0	0	1	0	10	0	0	0	1
Shoaling	2 to 5	0	0	0	1	0	0	22	3	3	5	7	14	18	2	1	5
oali	1 to 2	0	0	1	4	1	7	29	19	13	11	20	17	42	19	4	13
\mathbf{Sh}	.25 to 1	1	5	20	22	7	33	22	41	27	18	21	25	25	21	14	20
	0 to .25	1	24	17	20	11	17	7	14	14	9	8	10	5	15	19	13
ρn	25 to 0	6	29	15	26	28	21	5	9	14	10	8	9	3	13	34	15
Deepening	-1 to25	42	34	35	23	50	19	7	10	20	25	21	13	6	21	20	23
ibei	-2 to -1	41	5	12	4	3	1	4	3	5	12	13	3	1	5	5	8
Dec	-5 to -2	8	2	0	1	0	0	2	1	2	8	2	0	0	2	1	2
	<-5	1	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0
Cum. No	Change (+/- 0.25')	7	54	32	46	39	38	12	23	28	19	15	19	8	28	53	28

NA - not applicable

Table 3.1-5. Summary of Shear Stress and Associated Erosion Rates for Portland Harbor Sediments.

	Measurements _	Erosion Rate (cm/s)					
Shear Stress (N/m ²)	Count	Min	Max				
0.1	16	0	0.0003				
0.2	23	0	0.0003				
0.4	55	0	0.001				
0.8	74	0	0.04				
1.6	76	0.0002	0.1				
3.2	76	0.0003	0.3				
6.4	60	0.007	0.4				
10	2	0.02	0.04				

Table 3.1-6. Summary of Grain Size and Critical Shear Stress for Sedflume Cores by Core Depth Interval at Portland Harbor.

Sample Depth by	d50	(μm)	$T_{cr}(N/m^2)$				
Category	Min	Max	Min	Max			
0–5 cm	9.7	401	0.06	0.64			
5–10 cm	12	367	0.32	1.28			
10-15 cm	10	378	0.22	1.28			
15-20 cm	7.8	384	0.26	1.28			
20–25 cm	10.9	357	0.24	1.28			

Table 3.1-7. LWG TSS Peristaltic Sampling Events and Station Summary.

1 4015 3.1-7. 1	LWO ISS FEII	staltic Sampling E		ng Method	Sampling Event									
	River Mile	Location Description / Nearest Property	Round 2	Round 3	R2A Nov 2004 Low Flow	R2 Mar 2005 Low Flow	R2A Jul 2005 Low Flow	Nov 2005 - April 2006 Hydrodynamic Model Sampling	R3A Jan 2006 High Flow ^a	R3A Sep 2006 Low Flow	R3A Nov 2006 Stormwater- Influenced	R3A Jan 2007 High Flow ^b		
Transect Stat														
Round 2 an W005	3.9	Kinder- Morgan (Linnton) Liquid	EDI	NB/NS	V	$\sqrt{}$	\checkmark		V	\checkmark	V	\checkmark		
W011	6.3	Terminals Near middle of Study Area (at Gasco)	EDI	NB/NS	\checkmark	V	\checkmark			V	\checkmark	V		
W023	11	Upstream boundary of Study Area	EDI	VI (E,M,W)	\checkmark	V	$\sqrt{}$		$\sqrt{}$	V	\checkmark	V		
Hvdrodvnai	mic Model Da	ta Collection												
HMW05	23	Upstream of Study Area	HI, VI					\checkmark						
	23.7	Upstream of Study Area	HI, VI					\checkmark						
Round 3														
W025	2	Downstream extent of Study Area (at Oregon Steel Mills)		VI (E,M,W)	-					V	\checkmark	V		
W027	2.9, Mult. Channel	Downstream of Study Area (Multnomah Channel at Alder Creek Lumber)		NB/NS						V	V	V		
W024	16	Upstream of Study Area and City of Portland		NB/NS					√	\checkmark	V	V		
Single-Point S Round 2	Stations													
W001	2	Oregon Steel Mills	NB		\checkmark	\checkmark	\checkmark							
W002	2.2	Near Western Shore Sauvie Island	NB		$\sqrt{}$	V	$\sqrt{}$							

Table 3.1-7. LWG TSS Peristaltic Sampling Events and Station Summary.

		_	Sampling	g Method				Samplin	g Event			
	River Mile	Location Description / Nearest Property	Round 2	Round 3	R2A Nov 2004 Low Flow	R2 Mar 2005 Low Flow	R2A Jul 2005 Low Flow	Nov 2005 - April 2006 Hydrodynamic Model Sampling	R3A Jan 2006 High Flow ^a	R3A Sep 2006 Low Flow	R3A Nov 2006 Stormwater- Influenced	R3A Jan 200' High Flow ^b
W003	3	PGE- Harborton	NB		V	V	V					
TT 100 4	2.7	Subst.	MD		1	1	1					
W004	3.7	NW Pipe Co.	NB		$\sqrt{}$	$\sqrt{}$	V					
W006	4	Kinder Morgan	NB		V	V	$\sqrt{}$					
W007	4.4	Port of Portland, Terminal 4,	NB		V	√	$\sqrt{}$					
W008	4.6	Slip 1 Port of Portland, Terminal 4,	NB		V	$\sqrt{}$	$\sqrt{}$					
W009	5.6	Slip 3 Brix Maritime	NB		\checkmark	$\sqrt{}$	\checkmark					
W010	5.7	Former Mar Com Shipyard	VI		V	V	V					
W012	6.3	Gasco	NB		$\sqrt{}$	$\sqrt{}$	\checkmark					
W013	6.9	Willamette Cove	NB		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					
W014	6.9	Willamette Cove	VI		\checkmark	\checkmark	\checkmark					
W015	6.9	Arkema (downstream)	NB		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					
W016	7.2	Arkema (upstream)	NB		$\sqrt{}$	\checkmark	\checkmark					
W017	7.5	Arkema/ Kinder Morgan	NB		V	\checkmark	$\sqrt{}$					
W018	8.3	boundary Swan Island Lagoon (near USCG Marine Safety)	NB		\checkmark	V	\checkmark					
W019	8.6	Texaco/ Gunderson	NB		\checkmark	\checkmark	\checkmark					
W020	9.1	Swan Island Lagoon	VI		$\sqrt{}$	\checkmark	\checkmark					
W021	8.7	Swan Island Lagoon (southern end)	NB		V	\checkmark	\checkmark					
W022	9.7	Port of Portland Terminal 2	NB		\checkmark	\checkmark	$\sqrt{}$					

Table 3.1-7. LWG TSS Peristaltic Sampling Events and Station Summary.

	.,	staltic Sampling E		g Method				Samplin	g Event			
	River Mile	Location Description / Nearest Property	Round 2	Round 3	R2A Nov 2004 Low Flow	R2 Mar 2005 Low Flow	R2A Jul 2005 Low Flow	Nov 2005 - April 2006 Hydrodynamic Model Sampling	R3A Jan 2006 High Flow ^a	R3A Sep 2006 Low Flow	R3A Nov 2006 Stormwater- Influenced	R3A Jan 2007 High Flow ^b
Round 3												
W026	2.1	Oregon Steel Mills		NB/NS							$\sqrt{}$	\checkmark
W028	3.6	Time Oil Site		NB/NS							\checkmark	\checkmark
W029	4.4	Kinder Morgan Former		NB/NS							$\sqrt{}$	$\sqrt{}$
W030	5.5	Mar Com Shipyard		NB/NS							$\sqrt{}$	\checkmark
W031	6.1	Gasco		NB/NS							$\sqrt{}$	$\sqrt{}$
W032	6.9	Willamette Cove		NB/NS							$\sqrt{}$	\checkmark
W033	7	Arkema (downstream)		NB/NS							\checkmark	\checkmark
W034	7.5	Arkema (upstream)		NB/NS							\checkmark	\checkmark
W035	8.5	Swan Island Lagoon		NB/NS							$\sqrt{}$	\checkmark
W036	8.6	Texaco/ Gunderson Port of		NB/NS							\checkmark	\checkmark
W037	9.6	Portland- Terminal 2		NB/NS							$\sqrt{}$	\checkmark
W038	9.9	Near east shore, RM 9.9		NB/NS							\checkmark	\checkmark

-- Indicates samples not collected.

EDI - equal discharge increment transect sample

HI - horizontally integrated

NB/NS - near bottom/near surface sample pair

NB - near bottom sample

TSS - total suspended solids

VI (E,M,W) - vertically integrated sample: east - middle - west

^a Only near-surface samples were collected in the January 2006 high-flow event.

^b The January/February 2007 high-flow event was cancelled after two days of sampling due to an unexpected change in flow conditions. Sampling resumed on February 21, 2008.

Table 3.1-8. LWG Member Independent Surface Water Sampling Event and Station Summary.

Location ID	River Mile	Location Description / Nearest Property	Sampling Method	Sampling Dates ^a
Transect Statio	ns			
City of Portla	nd Long Term	Monitoring		
D	1.1	South Kelly Point Park	Composite of three grab samples collected from	Dec 1, 1993 - April 3, 2008
С	6.8	St. John's Railroad Bridge	eastern, middle, and western locations across	Nov 17, 1993 - April 3, 2008
Е	8.8	Swan Island	river, at depth of 10 ft from surface (peristaltic).	Nov 17, 1993 - Jan 13 1999
В	12.7	Morrison Street Bridge		Nov 17, 1993 - April 3, 2008
F	17.9	Waverly Country Club		Feb 1, 1995 - April 3, 2008
A	20	Tryon Creek Bridge		Nov 17, 1993 - Jun 28, 2000
Single-Point Sta	ations			
City of Portla	nd Long Term	Monitoring		
D	1.1	South Kelly Point Park	Grab samples from location mid-point across	Feb 5, 1992 - Oct 20, 1993
С	6.8	St. John's Railroad Bridge	river, at depths of 0, 10, and >10 ft	
В	12.7	Morrison Street Bridge	•	
A	20	Tryon Creek Bridge		
NW Natural				
GSW-01	5.9	NW Natural Gas Co.	Grab samples collected from depths of 2 ft, mid-	Oct 1-9, 2007
GSW-02	6		depth, and near-bottom at slack high tide, ebb	
GSW-03			tide, and slack low tide	
GSW-04				
GSW-05				
GSW-06	0.1			
GSW-07				
GSW-08				
GSW-09				
GSW-10				
GSW-11	- 0.2			
GSW-12				
GSW-13	6.3			
GSW-14	0.5			
GSW-15	_			
GSW-16	6.4	Siltronic Corp.		
GSW-17		-		
GSW-18	6.5			
GSW-19	6.7			
GSW-20	0.7			

^a Only data collected after October 1, 2000 were included in the analysis in this section.

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

								Precipitation on	Precipitation	Precipitation-	
1942/00								Day of	on Day Prior to	influenced	Upriver or
104-2000 Sody Area City of Fortland ST JOHNS RR BRIDGE 6.8 6.2 13000 Ac 0.00 0.00 No Sody Area 104-2000 Upriver City of Fortland WAVERLY COUNTRY CLUB 7.79 2.6 13000 Ac 0.00 0.00 No Upriver City of Fortland WAVERLY COUNTRY CLUB 7.79 2.6 13000 Ac 0.00 0.00 No Upriver City of Fortland SUTH RELLY FORTS TARK 1.1 1.4 14000 Ac 0.01 0.15 No Sody Area 1018/2000 Downstream City of Fortland ST JOHNS RR BRIDGE 6.8 4.8 14000 Ac 0.01 0.15 No Sody Area City of Fortland WAVERLY COUNTRY CLUB 7.9 3.4 14000 Ac 0.01 0.15 No Upriver City of Fortland WAVERLY COUNTRY CLUB 7.9 3.4 14000 Ac 0.01 0.15 No Upriver City of Fortland WAVERLY COUNTRY CLUB 7.9 3.4 14000 Ac 0.01 0.15 No Upriver City of Fortland ST JOHNS RR BRIDGE 6.8 5.3 17000 Ac 0.01 0.15 No Upriver City of Fortland ST JOHNS RR BRIDGE 6.8 5.3 17000 Ac 0.04 0.02 No Sody Area 111/2000 Sody Area City of Fortland ST JOHNS RR BRIDGE 6.8 5.3 17000 Ac 0.04 0.02 No Sody Area 111/2000 City of Fortland ST JOHNS RR BRIDGE City of Fortland City of Fortland ST JOHNS RR BRIDGE City of Fortland City of Fortland City of Fortland City of Fortland MORRISON ST BRIDGE City of Fortland City of Fortland	Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
104/2000 Domestores Reach City of Profunds ST JOHNS RR BRIDGE 6.8 6.2 1900 Ac 0.00 0.00 0.00 No Sudy Area 104/2000 Upriver City of Profunds WAVERLY COUNTRY CLUB 17.9 2.6 1900 Ac 0.00 0.00 0.00 No Upriver 104/2000 Upriver City of Profunds WAVERLY COUNTRY CLUB 17.9 2.6 1900 Ac 0.01 0.15 No Sudy Area 101/82/000 Sondy Area City of Profunds ST JOHNS RR BRIDGE 6.8 4.8 1900 Ac 0.01 0.15 No Sudy Area 101/82/000 Domestores Reach City of Profund WAVERLY COUNTRY CLUB 7.9 3.4 1900 Ac 0.01 0.15 No Sudy Area 101/82/000 Domestores Reach City of Profund WAVERLY COUNTRY CLUB 7.9 3.4 1900 Ac 0.01 0.15 No Upriver City of Profund WAVERLY COUNTRY CLUB 7.9 3.4 1900 Ac 0.01 0.15 No Upriver City of Profund WAVERLY COUNTRY CLUB 7.9 3.4 1900 Ac 0.01 0.15 No Upriver City of Profund WAVERLY COUNTRY CLUB 7.9 3.4 1900 Ac 0.01 0.15 No Upriver City of Profund WAVERLY COUNTRY CLUB 7.9 3.4 1900 Ac 0.01 0.15 No Upriver City of Profund WAVERLY COUNTRY CLUB 7.9 3.4 1900 Ac 0.01 0.02 No Sudy Area 11/2000 City of Profund WAVERLY COUNTRY CLUB 7.7 7.5 7.5 1900 Ac 0.04 0.02 No Sudy Area 11/2000 City of Profund WAVERLY COUNTRY CLUB 1.7 7.5 7.5 1900 Ac 0.04 0.02 No Sudy Area 11/2000 City of Profund WAVERLY COUNTRY CLUB 1.7 2.5 1900 Ac 0.04 0.02 No Sudy Area 11/2000 City of Profund WAVERLY COUNTRY CLUB 1.7 2.6 2.1000 Ac 0.04 0.02 No Sudy Area 11/2000 City of Profund WAVERLY COUNTRY CLUB 1.7 2.5 1900 Ac 0.04 0.02 No Upriver 12/2000 Domestores City of Profund WAVERLY COUNTRY CLUB 1.7 2.5 1900 Ac 0.04 0.02 No Sudy Area 12/2000 Domestores City of Profund WAVERLY COUNTRY CLUB 1.7 2.5 1900 Ac 0.00 0.00 No Sudy Area 12/2000 Domestores City of Profund WAVERLY COUNTRY CLUB 1.7 1.7 1.	10/4/2000	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	17	13000 Ae	0.00	0.00	No	Study Area
104/2000 Downtown Reach Clip of Portland MORRISON ST BRIDGE 12.7 3.6 13000 Ac 0.00 0.00 No Upriver Upriver Clip of Portland SOUTH KELLY POINT PARK 1.1 14 14000 Ac 0.01 0.15 No Study Area Clip of Portland SOUTH KELLY POINT PARK 1.1 14 14000 Ac 0.01 0.15 No Study Area Clip of Portland SOUTH KELLY POINT PARK 1.1 14 14000 Ac 0.01 0.15 No Study Area Clip of Portland MORRISON ST BRIDGE 12.7 6 14000 Ac 0.01 0.15 No Upriver Clip of Portland MORRISON ST BRIDGE 12.7 6 14000 Ac 0.01 0.15 No Upriver Clip of Portland ST TOINNS RE REINDER 1.3		Study Area	•	ST JOHNS RR BRIDGE		6.2	13000 Ae				•
1014/2000 Upriver		•	City of Portland								•
1018/2010 Davisstream City of Pordand SOUTH REIL IV POINT PARK 1.1 1.4 14000 Ae 0.01 0.15 No Saudy Area 1018/2010 Dewistream Reich City of Pordand MORRISON ST BRIDGE 12.7 6 14000 Ae 0.01 0.15 No Upriver Upriver City of Pordand MORRISON ST BRIDGE 12.7 6 14000 Ae 0.01 0.15 No Upriver 111/2020 Dewistream City of Pordand SOUTH REIL Y POINT PARK 1.1 5.1 17000 Ae 0.04 0.02 No Saudy Area 111/2020 Dewistream City of Pordand SOUTH REIL Y POINT PARK 1.1 5.1 17000 Ae 0.04 0.02 No Saudy Area 111/2020 Dewistream City of Pordand MORRISON ST BRIDGE 12.7 6 17000 Ae 0.04 0.02 No Upriver 111/2020 Upriver City of Pordand MORRISON ST BRIDGE 12.7 6 17000 Ae 0.04 0.02 No Upriver 111/2020 Upriver City of Pordand MORRISON ST BRIDGE 12.7 2.6 21000 Ae 0.04 0.02 No Upriver 1129/2020 Upriver City of Pordand MORRISON ST BRIDGE 12.7 2.6 21000 Ae 0.42 0.00 Ves Upriver 12.6/2020 Dewistream City of Pordand SOUTH REIL Y POINT PARK 1.1 5 17000 Ae 0.04 0.02 No Saudy Area 12.6/2020 Upriver City of Pordand SOUTH REIL Y POINT PARK 1.1 5 17000 Ae 0.04 0.02 No Saudy Area 12.6/2020 Upriver City of Pordand SOUTH REIL Y POINT PARK 1.1 5 17000 Ae 0.04 0.00 No Saudy Area 12.6/2020 Upriver City of Pordand SOUTH REIL Y POINT PARK 1.1 5 17000 Ae 0.00 0.00 No Saudy Area 12.6/2020 Upriver City of Pordand SOUTH REIL Y POINT PARK 1.1 5 17000 Ae 0.00 0.00 No Saudy Area 12.6/2020 Upriver City of Pordand SOUTH REIL Y POINT PARK 1.1 5 17000 Ae 0.00 0.00 No Upriver 11.6/2020 Upriver City of Pordand SOUTH REIL Y POINT PARK 1.1 5 17000 Ae 0.00 0.00 No Upriver 11.6/2020 Upriver City of Pordand SOUTH REIL Y POINT PARK 1.1 5 17000 Ae 0.00 0.00 No Upriver 11.6/2020 Upriver City of Pordand SOUTH REILY	10/4/2000	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2.6	13000 Ae	0.00	0.00	No	-
10118/2010 Downtrown Reach Cicy of Portland WAVFRI Y COUNTRY CLUB 17.9 3.4 14000 Ac 0.01 0.15 No Upriver 1111/2020 Upriver Cicy of Portland WAVFRI Y COUNTRY CLUB 17.9 3.4 14000 Ac 0.01 0.15 No Upriver 1111/2020 Downtrown Reach Cicy of Portland SOUTH KELLY POINT PARK 1.1 5.1 17000 Ac 0.04 0.02 No Sudy Area Cicy of Portland SUDJIN SER BRIDGE 12.7 6 17000 Ac 0.04 0.02 No Upriver Cicy of Portland WAVFRI Y COUNTRY CLUB 17.9 3.7 17000 Ac 0.04 0.02 No Upriver 1111/20200 Upriver Cicy of Portland WAVFRI Y COUNTRY CLUB 17.9 3.7 17000 Ac 0.04 0.02 No Upriver 111/20200 Upriver Cicy of Portland WAVFRI Y COUNTRY CLUB 17.9 2.6 21000 Ac 0.04 0.02 No Upriver 11.09 2000 Upriver Cicy of Portland WAVFRI Y COUNTRY CLUB 17.9 2.6 21000 Ac 0.04 0.00 No Sudy Area 12.6 2000 Downtrown Reach Cicy of Portland SOUTH KELLY POINT PARK 1.1 5 17000 Ac 0.00 0.00 No Sudy Area 12.6 2000 Upriver Cicy of Portland SOUTH KELLY POINT PARK 1.1 5 17000 Ac 0.00 0.00 No Sudy Area 12.6 2000 Upriver Cicy of Portland WAVFRI Y COUNTRY CLUB 17.9 4 17000 Ac 0.00 0.00 No Sudy Area 12.6 2000 Upriver Cicy of Portland WAVFRI Y COUNTRY CLUB 17.9 4 17000 Ac 0.00 0.00 No Upriver 13.7 13.0	10/18/2000	•	City of Portland	SOUTH KELLY POINT PARK	1.1	14	14000 Ae	0.01	0.15	No	-
1011x2000	10/18/2000	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4.8	14000 Ae	0.01	0.15	No	Study Area
111/2000 Downstream	10/18/2000	•	City of Portland	MORRISON ST BRIDGE	12.7	6	14000 Ae	0.01	0.15	No	•
111/2000 Downstream	10/18/2000	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3.4	14000 Ae	0.01	0.15	No	Upriver
11/1/2000 Downtown Reach Cigo of Portland WAVERLY COUNTRY CLIB 17.9 3.7 17000 Ac 0.04 0.02 No Upriver 11/29/2000 Downtown Reach Cigo of Portland WAVERLY COUNTRY CLIB 17.9 2.6 21000 Ac 0.42 0.00 Yes Upriver 11/29/2000 Upriver Cigo of Portland WAVERLY COUNTRY CLIB 17.9 2.6 21000 Ac 0.42 0.00 Yes Upriver 12/20200 Upriver Cigo of Portland WAVERLY COUNTRY CLIB 17.9 2.6 21000 Ac 0.00 0.00 No Study Area 12/20200 Upriver Cigo of Portland ST JOHNS RF BRIDGE 6.8 4.2 17000 Ac 0.00 0.00 No Upriver 12/20200 Downtown Reach Cigo of Portland MORRISON ST BRIDGE 6.8 4.2 17000 Ac 0.00 0.00 No Upriver 12/20200 Upriver Cigo of Portland ST JOHNS RF BRIDGE 6.8 4.2 17000 Ac 0.00 0.00 No Upriver 13/2020 Upriver Cigo of Portland ST JOHNS RF BRIDGE 17.7 3.5 17000 Ac 0.00 0.00 No Upriver 13/2020 Upriver Cigo of Portland ST JOHNS RF BRIDGE 17.7 4 17000 Ac 0.10 0.00 No Study Area 13/2020 Upriver Cigo of Portland MORRISON ST BRIDGE 12.7 4 19000 Ac 0.11 0.00 No Study Area 13/2020 Upriver Cigo of Portland MORRISON ST BRIDGE 12.7 4 19000 Ac 0.11 0.00 No Study Area 13/2020 Upriver Cigo of Portland SUJH KEILY POINT PARK 1.1 5.2 17000 Ac 0.00 0.00 No Upriver 13/2020 Upriver Cigo of Portland SUJH KEILY POINT PARK 1.1 5.2 17000 Ac 0.00 0.00 No Upriver 13/2020 Upriver Cigo of Portland SUJH KEILY POINT PARK 1.1 5.2 17000 Ac 0.00 0.00 No Study Area 11/1/2020 Upriver Cigo of Portland SUJH KEILY POINT PARK 1.1 5.2 17000 Ac 0.00 0.00 No No Study Area 11/1/2020 Upriver Cigo of Portland MORRISON ST BRIDGE 12.7 2.1 17000 Ac 0.00 0.00 No Study Area 11/1/2020 Upriver Cigo of Portland MORRISON ST BRIDGE 12.7 2.1 17000 Ac 0.00 0.00 No Study Area 2.7/2020 Upriver Cigo of Portland MORRIS	11/1/2000	Downstream		SOUTH KELLY POINT PARK	1.1	5.1	17000 Ae	0.04	0.02	No	•
11/12/2000 Upriver	11/1/2000	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5.3	17000 Ae	0.04	0.02	No	Study Area
11/29/2000 Downtown Reach Clify of Portland MORRISON ST BRIDGE 12.7 2.6 21000 Ae 0.42 0.00 Yes Upriver 12/20/2006 Upriver Clify of Portland WAVERLY COUNTRY CLUB 17.9 2.6 21000 Ae 0.42 0.00 Yes Upriver 12/20/2006 Downstram Clify of Portland SOUTH KELLY POINT PARK 1.1 5 17000 Ae 0.00 0.00 No Study Area Clify of Portland ST JOHNS RR BRIDGE 12.7 3.5 17000 Ae 0.00 0.00 No Study Area 12/20/2006 Upriver Clify of Portland MORRISON ST BRIDGE 12.7 3.5 17000 Ae 0.00 0.00 No Upriver 12/20/2006 Upriver Clify of Portland SOUTH KELLY POINT PARK 1.1 5 19000 Ae 0.11 0.00 No Study Area 13/20/201 Downstream Clify of Portland SOUTH KELLY POINT PARK 1.1 5 19000 Ae 0.11 0.00 No Study Area 13/20/201 Downstream Clify of Portland ST JOHNS RR BRIDGE 12.7 4 19000 Ae 0.11 0.00 No Study Area 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 4 19000 Ae 0.11 0.00 No Upriver 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 4 19000 Ae 0.11 0.00 No Study Area 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 4 19000 Ae 0.11 0.00 No Study Area 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 2 17000 Ae 0.00 0.00 No Study Area 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 2 17000 Ae 0.00 0.00 No Upriver 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 2 17000 Ae 0.00 0.00 No Upriver 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 2 17000 Ae 0.00 0.00 No Upriver 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 4 19000 Ae 0.00 0.00 No Upriver 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE 12.7 4 19000 Ae 0.00 0.00 No Upriver 13/20/201 Upriver Clify of Portland ST JOHNS RR BRIDGE	11/1/2000	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	17000 Ae	0.04	0.02	No	Upriver
11/29/2000 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5 17/000 Ac 0.0 0.0 0.0 No Study Area 12/6/2000 Downstream City of Portland ST JOHNS RR BRIDGE 6.8 4.2 17/000 Ac 0.0 0.0 0.0 No Study Area 12/6/2000 Downstream City of Portland ST JOHNS RR BRIDGE 12.7 3.5 17/000 Ac 0.0 0.00 0.0 No Upriver City of Portland WAYERLY COUNTRY CLUB 17.9 4 17/000 Ac 0.0 0.00 0.0 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5 19/000 Ac 0.11 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5 19/000 Ac 0.11 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5 19/000 Ac 0.11 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5 19/000 Ac 0.11 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5 19/000 Ac 0.11 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5 2 19/000 Ac 0.11 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5 2 19/000 Ac 0.11 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5 2 19/000 Ac 0.11 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5 2 19/000 Ac 0.01 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5 2 19/000 Ac 0.00 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5 2 19/000 Ac 0.00 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 4 24/000 Ac 0.00 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 24/000 Ac 0.00 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 24/000 Ac 0.00 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 24/000 Ac 0.00 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 24/000 Ac 0.00 0.00 No Upriver Cit	11/1/2000	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3.7	17000 Ae	0.04	0.02	No	Upriver
12/c/2000 Downstream	11/29/2000	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	2.6	21000 Ae	0.42	0.00	Yes	Upriver
12/6/2000 Downtown Reach City of Portland ST JOHNS RR BRIDGE 12.7 3.5 17000 Ae 0.00 0.00 No Upriver 12/6/2000 Downtown Reach City of Portland WAVERLY COUNTRY CLUB 17.9 4 17000 Ae 0.00 0.00 No Upriver 12/6/2000 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 17000 Ae 0.01 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5 19000 Ae 0.11 0.00 No Study Area 1/3/2001 Downtown Reach City of Portland ST JOHNS RR BRIDGE 6.8 4 19000 Ae 0.11 0.00 No Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 19000 Ae 0.11 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5.2 17000 Ae 0.00 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5.2 17000 Ae 0.00 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5.2 17000 Ae 0.00 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5.2 17000 Ae 0.00 0.00 No Study Area City of Portland MORRISON ST BRIDGE 6.8 4.4 17000 Ae 0.00 0.00 No Study Area City of Portland MORRISON ST BRIDGE 12.7 2 17000 Ae 0.00 0.00 No Upriver City of Portland MORRISON ST BRIDGE 12.7 2 17000 Ae 0.00 0.00 No Upriver City of Portland MORRISON ST BRIDGE 12.7 2 17000 Ae 0.00 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ae 0.00 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ae 0.00 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ae 0.00 0.01 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ae 0.00 0.01 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ae 0.00 0.01 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ae 0.00 0.01 No Upriver City of Portland SOUTH KELLY POINT PAR	11/29/2000	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2.6	21000 Ae	0.42	0.00	Yes	Upriver
12/6/2000 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 3.5 17000 Ac 0.00 0.00 No Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5 19000 Ac 0.11 0.00 No Study Area City of Portland ST JOHNS RE BRIDGE 6.8 4 19000 Ac 0.11 0.00 No Study Area City of Portland ST JOHNS RE BRIDGE 12.7 4 19000 Ac 0.11 0.00 No Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 19000 Ac 0.11 0.00 No Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 19000 Ac 0.11 0.00 No Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 19000 Ac 0.00 0.00 No Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5.2 17000 Ac 0.00 0.00 No Study Area 17/7/2001 Study Area City of Portland ST JOHNS RE BRIDGE 12.7 2 17000 Ac 0.00 0.00 No Study Area 17/7/2001 Upriver City of Portland ST JOHNS RE BRIDGE 12.7 2 17000 Ac 0.00 0.00 No Upriver 17/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 3 17000 Ac 0.00 0.00 No Upriver 17/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 3 17000 Ac 0.00 0.00 No Upriver 17/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 3 17000 Ac 0.00 0.00 No Upriver 17/7/2001 Study Area City of Portland ST JOHNS RE BRIDGE 6.8 6 24000 Ac 0.00 0.01 No Study Area 27/7/2001 Downstream City of Portland ST JOHNS RE BRIDGE 6.8 6 24000 Ac 0.00 0.01 No Upriver City of Portland MORRISON ST BRIDGE 12.7 4.8 24000 Ac 0.00 0.01 No Upriver 221/2001 Downstream City of Portland MORRISON ST BRIDGE 12.7 4.8 24000 Ac 0.00 0.01 No Upriver 221/2001 Downstream City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ac 0.00 0.01 No Upriver 221/2001 Downstream City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ac 0.00 0.00 Ves Study Area 27/7	12/6/2000	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	17000 Ae	0.00	0.00	No	Study Area
126/2001 Upriver	12/6/2000	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4.2	17000 Ae	0.00	0.00	No	Study Area
1/3/2001 Downstream	12/6/2000	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	3.5	17000 Ae	0.00	0.00	No	Upriver
1/3/2001 Study Area	12/6/2000	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	17000 Ae	0.00	0.00	No	Upriver
1/3/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4 19000 Ac 0.11 0.00 No Upriver Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 19000 Ac 0.11 0.00 No Upriver Upriver Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5.2 17000 Ac 0.00 0.00 0.00 No Study Area City of Portland ST JOHNS RB BRIDGE 6.8 4.4 17000 Ac 0.00 0.00 No Study Area 1/17/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 2 17000 Ac 0.00 0.00 No Upriver 1/17/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 3 17000 Ac 0.00 0.00 No Upriver 1/17/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ac 0.00 0.00 No Study Area 27/7/2001 Study Area City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ac 0.00 0.01 No Study Area 27/7/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 6.8 6 24000 Ac 0.00 0.01 No Upriver City of Portland MORRISON ST BRIDGE 12.7 4.8 24000 Ac 0.00 0.01 No Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ac 0.00 0.01 No Upriver 27/1/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ac 0.00 0.01 No Upriver 27/1/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ac 0.24 0.00 Yes Study Area 27/1/2001 Study Area City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ac 0.24 0.00 Yes Study Area 27/1/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ac 0.24 0.00 Yes Study Area 27/1/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ac 0.24 0.00 Yes Upriver 27/1/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ac 0.00 0.00 No Study Area 37/1/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ac 0.00 0.	1/3/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	19000 Ae	0.11	0.00	No	Study Area
1/3/2001 Upriver	1/3/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	19000 Ae	0.11	0.00	No	Study Area
1/17/2001 Downstream	1/3/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	19000 Ae	0.11	0.00	No	Upriver
1/17/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 4.4 17000 Ac 0.00 0.00 No Study Area 1/17/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 2 17000 Ac 0.00 0.00 No Upriver 1/17/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 3 17000 Ac 0.00 0.00 No Upriver 2/17/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ac 0.00 0.01 No Study Area 2/17/2001 Study Area City of Portland MORRISON ST BRIDGE 12.7 4.8 24000 Ac 0.00 0.01 No Upriver 2/17/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ac 0.00 0.01 No Upriver 2/17/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ac 0.00 0.01 No Upriver 2/17/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ac 0.24 0.00 Yes Study Area 2/17/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 3.2 14000 Ac 0.24 0.00 Yes Study Area 2/17/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 3.2 14000 Ac 0.24 0.00 Yes Study Area 2/17/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 2.8 14000 Ac 0.24 0.00 Yes Upriver 2/17/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ac 0.24 0.00 Yes Upriver 2/17/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ac 0.00 0.00 No Study Area 3/17/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ac 0.00 0.00 No Study Area 3/17/2001 Downtown Reach City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ac 0.00 0.00 No Upriver 3/17/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ac 0.00 0.00 No Upriver 3/17/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ac 0.00 0.00 No Upriver 3/17/200	1/3/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	19000 Ae	0.11	0.00	No	Upriver
1/17/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 2 17000 Ae 0.00 0.00 0.00 No Upriver 1/17/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 3 17000 Ae 0.00 0.00 No Upriver 2/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 2/4000 Ae 0.00 0.01 No Study Area 2/7/2001 Study Area City of Portland MORRISON ST BRIDGE 12.7 4.8 2/4000 Ae 0.00 0.01 No Upriver 2/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 2/4000 Ae 0.00 0.01 No Upriver 2/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 1/4000 Ae 0.24 0.00 Yes Study Area 2/7/2001 Study Area City of Portland ST JOHNS R BRIDGE 6.8 3.2 1/4000 Ae 0.24 0.00 Yes Study Area 2/7/2001 Study Area City of Portland MORRISON ST BRIDGE 6.8 3.2 1/4000 Ae 0.24 0.00 Yes Study Area 2/7/2001 Upriver City of Portland MORRISON ST BRIDGE 12.7 3 1/4000 Ae 0.24 0.00 Yes Study Area 2/7/2001 Upriver City of Portland MORRISON ST BRIDGE 12.7 3 1/4000 Ae 0.24 0.00 Yes Upriver 3/7/2001 Downtown Reach City of Portland SOUTH KELLY POINT PARK 1.1 5.5 1/4000 Ae 0.24 0.00 Yes Upriver 3/7/2001 Study Area City of Portland SOUTH KELLY POINT PARK 1.1 5.5 1/4000 Ae 0.00 0.00 No Study Area 3/7/2001 Study Area City of Portland ST JOHNS R BRIDGE 12.7 4.2 1/4000 Ae 0.00 0.00 No Study Area 3/7/2001 Upriver City of Portland ST JOHNS R BRIDGE 12.7 4.2 1/4000 Ae 0.00 0.00 No Upriver 3/7/2001 Upriver City of Portland ST JOHNS R BRIDGE 12.7 4.2 1/4000 Ae 0.00 0.00 No Study Area 3/7/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 6.4 2/6000 Ae 0.00 0.00 No Upriver 3/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 2/6000 Ae 0.00 0.00 No Upriver 3/7/2001 D	1/17/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5.2	17000 Ae	0.00	0.00	No	Study Area
1/17/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 3 17000 Ae 0.00 0.00 No Upriver 27/2/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 24000 Ae 0.00 0.01 No Study Area 27/2/2001 Study Area City of Portland ST JOHNS RB BRIDGE 6.8 6 24000 Ae 0.00 0.01 No Study Area 27/2/2001 Downstream City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ae 0.00 0.01 No Upriver 27/2/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ae 0.00 0.01 No Upriver 27/2/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Study Area City of Portland ST JOHNS RB BRIDGE 6.8 3.2 14000 Ae 0.24 0.00 Yes Study Area 2/21/2/2001 Upriver City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 2/21/2/2001 Upriver City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 2/21/2/2001 Upriver City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ae 0.00 0.00 No Study Area ST JOHNS RB BRIDGE 6.8 5 14000 Ae 0.00 0.00 No Study Area ST JOHNS RB BRIDGE 6.8 5 14000 Ae 0.00 0.00 No Study Area ST JOHNS RB BRIDGE 12.7 4.2 14000 Ae 0.00 0.00 No Upriver 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downstream Cit	1/17/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4.4	17000 Ae	0.00	0.00	No	Study Area
27/2001 Downstream	1/17/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	2	17000 Ae	0.00	0.00	No	Upriver
27/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6 24000 Ae 0.00 0.01 No Study Area 27//2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4.8 24000 Ae 0.00 0.01 No Upriver 27//2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ae 0.00 0.01 No Upriver 271/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Study Area City of Portland MORRISON ST BRIDGE 6.8 3.2 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Upriver City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 2/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 2.8 14000 Ae 0.04	1/17/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	17000 Ae	0.00	0.00	No	Upriver
2/7/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4.8 24000 Ae 0.00 0.01 No Upriver 2/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ae 0.00 0.01 No Upriver 2/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 3.2 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Upriver City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 2/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 2.8 14000 Ae 0.24 0.00 Yes Upriver 3/7/2001 Downstream City of Portland ST JOHNS RR BRIDGE 6.8 5 14000 Ae 0.00	2/7/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	24000 Ae	0.00	0.01	No	Study Area
2/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 24000 Ae 0.00 0.01 No Upriver 2/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 3.2 14000 Ae 0.24 0.00 Yes Upriver 2/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 2/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 2.8 14000 Ae 0.24 0.00 Yes Upriver 3/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 5 14000 Ae 0.00	2/7/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	24000 Ae	0.00	0.01	No	Study Area
2/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 4 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Study Area City of Portland ST JOHNS R BRIDGE 6.8 3.2 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 2/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 2.8 14000 Ae 0.24 0.00 Yes Upriver 3/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Upriver City of Portland MORRISON ST BRIDGE 12.7 4.2 14000 Ae 0.00 <td>2/7/2001</td> <td>Downtown Reach</td> <td>City of Portland</td> <td>MORRISON ST BRIDGE</td> <td>12.7</td> <td>4.8</td> <td>24000 Ae</td> <td>0.00</td> <td>0.01</td> <td>No</td> <td>Upriver</td>	2/7/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4.8	24000 Ae	0.00	0.01	No	Upriver
2/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 3.2 14000 Ae 0.24 0.00 Yes Study Area 2/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 2/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 2.8 14000 Ae 0.24 0.00 Yes Upriver 3/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4.2 14000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00	2/7/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	24000 Ae	0.00	0.01	No	Upriver
2/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 3 14000 Ae 0.24 0.00 Yes Upriver 2/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 2.8 14000 Ae 0.24 0.00 Yes Upriver 3/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4.2 14000 Ae 0.00 0.00 No Upriver 3/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 14000 Ae 0.00 0.00 No Upriver 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 <td>2/21/2001</td> <td>Downstream</td> <td>City of Portland</td> <td>SOUTH KELLY POINT PARK</td> <td>1.1</td> <td>4</td> <td>14000 Ae</td> <td>0.24</td> <td>0.00</td> <td>Yes</td> <td>Study Area</td>	2/21/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	14000 Ae	0.24	0.00	Yes	Study Area
2/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 2.8 14000 Ae 0.24 0.00 Yes Upriver 3/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4.2 14000 Ae 0.00 0.00 No Upriver 3/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 14000 Ae 0.00 0.00 No Upriver 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downstream City of Portland ST JOHNS RR BRIDGE 6.8 6.8 26000 Ae 0.00	2/21/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	3.2	14000 Ae	0.24	0.00	Yes	Study Area
3/7/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 5.5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4.2 14000 Ae 0.00 0.00 No Upriver 3/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 14000 Ae 0.00 0.00 No Upriver 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6.8 26000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 5.6 26000 Ae 0.00	2/21/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	3	14000 Ae	0.24	0.00	Yes	Upriver
3/7/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 5 14000 Ae 0.00 0.00 No Study Area 3/7/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4.2 14000 Ae 0.00 0.00 No Upriver 3/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 14000 Ae 0.00 0.00 No Upriver 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6.8 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 7.2 26000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 5.6 26000 Ae 0.00 <td>2/21/2001</td> <td>Upriver</td> <td>City of Portland</td> <td>WAVERLY COUNTRY CLUB</td> <td>17.9</td> <td>2.8</td> <td>14000 Ae</td> <td>0.24</td> <td>0.00</td> <td>Yes</td> <td>Upriver</td>	2/21/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2.8	14000 Ae	0.24	0.00	Yes	Upriver
3/7/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 4.2 14000 Ae 0.00 0.00 No Upriver 3/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 14000 Ae 0.00 0.00 No Upriver 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6.8 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 7.2 26000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 5.6 26000 Ae 0.00 0.00 No Upriver 4/4/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 8.6 26000 Ae 0.00<	3/7/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5.5	14000 Ae	0.00	0.00	No	Study Area
3/7/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 4 14000 Ae 0.00 0.00 No Upriver 3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6.8 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 7.2 26000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 5.6 26000 Ae 0.00 0.00 No Upriver 4/4/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 8.6 26000 Ae 0.00 0.00 No Study Area 4/4/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6 26000 Ae 0.00	3/7/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	14000 Ae	0.00	0.00	No	Study Area
3/21/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 6.4 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6.8 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downstown Reach City of Portland MORRISON ST BRIDGE 12.7 7.2 26000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 5.6 26000 Ae 0.00 0.00 No Upriver 4/4/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 8.6 26000 Ae 0.00 0.00 No Study Area 4/4/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6 26000 Ae 0.00 0.00 No Study Area	3/7/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4.2	14000 Ae	0.00	0.00	No	Upriver
3/21/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6.8 26000 Ae 0.00 0.00 No Study Area 3/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 7.2 26000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 5.6 26000 Ae 0.00 0.00 No Upriver 4/4/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 8.6 26000 Ae 0.00 0.00 No Study Area 4/4/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6 26000 Ae 0.00 0.00 No Study Area	3/7/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	14000 Ae	0.00	0.00	No	Upriver
3/21/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 7.2 26000 Ae 0.00 0.00 No Upriver 3/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 5.6 26000 Ae 0.00 0.00 No Upriver 4/4/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 8.6 26000 Ae 0.00 0.00 No Study Area 4/4/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6 26000 Ae 0.00 0.00 No Study Area	3/21/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6.4	26000 Ae	0.00	0.00	No	Study Area
3/21/2001 Upriver City of Portland WAVERLY COUNTRY CLUB 17.9 5.6 26000 Ae 0.00 0.00 No Upriver 4/4/2001 Downstream City of Portland SOUTH KELLY POINT PARK 1.1 8.6 26000 Ae 0.00 0.00 No Study Area 4/4/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6 26000 Ae 0.00 0.00 No Study Area	3/21/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6.8	26000 Ae	0.00	0.00	No	Study Area
4/4/2001DownstreamCity of PortlandSOUTH KELLY POINT PARK1.18.626000 Ae0.000.00NoStudy Area4/4/2001Study AreaCity of PortlandST JOHNS RR BRIDGE6.8626000 Ae0.000.00NoStudy Area	3/21/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	7.2	26000 Ae	0.00	0.00	No	Upriver
4/4/2001 Study Area City of Portland ST JOHNS RR BRIDGE 6.8 6 26000 Ae 0.00 0.00 No Study Area	3/21/2001	Upriver	City of Portland		17.9	5.6	26000 Ae	0.00	0.00	No	Upriver
·	4/4/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8.6	26000 Ae	0.00	0.00	No	Study Area
4/4/2001 Downtown Reach City of Portland MORRISON ST BRIDGE 12.7 5.6 26000 Ae 0.00 0.00 No Upriver		•	•							No	Study Area
	4/4/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5.6	26000 Ae	0.00	0.00	No	Upriver

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on	Precipitation	Precipitation-	
							Day of	on Day Prior to	influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
4/4/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	6	26000 Ae	0.00	0.00	No	Upriver
4/18/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5.5	24000 Ae	0.00	0.00	No	Study Area
4/18/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6.2	24000 Ae	0.00	0.00	No	Study Area
4/18/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5.2	24000 Ae	0.00	0.00	No	Upriver
4/18/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	24000 Ae	0.00	0.00	No	Upriver
5/2/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5.2	32000 Ae	0.00	0.10	No	Study Area
5/2/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	32000 Ae	0.00	0.10	No	Study Area
5/2/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6.6	32000 Ae	0.00	0.10	No	Upriver
5/2/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	6.8	32000 Ae	0.00	0.10	No	Upriver
5/16/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	3.2	30000 Ae	0.02	0.20	Yes	Study Area
5/16/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4.3	30000 Ae	0.02	0.20	Yes	Study Area
5/16/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4.2	30000 Ae	0.02	0.20	Yes	Upriver
5/16/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5.2	30000 Ae	0.02	0.20	Yes	Upriver
6/6/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6.4	17000 Ae	0.00	0.21	Yes	Study Area
6/6/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	17000 Ae	0.00	0.21	Yes	Study Area
6/6/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	17000 Ae	0.00	0.21	Yes	Upriver
6/6/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	17000 Ae	0.00	0.21	Yes	Upriver
6/20/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8	9900 Ae	0.00	0.00	No	Study Area
6/20/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6.5	9900 Ae	0.00	0.00	No	Study Area
6/20/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	7.6	9900 Ae	0.00	0.00	No	Upriver
6/20/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4.8	9900 Ae	0.00	0.00	No	Upriver
7/11/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7.8	7500 Ae	0.00	0.00	No	Study Area
7/11/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	7.5	7500 Ae	0.00	0.00	No	Study Area
7/11/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	7500 Ae	0.00	0.00	No	Upriver
7/11/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3.2	7500 Ae	0.00	0.00	No	Upriver
7/25/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	10	7000 Ae	0.00	0.00	No	Study Area
7/25/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	7.5	7000 Ae	0.00	0.00	No	Study Area
7/25/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6.4	7000 Ae	0.00	0.00	No	Upriver
7/25/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3.5	7000 Ae	0.00	0.00	No	Upriver
8/8/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8	7000 Ae	0.00	0.00	No	Study Area
8/8/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	7000 Ae	0.00	0.00	No	Study Area
8/8/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6.4	7000 Ae	0.00	0.00	No	Upriver
8/8/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	1	7000 Ae	0.00	0.00	No	Upriver
8/22/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7.2	7000 Ae	0.64	0.04	Yes	Study Area
8/22/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	11	7000 Ae	0.64	0.04	Yes	Study Area
8/22/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6.4	7000 Ae	0.64	0.04	Yes	Upriver
8/22/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	7000 Ae	0.64	0.04	Yes	Upriver
9/12/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8.8	7100 Ae	0.00	0.00	No	Study Area
9/12/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6.4	7100 Ae	0.00	0.00	No	Study Area
9/12/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5.6	7100 Ae	0.00	0.00	No	Upriver
9/12/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	7100 Ae	0.00	0.00	No	Upriver
9/26/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	8200 Ae	0.15	0.54	Yes	Study Area
9/26/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	7.6	8200 Ae	0.15	0.54	Yes	Study Area
9/26/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4.5	8200 Ae	0.15	0.54	Yes	Upriver
9/26/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	8200 Ae	0.15	0.54	Yes	Upriver

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation or	Precipitation	Precipitation-	
							Day of	on Day Prior to	influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
10/10/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	8400 Ae	0.53	0.00	Yes	Study Area
10/10/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	8400 Ae	0.53	0.00	Yes	Study Area
10/10/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	8400 Ae	0.53	0.00	Yes	Upriver
10/10/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4.3	8400 Ae	0.53	0.00	Yes	Upriver
10/31/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	18000 Ae	0.15	0.75	Yes	Study Area
10/31/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	18000 Ae	0.15	0.75	Yes	Study Area
10/31/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4.4	18000 Ae	0.15	0.75	Yes	Upriver
10/31/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4.8	18000 Ae	0.15	0.75	Yes	Upriver
11/14/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	3	21000 Ae	0.30	0.78	Yes	Study Area
11/14/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	21000 Ae	0.30	0.78	Yes	Study Area
11/14/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	1	21000 Ae	0.30	0.78	Yes	Upriver
11/14/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	21000 Ac 21000 Ac	0.30	0.78	Yes	Upriver
11/28/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	12	48000 Ae	1.41	0.00	Yes	Study Area
11/28/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	11	48000 Ac	1.41	0.00	Yes	Study Area Study Area
11/28/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	16	48000 Ae	1.41	0.00	Yes	Upriver
11/28/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	20	48000 Ae	1.41	0.00	Yes	Upriver
12/5/2001	•	City of Portland City of Portland	SOUTH KELLY POINT PARK			100000 Ae	0.14		Yes	-
	Downstream			1.1	20			0.38		Study Area
12/5/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	26	100000 Ae	0.14	0.38	Yes	Study Area
12/5/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	36	100000 Ae	0.14	0.38	Yes	Upriver
12/5/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	44	100000 Ae	0.14	0.38	Yes	Upriver
12/19/2001	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	33.6	130000 Ae	0.12	0.39	Yes	Study Area
12/19/2001	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	35.4	130000 Ae	0.12	0.39	Yes	Study Area
12/19/2001	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	43.4	130000 Ae	0.12	0.39	Yes	Upriver
12/19/2001	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	35.4	130000 Ae	0.12	0.39	Yes	Upriver
1/9/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	38	110000 Ae	0.00	0.06	No	Study Area
1/9/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	49.3	110000 Ae	0.00	0.06	No	Study Area
1/9/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	62.5	110000 Ae	0.00	0.06	No	Upriver
1/9/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	61	110000 Ae	0.00	0.06	No	Upriver
1/23/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	29	98000 Ae	0.00	0.11	No	Study Area
1/23/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	31	98000 Ae	0.00	0.11	No	Study Area
1/23/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	47.2	98000 Ae	0.00	0.11	No	Upriver
1/23/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	50.8	98000 Ae	0.00	0.11	No	Upriver
2/13/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8.8	46000 Ae	0.00	0.00	No	Study Area
2/13/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	9.2	46000 Ae	0.00	0.00	No	Study Area
2/13/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	8.4	46000 Ae	0.00	0.00	No	Upriver
2/13/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	10	46000 Ae	0.00	0.00	No	Upriver
2/27/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	13	35000 Ae	0.00	0.00	No	Study Area
2/27/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	8.4	35000 Ae	0.00	0.00	No	Study Area
2/27/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	8.6	35000 Ae	0.00	0.00	No	Upriver
2/27/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	8.6	35000 Ae	0.00	0.00	No	Upriver
3/13/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	18	88000 Ae	0.10	0.30	Yes	Study Area
3/13/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	27	88000 Ae	0.10	0.30	Yes	Study Area
3/13/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	43.1	88000 Ae	0.10	0.30	Yes	Upriver
3/13/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	48	88000 Ae	0.10	0.30	Yes	Upriver
3/27/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5.2	40000 Ae	0.00	0.00	No	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Precipitation on Day of Sampling	Precipitation on Day Prior to Sampling	Precipitation- influenced TSS? ^a	Upriver or Study Area
3/27/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	7.2	40000 Ae	0.00	0.00	No	Study Area
3/27/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	7.2	40000 Ae	0.00	0.00	No	Upriver
3/27/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	12	40000 Ae	0.00	0.00	No	Upriver
4/10/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6	43000 Ae	0.23	0.35	Yes	Study Area
4/10/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	43000 Ae	0.23	0.35	Yes	Study Area
4/10/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4.4	43000 Ae	0.23	0.35	Yes	Upriver
4/10/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3.8	43000 Ae	0.23	0.35	Yes	Upriver
4/24/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4.4	31000 Ae	0.00	0.00	No	Study Area
4/24/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5.2	31000 Ae	0.00	0.00	No	Study Area
4/24/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5.2	31000 Ae	0.00	0.00	No	Upriver
4/24/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	7.2	31000 Ae	0.00	0.00	No	Upriver
5/8/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5.6	24000 Ae	0.00	0.01	No	Study Area
5/8/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4.4	24000 Ae	0.00	0.01	No	Study Area
5/8/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	24000 Ae	0.00	0.01	No	Upriver
5/8/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	24000 Ae	0.00	0.01	No	Upriver
5/22/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	24000 Ae	0.12	0.08	No	Study Area
5/22/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	3	24000 Ae	0.12	0.08	No	Study Area
5/22/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	3	24000 Ae	0.12	0.08	No	Upriver
5/22/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2	24000 Ae	0.12	0.08	No	Upriver
6/12/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	9.6	19000 Ae	0.00	0.00	No	Study Area
6/12/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4.8	19000 Ae	0.00	0.00	No	Study Area
6/12/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	19000 Ae	0.00	0.00	No	Upriver
6/12/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	19000 Ae	0.00	0.00	No	Upriver
6/26/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7.7	12000 Ae	0.00	0.00	No	Study Area
6/26/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	3.8	12000 Ae	0.00	0.00	No	Study Area
6/26/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	12000 Ae	0.00	0.00	No	Upriver
6/26/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3.7	12000 Ae	0.00	0.00	No	Upriver
7/24/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7.2	8600 Ae	0.00	0.00	No	Study Area
7/24/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6.8	8600 Ae	0.00	0.00	No	Study Area
7/24/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6.6	8600 Ae	0.00	0.00	No	Upriver
7/24/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	8600 Ae	0.00	0.00	No	Upriver
8/7/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	39.4	8400 Ae	0.00	0.00	No	Study Area
8/7/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	8	8400 Ae	0.00	0.00	No	Study Area
8/7/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6.8	8400 Ae	0.00	0.00	No	Upriver
8/7/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	8400 Ae	0.00	0.00	No	Upriver
8/21/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	11	8700 Ae	0.00	0.00	No	Study Area
8/21/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	2	8700 Ae	0.00	0.00	No	Study Area
8/21/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4.4	8700 Ae	0.00	0.00	No	Upriver
8/21/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	8700 Ae	0.00	0.00	No	Upriver
9/4/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4.6	8700 Ae	0.00	0.00	No	Study Area
9/4/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5.6	8700 Ae	0.00	0.00	No	Study Area
9/4/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5.2	8700 Ae	0.00	0.00	No	Upriver
9/4/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3.2	8700 Ae	0.00	0.00	No	Upriver
9/18/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8.6	10000 Ae	0.00	0.05	No	Study Area
9/18/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	26	10000 Ae	0.00	0.05	No	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on Day of	Precipitation on Day Prior to	Precipitation- influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
9/18/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	10000 Ae	0.00	0.05	No	Upriver
9/18/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3.2	10000 Ae	0.00	0.05	No	Upriver
10/1/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8	11000 Ae	0.00	0.73	Yes	Study Area
10/1/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6.5	11000 Ae	0.00	0.73	Yes	Study Area
10/1/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	11000 Ae	0.00	0.73	Yes	Upriver
10/1/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	17	11000 Ae		0.73	Yes	Upriver
10/16/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4.8	11000 Ae		0.00	No	Study Area
10/16/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4.4	11000 Ae		0.00	No	Study Area
10/16/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5.2	11000 Ae		0.00	No	Upriver
10/16/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	11000 Ae		0.00	No	Upriver
11/13/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	19000 Ae		0.28	Yes	Study Area
11/13/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	2.5	19000 Ae		0.28	Yes	Study Area
11/13/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	2	19000 Ae		0.28	Yes	Upriver
11/13/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	19000 Ae		0.28	Yes	Upriver
12/4/2002	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6	8800 Ae		0.00	No	Study Area
12/4/2002	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	8800 Ae		0.00	No	Study Area
12/4/2002	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4.4	8800 Ae		0.00	No	Upriver
12/4/2002	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	8800 Ae		0.00	No	Upriver
1/8/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	14	73000 Ae		0.00	No	Study Area
1/8/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	14	73000 Ae		0.00	No	Study Area
1/8/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	20	73000 Ae		0.00	No	Upriver
1/8/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	19	73000 Ae		0.00	No	Upriver
2/5/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	23	91000 Ae		0.00	No	Study Area
2/5/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	23.4	91000 Ae		0.00	No	Study Area
2/5/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	25.8	91000 Ae		0.00	No	Upriver
2/5/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	23.8	91000 Ae		0.00	No	Upriver
3/4/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6.2	24000 Ae		0.01	No	Study Area
3/4/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	24000 Ac 24000 Ae		0.01	No	Study Area
3/4/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5.2	24000 Ac 24000 Ae		0.01	No	Upriver
3/4/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	8.4 J	24000 Ae 24000 Ae		0.01	No	Upriver
4/9/2003	Downstream	<u> </u>	SOUTH KELLY POINT PARK	1.1		48600 Ae	0.04	0.11	No	-
4/9/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	11 8.4	48600 A	0.04	0.11	No	Study Area
	•	City of Portland	MORRISON ST BRIDGE	12.7	6.4 10		0.04			Study Area
4/9/2003	Downtown Reach	City of Portland				48600 A		0.11	No	Upriver
4/9/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	13	48600 A	0.04	0.11	No	Upriver
5/15/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	0	24000 Ae		0.00	No	Study Area
5/15/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	24000 Ae		0.00	No	Study Area
5/15/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	24000 Ae		0.00	No	Upriver
5/15/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5	24000 Ae		0.00	No	Upriver
6/11/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	16000 Ae		0.00	No	Study Area
6/11/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	16000 Ae		0.00	No	Study Area
6/11/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	16000 Ae		0.00	No	Upriver
6/11/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	16000 Ae		0.00	No	Upriver
7/9/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	10	8800 Ae		0.00	No	Study Area
7/9/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	8800 Ae		0.00	No	Study Area
7/9/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	8	8800 Ae	0.00	0.00	No	Upriver

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Precipitation on Day of Sampling	Precipitation on Day Prior to Sampling	Precipitation- influenced TSS? ^a	Upriver or Study Area
7/9/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5	8800 Ae	0.00	0.00	No	Upriver
8/6/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	9	7800 Ae	0.00	0.12	No	Study Area
8/6/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	10	7800 Ae	0.00	0.12	No	Study Area
8/6/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	7800 Ae	0.00	0.12	No	Upriver
8/6/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	7800 Ae	0.00	0.12	No	Upriver
9/3/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8	7500 Ae	0.00	0.00	No	Study Area
9/3/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	7500 Ae	0.00	0.00	No	Study Area
9/3/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	7500 Ae	0.00	0.00	No	Upriver
9/3/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2 U	7500 Ae	0.00	0.00	No	Upriver
10/1/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	8600 Ae	0.00	0.00	No	Study Area
10/1/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	8600 Ae	0.00	0.00	No	Study Area
10/1/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	8600 Ae	0.00	0.00	No	Upriver
10/1/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2	8600 Ae	0.00	0.00	No	Upriver
11/4/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	9500 Ae	0.00	0.00	No	Study Area
11/4/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	2	9500 Ae	0.00	0.00	No	Study Area
11/4/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	2	9500 Ae	0.00	0.00	No	Upriver
11/4/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2 U	9500 Ae	0.00	0.00	No	Upriver
12/3/2003	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	9	39100 A	0.01	0.31	Yes	Study Area
12/3/2003	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	8	39100 A	0.01	0.31	Yes	Study Area
12/3/2003	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	10	39100 A	0.01	0.31	Yes	Upriver
12/3/2003	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	12	39100 A	0.01	0.31	Yes	Upriver
1/14/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	9	70600 A	0.31	0.00	Yes	Study Area
1/14/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	10	70600 A	0.31	0.00	Yes	Study Area
1/14/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	11	70600 A	0.31	0.00	Yes	Upriver
1/14/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	12	70600 A	0.31	0.00	Yes	Upriver
2/4/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	17	96800 A	0.03	0.08	No	Study Area
2/4/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	18	96800 A	0.03	0.08	No	Study Area
2/4/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	22	96800 A	0.03	0.08	No	Upriver
2/4/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	19	96800 A	0.03	0.08	No	Upriver
3/3/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8	42000 Ae	0.03	0.00	Yes	Study Area
3/3/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	8	42000 Ac 42000 Ae	0.22	0.00	Yes	Study Area
3/3/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	10	42000 Ac 42000 Ae	0.22	0.00	Yes	Upriver
3/3/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	9	42000 Ac 42000 Ae	0.22	0.00	Yes	Upriver
4/7/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	1	26000 Ae	0.00	0.00	No	Study Area
4/7/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	26000 Ae	0.00	0.00	No	•
4/7/2004	Downtown Reach		MORRISON ST BRIDGE	12.7	4	26000 Ae	0.00	0.00	No	Study Area Upriver
		City of Portland	WAVERLY COUNTRY CLUB		4					•
4/7/2004	Upriver	City of Portland		17.9	3	26000 Ae	0.00	0.00	No No	Upriver
5/5/2004	Downstream Study Area	City of Portland	SOUTH KELLY POINT PARK	1.1	6	21000 Ae	0.00	0.03	No No	Study Area
5/5/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	21000 Ae	0.00	0.03	No No	Study Area
5/5/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	21000 Ae	0.00	0.03	No No	Upriver
5/5/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	21000 Ae	0.00	0.03	No	Upriver
6/2/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	1	24000 Ae	0.00	0.00	No	Study Area
6/2/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	24000 Ae	0.00	0.00	No	Study Area
6/2/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	24000 Ae	0.00	0.00	No	Upriver
6/2/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	24000 Ae	0.00	0.00	No	Upriver

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on	-	Precipitation-	
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Day of Sampling	on Day Prior to Sampling	influenced TSS? ^a	Upriver or Study Area
7/14/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7	8600 Ae	0.00	0.00	No	Study Area
7/14/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	8600 Ae		0.00	No	Study Area
7/14/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	8600 Ae		0.00	No	Upriver
7/14/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5	8600 Ae		0.00	No	Upriver
8/10/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	8	8200 Ae		0.00	No	Study Area
8/10/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	8200 Ae		0.00	No	Study Area
8/10/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	8200 Ae		0.00	No	Upriver
8/10/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	8200 Ae		0.00	No	Upriver
9/7/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6	9600 Ae		0.00	No	Study Area
9/7/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	9600 Ae		0.00	No	Study Area
9/7/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	9600 Ae		0.00	No	Upriver
9/7/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2	9600 Ae		0.00	No	Upriver
10/6/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7	12700 Ae		0.25	Yes	Study Area
10/6/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	12700 Ae		0.25	Yes	Study Area
10/6/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	3	12700 Ae		0.25	Yes	Upriver
10/6/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	12700 Ae		0.25	Yes	Upriver
11/3/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	33600 Ae		0.80	Yes	Study Area
11/3/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	33600 Ae		0.80	Yes	Study Area
11/3/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	33600 Ae		0.80	Yes	Upriver
11/3/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	6	33600 Ae		0.80	Yes	Upriver
11/8/2004	Study Area	R2A Nov 2004 Low Flow	W013-1	6.7	5 U	24700 Ae		0.00	No	Study Area
11/9/2004	Study Area	R2A Nov 2004 Low Flow	W013-2	6.7	5 U	23600 Ae		0.00	No	Study Area
11/10/2004	Study Area	R2A Nov 2004 Low Flow	W018	8.3	5 U	23100 Ae		0.00	No	Study Area
11/12/2004	Study Area	R2A Nov 2004 Low Flow	W001	2.0	5 U	21500 Ae		0.00	No	Study Area
11/12/2004	Study Area	R2A Nov 2004 Low Flow	W002	2.2	5	21500 Ae		0.00	No	Study Area
11/12/2004	Multnomah Channel	R2A Nov 2004 Low Flow	W003	3.0	7	21500 Ae		0.00	No	Study Area
11/15/2004	Study Area	R2A Nov 2004 Low Flow	W023	11	8 T	18500 Ae		0.00	Yes	Study Area
11/17/2004	Study Area	R2A Nov 2004 Low Flow	W011	6.3	5	17800 Ae		0.05	No	Study Area
11/18/2004	Study Area	R2A Nov 2004 Low Flow	W004	3.7	5 U	17400 Ae		0.00	Yes	Study Area
11/19/2004	Study Area	R2A Nov 2004 Low Flow	W006	4	8	17400 Ae		0.35	Yes	Study Area
11/19/2004	Study Area	R2A Nov 2004 Low Flow	W007	4.4	5 UT	17400 Ae		0.35	Yes	Study Area
11/22/2004	Study Area	R2A Nov 2004 Low Flow	W005	3.9	7	15400 Ae		0.00	No	Study Area
11/23/2004	Study Area	R2A Nov 2004 Low Flow	W008	4.6	6 T	14900 Ae		0.01	No	Study Area
11/23/2004	Study Area	R2A Nov 2004 Low Flow	W010	5.7	7	14900 Ae		0.01	No	Study Area
11/29/2004	Study Area	R2A Nov 2004 Low Flow	W015	6.9	, 5 U	19800 Ae		0.00	Yes	Study Area
11/30/2004	Study Area	R2A Nov 2004 Low Flow	W016-1	7.2	5 U	18900 Ae		0.24	Yes	Study Area
11/30/2004	Study Area	R2A Nov 2004 Low Flow	W016-2	7.2	7	18900 Ae		0.24	Yes	Study Area
12/1/2004	Study Area	R2A Nov 2004 Low Flow	W009	5.6	, 5 U	18600 Ae		0.07	No	Study Area
12/1/2004	Study Area	R2A Nov 2004 Low Flow	W014	6.7	5 U	18600 Ae		0.07	No	Study Area
12/1/2004	Study Area	R2A Nov 2004 Low Flow	W017	7.5	7	18600 Ae		0.07	No	Study Area
12/1/2004	Study Area Study Area	R2A Nov 2004 Low Flow	W021	8.7	, 5 U	18600 Ae		0.07	No	Study Area Study Area
12/1/2004	Study Area Study Area	R2A Nov 2004 Low Flow	W020	9.1	5 U	18600 Ae		0.07	No	Study Area Study Area
12/1/2004	Study Area	R2A Nov 2004 Low Flow	W012	6.3	5	18300 Ac		0.02	No	Study Area Study Area
12/2/2004	Study Area	R2A Nov 2004 Low Flow	W012 W019	8.6	5 U	18300 Ac		0.02	No	Study Area Study Area
12/2/2004	Study Area Study Area	R2A Nov 2004 Low Flow	W022	9.7	5 U	18300 Ac		0.02	No	Study Area Study Area
12/2/2004	Study Alea	NAM NOV 2004 LOW FIOW	** UZZ	7.1	3 0	10300 At	0.00	0.02	110	Study AICA

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation or	Precipitation	Precipitation-	
							Day of	on Day Prior to	influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
12/8/2004	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	31200 Ae	0.42	0.56	Yes	Study Area
12/8/2004	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	31200 Ae	0.42	0.56	Yes	Study Area
12/8/2004	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	31200 Ae	0.42	0.56	Yes	Upriver
12/8/2004	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	7	31200 Ae	0.42	0.56	Yes	Upriver
1/5/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	19600 Ae	0.00	0.00	No	Study Area
1/5/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	3	19600 Ae	0.00	0.00	No	Study Area
1/5/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	3	19600 Ae	0.00	0.00	No	Upriver
1/5/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5	19600 Ae	0.00	0.00	No	Upriver
2/1/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	18100 Ae	0.00	0.01	No	Study Area
2/1/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	3	18100 Ae	0.00	0.01	No	Study Area
2/1/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	18100 Ae	0.00	0.01	No	Upriver
2/1/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	18100 Ae	0.00	0.01	No	Upriver
3/1/2005	Study Area	R2A March 2005 Low Flow	W013-1	6.7	5 U	11900 Ae	0.00	0.17	No	Study Area
3/2/2005	Study Area	R2A March 2005 Low Flow	W013-2	6.7	11.5 T	11600 Ae	0.00	0.00	No	Study Area
3/3/2005	Study Area	R2A March 2005 Low Flow	W018	8.3	5 U	11600 Ae	0.00	0.00	No	Study Area
3/4/2005	Study Area	R2A March 2005 Low Flow	W001	2.0	5	11400 Ae	0.00	0.00	No	Study Area
3/4/2005	Study Area	R2A March 2005 Low Flow	W002	2.2	5 U	11400 Ae	0.00	0.00	No	Study Area
3/4/2005	Study Area	R2A March 2005 Low Flow	W002	2.2	5 U	11400 Ae	0.00	0.00	No	Study Area
3/4/2005	Multnomah Channel	R2A March 2005 Low Flow	W003	3.0	5 U	11400 Ae	0.00	0.00	No	Study Area
3/4/2005	Study Area	R2A March 2005 Low Flow	W006	4	10 T	11400 Ae	0.00	0.00	No	Study Area
3/7/2005	Study Area	R2A March 2005 Low Flow	W023	11	6.5 T	10100 Ae	0.00	0.00	No	Study Area
3/9/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	9750 Ae	0.00	0.00	No	Study Area
3/9/2005	Study Area	R2A March 2005 Low Flow	W010	5.7	6	9750 Ae	0.00	0.00	No	Study Area
3/9/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	9750 Ae	0.00	0.00	No	Study Area
3/9/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	9750 Ae	0.00	0.00	No	Upriver
3/9/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	6	9750 Ae	0.00	0.00	No	Upriver
3/10/2005	Study Area	R2A March 2005 Low Flow	W005	3.9	6	9680 Ae	0.00	0.00	No	Study Area
3/11/2005	Study Area	R2A March 2005 Low Flow	W007	4.4	5	9490 Ae	0.00	0.00	No	Study Area
3/11/2005	Study Area	R2A March 2005 Low Flow	W008	4.6	5.5 T	9490 Ae	0.00	0.00	No	Study Area
3/11/2005	Study Area	R2A March 2005 Low Flow	W009	5.6	5 U	9490 Ae	0.00	0.00	No	Study Area
3/14/2005	Study Area	R2A March 2005 Low Flow	W015	6.9	7	8730 Ae	0.00	0.00	No	Study Area
3/15/2005	Study Area	R2A March 2005 Low Flow	W016-1	7.2	, 5 UT	8600 Ae	0.00	0.00	No	Study Area
3/16/2005	Study Area	R2A March 2005 Low Flow	W017	7.5	10	8390 Ae	0.13	0.00	No	Study Area
3/16/2005	Study Area	R2A March 2005 Low Flow	W019	8.6	14 T	8390 Ae	0.13	0.00	No	Study Area
3/16/2005	Study Area	R2A March 2005 Low Flow	W021	8.7	5 U	8390 Ae	0.13	0.00	No	Study Area
3/16/2005	Study Area	R2A March 2005 Low Flow	W020	9.1	5 U	8390 Ae	0.13	0.00	No	Study Area
3/16/2005	Study Area	R2A March 2005 Low Flow	W022	9.7	9	8390 Ae	0.13	0.00	No	Study Area
3/17/2005	Study Area	R2A March 2005 Low Flow	W004	3.7	7	8640 Ae	0.00	0.13	No	Study Area
3/17/2005	Study Area	R2A March 2005 Low Flow	W011	6.3	5 U	8640 Ae	0.00	0.13	No	Study Area
3/17/2005	Study Area	R2A March 2005 Low Flow	W012	6.3	5 U	8640 Ae	0.00	0.13	No	Study Area
3/17/2005	Study Area	R2A March 2005 Low Flow	W012 W014	6.7	6	8640 Ae	0.00	0.13	No	Study Area Study Area
4/13/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1		36400 Ae	0.00	0.13	Yes	Study Area Study Area
4/13/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6 7	36400 Ae	0.11	0.14	Yes	Study Area Study Area
4/13/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	8	36400 Ae	0.11	0.14	Yes	Upriver
4/13/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	9	36400 Ae	0.11	0.14	Yes	_
4/13/2003	Opriver	City of Fortialia	WAVERLI COUNTRI CLUB	17.9	9	30400 AC	0.11	0.14	168	Upriver

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

-							Precipitation on	-	Precipitation-	
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Day of Sampling	on Day Prior to Sampling	influenced TSS? ^a	Upriver or Study Area
5/4/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	155 (mg/L)	22400 Ae		0.05	Yes	Study Area
5/4/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	22400 Ae		0.05	Yes	Study Area
5/4/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	22400 Ae		0.05	Yes	Upriver
5/4/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5	22400 Ac 22400 Ae		0.05	Yes	Upriver
6/8/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7	28200 Ac		0.05	No	Study Area
6/8/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	28200 Ae 28200 Ae		0.15	No	Study Area Study Area
6/8/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	8	28200 Ae 28200 Ae		0.15	No	Upriver
6/8/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	7	28200 Ae 28200 Ae		0.15	No	Upriver
7/5/2005	Study Area	R2A July 2005 Low Flow	W001	2.0	, 7 J	10800 Ae		0.13	No	Study Area
7/5/2005	•	R2A July 2005 Low Flow	W002	2.2	13 J	10800 Ae		0.00	No	-
7/5/2005	Study Area Study Area	R2A July 2005 Low Flow	W002 W002	2.2	15 J	10800 Ae		0.00	No	Study Area Study Area
7/5/2005	Multnomah Channel	R2A July 2005 Low Flow	W002 W003	3.0	15 J 15 J	10800 Ae		0.00	No	
		<u>*</u>	W003 W004	3.7					No	Study Area
7/5/2005	Study Area	R2A July 2005 Low Flow			9 J	10800 Ae		0.00		Study Area
7/6/2005	Study Area	R2A July 2005 Low Flow	W013-1	6.7 4	8 J	10800 Ae		0.00	No	Study Area
7/8/2005	Study Area	R2A July 2005 Low Flow	W006	•	7 J	10300 Ae		0.00	Yes	Study Area
7/8/2005	Study Area	R2A July 2005 Low Flow	W007	4.4	7 J	10300 Ae		0.00	Yes	Study Area
7/8/2005	Study Area	R2A July 2005 Low Flow	W008	4.6	4 J	10300 Ae		0.00	Yes	Study Area
7/8/2005	Study Area	R2A July 2005 Low Flow	W009	5.6	10 J	10300 Ae		0.00	Yes	Study Area
7/11/2005	Study Area	R2A July 2005 Low Flow	W023	11	17 J	10600 Ae		0.04	No	Study Area
7/12/2005	Study Area	R2A July 2005 Low Flow	W011	6.3	25 J	10600 Ae		0.00	No	Study Area
7/13/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6	10400 Ae		0.00	No	Study Area
7/13/2005	Study Area	R2A July 2005 Low Flow	W005	3.9	8 J	10400 Ae		0.00	No	Study Area
7/13/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	10400 Ae		0.00	No	Study Area
7/13/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	10400 Ae		0.00	No	Upriver
7/13/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5	10400 Ae		0.00	No	Upriver
7/14/2005	Study Area	R2A July 2005 Low Flow	W018	8.3	4 J	9910 Ae		0.00	No	Study Area
7/15/2005	Study Area	R2A July 2005 Low Flow	W010	5.7	7 J	9750 Ae		0.00	No	Study Area
7/15/2005	Study Area	R2A July 2005 Low Flow	W012	6.3	13 J	9750 Ae		0.00	No	Study Area
7/15/2005	Study Area	R2A July 2005 Low Flow	W014	6.7	5 J	9750 Ae		0.00	No	Study Area
7/15/2005	Study Area	R2A July 2005 Low Flow	W017	7.5	10 J	9750 Ae		0.00	No	Study Area
7/18/2005	Study Area	R2A July 2005 Low Flow	W016-1	7.2	7 J	9660 Ae		0.00	No	Study Area
7/19/2005	Study Area	R2A July 2005 Low Flow	W015	6.9	5 J	9310 Ae		0.00	No	Study Area
7/20/2005	Study Area	R2A July 2005 Low Flow	W019	8.6	12 J	8910 Ae	0.00	0.00	No	Study Area
7/20/2005	Study Area	R2A July 2005 Low Flow	W021	8.7	4 J	8910 Ae	0.00	0.00	No	Study Area
7/20/2005	Study Area	R2A July 2005 Low Flow	W020	9.1	3 J	8910 Ae	0.00	0.00	No	Study Area
7/20/2005	Study Area	R2A July 2005 Low Flow	W022	9.7	8 J	8910 Ae	0.00	0.00	No	Study Area
8/16/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	11	7950 Ae	0.00	0.00	No	Study Area
8/16/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	8	7950 Ae	0.00	0.00	No	Study Area
8/16/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	8	7950 Ae	0.00	0.00	No	Upriver
8/16/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5	7950 Ae	0.00	0.00	No	Upriver
9/14/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6	9980 Ae	0.00	0.00	No	Study Area
9/14/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	9980 Ae	0.00	0.00	No	Study Area
9/14/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	9980 Ae	0.00	0.00	No	Upriver
9/14/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2	9980 Ae		0.00	No	Upriver
10/12/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7	11600 Ae	0.00	0.00	No	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on Day of	Precipitation on Day Prior to	Precipitation- influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
10/12/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	2	11600 Ae	0.00	0.00	No	Study Area
10/12/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	11600 Ae		0.00	No	Upriver
10/12/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	11600 Ae		0.00	No	Upriver
11/9/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	9	42100 A	0.00	0.00	No	Study Area
11/9/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	11	42100 A	0.00	0.00	No	Study Area
11/9/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	13	42100 A	0.00	0.00	No	Upriver
11/9/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	12	42100 A	0.00	0.00	No	Upriver
11/22/2005	Upriver	Hydrodynamic Model Data	HMW05	23.7	8	24200 A	0.00	0.00	No	Upriver
12/7/2005	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	10	44500 A	0.00	0.00	No	Study Area
12/7/2005	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	10	44500 A	0.00	0.00	No	Study Area
12/7/2005	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	15	44500 A	0.00	0.00	No	Upriver
12/7/2005	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	14	44500 A	0.00	0.00	No	Upriver
12/22/2005	Upriver	Hydrodynamic Model Data	HMW05	23	50	71100 A	0.77	0.58	Yes	Upriver
1/18/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	34	164000 A	0.16	0.48	Yes	Study Area
1/18/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	41	164000 A	0.16	0.48	Yes	Study Area
1/18/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	42	164000 A	0.16	0.48	Yes	Upriver
1/18/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	43	164000 A	0.16	0.48	Yes	Upriver
1/19/2006	Upriver	R3A Jan 2006 High Flow	W024	15.9	49 J	169000 A	0.03	0.16	No	Upriver
1/20/2006	Study Area	R3A Jan 2006 High Flow	W024 W023	11	62 T	169000 A	0.45	0.10	Yes	Study Area
1/20/2006	Study Area Study Area	R3A Jan 2006 High Flow	W023 W023	11	54	169000 A	0.45	0.03	Yes	Study Area Study Area
1/20/2006	•	R3A Jan 2006 High Flow	W025 W005	3.9	49	167000 A	0.43	0.03	Yes	-
	Study Area		HMW05		39	143000 A		0.43	Yes	Study Area
2/3/2006	Upriver	Hydrodynamic Model Data		23			0.20			Upriver
2/7/2006	Upriver	Hydrodynamic Model Data	HMW05	23	25	115000 A	0.00	0.00	No	Upriver
2/11/2006	Upriver	Hydrodynamic Model Data	HMW05	23	20	61200 A	0.00	0.00	No	Upriver
2/15/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	12	38600 A	0.00	0.09	No	Study Area
2/15/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	14	38600 A	0.00	0.09	No	Study Area
2/15/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	14	38600 A	0.00	0.09	No	Upriver
2/15/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	15	38600 A	0.00	0.09	No	Upriver
2/21/2006	Upriver	Hydrodynamic Model Data	HMW05	23	7	22400 A	0.05	0.00	No	Upriver
2/21/2006	Upriver	Hydrodynamic Model Data	HMW05	23	7	22400 A	0.05	0.00	No	Upriver
3/1/2006	Upriver	Hydrodynamic Model Data	HMW05	23	9	31800 A	0.00	0.62	Yes	Upriver
3/3/2006	Upriver	Hydrodynamic Model Data	HMW05	23	22	36300 A	0.00	0.00	No	Upriver
3/3/2006	Upriver	Hydrodynamic Model Data	HMW05	23	21.5 T	36300 A	0.00	0.00	No	Upriver
3/15/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	10	33700 A	0.12	0.09	Yes	Study Area
3/15/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	9	33700 A	0.12	0.09	Yes	Study Area
3/15/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	8	33700 A	0.12	0.09	Yes	Upriver
3/15/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	9	33700 A	0.12	0.09	Yes	Upriver
4/3/2006	Study Area	Hydrodynamic Model Data	HMW01	2	8	37300 Ae		0.06	No	Study Area
4/3/2006	Study Area	Hydrodynamic Model Data	HMW01	2	9	37300 Ae		0.06	No	Study Area
4/3/2006	Study Area	Hydrodynamic Model Data	HMW01	2	9	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Study Area	Hydrodynamic Model Data	HMW01	2	9	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Study Area	Hydrodynamic Model Data	HMW01	2	8	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Study Area	Hydrodynamic Model Data	HMW01	2	7	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Multnomah Channel	Hydrodynamic Model Data	HMW02	3	8	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Multnomah Channel	Hydrodynamic Model Data	HMW02	3	8	37300 Ae	0.08	0.06	No	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Precipitation on Day of Sampling	Precipitation on Day Prior to Sampling	Precipitation- influenced TSS? ^a	Upriver or Study Area
4/3/2006	Multnomah Channel	Hydrodynamic Model Data	HMW02	3	8	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Multnomah Channel	Hydrodynamic Model Data	HMW02	3	7	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Multnomah Channel	Hydrodynamic Model Data	HMW02	3	7	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Multnomah Channel	Hydrodynamic Model Data	HMW02	3	9	37300 Ae	0.08	0.06	No	Study Area
4/3/2006	Multnomah Channel	Hydrodynamic Model Data	HMW02	3	9.5 T	37300 Ae	0.08	0.06	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW03	6.3	8	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW03	6.3	8	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW03	6.3	7	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW03	6.3	8	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW03	6.3	9	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW03	6.3	9	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW04	11	8	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW04	11	9	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW04	11	8	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW04	11	9	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW04	11	10 T	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW04	11	12	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW04	11	9	36300 A	0.01	0.08	No	Study Area
4/4/2006	Study Area	Hydrodynamic Model Data	HMW04	11	10 T	36300 A	0.01	0.08	No	Study Area
4/5/2006	Upriver	Hydrodynamic Model Data	HMW05	23	9	36500 A	0.01	0.01	No	Upriver
6/7/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	31200 Ae	0.00	0.00	No	Study Area
6/7/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	31200 Ae	0.00	0.00	No	Study Area
6/7/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	31200 Ae	0.00	0.00	No	Upriver
6/7/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	6	31200 Ae	0.00	0.00	No	Upriver
7/12/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	8830 Ae	0.45	0.00	Yes	Study Area
7/12/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	8830 Ae	0.45	0.00	Yes	Study Area
7/12/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	8	8830 Ae	0.45	0.00	Yes	Upriver
7/12/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	8830 Ae	0.45	0.00	Yes	Upriver
8/9/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7	8220 Ae	0.00	0.00	No	Study Area
8/9/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	7	8220 Ae	0.00	0.00	No	Study Area
8/9/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	7	8220 Ae	0.00	0.00	No	Upriver
8/9/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	5	8220 Ae	0.00	0.00	No	Upriver
9/4/2006	Study Area	R3A Sept 2006 Low Flow	W025E	2.0	8	8450 Ae	0.00	0.00	No	Study Area
9/4/2006	Study Area	R3A Sept 2006 Low Flow	W025M	2.0	6	8450 Ae	0.00	0.00	No	Study Area
9/5/2006	Study Area	R3A Sept 2006 Low Flow	W025W	2.0	4	8320 Ae	0.00	0.00	No	Study Area
9/5/2006	Study Area	R3A Sept 2006 Low Flow	W023M	10.9	1 U	8320 Ae	0.00	0.00	No	Study Area
9/6/2006	Study Area	R3A Sept 2006 Low Flow	W023E	11	5	8490 Ae	0.00	0.00	No	Study Area
9/6/2006	Study Area	R3A Sept 2006 Low Flow	W023W	11	10	8490 Ae	0.00	0.00	No	Study Area
9/7/2006	Multnomah Channel	R3A Sept 2006 Low Flow	W027	2.9	12 T	8640 Ae	0.00	0.00	No	Study Area
9/7/2006	Multnomah Channel	R3A Sept 2006 Low Flow	W027	2.9	6	8640 Ae	0.00	0.00	No	Study Area
9/8/2006	Study Area	R3A Sept 2006 Low Flow	W005	3.9	16	8860 Ae	0.00	0.00	No	Study Area
9/8/2006	Study Area	R3A Sept 2006 Low Flow	W005	3.9	8	8860 Ae	0.00	0.00	No	Study Area
9/12/2006	Study Area	R3A Sept 2006 Low Flow	W011	6.3	15	9240 Ae	0.00	0.00	No	Study Area
9/12/2006	Study Area	R3A Sept 2006 Low Flow	W011	6.3	6	9240 Ae	0.00	0.00	No	Study Area
9/13/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	10	9080 Ae	0.00	0.00	No	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Precipitation or Day of Sampling	n Precipitation on Day Prior to Sampling	Precipitation- influenced TSS? ^a	Upriver or Study Area
9/13/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	9080 Ae	0.00	0.00	No	Study Area
9/13/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	9080 Ae	0.00	0.00	No	Upriver
9/13/2006	Upriver	R3A Sept 2006 Low Flow	W024	15.9	3	9080 Ae	0.00	0.00	No	Upriver
9/13/2006	Upriver	R3A Sept 2006 Low Flow	W024	15.9	3 T	9080 Ae	0.00	0.00	No	Upriver
9/13/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	9080 Ae	0.00	0.00	No	Upriver
10/11/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	11800 Ae	0.00	0.00	No	Study Area
10/11/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	3	11800 Ae	0.00	0.00	No	Study Area
10/11/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	2	11800 Ae	0.00	0.00	No	Upriver
10/11/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2	11800 Ae	0.00	0.00	No	Upriver
11/2/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W025M	2.0	5 J	13200 Ae	1.11	0.02	Yes	Study Area
11/2/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W025W	2.0	5 J	13200 Ae	1.11	0.02	Yes	Study Area
11/2/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W023M	10.9	4 J	13200 Ae	1.11	0.02	Yes	Study Area
11/2/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W023E	11	4 J	13200 Ae	1.11	0.02	Yes	Study Area
11/2/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W023W	11	1 UJ	13200 Ae	1.11	0.02	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W025E	2.0	5 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W029	4.4	6 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W029	4.4	5 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W011	6.3	5 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W011	6.3	3 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W033	7.0	4 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W033	7.0	6 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W033	7.0	6 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W033	7.0	6 J	16300 Ae	0.30	1.11	Yes	Study Area
11/3/2006	Upriver	R3A Nov 2006 Stormwater-Influenced	W024	15.9	5 J	16300 Ae	0.30	1.11	Yes	Upriver
11/3/2006	Upriver	R3A Nov 2006 Stormwater-Influenced	W024	15.9	5 J	16300 Ae	0.30	1.11	Yes	Upriver
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W026	2.1	7	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W026	2.1	4	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Multnomah Channel	R3A Nov 2006 Stormwater-Influenced	W027	2.9	4	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Multnomah Channel	R3A Nov 2006 Stormwater-Influenced	W027	2.9	3	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W028	3.6	4	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W028	3.6	4	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W005	3.9	6	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W005	3.9	6	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W030	5.5	4	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W030	5.5	2	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W034	7.5	3	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W034	7.5	4	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W036	8.6	4	20800 Ae	0.56	0.30	Yes	Study Area
11/4/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W036	8.6	5	20800 Ae	0.56	0.30	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W031	6.1	2	32300 A	1.12	0.56	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W031	6.1	4	32300 A	1.12	0.56	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W032	6.7	4	32300 A	1.12	0.56	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W032	6.7	3	32300 A	1.12	0.56	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W035	8.5	5	32300 A	1.12	0.56	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W035	8.5	3	32300 A	1.12	0.56	Yes	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Precipitation on Day of Sampling	Precipitation on Day Prior to Sampling	Precipitation- influenced TSS? ^a	Upriver or Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W037	9.6	3	32300 A	1.12	0.56	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W037	9.6	3	32300 A	1.12	0.56	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W038	9.9	5	32300 A	1.12	0.56	Yes	Study Area
11/5/2006	Study Area	R3A Nov 2006 Stormwater-Influenced	W038	9.9	4	32300 A	1.12	0.56	Yes	Study Area
11/8/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	53	99900 A	0.37	0.94	Yes	Study Area
11/8/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	80	99900 A	0.37	0.94	Yes	Study Area
11/8/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	154	99900 A	0.37	0.94	Yes	Upriver
11/8/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	112	99900 A	0.37	0.94	Yes	Upriver
12/6/2006	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	7	38700 A	0.00	0.00	No	Study Area
12/6/2006	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	7	38700 A	0.00	0.00	No	Study Area
12/6/2006	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	6	38700 A	0.00	0.00	No	Upriver
12/6/2006	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	7	38700 A	0.00	0.00	No	Upriver
1/15/2007	Study Area	R3A Jan 2007 High Flow	W025M	2.0	12	61700 A	0.00	0.00	No	Study Area
1/15/2007	Study Area	R3A Jan 2007 High Flow	W023M	10.9	13	61700 A	0.00	0.00	No	Study Area
1/15/2007	Upriver	R3A Jan 2007 High Flow	W024	15.9	11 T	61700 A	0.00	0.00	No	Upriver
1/15/2007	Upriver	R3A Jan 2007 High Flow	W024	15.9	14 T	61700 A	0.00	0.00	No	Upriver
1/18/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	9	46700 A	0.01	0.00	No	Study Area
1/18/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	7	46700 A	0.01	0.00	No	Study Area
1/18/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	9	46700 A	0.01	0.00	No	Upriver
1/18/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	9	46700 A	0.01	0.00	No	Upriver
2/20/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	13	58700 A	0.48	0.10	Yes	Study Area
2/20/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	12	58700 A	0.48	0.10	Yes	Study Area
2/20/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	17	58700 A	0.48	0.10	Yes	Upriver
2/20/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	18	58700 A	0.48	0.10	Yes	Upriver
2/21/2007	Study Area	R3A Jan 2007 High Flow	W032	6.7	18	57200 A	0.11	0.48	Yes	Study Area
2/21/2007	Study Area	R3A Jan 2007 High Flow	W032	6.7	14	57200 A	0.11	0.48	Yes	Study Area
2/22/2007	Study Area	R3A Jan 2007 High Flow	W038	9.9	18	58900 A	0.10	0.11	Yes	Study Area
2/22/2007	Study Area	R3A Jan 2007 High Flow	W038	9.9	17	58900 A	0.10	0.11	Yes	Study Area
2/23/2007	Study Area	R3A Jan 2007 High Flow	W037	9.6	23	55900 A	0.04	0.10	No	Study Area
2/23/2007	Study Area	R3A Jan 2007 High Flow	W037	9.6	22	55900 A	0.04	0.10	No	Study Area
2/24/2007	Study Area	R3A Jan 2007 High Flow	W037 W031	6.1	60	56400 A	0.49	0.10	Yes	Study Area
2/24/2007	Study Area	R3A Jan 2007 High Flow	W031	6.1	17	56400 A	0.49	0.04	Yes	Study Area
	· · · · · · · · · · · · · · · · · · ·	R3A Jan 2007 High Flow			17					•
2/24/2007 2/24/2007	Study Area		W034 W034	7.5 7.5		56400 A 56400 A	0.49 0.49	0.04 0.04	Yes	Study Area
2/25/2007	Study Area	R3A Jan 2007 High Flow R3A Jan 2007 High Flow	W035		16	63100 A			Yes	Study Area
	Study Area			8.5	16		0.28	0.49	Yes	Study Area
2/25/2007	Study Area	R3A Jan 2007 High Flow	W035	8.5	16	63100 A	0.28	0.49	Yes	Study Area
2/26/2007	Study Area	R3A Jan 2007 High Flow	W026	2.1	13	69400 A	0.13	0.28	Yes	Study Area
2/26/2007	Study Area	R3A Jan 2007 High Flow	W026	2.1	13	69400 A	0.13	0.28	Yes	Study Area
2/26/2007	Study Area	R3A Jan 2007 High Flow	W033	7.0	23	69400 A	0.13	0.28	Yes	Study Area
2/26/2007	Study Area	R3A Jan 2007 High Flow	W033	7.0	16	69400 A	0.13	0.28	Yes	Study Area
2/26/2007	Study Area	R3A Jan 2007 High Flow	W033	7.0	25	69400 A	0.13	0.28	Yes	Study Area
2/26/2007	Study Area	R3A Jan 2007 High Flow	W033	7.0	18	69400 A	0.13	0.28	Yes	Study Area
2/27/2007	Multnomah Channel	R3A Jan 2007 High Flow	W027	2.9	36	71700 A	0.22	0.13	Yes	Study Area
2/27/2007	Multnomah Channel	R3A Jan 2007 High Flow	W027	2.9	29	71700 A	0.22	0.13	Yes	Study Area
2/27/2007	Study Area	R3A Jan 2007 High Flow	W036	8.6	32	71700 A	0.22	0.13	Yes	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on Day of	Precipitation on Day Prior to	Precipitation- influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
2/27/2007	Study Area	R3A Jan 2007 High Flow	W036	8.6	30	71700 A	0.22	0.13	Yes	Study Area
3/1/2007	Study Area	R3A Jan 2007 High Flow	W028	3.6	20 J	62900 A	0.06	0.08	No	Study Area
3/1/2007	Study Area	R3A Jan 2007 High Flow	W028	3.6	18 J	62900 A	0.06	0.08	No	Study Area
3/1/2007	Study Area	R3A Jan 2007 High Flow	W030	5.5	20 J	62900 A	0.06	0.08	No	Study Area
3/1/2007	Study Area	R3A Jan 2007 High Flow	W030	5.5	19 J	62900 A	0.06	0.08	No	Study Area
3/1/2007	Study Area	R3A Jan 2007 High Flow	W011	6.3	22 J	62900 A	0.06	0.08	No	Study Area
3/1/2007	Study Area	R3A Jan 2007 High Flow	W011	6.3	18 J	62900 A	0.06	0.08	No	Study Area
3/2/2007	Study Area	R3A Jan 2007 High Flow	W023M	10.9	18	64300 A	0.41	0.06	Yes	Study Area
3/3/2007	Study Area	R3A Jan 2007 High Flow	W005	3.9	17	65000 A	0.03	0.41	Yes	Study Area
3/3/2007	Study Area	R3A Jan 2007 High Flow	W005	3.9	15	65000 A	0.03	0.41	Yes	Study Area
3/3/2007	Study Area	R3A Jan 2007 High Flow	W023E	11	16	65000 A	0.03	0.41	Yes	Study Area
3/4/2007	Study Area	R3A Jan 2007 High Flow	W023W	11	20	66200 A	0.00	0.03	No	Study Area
3/5/2007	Study Area	R3A Jan 2007 High Flow	W029	4.4	17	65300 A	0.00	0.00	No	Study Area
3/5/2007	Study Area	R3A Jan 2007 High Flow	W029	4.4	16	65300 A	0.00	0.00	No	Study Area
3/8/2007	Study Area	R3A Jan 2007 High Flow	W025E	2.0	9	54900 A	0.00	0.18	No	Study Area
3/9/2007	Study Area	R3A Jan 2007 High Flow	W025W	2.0	10	51800 A	0.07	0.00	No	Study Area
3/10/2007	Study Area	R3A Jan 2007 High Flow	W025M	2.0	9	51000 A	0.05	0.07	No	Study Area
3/14/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	10	51900 A	0.01	0.00	No	Study Area
3/14/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	8	51900 A	0.01	0.00	No	Study Area
3/14/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	10	51900 A	0.01	0.00	No	Upriver
3/14/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	11	51900 A	0.01	0.00	No	Upriver
4/4/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	26200 A	0.00	0.01	No	Study Area
4/4/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	26200 A	0.00	0.01	No	Study Area
4/4/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	26200 A	0.00	0.01	No	Upriver
4/4/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	6	26200 A	0.00	0.01	No	Upriver
5/2/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	3	24700 A	0.54	0.12	Yes	Study Area
5/2/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	3	24700 A	0.54	0.12	Yes	Study Area
5/2/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	3	24700 A	0.54	0.12	Yes	Upriver
5/2/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	24700 A	0.54	0.12	Yes	Upriver
6/6/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	11	15000 Ae		0.39	Yes	Study Area
6/6/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	15000 Ae		0.39	Yes	Study Area
6/6/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	15000 Ae		0.39	Yes	Upriver
6/6/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	15000 Ae		0.39	Yes	Upriver
7/11/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	8060 Ae		0.00	No	Study Area
7/11/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	5	8060 Ae		0.00	No	Study Area
7/11/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	5	8060 Ae		0.00	No	Upriver
7/11/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	8060 Ae		0.00	No	Upriver
8/8/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	6	7480 Ae		0.00	No	Study Area
8/8/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	7480 Ae		0.00	No	Study Area
8/8/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	7480 Ac		0.00	No	Upriver
8/8/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	7480 Ac		0.00	No	Upriver
9/6/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	12	8140 Ae		0.00	No	Study Area
9/6/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	6	8140 Ae		0.00	No	Study Area Study Area
9/6/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	3	8140 Ae		0.00	No	Upriver
9/6/2007		•	WAVERLY COUNTRY CLUB	17.9	3	8140 Ae		0.00		•
9/0/2007	Upriver	City of Portland	WAVERLI COUNTRI CLUB	17.9	3	6140 Ae	0.00	0.00	No	Upriver

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on Day of	on Day Prior to	Precipitation- influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
10/1/2007	Study Area	NW Natural	GSW-01	5.9	5	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-01	5.9	5 U	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-01	5.9	8	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-03	6.1	5	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-03	6.1	6	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-03	6.1	5	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-07	6.1	5	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-07	6.1	5 U	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-07	6.1	5 U	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-09	6.2	6	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-09	6.2	6	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-09	6.2	5	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-12	6.2	5 U	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-12	6.2	5	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-12	6.2	8	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-13	6.3	5 U	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-13	6.3	6	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-13	6.3	8	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-18	6.5	5 U	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-18	6.5	5	14100 0	0.07	0.61	Yes	Study Area
10/1/2007	Study Area	NW Natural	GSW-18	6.5	9	14100 0	0.07	0.61	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-02	6.0	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-02	6.0	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-02	6.0	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-04	6.1	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-04	6.1	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-04	6.1	5	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-06	6.1	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-06	6.1	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-06	6.1	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-08	6.1	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-08	6.1	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-08	6.1	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-10	6.2	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-10	6.2	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-10	6.2	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-11	6.2	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-11	6.2	5	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-11	6.2	6	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-11	6.3	5 U	14400 0	0.21	0.07	Yes	Study Area Study Area
10/2/2007	Study Area Study Area	NW Natural	GSW-13	6.3	5 U	14400 0	0.21	0.07	Yes	Study Area Study Area
10/2/2007	Study Area	NW Natural	GSW-13	6.3	6	14400 0	0.21	0.07	Yes	Study Area Study Area
10/2/2007	Study Area	NW Natural	GSW-14	6.3	5 U	14400 0	0.21	0.07	Yes	Study Area Study Area
10/2/2007	-	NW Natural	GSW-14 GSW-14	6.3	5 U	14400 0	0.21	0.07	Yes	Study Area Study Area
	Study Area				5 U					•
10/2/2007	Study Area	NW Natural	GSW-14	6.3	3 U	14400 0	0.21	0.07	Yes	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on Day of	on Day Prior to	Precipitation- influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
10/2/2007	Study Area	NW Natural	GSW-15	6.4	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-15	6.4	5	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-15	6.4	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-20	6.7	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-20	6.7	5 U	14400 0	0.21	0.07	Yes	Study Area
10/2/2007	Study Area	NW Natural	GSW-20	6.7	5 U	14400 0	0.21	0.07	Yes	Study Area
10/3/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-01	5.9	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-01	5.9	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-01	5.9	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-03	6.1	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-03	6.1	6	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-03	6.1	6	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-07	6.1	5	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-07	6.1	6	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-07	6.1	7	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-09	6.2	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-09	6.2	5	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-09	6.2	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-11	6.2	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-11	6.2	5	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-11	6.2	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-12	6.2	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-12	6.2	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-12	6.2	6	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-17	6.4	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-17	6.4	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-17	6.4	6	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-17	6.4	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-17	6.4	7	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-17	6.4	5	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-20	6.7	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-20	6.7	5 U	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	NW Natural	GSW-20	6.7	7	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	15000 0	0.47	0.21	Yes	Study Area
10/3/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	3	15000 0	0.47	0.21	Yes	Upriver
10/3/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	4	15000 0	0.47	0.21	Yes	Upriver
10/4/2007	Study Area	NW Natural	GSW-02	6.0	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-02	6.0	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-02	6.0	5	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-04	6.1	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-04	6.1	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-04	6.1	6	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-04	6.1	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-04	6.1	7	14400 0	0.10	0.47	Yes	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on Day of	on Day Prior to	Precipitation- influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
10/4/2007	Study Area	NW Natural	GSW-04	6.1	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-05	6.1	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-05	6.1	6	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-05	6.1	5	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-06	6.1	5	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-06	6.1	6	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-06	6.1	8	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-08	6.1	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-08	6.1	5	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-08	6.1	7	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GS-C7	6.4	6	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GS-C7	6.4	8	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GS-D5	6.4	8	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-15	6.4	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-15	6.4	6	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-15	6.4	6	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-16	6.4	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-16	6.4	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-16	6.4	7	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-20	6.7	5 U	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-20	6.7	5	14400 0	0.10	0.47	Yes	Study Area
10/4/2007	Study Area	NW Natural	GSW-20	6.7	9	14400 0	0.10	0.47	Yes	Study Area
10/5/2007	Study Area	NW Natural	GSW-01	5.9	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-01	5.9	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-01	5.9	5	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-03	6.1	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-03	6.1	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-03	6.1	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-05	6.1	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-05	6.1	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-05	6.1	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-07	6.1	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-07	6.1	5	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-07	6.1	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-10	6.2	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-10	6.2	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-10	6.2	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-12	6.2	5	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-12	6.2	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-12	6.2	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-13	6.3	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-13	6.3	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-13	6.3	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-14	6.3	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-14	6.3	5 U	14000 0	0.00	0.10	No	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Precipitation or Day of Sampling	n Precipitation on Day Prior to Sampling	Precipitation- influenced TSS? ^a	Upriver or Study Area
10/5/2007	Study Area	NW Natural	GSW-14	6.3	5	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GS-B7	6.4	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GS-B7	6.4	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GS-C7	6.4	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GS-C7	6.4	8	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GS-D5	6.4	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GS-D5	6.4	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-18	6.5	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-18	6.5	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-18	6.5	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-19	6.7	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-19	6.7	5 U	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-19	6.7	5	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-19	6.7	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-19	6.7	6	14000 0	0.00	0.10	No	Study Area
10/5/2007	Study Area	NW Natural	GSW-19	6.7	5	14000 0	0.00	0.10	No	Study Area
10/6/2007	Study Area	NW Natural	GS-B7	6.4	6	14500 0	0.01	0.00	No	Study Area
10/6/2007	Study Area	NW Natural	GS-C7	6.4	5	14500 0	0.01	0.00	No	Study Area
10/6/2007	Study Area	NW Natural	GS-D5	6.4	5 U	14500 0	0.01	0.00	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-05	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-05	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-05	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-06	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-06	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-06	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-08	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-08	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-08	6.1	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-09	6.2	6	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-09	6.2	7	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-09	6.2	14	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-10	6.2	5	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-10	6.2	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-10	6.2	8	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-11	6.2	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-11	6.2	5	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-11	6.2	8	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-14	6.3	5	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-14	6.3	6	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-14	6.3	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-15	6.4	6	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-15	6.4	6	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-15	6.4	7	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-16	6.4	6	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-16	6.4	5 U	11500 0	0.00	0.17	No	Study Area

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on	Precipitation	Precipitation-	
							Day of	on Day Prior to	influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	<u> </u>	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area
10/8/2007	Study Area	NW Natural	GSW-16	6.4	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-16	6.4	5	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-16	6.4	6	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-16	6.4	8	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-18	6.5	5	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-18	6.5	5 U	11500 0	0.00	0.17	No	Study Area
10/8/2007	Study Area	NW Natural	GSW-18	6.5	8	11500 0	0.00	0.17	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-02	6.0	5	10700 0	0.03	0.00	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-02	6.0	5 U	10700 0	0.03	0.00	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-02	6.0	6	10700 0	0.03	0.00	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-17	6.4	6	10700 0	0.03	0.00	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-17	6.4	5 U	10700 0	0.03	0.00	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-17	6.4	5 U	10700 0	0.03	0.00	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-19	6.7	5 U	10700 0	0.03	0.00	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-19	6.7	5 U	10700 0	0.03	0.00	No	Study Area
10/9/2007	Study Area	NW Natural	GSW-19	6.7	5 U	10700 0	0.03	0.00	No	Study Area
11/7/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	4	10800 0	0.00	0.00	No	Study Area
11/7/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	10800 0	0.00	0.00	No	Study Area
11/7/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	10800 0	0.00	0.00	No	Upriver
11/7/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	2	10800 0	0.00	0.00	No	Upriver
12/12/2007	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	11	48500 P	0.00	0.00	No	Study Area
12/12/2007	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	12	48500 P	0.00	0.00	No	Study Area
12/12/2007	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	12	48500 P	0.00	0.00	No	Upriver
12/12/2007	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	15	48500 P	0.00	0.00	No	Upriver
1/9/2008	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	16	92400 P	0.19	0.60	Yes	Study Area
1/9/2008	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	17	92400 P	0.19	0.60	Yes	Study Area
1/9/2008	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	20	92400 P	0.19	0.60	Yes	Upriver
1/9/2008	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	18	92400 P	0.19	0.60	Yes	Upriver
2/6/2008	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	13	62900 P	0.66	0.12	Yes	Study Area
2/6/2008	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	13	62900 P	0.66	0.12	Yes	Study Area
2/6/2008	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	14	62900 P	0.66	0.12	Yes	Upriver
2/6/2008	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	15	62900 P	0.66	0.12	Yes	Upriver
3/5/2008	Downstream	City of Portland	SOUTH KELLY POINT PARK	1.1	5	26200 P	0.00	0.01	No	Study Area
3/5/2008	Study Area	City of Portland	ST JOHNS RR BRIDGE	6.8	4	26200 P	0.00	0.01	No	Study Area
3/5/2008	Downtown Reach	City of Portland	MORRISON ST BRIDGE	12.7	4	26200 P	0.00	0.01	No	Upriver
3/5/2008	Upriver	City of Portland	WAVERLY COUNTRY CLUB	17.9	3	26200 P	0.00	0.01	No	Upriver
	_				5					Study Area
					5					Study Area Study Area
		•			<i>1</i>					Upriver
		•			4 1					Upriver
4/3/2008 4/3/2008 4/3/2008 4/3/2008	Downstream Study Area Downtown Reach Upriver	City of Portland City of Portland City of Portland City of Portland	SOUTH KELLY POINT PARK ST JOHNS RR BRIDGE MORRISON ST BRIDGE WAVERLY COUNTRY CLUB	1.1 6.8 12.7 17.9	5 6 4 4	32000 P 32000 P 32000 P 32000 P	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	No No No No	St

^a For the purposes of this evaluation, TSS samples associated with rainfall totals of 0.2 inch or more summed over the day the TSS samples were collected and the day prior were flagged as potentially influenced by rainfall.

Table 3.1-9. TSS Data and Associated Discharge and Precipitation Values.

							Precipitation on	Precipitation	Precipitation-	
							Day of	on Day Prior to	influenced	Upriver or
Sample Date	Reach	Data Set	Location Name	River Mile	TSS (mg/L)	Q (cfs)	Sampling	Sampling	TSS? ^a	Study Area

Reason codes for qualifiers:

- e Discharge value has been estimated.
- J The associated numerical value is an estimated quantity.
- P Provisional data subject to revision.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

- A Approved for publication, processing and review completed.
- T The associated numerical value was mathematically derived (e.g., calculating the average of multiple results for a single analyte).
- TSS total suspended solids

Table 3.1-10. TSS Grain Size Distribution throughout Portland Harbor Study Area.

		Maximu	m Grain Sizes pe	er Station
Location	Station	d10 (µm)	d50 (µm)	d90 (µm)
RM 2 West Side	HMV01	4.28	25.76	204.36
RM 6.3 East Side	HMV02	4.1	40.66	274.53
RM 11 West Side	HMV03	3.32	35.28	242.34
RM 11 Mid-Channel	HMV04	2.98	32.11	242.91
RM 18 Mid-Channel	HMV05	3.78	79.3	383.11

d10, d50, d90 = diameter of the 10th, 50th, and 90th percentiles of the grain size distribution.

Table 3.1-11. Summary of Sediment Transport Characteristics, RM 0 - 26.

Reach ID	RMs	Estimated Average Cross-Sectional Area	Bathymetric Change 2001-2009 ^a	Average Bed Shear (high flow)	Percentage Fine-Grained Surface Sediment Area ^b
Upriver	15.3 - 26	NA	NA	5.8 N/m ²	NA
Downtown Reach	11.8 - 15.3	34,000	Net deepening in areas of the main channel, primarily ≤ 30 cm ft; no change or small-scale deepening dominant in nearshore areas, primarily ≤ 30 cm; some limited nearshore depositional areas.	3.4 N/m ²	NA
Study Area	10 - 11.8	49,000	Nearly equal proportion of small scale deepening, shallowing, and no-change portions in nearshore area. Predominantly minor net deepening \leq 30 cm in the channel. Several feet of deposition in the deep areas (dredged holes/borrow pits) on western side of channel.	5.0 N/m ²	46
Study Area	9.2 - 10	63,000	A broad western portion of the channel shows widespread net deposition ranging from 60 to 150 cm. Areas of no change and scour occur along the eastern portion of the channel and nearshore area.	2.7 N/m ²	54
Study Area	6.9 - 9.2	68,000	Majority of reach is depositional. Some areas, e.g., center of channel from RM 6.9 to 7.7, Swan	$1.7 \text{ N/m}^{2 \text{ c}}$	60
			Island Lagoon, show little or no change. Deepening/scour due to anthropogenic factors such as dredging and propwash is evident in some berthing areas.	0.5 N/m ² (Swan Island Lagoon)	
Study Area	5.0 - 6.9	57,000	Mosaic of no change, net deepening (≤30 cm), and shoaling (low lying areas) in the channel. Sand wave migration evident in the channel from RM 5 to 6. Eastern nearshore generally shows scour; western nearshore sediment accumulation.	4.2 N/m^2	41

Table 3.1-11. Summary of Sediment Transport Characteristics, RM 0 - 26.

Reach ID	RMs	Estimated Average Cross-Sectional Area	Bathymetric Change 2001-2009 ^a	Average Bed Shear (high flow)	Percentage Fine-Grained Surface Sediment Area ^b
Study Area	3.0 - 5.0	65,000	Main channel area shows widespread net sediment accumulation, mostly small-scale (≤30 cm), but more significant accumulation along the east and west channel margins. Deepening in some nearshore areas appears to be due to anthropogenic factors such as dredging and propwash.	1.4 N/m ²	53
Study Area	1.9 - 3.0	68,000	Widespread shoaling up to and exceeding 60 cm in extent in channel and broad eastern nearshore area. Little or no riverbed elevation change west of the channel line.	0.7 N/m^2	57
Downstream	0.0 - 1.9	70,000	Some minor shoaling in channel and east of channel to RM 1; apparently natural deepening (to 60 cm) along western shoreline; more dynamic from RM 0 to 1.	1 N/m ²	50

Notes:

NA - not available

RM - river mile

^a Descriptions based on visual examination of 2002-2009 bathymetric change data shown on Map 3.1-6.

^b Estimated based on silt and clay content from grain-size data in the RI data set.

^c Outside of Swan Island Lagoon.

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and	River Mile	River		Overwater Act	ivities ^{a,b,c}	
ECSI Number I	River Mile		Major Industrial Operations ^a	Historical	Current	Fill ^{a,c}
Evraz Oregon Steel Mills #141	2.2	Е	Current: manufacturing of carbon steel coils, plates and pipe.	Prior to current ownership, pipe mounted on a trestle was used by the War Shipping Administration, and possible later operators, to convey bilge water from river barges, tied up to prior dock, to the former sump. Current dock added by curren owner in 1969. Leased dock for temporary moorage, unloaded ore slurry (via piping).		Fill soils (hydraulically placed dredged material) were placed in the area over an extended time from the 1940s through the 1960s. In the 1970s, EOSM did some filling of the riverbank area of the property, using soil from the site, imported soil, dredge material and slag generated from its processes. Three artificial fill units are present in near-surface soils: 1) soils (sand and silt) used to construct the berm at the top of the shoreline riverbank, 2) a surficial layer of slag-soil fill, and 3) older dredge-fill (predominantly sand and silty sand) used to achieve development grades for the site prior to industrial manufacturing operations. The slag-soil deposits cover a majority of the upland EOSM plant area and are typically 2 to 6 ft thick; however, along the riverbank area, the slag-soil unit appears to be wedge-shaped, with a maximum thickness of approximately 12 ft that forms the cliff bank along the shoreline. The wedge configuration appears to be the result of historical placement of the slag-soil along the former shoreline bank.
Private Residences	2.2	W	NA	Dock added in 1957.	NA	NA
South Rivergate Industrial Park #2980	2.5	Е	Current: JR Simplot - storage and distribution of urea and anhydrous ammonia; Union Chemical - manufacturer of adhesives and glues; Ash Grove Cement - manufacturer of calcium oxide; POP/Ft James - distribution of paper products; Douglas Walters/T&G Trucking/Online Roofing - container hauling, com'l/resid roofing; PGE - utility power line tower.	JR Simplot - Anhydrous ammonia, urea, and diesel fuel are tra system for loading barges with lime products. One large dock one dock added in 1969 off of present day JR Simplot, and one Service Center.	added in 1966 off of present day Ash Grove Cement,	Ash Grove: from 1936 until 1956, the parcel was undeveloped and covered with dredged fill. From the 1950s to 1970s, dredge material was placed here from Post Office Bar and mouth of Willamette River.
Alder Creek Lumber Company #2446	2.9	Southern end of Sauvie Island	Lumber related activities (log storage, sawmill, lumber, planing).	Floating logs delivered to doc	ks (1959 to present day).	In 1971, dredged material, obtained from the Multnomah Channel about 1,500 ft west of the southern tip of Sauvie Island, was placed on the bank of the Alder Creek property. In 1972, dredged material from the Georgia Pacific Linnton Fiber Terminal was also placed on the property, approximately 500 ft from Multnomah Channel.
PGE Harborton #2353	3.2	W	Electrical switchyard, easement of oil/gas pipelines, radio communication station, turbine power plant, two distillate fuel tanks, and storage of new and surplus equipment.	None.	None. Floating logs visible offshore on aerial photo (2000).	Sand and silt fill were hydraulically placed at the site in the early 1970s to depths ranging from 4 to 10 ft bgs. Perimeter dike constructed of silt fill materials. Fill source unknown.
Time Oil #170	3.4	Е	Current: Terminal operations ceased in 2001 no current operations. Historical: petroleum products handling and storage, wood treatment products storage and formulation, waste oil storage.	Dock added in 1939. Dock used for the mooring of tanker ships while transferring petroleum products to pipelines located on the dock.	Dock still present, not used. Operations ceased in 2001.	Gravel fill covers portions of site within former terminal operations. It is assumed that dredged fill material was placed into this area around the turn of the 20th century, based on the similar practices along the river, but there is no documentation of the specific dates of this activity. In 1989 an excavated area in the former wood treatment area was backfilled with clean soil (fill source unknown).

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and	· · · · · · · · · · · · · · · · · · ·	River		Overwater Acti	ivities ^{a,b,c}	
ECSI Number	River Mile	Bank	Major Industrial Operations ^a	Historical	Current	Fill ^{a,c}
Premier Edible Oils #2013	3.6	Е	Current: none. Historical: aboveground oil storage, manufacturing, packaging, and distribution of chemicals, metals, and metal products, edible oil processing and storage facility.	Three docks associated with operations at the PEO site since the early 1950s (dock added in 1957). A wooden dock and pilings were located in the slip from the 1950s until the early 1990s. A terminal associated with the Northwest Oil tank farm was also present on the Willamette, south of the existing terminal, until the early 1970s. A pipeline from the dock at PEO ran to the adjacent Time Oil Bell Terminal until 1973, when it was removed during construction, resulting in a documented release. By 1977, a large dock was built on the Willamette frontage, which was retrofitted and reconstructed through the years to accommodate operational needs of the facilities. PEO received edible oils for refining by ship.	None. Dock still present on Willamette River frontage, but not used.	The site was a marsh prior to 1941. The bottomlands were filled soon thereafter. The fill material (20-25 ft) has been described as medium-grained sand, most likely a combination of native sands and river dredge material.
Portland Container Repair (Burgard Industrial Park) #2375	3.6	Е	Current: storage and repair of intermodal containers; Historical: WWII shipyard (1940s-1945, Oregon Shipbuilding Corp.), scrap metal storage	Site is upland only. Ship building (assembly) was conducted by the U.S. Maritime Commission and its contractor, Oregon Shipbuilding Corporation, in the shipways at the adjacent Schnitzer property. Ship-related equipment and parts were fabricated upland then transported by rail to shipways on the river (International Terminals Slip - Schnitzer Burgard Industrial Park).	None	During the WWII years, this property was likely part of the shipyard owned by the Oregon Shipbuilding Corporation. The International Terminals Slip was built during this time, and much of the Burgard Industrial Park's lowlying property was filled. From the 1960s into the early 1970s, shipways associated with the former shipyard were filled.
Noncontiguous Burgard Industrial Park Properties	3.7	Е	Current: Boydstun Metal Works - automotive trailer manufacturing and automotive parts storage; Morgan CFS - container unloading (lumber and building materials); Northwest Pipe - storage; Schnitzer Steel Remnant- storage. Historical: WWII shipbuilding.	Site is upland only. Ship building (assembly) was conducted by the U.S. Maritime Commission and its contractor, Oregon Shipbuilding Corporation, in the shipways at the adjacent Schnitzer property. Ship-related equipment and parts were fabricated upland then transported by rail to shipways on the river (International Terminals Slip - Schnitzer Burgard Industrial Park).	None	During WWII, the general site area was the location of a large shipyard owned by the Oregon Shipbuilding Corporation. The deep draft International Terminals Slip was created during this period, and much of the site was filled to address marshy, low-lying areas present on the site. In 1970, dredged sand was placed as fill at present day Boydstun property.
Owens Corning #1036	3.8	W	Current: asphalt product production. Historical: wood product operations and wood treatment, solvent, lubricant, and fuel storage.	Dock added in 1985. Vessels delivered asphalt products to the site at the facility's dock from 1982 to 1987. Vessel activity and product transfer occurred on southern portion of site at location of former dock (removed in 1975).	One dock remains on site but no longer in use.	The fill material was identified as consisting mostly of sand with clay, silt, and gravel. The thickness of the fill ranges from 8 ft to at least 24 ft. Fill source unknown.
Northwest Pipe Company #138	4	Е	Current: pipe manufacturing. Historical: pipe manufacturing and ship building (1937-1950, WWII years) at Oregon Shipbuilding Corp.	Site is upland only. Ship building (assembly) was conducted in the shipways at the adjacent Schnitzer property. Ship-related equipment and parts were fabricated upland then transported by rail to shipways on the river (International Terminals Slip - Schnitzer Burgard Industrial Park).	None	Fill materials were placed over the Schnitzer Burgard Industrial Park in the late 1930s and during the filling of the shipways in the 1960s and early 1970s. The depth of the dredge fill ranges from 2 ft to approximately 20 ft bgs.
Schnitzer-Calbag #2355	4	Е	Current: metals recycling, truck maintenance and repair, warehousing; Historical: ship construction/shipyard activities (1941-1945, Oregon Shipbuilding Corp.), metals recycling, truck maintenance and repair, warehousing; upland log storage and log rafting; filling of shipways; grain storage, steel pipe and tank manufacturing.	From 1941 to 1945, ships commissioned by the U.S. Maritime Commission were assembled in the shipways and moored along the southern edge of the slip for outfitting. Interior mechanical and electrical features were installed and the deck painted. In 1945, a fire destroyed the dock and shops along the south side of the dock. Several ships were damaged, and cranes fell into the slip as the dock collapsed. In 1948 boat rails were added, and removed in 1969, as shown on historical photos. Between 1945 and 1972, industrial use was limited to the dismantling of the shipyard, filling of shipways associated with the former shipyard, and log rafting. Historical photos indicate that on river side, in 1978 and 1985, docks were added.	International Terminals Slip by barge. Bulk materials are loaded and off-loaded by using three dock-	Prior to 1941, the property was largely undeveloped except for bulk petroleum storage in six aboveground storage tanks near the river owned by NW Oil Co.and NW Terminal Co., predecessors of Time Oil. The tanks were removed to make way for the shipyard . During WWII (1941-1945), the site was the location of a large shipyard owned by the Oregon Shipbuilding Corporation. The deep draft International Terminals Slip was created during this period, and portions of the marshy, low-lying areas on the site were filled. The shipways were filled in the later 1960s and early 1970s with dredged material. Thickness varies from 25 to 35 ft along the river to 15 ft on the eastern edge of the site.

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and		River		Overwater Acti	vities a,b,c	
ECSI Number	River Mile	Bank	Major Industrial Operations ^a	Historical	Current	Fill ^{a,c}
Port of Portland - Terminal 4, Slip 1 #2356	4.3	E	Current: grain mill, liquid bulk storage, storage and maintenance of equipment for loading and unloading ships, loading soda ash to ships, unloading from rail. Historical: marine terminal, bulk storage facilities (grain and liquid).	A dock existed as early as 1920. At Pier 1, grain was transported to and from berth using conveyor (1920-2003). Tri-calcium phosphate was also handled at Pier 1. Ore and other bulk raw products were handled at Pier 2 (1921-1996). Berth 409 was removed in 1962. In June 1996, during the Pier 2 dismantling project, the dock structure at Berths 406 and	No current activities at Pier 1 (Berths 401 and 405). Currently, IRM handles urea ammonium nitrate (UAN, a fertilizer), at Berth 408.	In 1917, dredged fill material was deposited across the low-lying ground. Most of lower Gatton Slough was filled at that time. Fill was also placed into the offshore shallows to extend the riverbank out into the channel. In 1950s Slip 1 was dredged. A Slip 2 was planned and excavated but later filled. Fill materials typically consist of silty sand and sandy dredge material, with pockets of gravel, silt, clay, concrete, and wood debris.
D. I. 18061		***		407 collapsed. The dock structure and berths were subsequently removed.		
Babcock #2361	4.4	W	Current: site leased to steel railroad materials storage. Historical: lumber storage and loading.	Historical loading and dock operations (dates unknown). No docks appear on current aerial photograph.	Docks not present in current aerial photograph. No known activities.	Varying thicknesses of fill up to approximately 25 ft. Fill consists of medium-grained sand and silt, source unknown.
Kinder Morgan Liquids Terminal - Linnton #1096	4.4	W	Refined petroleum products storage since 1918.	A dock existed as of 1936. The dock is infrequently used for lograde conveyance pipelines connecting the site dock to the AST outside of the AST containment area.		Soils are composed of fill material from 1 to 35 ft bgs. The source of the fil (silt and sand) is likely from dredging activities on the Willamette and Columbia rivers.
RK Storage and Warehousing #2376 (Includes West Coast Adhesives #333)	4.5	W	Current: lumber storage and log loading. Historical: lumber storage and log loading, manufactured phenol-formaldehyde glues, and storage of railroad materials.	Dock associated with lumber handling demolished in 1957.	None	Mostly composed of fill. Between 1961 and 1980, aerial photographs show dumping and fill activities south of the West Coast Adhesives facility. Debris present in the fill consists of concrete, metal, fiberglass, and asphalt to a depth of 5 ft bgs. Fill source unknown.
Port of Portland Terminal 4, Slip 3 # 272	4.6	Е	Current: loading soda ash at docks. Historical: oil supply docks for locomotives, loading soda ash, unloading pencil pitch, storage and unloading of bulk oil, import and export of ore and concentrate, unloading diesel, No. 6 fuel, and Bunker C oil and transferring via pipeline.	Oil dock in place by 1906. Other site docks existed as early as 1920. Bulk materials (including pencil pitch) and petroleum products unloaded and/or loaded at ships. Petroleum pipeline traversed Terminal 4. Pencil pitch (1978-1998), ammonium sulfate (1970), sodium sulfate, soybean meal, sulfur (1961-1967), lead and zinc concentrates (1961-1971), soda ash (1988-present), and alumina/bauxite and chromite (1963) were handled at Pier 4.	None at Slip 3 Upland Facility. Berths 410 and 411 along north side of Slip 3 used by Kinder Morgan Bulk Terminals. Ship loading of soda ash at Pier 4.	Approximately 10 to 30 ft of sandy fill was placed on the lowland area along the Willamette River circa 1920 to create Terminal 4. Site filled between 1917 and 1920 with material dredged from the river adjacent to the site and with material excavated to create the facility slips. Soil removed from the east bank of Slip 3 during cleanup activity in the 1990s was re-used to fill the excavation (non-impacted soils). Slip 3 was dredged in the teens to 1920s and widened in 1958.
Linnton Plywood Association #2373	4.7	W	Linnton Plywood: sawmill and lumber company, plywood manufacturing, and warehousing in plywood building. CRSG: sand barging and distribution.	Dock existed as of 1936. Raw logs stored along waterfront pilings until processing operations began at dock (cutting logs and loading onto conveyor).	Operations ceased at Linnton in 2001. Sand is delivered to the CRSG site by tug and barge.	The area leased to CRSG was once used for dredge material disposal from dredging the historic log processing area. The historic wigwam burner was also located on the CRSG site in the area used for dredge material placement. CRSG has since placed 10 ft of clean fill in this area. The air treatment system on the CRSG site captured solids from the sander dust burner, which were spread on the ground to dry and used as fill on this parcel. CRSG has since placed 10 ft of clean fill in this area. Currently, CRSG mixes the dust with the sand. Boring logs indicate fill material at least 24 ft thick in the above areas consisting primarily of silt and fine-to-medium-grained sand. The fill also includes burner ash, angular gravel, wood chips, and brick. Fill source unknown.
ARCO #1528	4.9	W	Current: petroleum storage and distribution. Historical: petroleum storage and distribution, foamite plant, toy manufacturing, lumber company.	Dock existed as of 1936. Fuel transfer activities conducted at site.	Fuel transfer facilities.	Recent fill (consisting of sand, sandy gravel and cobbles, and/or gravelly sand and containing some debris), source of material unknown.
Port of Portland - Terminal 4 (Auto Storage Facility) #172 #2642	5	Е	Current: unloading, storing, and processing of new automobiles. Historical: unloading, storing, and processing of new automobiles; unloading of steel and export of lumber products on the northern third of the facility. The upper portion of Toyota Logistics Services' leasehold (their processing facility) is not included in the ESCI facility, but is located northeast of the facility along North Lombard Street.	In 1971 and 1974, docks were constructed. Unloading new automobiles and steel from ships. Throughout the 1990s lumber was loaded from the yard to ships.	Unloading new automobiles from ships.	In the 1950s, 1960s, and possibly the early 1970s, sand fill was used to bring the facility up to an elevation above the flood level. Fill is about 5 ft thick at the base of the bluff east of the facility and thickens to about 40 ft at the riverbank.

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and		River		Overwater Activities a,b,c	
ECSI Number	River Mile	Bank	Major Industrial Operations ^a	Historical Current	Fill ^{a,c}
Exxon Mobil #137	5.1	W	Petroleum storage and distribution.	Dock existed as of 1936. Fuel transfer activities conducted at site.	None
ST Services/Shore Terminals #1989	5.3	W	Bulk petroleum storage and marine terminal.	A dock (constructed in 1978) extends approximately 90 ft into the Willamette River from the site. The dock is used for the mooring of tanker ships while transferring petroleum products to pipelines located on the dock.	Fill placed upland in 1948. Fill material, consisting of sand and silt, was historically placed in the site vicinity on alluvial floodplain materials. Fill source unknown. Petroleum-hydrocarbon-impacted soils, resulting from the release of gasoline in 1988 and 1992, were excavated, aerated onsite, and ultimately used as fill in the excavations.
Foss Maritime/Brix Marine #2364	5.5	W	Current: marine vessel transportation services and maintenance. Historical: above and tugboat service and fueling.	Maintenance activities performed at the covered barge permanently moored at the facility dock.	Some infilling of the northeastern portion of the property occurred in 1948. Fill material was fine to medium sand (dredge fill).
Transloader International #2367	5.6	W	Current: unknown. Historical: store, sort and reship logs by land.	Aerial photographs from the early to mid-1960s show log rafts in the river adjacent to the site, but the source and duration of this activity cannot be determined. Offshore there are four dolphins and a 3-ft wide floating walkway. It is not known if these structures are completed.	The site was constructed on varying thicknesses of recent fill composed of fine to medium sands and silts.
Mar Com North (Brix DeArmond)	5.6	Е	Current: unknown. Historical: mostly vacant, storage of abandoned ship repair equipment and excess parts (bone yard). Quonset hut on site used for storing ship repair material and timber. Stored, manufactured, and distributed timber and lumber products.	While Mar Com was in operation from ~1905 to 2004, a None floating dry dock located at the adjacent Mar Com South Facility was used to conduct ship repairs, hull overhauls, and maintenance services (e.g., mechanical/electrical retrofits). Barges acted as support platforms relative to operations.	Filling activities have occurred at the North Parcel from as far back as 1917 to at least 1983-1984. Fill encountered in test pits in 1986 included organics, silts and sands with variable amounts of concrete, wood and wood products, asphalt, plastic and glass. The fill material at the Mar Com and DSL sites originated from various sources. A substantial amount of fill (greater than 10,000 cubic yards) originating from excavation materials from the Veterans Hospital is documented to have been placed at the Mar Com and DSL sites. During the 1970s, sediments dredged from the river as part of maintenance operations were placed on the southern half of the North Parcel.
Mar Com South (Langley St. Johns)	5.7	Е	Current: unknown. Historical: from ~1905 to 2004 site operated as a shipway, ship repair operations (maintenance, fabrication, electrical/mechanical repairs, storage). A sawmill occupied a portion of the site between the late 1940s and ~1990. For years (dates unknown), a portion of the property was leased for sandblasting and painting services during ship construction and repair.	Two marine ways for pulling ships up to 1,000 tons out of the water to the upland shipyard facilities. An offshore floating dry dock was also present and designed to sink down to allow ships as heavy as 4,000 tons to navigate into position prior to performing maintenance activities. Unknown. Facility structures and equipment remain onsite, but all shipbuilding and repair activities have ceased.	Fill materials had been placed on the South Parcel since approximately 1945. In 1987, the "knoll" at the south corner of the South Parcel was constructed using dredged sediment from the marine way area.
Marine Finance (Hendren Tow Boats) #2352	5.8	W	Current: tugboat business, houseboat/sailboat construction. Historical: above and metal salvage, moorage.	Overwater structures include a home builder's dock and a gangway and floating facilities owned by a tow boat company. Overwater activities have been prevalent at this site since the early 1920s when there was a ferry slip located here.	Between 1936 and 1948 the area was filled; the fill was likely obtained from private dredging operations. In 1961 material was excavated at the site. Artificial fill material was placed at the site during the 1930s and 1960s. The excavations and soil borings completed at the site indicate that the fill material underlying the site is approximately 9 to 30 ft thick. The fill material consists of road base material, brownish-gray, poorly graded, fine to medium sand and silty sand, and organic and construction debris.
U.S. Moorings #1641	6	W	Government port, supply, repair facilities for dredge and other support vessels, warehousing facilities, fuel storage, motor pool garage and parking.	In 1963 a dock and floating structure were removed from the site. On the south end of the property a dock was constructed in 1936. Fueling of dredges, sandblasting, and vehicle maintenance occur at the site. Docking facilities, maintenance, and overhaul to support the dredge fleet and the hydrographic survey vessels.	Dredge material from river used as fill upland (1914), and partial filling of new parcel in 1945.
City of Portland BES Water Pollution Control Laboratory #2452	6.1	Е	Current: analytical lab. Historical: lumber mill operations, fruit box manufacturer, and original site of Terminal 3.	Lumber mill operations when dock present. Dock removed in None 1979.	Pre-1970s fill that brought the site to the grade of the pavement for the Portland Lumber Mill. Early 1970s fill in the foundation of the Coast Veneer facility and along the bank of the river. Placement of "black sand" fill in the Coast Veneer area and in piles on the southern portion of the site. From 1988 to 1989, construction and other debris were disposed of in the southern and northwestern portions of the site. Black sand and debris were removed from the property during site development in the mid-1990s.

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and		River		Overwater Activities a,t	b,c	
ECSI Number	River Mile	Bank	Major Industrial Operations ^a	Historical	Current	Fill ^{a,c}
Crawford Street Corporation #2363	6.1	W	Current: metal forging, steel recycling and distribution. Historical: above activities and lumber and sawmill.	None/Unknown	None/Unknown	Up to approximately 6 ft of black sand fill material was placed by previous property owners during the demolition of the former lumber mill building in 1977-1978. The sand had reportedly been obtained from a local sandblasting company and previously had been used to clean land- and ship-based oil tanks. Reported to have been transported to the beach fronting the property and into the Willamette River by riverbank erosion.
Gasco #84	6.2	W	Current: liquefied natural gas storage and distribution, solid and liquid coal tar pitch storage and distribution; northern portion - bulk fuel storage and distribution. Historical: oil manufactured gas plant, coal tar formulation, storage and distribution, electrode grade pitch manufacture and distribution.	A dock existed as of 1936 and a second dock was removed in 1957 (on Marketing Inc. conducts overwater transfer of bulk petroleum from bary Industries (now Beazer East) conducts overwater transfer of heated liquistorage facility.	ge to their bulk storage facility. Koppers	Much of the Gasco property has been extensively filled through time, beginning with initial MGP site development activities between 1905 and 1913. Low-lying areas, primarily to the southeast (lampblack storage and tar pond area) received MGP by-product placement through time (1940, 1952 aerial photographs), and likely received soils from the excavation of the LNG tank containment basin at the central portion of the site in 1967 and 1968 (1968 aerial photograph). By 1975, the southern portion of the property was predominantly filled. Retention ponds were filled in 1981. The thickness of the surficial fill ranges from approximately 2 ft along the western portion of the site near the Tualatin Mountains, to a maximum of approximately 30 ft in the northern and eastern portions of the site, near the Willamette River. Much of the fill at the site, especially in the northwestern and central areas, was found to consist of poorly graded sands and silty sands that were likely hydraulically placed river-dredge material. Other areas of fill at the site were found to contain lampblack and/or pencil pitch material, solidified tars, oil, quarry reject rock, and building debris, which were incorporated into the fill when these areas were brought to current grade.
Siltronic #183	6.2	W	Current: manufactures silicon wafers from silicon crystal ingots. Historical: waste disposal area (waste effluent pond, 11-acre lagoon, disposal pit, spent oxide/lampblack disposal pile).	Tugboat refueling by former Western Transportation facility. In 1957 two docks were removed from the upstream end of the site.	None	By 1975, the site was covered with fill up to 30 ft thick in places. The fill consisted of former MGP process wastes, dredged material from Willamette River dredging operations, quarry rock, and potentially materials and wastes from other onsite and offsite sources. The southern portion of the site was filled to about 30 ft above MSL (current grade) between 1971 and 1977. The fill included quarry rock, Willamette River dredge material (which may or may not have included sediments impacted by direct discharge of wastes), and MGP waste from the PG&C facility.
Willamette Cove #2066	6.7	Е	Current: vacant. Historical: plywood manufacturing plant (west parcel), structures to support ship repair on dry docks (central parcel) - U.S. Government facilitated during Great Depression and wars (WWI, WWII, and the Korean War), cooperage plant-manufactured wood vats, kegs, barrels, shingles (east parcel).	The central parcel of the Willamette Cove facility was used for ship repair on dry docks between 1903 and 1953. During wartime, U.S. Government contractors utilized the dry docks for military ship outfitting and repair. Dry docks were relocated in 1953. The plywood facility (West Parcel) and cooperage facility (East Parcel) were used for a variety of overwater activities associated with wood processing. The dock structure was removed between 1965 and 1969.	None	Sandy fill was placed on a strip of lowland adjacent to the bluff and outward into the Willamette River prior to and concurrent with facility development (completed by 1930). In early 1970s, filled the former log pond on the West Parcel. Fill source unknown. Debris in fill (bricks, metal, wood). Fill was placed on the upstream end of the site (in the head of the cove) in 1985.
McCormick and Baxter #74	7	Е	Current: none. Historical: manufactured fir lumber and wood products treatment.	Historically, creosote was unloaded at a dock and transported to a large tank by pipeline. The facility was operational from 1944 to 1991. Unloading at the creosote dock was gradually phased out throughout the 1980s. A pier was removed in 1980 and the dock removed in 2000.	None	The site is located in an area that was filled in the early 1900s.
Arkema #398	7	W	NA	Dock removed in 1957.		Fill added in 1957.

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and		River		Overwater Acti			
ECSI Number	River Mile	Bank	Major Industrial Operations ^a	Historical	Current	Fill ^{a,c}	
Arkema #398	7.3	3 W	manu: sodiu:	Current: none. Historical: inorganic chemical manufacturing company from 1941 to 2001. Produced sodium chlorate and potassium chlorate, chlorine, sodium hydroxide, hydrogen gas, hydrochloric acid, and DDT.	Dock 1 was most likely constructed in 1941 and Dock 2 was constructed sometime between 1954 and 1959. The Salt Dock was under construction in 1962. Shipments of sodium chloride (salt) were historically delivered by ship to either the Salt Dock or Dock 1. Sodium hydroxide, sodium chlorate solution, and chlorine were loaded onto barges for shipment from Dock 2.	None. Dock structures still remain.	The eastern portion of the site generally between Docks 1 and 2 has been filled with plant debris consisting of asphalt, concrete, pipe, and clean soil, in addition to fill from the City of Portland and excavation contractors. The majority of the fill material between Docks 1 and 2 was placed between 1948 and the mid-1960s.
Triangle Park LLC - North Portland Yard #277	7.4	Е	Current: vacant. Historical: wharf, shipbuilding (1921-1946), lumber manufacturing, sawmill, concrete, marine towing, construction and heavy equipment (Riedel International). Riedel also responded to chemical, industrial, and accidental spills of contaminants on the ground or in waterways. Equipment was stored and cleaned onsite. Between 1980 and 1984, the site included a regulated hazardous waste storage area.	Dock existed as of 1936. Docks associated with ship building, repair, and product transfer. In 1966 a dock and floating structure was removed.	A dock and dolphins are still present at the site, but the site is vacant. There is temporary barge moorage along the shoreline.	Fill was place on the downstream end of the property in 1974 and upstream in 1966. The fill blanketing the site extends to a depth of approximately 15 ft bgs and is composed predominantly of sand. Fill was used to create the dock and berth area.	
Willbridge Terminals #1549	7.5	W	Bulk petroleum storage since early 1900s.	Dock existed as of 1936. Each of the three terminals, which codock for the loading and unloading of petroleum products to or		Fill material of gravel, silt and sand was deposited over most of the site. The former Holbrook Slough that connected Kittridge Lake with the Willamette River was filled in the early 1900s. The source of the fill is primarily Willamette River dredging. There is relatively little fill in the KMLT terminal's south tank yard, while there are significant fill areas on the rest of the site.	
Willbridge Terminals (WMCSR-NWR- 94-06) #2355	7.7	W	Current: distribution of refined petroleum products (gasoline, diesel fuel, lubricating oil), fuel storage.	Petroleum products have been loaded and unloaded at the terminal since the early 1900s.	Current marine docks (one at each facility - constructed by 1936) for loading and unloading petroleum products to or from tankers, barges, and tug boats.	Fill material of gravel, silt and sand has been deposited over most of the site. The source of the fill is primarily Willamette River dredging. The thicknes of the fill material ranges from nonexistent to greater than 30 ft. There is relatively little fill in the KMLT terminal's south tank yard, while there are significant fill areas on the rest of the site. The former Holbrook Slough the connected Kittridge Lake with the Willamette River was filled in the early 1900s. Fill material placed on downstream end of site from 1948-1957.	
McCall Oil #134	7.9	W	Asphalt manufacturing and chemical manufacturing, storage and distribution.	A dock structure and an oil transfer pipeline historically were located at the McCall Oil site prior to filling in the late 1960s. Douglas Oil operated a marine dock at the northeastern portion of the site. This dock was added in 1975 and was used to transfer asphalt from moored barges to the asphalt facility via pipeline. The dock was later replaced by the existing dock located northeast of the terminal.	Petroleum products are received and dispensed at the marine dock.	In 1966, dredge materials from the Willamette River were added to the shoreline to create additional land.	
US Coast Guard - Marine Safety Station #1338	8	Е	Current: USCG marine safety and marine inspection offices. Historical: roofing shingle manufacturer, lumber company.	A dock was constructed in 1974. Activities unknown.	A fixed pier is located in the southwest corner of the property and is used as a dock and fueling platform for the buoy tender CGC Bluebell. Support activities include minor onboard ship repair and storage of ship equipment. A floating dock is located east of the fixed pier and is used for servicing and launching the smaller vessels.	The property was created by filling marshy lowlands in Mocks Bottom beginning in the late 1930s. Filling of Mocks Bottom was completed in 1974.	
Fred Devine Diving and Salvage #2365	8.2	Е	Current: moorage. Historical: moorage and waterfront structures (1940s), cleaner and solvent storage.	A dock was constructed in 1979 where fueling	and loading/unloading activities occur.	None/not reported in CSM	

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and		River		Overwater Activities ^{a,b,c}	
ECSI Number	River Mile	Bank	Major Industrial Operations ^a	Historical Current	Fill ^{a,c}
Front Avenue LP Properties #1239	8.2	W	Lumber facility/storage, concrete plant, pipe fittings manufacturing.	A dock was constructed in 1991. Ships deliver raw materials to facilities at the site (e.g., sand and aggregate to Glacier NW on Parcel 1).	Large portions of the site were formed by filling the riverbed and lake bed from 1887 through 1980. A large volume of fill was placed on Parcels 1 and 3 between the 1940s and the 1970s. The fill was made up of slag from a steel mill which began operating at the property in approximately 1942 (predecessor to Oregon Steel Mills), dredged material from the Willamette River, and construction debris. Fill is estimated to range from 15 to 45 ft thick on all but the northeastern third of the property.
Cascade General #271	8.4	E	Current: Cascade General - Ship repair yard and other industrial operations, POP - parking lot/undeveloped property. Historical: airport (1927-1941); shipbuilding facility (1942-1945); ship repair/industrial operations (1949-present). Between 1942 and 1949, the U.S. Maritime Commission leased Swan Island from the POP and contracted with the Kaiser Company to construct a shipyard and associated facilities. The shipyard facilities were used to build WWII T2 tanker ships. A Kaiser affiliate, Consolidated Builders, Inc., conducted ship dismantling between 1947 and 1949. After the war, the area was redeveloped and used for ship repair purposes by various ship repair contractors and their subcontractors. In addition, facilities were leased to a number of industrial tenants who conducted a range of activities, including steel fabrication and storage, wood products manufacturing, equipment manufacturing, maritime supply sales, printing, chemical and soap storage, war surplus storage, fire extinguisher service and storage, paint storage, aluminum oil tank manufacturing, service station operation, sheet metal work, roofing supply storage, and general office storage.	Shipways were constructed in the early 1940s and removed or abandoned in the late 1940s through 1962 for the installation of dry docks. Dry docks were installed on the downstream end of the site in 1945, 1953, 1962, and 1978. Boat rails were added in three areas (one added in 1948, the other two removed in 1957 and 1963 where docks were placed). Activities at the dry docks have included: ship dismantling, ship repair, ship hull washing, abrasive blasting and painting.	From 1923 to 1927, the main navigational channel was relocated from the east side of Swan Island to the west side. Dredged materials were placed on Swan Island to raise its elevation and used to construct a causeway that connected the upstream end of the island to the east shore of the mainland. Between 1950 and 1962, the eight military-era shipways were abandoned in place by filling with dredged materials.
Shaver Transportation #2377	8.4	W	Current: general towing and lightering. Historical: mobile telephone service and marine transportation.	Overwater activities include a fleet of 11 tugboats and 16 barges, a main dock including ramp and 3-finger piers, 200-ft shop barge including ramp and fuel dispensers (unknown type and capacity), and a 200-ft floating shed.	From 1923 to 1927, the main navigational channel was relocated from the east side of Swan Island to the west side. Dredged materials were placed on Swan Island to raise its elevation and used to construct a causeway that connected the upstream end of the island to the east shore of the mainland. Between 1950 and 1962, the military-era shipways were abandoned in place by filling with dredged materials.
Kittridge Distribution Center - Schnitzer Investment Corp #2442	8.6	W	Current: storage, mixing, and distribution of oil-based inks; storage of trailer-mounted generators and large spools of cables and supplies for maintenance of telecommunication cables; newspaper machines, limited bearing cleaning with lube oil; distribution of household decorative tiles and tile installation supplies. Historical: activities above and acetylene production and lime recovery operations, scrap metal handling, and diesel truck refueling.	None - upland location	The small portion (~10%) of the site that is not paved is covered with imported clean landscape fill.
Lakeside Industries #2372	8.6	W	Current: asphalt manufacturing. Historical: asphalt manufacturing and moorage.	Dock added in 1948. Since 1995, raw aggregate is delivered to the site by tug and barge, and after being unloaded with a conveyor system, the aggregate is stockpiled along the edge of the river.	The fill predominantly consists of sand extending to approximately 10 feet bgs.
Christianson Oil #2426	8.7	Е	Petroleum/lubricant storage, blending, and distribution.	None - upland location	None

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and		River		Overwater Activit					
ECSI Number	River Mile	Bank	Major Industrial Operations ^a	Historical	Fill ^{a,c}				
Gunderson LLC #1155	8.8	W	Current: Manufacturing rail cars and marine barges. Historical: rail car and marine vessel manufacturing, ship dismantling and auto salvage.	Dock was present 1936 and launchways in 1957. The application is conducted on the launchways. This work is considered overwat staged on outfitting dock (gantry) for rework of welds, touch-up p level. Prior to the 1960s, the area offshore of Gunderson was used	ter activity. Completed railcars are temporarily ainting, and using a transit to make sure cars are	Gunderson site adjacent to the Willamette River was raised above the riv level beginning in the 1930s using dredged fill material. The man-made were placed over much of the site. Therefore, most of the sand and silt found in the subsurface of the Gunderson site are fill materials obtained from the dredging of the Willamette River channel. A gully onsite was f in the 1970s, fill source unknown. Fill was also placed in 1957.			
Equilon Property (Pipeline Containment) #2117	8.8	W	Current: storage/distribution of gasoline, diesel, and ethanol. Historical: Beginning in 1928, storage/distribution of petroleum, bunker fuel, jet fuel, and lubrication oil.	· · · · · · · · · · · · · · · · · · ·	The Equilon facility includes a dock on the Willamette where petroleum products are transferred from vessels to an underground pipeline corridor that extends upgradient beneath the Gunderson property to the main bulk petroleum facility. The dock has existed since at least 1936.				
Trumbull Asphalt #1160	9.1	W	Asphalt and roofing manufacturing plant.	eation	The industrial area surrounding the site is known as the Guilds Lake area because of a shallow lake that formerly occupied the area until it was filled to provide industrial land in the early 1900s. Fill consists of asphalt, crushed rock subgrade, silt and sand. Fill source unknown.				
Van Waters and Rogers #330	9	W	Bulk chemical packaging, storage and distribution.	None - upland loc	eation	Between 1910 and 1930, the lake and surrounding area were filled with dredged sediment from the Willamette River and upland fill material.			
Columbia Plating #29	9.1	Е	Electroplating, plating, polishing, anodizing, and coloring (all after 1975).	None - upland loc	eation	None			
City of Portland	9.5-10.0	Е	NA	Kerr-Gifford grain dock removed in 1939 (based on 1935 Commission of Public Docks Industrial Map).	NA	Original shoreline formed cove. In 1969, area was filled (corresponding with filling of lagoon).			
Goldendale Aluminum #2440	10	E	Current: storage of lubricating and hydraulic oils. Historical: alumina and electrode binder pitch unloading facility, grain shipment facility.	Two docks constructed in 1936. Activities began in 1957 and included ship refueling, alumina and pitch unloading. Prior to this time, the site was a grain shipment facility.	None	A small area in the northeast section of the site was filled beginning in 1969.			
Port of Portland - Terminal 2 #2769	10	W	Current: marine terminal. Historical: marine terminal, shipyard-ship construction during WWII (unknown to 1949), exporter of agricultural and manufactured wood products.		nfrequent loading and unloading by SSA of break- bulk lumber, plywood, pulp and products on vessels, ailcars, and trucks.	The facility is built largely on filled riverbed. In 1927, fill was placed east of the old sawmill operations. In 1966, a dock was removed and the area filled. Backfilling occurred downstream of Terminal 2 in the late 1960s. Backfilling of the Terminal 2 upstream slip occurred by 1987. In 1981 the dredge berth was filled after it was relocated. Fill source not identified.			
Sulzer Bingham Pumps #1235	10.3	W	Current: Equipment pump manufacturer. Historical: part of WISCO shipyard where conversion, maintenance, and repair of government ships was conducted. WISCO also constructed minesweepers, minelayers, escort vessels, and patrol vessels, and repaired various operating vessels.	Several large pieces of metal slag are located along the Willamette Information regarding the lease of submerged lands and/or overward Historical: ship repair activities		By 1947 the site was filled with layers of sand and layers of silt and sand mixed with brick and wood debris up to 22.5 ft bgs.			
UPRR Albina Rail Yard #178	10.4	E	Switching yard.	There were several former docks located along the shoreline between RM 10 and 11 originating from 1936 until approximately 1975. Two docks are still visible on 2005 aerial photo, see Goldendale Aluminum. There is no information regarding the types of activities associated with the former docks.	None	The Albina Rail Yard is situated over both hydraulic fill and fine-grained alluvium. The hydraulic fill may be 10 ft to 20 ft in thickness and most likely originated from sediments previously dredged from the river.			

Table 3.2-1. Historical Overwater Features and Fill Placement.

Site Name and		River		Overwater Acti	ivities ^{a,b,c}	
ECSI Number	River Mile	Bank	Major Industrial Operations ^a	Historical	Current	Fill ^{a,c}
Port of Portland- Terminal 1 North #3377	10.6	W	Current: lumber company operations (Emerson hardwood), combined sewer overflow shaft and tunneling operations (City of Portland). Historical: sawmill, planing mill, steam plant/drying kilns, and lumber storage yard, retail coal and wood dealer, edible oil refiners, finished wood products, retail fuel wood dealer and wholesale dried fruit.	In 1908, a coal and gravel dock was located along the river. In 1946, a single-berth dock was used as a lumber terminal. Loading and unloading of items such as lumber, logs, paper products, steel, containers, and bagged grain.	None, dock berth structures still present.	Filled submersible and submerged lands. Filling was occurring in 1957. Fill source not identified. The fill consists of sandy gravel, sand, silty sand with traces of clayey silt and wood debris.
Port of Portland - Terminal 1 South (Riverscape) #2642	10.9	W	Current: mixed commercial and residential. Historical: marine terminal, Emerson Hardwood dock, Willamette Iron and Steel dock. Prior to and during WWII, WISCO periodically used T1 South for temporary equipment storage.	Docks were constructed in the early 1900s. Activities included loading and unloading of items such as lumber, logs, paper products, steel, containers, and bagged grain. All overwater activities ceased in 1986 and most dock/pier structures have been removed.	None, some dock structures still remain.	Filled submersible and submerged lands in early 1900s. Fill source not identified. Albina Ferry Slip (Slip 1) created in 1914 and Slip 2 in 1923. Filling occurred at the downstream end of former Terminal 1 in 1922, upstream end in 1936, and the former Terminal 1, Slip No. 1, in the early 1970s.
Former Albina Engine and Machine Works Shipyard (and immediate surrounding areas) Tucker Building (#3036)	11 to 11.6	E	Current: cement handling (Glacier NW), grain storage and distribution (Cargill), misc. warehouses, fabrication shops, parking strips, garages, light industry. Historical: former shipyard and machine works, former electrical operations (Tucker Bldg, PP&L, Western Electric, and Westinghouse).	Albina Engine and Machine Works was founded in 1904 as a repair yard and included both riverfront and non-riverfront property. Overwater features consisted of 6 shipways and attendant dock structures. After ships were assembled in the Albina shipways, they were moored at the Albina dock for outfitting, which included installing interior mechanical and electrical features and deck painting. Incidental spills of paint residue and fuels into the slip were possible during this time. Bilge water (often containing oily residue) was likely discharged from the grain ships, as well as other ships that moored in this area in the early 1900s. Other historical riverfront activities included sand and gravel storage, asphalt manufacturing, general cargo handling, grain shipping, and cement manufacturing. Docks have been present in the area of the Glacier facility from 1936 to present day. Present-day docks at the Cargill facility were constructed sometime between 1957 and 1966. A large overwater structure called the Irvine Dock was present at this location prior to construction of the present-day Cargill dock. The dock appears to have been present since 1906 or earlier according to information obtained from the City of Portland.	Docks associated with Glacier NW and Cargill for loading and unloading. Glacier's dock has been in existence since 1936. Two additions to Cargill's docks occurred in 1966.	Infilling of the former shipways associated with the Albina shipyard began in the 1950s and was completed by 1963. The source of the fill material is unknown.
Albers Mill	11.6	W	Current: commercial office building and pay parking lot. Historical: grain and cereal mill.	At least as far back as 1889, the site was occupied by docks and grain storage warehouses that were constructed on pilings.	None	The warehousing was demolished in 1965-1966. Addition of 5-30 ft of fill to the northwest end of the site was begun in 1966. The fill may have included concrete-steel bow sections of scrapped Liberty ships. Aerial photographs indicate that additional fill may have been placed along the river and northwest property line sometime after 1980.

AST - aboveground storage tank

BES - City of Portland Bureau of Environmental Services

bgs - below ground surface

CRSG - Columbia River Sand and Gravel

CSM - conceptual site model

DEQ - Oregon Department of Environmental Quality

DSL - Oregon Division of State Lands

ECSI - Oregon Environmental Cleanup Site Inventory

EOSM - Evraz Oregon Steel Mills

ERIS - Emergency Response Information System

KMLT - Kinder Morgan Linnton Terminal

LNG - liquified natural gas

MGP - manufactured gas plant

MSL - mean sea level NA - not applicable

PEO - Premier Edible Oils

PG&C - Portland Gas & Coke

PGE - Portland General Electric

POP - Port of Portland

SSA - Stevedore Services of America

SSI - Schnitzer Steel Industries UPRR - Union Pacific Rail Road

USCG - U.S. Coast Guard

WISCO - Willamette Iron and Steel Company

^a Information obtained from CSM site summaries (2005) and site summary addenda (2006).

^b Known or documented spills at the sites were obtained from DEQ ERIS database for the period of 1995 to 2008.

^c Additional information obtained from Maps 3.1-14a-f.

Table 3.2-2. Property Name Index (RM 1.9 - 11.8).

Property Owner (as shown in Map 3.2-1a-e)	River Mile	Other Site Names
ACF Industries, Inc.	3.8	
ADM Milling Co.	11.4	
Advanced American Construction	5.8	Marine Finance Corporation (see Hendren Tow Boats)
Albers Mill Property	11.6	
Alder Creek Lumber Co., Inc	2.8	
Anchor Park LLC	9	
Anderson Bros, Inc.	7.8	
ANRFS Holdings Inc.	9.2	
Apollo Dev., Inc.	11	former Terminal 1 South
Arkema Inc.	7.4	Atofina, Atochem North America, Elf Atochem
Armstrong Disposal Company	8.6	
Ash Grove Cement Co.	2.8	
Ash Grove Cement Co.	10	former Goldendale Aluminum
ATC Leasing Co.	8.8	
Automatic Vending	9.2	
Babcock Land Co. LLC	4.4	
Benson Industries	11.2	
Becker Land LLC	8.8	former Port of Portland
Betty Campbell Building	10.6	
Blue Lagoon - Terminal 5	2	
BNSF Railway Co.	6.8	
BP West Coast Products LLC	4.8	ARCO, BP Bulk Terminal 22T
Brazil & Co.	8.4	
Brix De Armond LLC	5.6	
Brix Maritime Co.	5.4	Foss Maritime Company
Cargill Corp/CLD Pacific Grain	11.5	
Carson Oil - NW 35th AVE	9.2	
Chevron USA, Inc.	7.6	
City of Portland	5.8, 6, 7, 9.2,	BES WPCL (RM 6), former Terminal 1 North (RM 10.6)
,	9.9, 10.6	(0), (0)
Columbia River Sand & Gravel Inc.	4.6	
ConocoPhillips Co.	7.8	Tosco
Consolidated Freightways Inc.	10.8	
Consolidated Metco, Inc.	3	Metco, Inc.
Container Recovery	9	Meteos, met
Cornerstone Property	8.8	McWhorter, Inc., Eastman Chemical, McCloskey
Cornerstone Property	0.0	Corporation
Crosby & Overton	9	Corporation
Dasic International Corp.	10.2	
Dolan and Co. LLC	10.4	see Sulzer Pumps
Drew Paints, Inc.	10.4	see Buizer I umps
Dura Industries	8.4	
Equilon Enterprises LLC	8.8	Shell Oil Products US, Texaco Refining/Marketing, Inc.
Equitor Emerprises ELC	0.0	(see Texaco Product Pipeline)
ESCO Landfill - Sauvie Island	Multnomah	(see Texaco Froduct Espeniic)
2500 Bandrin Sauvio Island	Channel	
ESCO Corp Willbridge Landfill	7	
ESCO Corp Willoridge Landrill ESCO Plant #3	10.4	
Evraz Oregon Steel Mills	2.4	Oregon Steel Mills, Inc.
Lyraz Oregon Succi ivinis	5	Mobil Oil Corporation, Shore Terminals LLC, ST Services
EvvonMohil Oil Corn		Moon on Corporation, Shore Terminals LLC, ST Services
ExxonMobil Oil Corp.		(see Shore Terminals LLC)
Flowers by Victor	10.6	(see Shore Terminals LLC)
	10.6	(see Shore Terminals LLC)
Flowers by Victor	10.6	(see Shore Terminals LLC) Freighliner TMP (North), Freighliner TMP II (South)
Flowers by Victor Fred Meyer - Swan Island	10.6	
Flowers by Victor Fred Meyer - Swan Island Freightliner Corp.	10.6 9 8.2, 9	
Flowers by Victor Fred Meyer - Swan Island Freightliner Corp. Frevach Land Co.	10.6 9 8.2, 9	Freighliner TMP (North), Freighliner TMP II (South)

Table 3.2-2. Property Name Index (RM 1.9 - 11.8).

Property Owner (as shown in Map 3.2-1a-e)	River Mile	Other Site Names
Front Ave. LP (LSD Glacier NW)	8	Glacier Northwest, Lone Star Northwest
Front Avenue MP	9.8	
Galvanizers Co.	9.6	
General Electric Co.	9.6	General Electric Decommissioning Facility
Genstar Roofing Co., Inc.	7.6	CertainTeed Corporation, GS Roofing Products
GI Trucking	9	, ,
Glacier NW	11.3	
Guilds Lake	10	
Gunderson LLP	9	
GWC Properties LLC	7.8	Great Western Chemical Corporation, Quadra Chemicals
		Western, Brenntag Pacific
HAJ Inc.	8.8	Christenson Oil
Hendren Tow Boats	5.6	
Henry Wong	10.4	
Hercules Inc.	9.6	
Herman, Stan	11	
Hill Investment Co.	9.2	
Industrial Battery Building	10.8	
Irvjoy 3rd Generation Corp.	9.4	
Island Holdings Inc.	9	
Jacobson & Co. Inc.	11.1	
J R Simplot Company	2.6	
		College Metals Front Asse
Kesef Development LLC et. al.	8.4 4.2	Calbag Metals - Front Ave.
Kinder Morgan	4.2	Kinder Morgan Liquids Terminal - Linnton Petroleum Terminal, GATX Terminals Corporation
Kinder Morgan (Willbridge)	7.6	Willbridge Terminal (Kinder Morgan Liquids Terminal)
		GATX Terminals
King-Ries Property	10	
Kittridge Distribution Center	8.4	
Koppers Industries Inc.	6.4	
Lakea Corp.	9.2	former Columbia American Plating
Lakeside Industries	8.4	
Lampros Properties LLC	4	Ryerson Steel
Langley-St. Johns Partnership	5.6	MarCom Shipyard, MarCom Holdings
Linnton Oil Fire Training Grounds	3.4	17
Linnton Plywood Assn.	4.6	Linnton Plywood, Columbia Sand & Gravel
Longview City Laundry & Cleaners	9.8	, ,
Magnus Co.	9	
McCall Oil Real Estate	8	McCall Oil Real Estate Company LLC
McCormick & Baxter Creosoting Co.	7.2	McCall Off Real Estate Company LLC
McCormick Pier Properties	11.8	
•		Constitution Inc.
Metco, Inc.	2.8	Consolidated Metco, Inc.
Metro	6.6	Willamette Cove - West, Central, and East Parcels
Metro Central Transfer Station	7.2	
Mill Hot	11.1	
Millican Properties LLC	3.8	Portland Container
Mogul Corp.	9.6	
Knife River Corp.	3.6	Morse Bros. Inc., Georgia-Pacific, Inc Linnton Fiber Terminal
Mt Hood Chemical Corp.	8.5	
Mt. Hood Chemical Property	8.4	
Multnomah County - St. Johns Site	5.8	
•	7.2	Gould Electronics, Inc., NL Industries
NIKKO Materiais USA, Inc.		
Nikko Materials USA, Inc. Northwest Natural Gas Co.	6.4	Ciasco
Northwest Natural Gas Co.	6.4	Gasco
· · · · · · · · · · · · · · · · · · ·	6.4 4 9.8	Gasco

Table 3.2-2. Property Name Index (RM 1.9 - 11.8).

Property Owner (as shown in Map 3.2-1a-e)	River Mile	Other Site Names
ODOT - Surplus Property	10.6	
Olympic Pipe Line Portland Delivery Facility	5	
Olympic Pipeline Company	4.2	
Oregon Washington Railroad & Navigation Co.	10	United Pacific Railroad (UPRR) - Albina Yard
(UPRR Albina Yard)	10	Omice Facility Familian Tare
Owens-Corning Fiberglas Corp.	3.8	·
Owens-Corning Fiberglas Corp.	9	Trumball Asphalt Plant
Paramount of Oregon, Inc.	7.8	Chevron USA Asphalt Refinery
Pacific Power & Light - Mason Substation	10.4	1
PacificCorp Albina Riverlots	11.3	·
Paco Pumps	9.6	·
Port of Portland (P.O.P.)	10, 4.2-5.5, 1-2	Terminal 2, Terminal 4, Terminal 5
P.O.P. (leased)	1-9.8	Lessees are located at Terminal 5, South Rivergate,
Tront (tember)	1 7.0	Terminal 4, Willbridge Terminal, Swan Island
P.O.P. (leased) (Willbridge)	7.6	Willbridge Terminal (Chevron - North, ConocoPhillips
Tront (neutral) (windrings)	7.0	Company - South)
PGE - Forest Park Property	8.4	company souny
PGE Station E	10.4	
Portland General Electric Co.	3.2	
Portland Shipyard LLC	8.4	Cascade General Ship Repair Yard, Vigor Industrial
Portland Terminal RR Co.(Guilds Lake Yard)	8.8	Burlington Northern Santa Fe (BNSF) Railroad, Portland
Tortaine Terminal Riv Co. (Guilds Eare Tare)	0.0	Terminal
R K Storage & Warehousing, Inc.	4.4	RK Storage
R L R Investments LLC	3.8	Romar Transportation Company
Ralston, Tim (Ralston, TR)	10.8-11	Timothy R Ralston (former Terminal 1 South)
Riverscape LLC	10.8	former Terminal 1 South
Roadway Express	8.8	Tormer Terminar i South
RoMar Realty of OR Inc.	3.6	
Sakrete of Pacific Northwest	11	
Sause Bros., Inc.	9.6	
Schmitt Forge	10	
Schnitzer Investment Corp.	7.2	Schnitzer Doane Lake - Air Liquide
Schnitzer Investment Corp.	3.6	Burgard lessees: former Premier Edible Oils, Boydstun
Seminated investment corp.	3.0	Metal Works, Western Machine Works, Morgan
Schnitzer Steel Industries, Inc.	4	International Terminals, Burgard lessees: Portland Blast
gennazer geer maastres, me.	•	Media, Cal Bag Metals, Northwest Pipe (storage)
Shaver Transportation Co.	8.4	media, car bag medis, rotalwest ripe (storage)
Shore Terminals LLC	5.4	ExxonMobil Oil Company, ST Services (See ExxonMobil),
Shore Terminals EDE	3.1	Nustar, Valero
Siltronic Corp.	6.6	Wacker Siltronic Corporation
Smurfit-Stone Container	3.8	Jefferson Smurfit
Southern Pacific Pipe Lines	7	Jeffelson Smarit
Starlink Logistics, Inc.	7.6	Rhone-Poulenc, Bayer CropScience, Aventis CropScience,
Starting Dogistics, Inc.	7.0	Chipman Chemical
States Battery Co.	10.4	empinan enemear
Columbia River Forge & Machine	6.2	Crawford Street Corporation, Steel Hammer Properties
Columbia River i orge & Machine	0.2	LLC
Steelmill Warehouse LLC	2.6	Union Chemical Division of Union Oil Company and H.B.
Steemin Waterlouse EDC	2.0	Fuller Company
Sulzer Pumps (US), Inc.	10.4	Sulzer Bingham Pumps
Sunny's Dry Cleaners - Portland	10.4	Suzer Bingham Lamps
Tanker Basin LLC	8	McCall Oil & Chemical Corporation
Texaco Product Pipeline	8.8	mean on a chemical corporation
TFA Inc.	10.9	
The Marine Salvage Consortium	8.4	Fred Devine Diving and Salvage, Inc.
TOC Holdings	3.4	Time Oil NW Terminal, Bell Oil Terminal, Koppers
100 Holdings	J. T	Company/Beazer East
		Company/Deazer Last

Table 3.2-2. Property Name Index (RM 1.9 - 11.8).

Property Owner (as shown in Map 3.2-1a-e)	River Mile	Other Site Names
Transloader International	5.6	
Triangle Park LLC	7.4	Reidel, Zidell Triangle Park
United States of America, Moorings	6	U.S. Moorings, US Army Corps of Engineers (adjacent to
		Northwest Natural)
US Coast Guard	8.2	US Coast Guard Marine Safety Office/Group Portland
		(Swan Island Lagoon)
U.S. Navy Reserve Center	7.6	
University of Portland	7.8	
UPRR - St. Johns Tank Farm	4.6	
UPRR Albina Yard	10	
V&K Service	7.6	
Van Waters & Rogers, Inc.	9	Univar Corporation, Vopak USA, Inc.
Walters, Douglas J.	3.4	
Westlink Packaging	11.2	
Willbridge Switching Yard	7.9	
Willamette River Westside CSO Construction	10.6	
Williams, Cindy	9.6	
Windsor-Allen LLC	7.8	
Wirfs, Don	9.2	Chase Bag, Chase Packaging Corp., Schnitzer Investment
		Company - NW Yeon
Zehrung Corp. (Former)	10.8	
Zidell, Emery	8, 8.6	

Table 3.2-3. Status of Combined Sewer Overflow Systems Control within Study Area.

Table 3.2-3. Status of				Construction	Interceptor		Future CSO		
Outfall Number	Pipe Size	Location	River Mile	Date	Diversion Date	Control Date ^a	Potential	Notes	Status of Outfall
Outfalls Controlled	Before the City'	s 20-Year Aba	tement Program	1					
OF-42	10-inch	East Side	11.7	~1910	1954	1954	No	Combined basin served residential properties	Previously combined, stormwater-only outfall since 1954
OF-44	72-inch	East Side	11.2	<1907	1954	1954	No	Combined basin served industrial properties	Previously combined, stormwater-only outfall since 1954
OF-51	18-inch	East Side	5.8	1906 ^b	1952	NA	No	Drainage basin was diverted to OF-52 and the outfall was abandoned in mid-1970s. Industrial area closer to the river separated in 1952. From 1952 to mid-1970s, only residential area included in the CSO basin	Previously CSO, abandoned in mid-1970s
OF-16	36-inch	West Side	9.7	1930	1970	1970	No	Designated as combined system in industrial area but uncertain if any sanitary or wastewater discharged to combined system	Previously combined, stormwater-only outfall from 1930 to 1948 and from 1970 to current
OF-18	72-inch	West Side	8.8	<1945 ^b	1970	1970	No	Combined area served industrial and open space. According to Stevens & Thompson (1964), many sewers were constructed by private parties and sewer connections were unknown.	Previously combined, stormwater-only outfall since 1970
OF-19/20	42-inch	West Side	8.4	1944 ^b	1970	1970	No	Combined area served industrial and open space. According to Stevens & Thompson (1964), many sewers were constructed by private parties and sewer connections were unknown.	Previously combined, stormwater-only outfall since 1970. OF-20 flows redirected to OF-19 in 1949.
OF-22/21	60-inch	West Side	7.8	<1928 ^b	1970	1970	No	OF22 combined area served industrial and open space. According to Stevens & Thompson (1964), many sewers were constructed by private parties and sewer connections were unknown. OF21 served only one site, an asphalt plant.	Previously combined, stormwater-only outfall since 1970. Flow from OF-21 redirected to OF-22 in 1969.
OF-45	27-inch	East Side	11	1907	1954	1974	No	Industrial area closer to the river separated in 1954. From 1954 to 1974, only residential area included in the CSO basin	Previously CSO, stormwater-only outfall since 1974
Outfalls Controlled	as Part of the C	ity's 20-Year A	batement Progr	am					
OF-14	30-inch	West Side	10.8	1905	1953	<1986	No	Combined basin served industrial properties	Previously CSO, stormwater-only outfall since before 1986
OF-23	27-inch	West Side	5.2	<1915 ^b	1972	1992	No	Combined area served primarily residential with some commercial and industrial. Combined flow diverted to local treatment plant in 1945 for primary treatment (solids removal). Controlled by sealing off diversion structure in 1992.	Previously CSO, currently abandoned
OF-52	30-inch	East Side	5.7	1920	1952	1995	Yes	Combined area served residential area. Controlled via Expanded Separation and Downspout Disconnection. Monitoring to confirm compliance of 3-year summer/4-perwinter storms by Dec. 2011.	Controlled CSO, with separated stormwater downstream of diversion

Table 3.2-3. Status of Combined Sewer Overflow Systems Control within Study Area.

	of Combined Sewer	•		Construction	Interceptor		Future CSO		
Outfall Number	Pipe Size	Location	River Mile	Date	Diversion Date	Control Date ^a	Potential	Notes	Status of Outfall
OF-50	30-inch	East Side	5.9	1906	1952	1995	No	In 1954, industrial area closer to the river separated; remaining CSO basin served predominately residential areas. Controlled via Expanded Separation and Downspout Disconnection. System converted to stormwater-only in 1995.	Previously CSO, now stormwater only
OF-49	15-inch	East Side	6.5	1945	1952	1995	No	Combined basin drained predominately residential areas and no industrial properties. Controlled via Expanded Separation and Downspout Disconnection. Diversion sealed as of Dec. 2001.	Previously CSO, now stormwater only with end-of-pipe treatment
OF-53	48-inch	East Side	5.2	<1916	1952	1995	Yes	Combined area served residential area. Controlled via Expanded Separation and Downspout Disconnection to 3-year summer/4-per-winter storms.	Controlled CSO, with separated stormwater downstream of diversion
OF-48	30-inch	East Side	7.3	1948	1952	1996	No	Combined basin drained predominately residential areas and no industrial properties. Controlled via Expanded Separation and Downspout Disconnection. Diversion sealed as of Dec. 2001.	Previously CSO, now stormwater only with end-of-pipe treatment
OF-24	12-inch	West Side	4.3	<1915 ^b	1973	2000	SSO Only	Combined area served primarily residential with some commercial and industrial. Combined flow diverted to local treatment plant in 1945 for primary treatment (solids removal). Controlled via Partial Separation & Pump Station Improvements to 3-year summer/4-per-winter storms.	Previously CSO, now emergency pump station relief point only. Only discharges to river if there is a pump station failure.
OF-47	48-inch	East Side	9.9	1910	1954	2006	Yes	Combined basin is primarily residential with some commercial. Controlled by 3-year summer/4-per-winter storms via West Side CSO Facilities.	Controlled CSO, with separated stormwater downstream of diversion
OF-13	24-inch	West Side	11.1	1890	1953	2006	No	Combined area served primarily industrial land. Controlled via West Side CSO Facilities. Diversions sealed.	Previously CSO, now stormwater only
OF-12/12A	16-inch/48-inch	West Side	11.2	1888	1953	2006	No	Combined area served primarily industrial land. Controlled via West Side CSO Facilities. Diversions sealed. OF12A not a City outfall.	Previously CSO, now stormwater only
OF-11	78-inch	West Side	11.4	1888	1953	2006	No	Combined area served mixed land uses (open space, industrial, residential and commercial). Controlled via West Side CSO Facilities, Stream Separation. CSO pipe to outfall sealed in 2006.	Previously CSO, now stormwater only
OF-15	102-inch	West Side	10.4	1899	1953	2006	Yes	Combined based served open space, residential, industrial and commercial. A portion of the industrial area was separated in 1975. Controlled via West Side CSO Facilities to 3-year summer/4-per-winter storms (CSO outfall only).	Controlled CSO, with separated stormwater downstream of diversion

Table 3.2-3. Status of Combined Sewer Overflow Systems Control within Study Area.

		<u> </u>		Construction	Interceptor		Future CSO		
Outfall Number	Pipe Size	Location	River Mile	Date	Diversion Date	Control Date ^a	Potential	Notes	Status of Outfall
OF-46	80-inch	East Side	10.5	1901	1954	2011	Yes	Combined basin is primarily residential with some commercial. Controlled via Cornerstone and Eastside CSO facilities to 3-year summer/4-per-winter storms.	Controlled CSO
OF-44A	72-inch	East Side	11.2	1974	1974	2011	No	Combined basin is primarily residential with some commercial. Controlled via Eastside CSO facility.	Sealed, no CSO
OF-43	56-inch	East Side	11.4	1906	1954	2011	Yes	Industrial area closer to the river separated in 1954. Primarily residential area remained CSO basin Controlled via the Cornerstone and Eastside CSO facilities to 3-year summer/4-per-winter storms.	Controlled CSO
OF-17	90-inch	West Side	9.8	1921	1953	2011	Yes	Combined area served mixed land uses (open space, industrial and residential). About half of the industrial area was separated in 1950s-1970s. Controlled via the Balch Consolidation Conduit and West Side CSO Facilities to 10-year summer/emergency storms.	Controlled CSO

Sources:

Long-Term Solids and Floatables Control Plan (City of Portland 2008b) and Demonstration of AFSO Compliance Final Report (City of Portland 2012).

Notes:

CSOs listed in order of year controlled.

^a Separate sanitary and stormwater constructed and all wastewaters required to connect to City sanitary system.

CSO - combined sewer overflow

OF - outfall

SSO - sanitary sewer overflow

^b Outfall not originally constructed by the City.

Table 3.2-4. City Outfall Status 1977. a,b

Outfall(s)	City Outfall Status 19 Diverted Area ^c	Combined	Sanitary-Only	Storm-Only
ID	(Acres)	(Acres)	(Acres)	(Acres)
OF1,	1424	220	1175	29
OF1B,				
OF2				
OF3	1007	977		30
OF4	6	6		
OF5	39	39		
OF6	285	285		
OF7	696	696		
OF8A	39	39		
OF8	101	2	100	36
OF9	389	389		
OF11	1500	1500		
OF12	46	46		
OF13	33	33		
OF15	1335	1320	15	
OF17	423	293	70	60
OF23	43	43		
OF24	78	78		
OF26A	45	45		
OF26	28	28		
OF27	3107	2317	790	
OF28	1820	1820		
OF29	12	12		
OF30	3934	3934		
OF31	61	61		
OF32	26	26		
OF33	30	30		
OF34	10	10		
OF35	14	14		
OF36	900	894	6	
OF37	2589	2589		
OF38	298	298		
OF40	1905	1905		
OF41	280	271		9
OF43	1076	1076		
OF44A	159	81	78	
OF46	670	658		12
OF47	297	297		
OF48	102	102		
OF49	46	46		
OF50	35	35		
OF52	33	33		
OF53	94	94		

^a CRAG 1977

^b 1977 is significant because it is the year the Columbia River Association of Governments (CRAG) undertook a study of the greater Portland area to evaluate municipal and industrial wastewater and urban stormwater, including the quality of the overflows from the City of Portland combined sewer overflow (CSO) system. The study provided a baseline for reevaluating Portland's CSO system and provided a status of the outfalls that were current at that time.

^c Diverted Area is the total area of the diversion basins within each combined sewer basin.

Table 3.2-5. Average Annual Pollutant Loads Resulting from CSOs in 1975. a

		Suspended Solids	Suspended Solids
Outfall(s) ID	River Mile	$(10^3 lb)$	(mg/L)
OF12-15	10.5	87	33.5
OF43	11.4	233.9	70.4
OF11	11.4	70.2	24.5
OF40	12.2	464.6	81.5
OF8-10	12.5	0.4	74.5
OF37	12.6	355.6	60.9
OF38	12.6	354.4	116.2
OF36	12.7	97.1	55.6
OF5-7	13.6, 14.0	30.7	31.2
OF30	14	446.8	70.5
OF30	14	216.3	60.3
OF28	15.3	180.1	57.0
OF3, OF4	15.5	46.5	30.2
OF1, OF1A, OF2	15.8	14.1	52.0
OF27	16.8	416.9	72.0

^a CRAG 1977

CSO - combined sewer overflow

Table 3.2-6. LWR Dredging Projects in and Adjacent to the Study Area (1997-2010).

			Dredge Location			
		River Mile or Channel				Quantity
Description	Dredged	Station Positioning	Terminal	Berth	Purpose	(cubic yards)
FY 97 Corps by Great Lakes #53 Clam	1997	8.5 to 10			Maintenance	346,000
POP Willamette River Dredging	1997	4.5	4	410, 411	Maintenance	5,454
Goldendale Aluminum (former)	2000^{a}	10 to 10.1		Goldendale Dock	Maintenance	unknown
POP Willamette River Dredging	2001	1	5	503	Maintenance	1,750
POP Willamette River Dredging	2001	1 to 1.5	5	501, 503, Barge Slip	Maintenance	3,435
Chevron Products Company	2001	7.5 to 7.8	Willbridge	Chevron Dock	Maintenance	15,000
Cargill, Incorporated	2001	11.6	Irving Elevator	Irving Elevator	Maintenance	5,556
POP Willamette River Dredging	2002	10	2	204 - 206	Maintenance	8,330
POP Willamette River Dredging	2002	4.5	4	410, 411	Maintenance	2,250
POP Willamette River Dredging	2003	4.5	4	410, 411	Maintenance	500
POP Willamette River Dredging	2004	4.5	4	410, 411	Maintenance	750
Schnitzer Steel Industries	2004	3.8 to 4	International Terminals	1, 2, 3, 4, 5	Maintenance	138,000
City of Portland Fire Bureau Station 6 Dock	2005	9.7		Fire Boat Dock	Maintenance	4,130
POP Willamette River Dredging	2005	4.5	4	410, 411	Maintenance	4,329
POP Willamette River Grading	2005	1 to 1.5	5	501, 503	Maintenance	282
NW Natural (Gasco)	2005	6.5			Remediation	15,300
Evraz Oregon Steel Mills	pending	1.9 to 2.5			Remediation	29,000
Vigor Industrial, Inc.	NA	8.2	Portland Shipyard	Pier C	Maintenance	1,100
CLD Pacific Grain, Inc.	2009	11.6	Irving Elevator	Grain O Dock	Maintenance	1,430
CLD Pacific Grain, Inc.	2009	11.8	Irving Elevator		Maintenance	
Glacier Northwest	2004	11.3	Portland Cement Terminal	Main Dock & Barge Dock	Maintenance	3,000
Ash Grove Cement	NA	10			Maintenance	22,400
Ash Grove Cement	2005	2.9	Rivergate Lime Plant		Maintenance	2,000
Waverly Marina Association	pending	17	Waverly Marina		Maintenance	105,838
Gunderson, Inc.	pending	8.9			Maintenance	10,000
BP West Coast Products LLC	2008	4.9	22T		Remediation	13,293
POP Willamette River Dredging	2008	10	2	205, 206	Maintenance	12,242
POP Willamette River Dredging	2008	1	5	501, 503	Maintenance	1,997
POP Willamette River Dredging	2008	4.5	4	Slip 3, 410, 411	Remediation	12,800
POP Willamette River Dredging	planned for 2011	4.5	4	Slip 3, 410, 411, Wheeler Bay	Remediation	unknown
POP Willamette River Dredging	2010	1 to 1.5	5	501	Maintenance	12,246
POP Willamette River Dredging	2010	1 to 1.5	5	503	Maintenance	11,712
USACE Post Office Bar	planned for 2011		2		Maintenance	unknown

Table 3.2-6. LWR Dredging Projects in and Adjacent to the Study Area (1997-2010).

			Dredge Location			
	Fiscal Year	River Mile or Channel				Quantity
Description	Dredged	Station Positioning	Terminal	Berth	Purpose	(cubic yards)
ConocoPhilips	planned for	7.5 to 7.8	Willbridge	ConocoPhilips	Maintenance	NA
	2011			Dock		
Chevron Products Company	planned for	7.5 to 7.8	Willbridge	Chevron Dock	Maintenance	~20,000
	2011					

Italicized projects were obtained from USACE Public Notices.

FY - fiscal year

LWR - lower Willamette River

POP - Port of Portland

USACE - U.S. Army Corps of Engineers

^a Permit authorized dredging of up to 1,500 cubic yards of material annually between September 8, 1999 to August 31, 2004.

Table 4.2-1. DEQ ECSI Sites, DEQ Status, and Date of Site Summary.

ECSI ^a	Site	Site Status ^b	Site Summary (and Addendum)	Date of Site Summa (and Addendum) ^c
794	ACF Industries	CNFA	Site Summary	4/26/2005
			Addendum	2/28/2007
2446	Alder Creek Lumber Company	Site screening recommended	Site Summary	4/26/2005
2261	American Machine & Gear	NFA	No Site Summary	NA
970	Anderson Brothers Property	NFA	Site Summary	5/31/2005
1528	ARCO Bulk Terminal	RI complete, RA	Site Summary	9/17/2004
			Addendum	2/28/2007
398	Arkema	Consent Decree	Site Summary	2/28/2007
1430	Automatic Vending	PA recommended	No Site Summary	NA
2361	Babcock Land Company	Not in DEQ CUP	Site Summary	3/8/2005
1026	Brazil & Co.	SI recommended	No Site Summary	NA 2/2/2227
2362	Burgard Industrial Park - Boydstun Metals	RI	Site Summary	3/8/2005
2275	Burgard Industrial Park - Noncontiguous	RI	Site Summary	3/8/2005
2375	Burgard Industrial Park - Portland Container Repair	RI	Site Summary	3/8/2005
2355	Burgard Industrial Park - Schnitzer Steel	RI RI	Site Summary	3/8/2005
138 2454	Burgard Industrial Park - NW Pipe Calbag Metals - Front Avenue		Site Summary Site Summary	3/8/2005 3/8/2005
2434	Caidag Metais - Fiont Avenue	NFA, stormwater reopened	•	
271	Cascade General/Portland Shipyard (OU1, OU2, Swan	RI	Addendum Site Summary	2/28/2007 2/28/2007
2/1	Island Upland Fac OU3)	KI	one outilitary	2/20/2007
5136	Centennial Mills	DEQ SI	No Site Summary	NA
4920	Chapel Steel	Other remedial action	No Site Summary	NA NA
4720	Chaper Steer	recommended	140 Site Summary	11/1
2424	Chase Bag	Not in DEQ CUP	Site Summary	3/8/2005
1281	Chevron Asphalt Refinery	Source control decision	Site Summary	2/28/2007
2426	Christenson Oil	XPA	Site Summary	4/26/2005
2452	City of Portland - BES WPCL	MOA, NFA	Site Summary	5/31/2005
2425	City of Portland Outfalls (RM 2.7 to 9.8)	SE	No Site Summary	NA
29	Columbia American Plating	Consent Decree	Site Summary	4/26/2005
3295	Consolidated Metco	XPA	Site Summary	3/8/2005
2363	Crawford Street Corp	XPA	Site Summary	3/8/2005
877	Crosby & Overton	SI recommended	No Site Summary	NA
36	Doane Lake Study Area	Other remedial action recommended	No Site Summary	NA
111	Dura Industries	SI recommended	No Site Summary	NA
3901	End of Swan Island Lagoon	Site screening recommended	No Site Summary	NA
397	ESCO Corp Willbridge Landfill	SI recommended	No Site Summary	NA
4409	ESCO Landfill - Sauvie Island	PA	No Site Summary	NA
112	ESCO Plant #3	SI recommended	No Site Summary	NA
141	Evraz Oregon Steel Mills	RI	Site Summary	2/28/2007
137	ExxonMobil Oil Terminal	RD/RA	Site Summary	10/10/2005
			Addendum	2/28/2007
2364	Foss Maritime/Brix Marine	Source control decision	Site Summary	10/10/2005
2365	Fred Devine Diving and Salvage	Source control decision	Site Summary	4/26/2005
44	Fred Meyer - Swan Island	NFA	No Site Summary	NA
2366	Freightliner TMP	RI	Site Summary	5/31/2005
115	Freightliner TMP2 (Parts Plant)	RI	Site Summary	4/26/2005
1239	Front Avenue LP Properties	XPA	Site Summary	9/1/2005
			Addendum	2/28/2007
		RI	Site Summary	2/28/2007
84	Gasco (NW Natural, Koppers, Pacific Northern Oil)	101		0 (0 0 (0 0 0
4003	GE Decommissioning	XPA	Site Summary	2/28/2007
4003 2370	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	XPA NFA	Site Summary	2/28/2007 3/8/2005
4003	GE Decommissioning	XPA		
4003 2370 1840	GE Decommissioning Georgia Pacific - Linnton (Morse Bros.) GI Trucking	XPA NFA Site screening recommended	Site Summary No Site Summary	3/8/2005 NA
4003 2370 1840 2378	GE Decommissioning Georgia Pacific - Linnton (Morse Bros.) GI Trucking Glacier NW	XPA NFA Site screening recommended Other recommendation	Site Summary No Site Summary No Site Summary	3/8/2005 NA NA
4003 2370 1840 2378 2440	GE Decommissioning Georgia Pacific - Linnton (Morse Bros.) GI Trucking Glacier NW Goldendale Aluminum	XPA NFA Site screening recommended Other recommendation NFA	Site Summary No Site Summary No Site Summary Site Summary	3/8/2005 NA NA NA 2/28/2007
4003 2370 1840 2378 2440 49	GE Decommissioning Georgia Pacific - Linnton (Morse Bros.) GI Trucking Glacier NW Goldendale Aluminum Gould Electronics, Inc./ NL Industries	XPA NFA Site screening recommended Other recommendation NFA Remedy implemented, NFA	Site Summary No Site Summary No Site Summary Site Summary Site Summary	3/8/2005 NA NA NA 2/28/2007 9/1/2005
4003 2370 1840 2378 2440	GE Decommissioning Georgia Pacific - Linnton (Morse Bros.) GI Trucking Glacier NW Goldendale Aluminum	XPA NFA Site screening recommended Other recommendation NFA Remedy implemented, NFA Other remedial action	Site Summary No Site Summary No Site Summary Site Summary	3/8/2005 NA NA NA 2/28/2007
4003 2370 1840 2378 2440 49	GE Decommissioning Georgia Pacific - Linnton (Morse Bros.) GI Trucking Glacier NW Goldendale Aluminum Gould Electronics, Inc./ NL Industries	XPA NFA Site screening recommended Other recommendation NFA Remedy implemented, NFA	Site Summary No Site Summary No Site Summary Site Summary Site Summary	3/8/2005 NA NA NA 2/28/2007 9/1/2005

Table 4.2-1. DEQ ECSI Sites, DEQ Status, and Date of Site Summary.

ECSI ^a	Site	Site Status ^b	Site Summary (and Addendum)	Date of Site Summary (and Addendum) ^c
988	Hercules, Inc.	SI recommended	No Site Summary	NA
935	Industrial Battery Building	NFA	No Site Summary	NA
260	Island Holdings	NFA	No Site Summary	NA
2371	Jefferson-Smurfit	NFA	Site Summary	3/8/2005
2441	Joseph T. Ryerson & Son	Not in DEQ CUP	Site Summary	5/31/2005
1096	Kinder Morgan Linnton Terminal (GATX)	RI complete, remedial action	Site Summary	9/17/2004
2442	Kittridge Distribution Ctr.	CNFA	Site Summary	9/1/2005
2372	Lakeside Industries	XPA	Site Summary	4/26/2005
1189	Linnton Oil Fire Training Grounds	NFA	Site Summary	9/1/2005
2373	Linnton Plywood	NFA proposed	Site Summary	3/8/2005
4461	Lynden Farms	SI recommended	No Site Summary	NA
4797	Mar Com North	NFA	Site Summary	10/10/05
			Addendum	2/28/2007
2350	Mar Com South	RI	Site Summary	10/10/2005
			Addendum	2/28/2007
2352	Marine Finance Corporation (Hendren Tow Boats)	CNFA	Site Summary	9/15/2004
			Addendum	2/28/2007
134	McCall Oil	Source control decision	Site Summary	9/15/2004
74	McCormick & Baxter Creosoting	NFA	Site Summary	9/15/2004
135	McWhorter Inc.	NFA	Site Summary	4/26/2005
1390	Metro Central Transfer Station	XPA recommended	No Site Summary	NA
1307	Mogul Corp.	NFA	No Site Summary	NA
81	Mt. Hood Chemical Corp.	RA	No Site Summary	NA
1328	Mt. Hood Chemical Property	NFA	No Site Summary	NA
966	Nudelman & Son	SI recommended	No Site Summary	NA
2374	Olympic Pipeline Co.	Not in DEQ CUP	Site Summary	5/31/2005
3342	Olympic Pipeline Portland Delivery Facility	Independent Cleanup Program	Site Summary	5/31/2005
1036	Owens Corning - Linnton	Source control decision	Site Summary	3/8/2005
5055	Penske Truck Leasing - NW Yeon	NFA	No Site Summary	NA
1345	Petroleum Release - N Edgewater St.	SI recommended	No Site Summary	NA
3377	Port of Portland - Terminal 1 North	RI	Site Summary	2/28/2007
2642	Port of Portland - Terminal 1 South	CNFA	Site Summary	2/28/2007
2769	Port of Portland - Terminal 2	XPA recommended	Site Summary	2/28/2007
2356	Port of Portland - Terminal 4, Slip 1	RI	Site Summary	2/28/2007
272	Port of Portland - Terminal 4, Slip 3	RD/RA	Site Summary	2/28/2007
172	Port of Portland - Terminal 4, Toyota Auto Storage	NFA	Site Summary	2/28/2007
100	Portland Terminal Railroad Co.	Source control decision	No Site Summary	NA
2353	PGE - Harborton	Source control decision	Site Summary	5/31/2005
3976	Portland General Electric - Substation E	NFA	No Site Summary	NA
2013	Premier Edible Oils (Schnitzer Investment)	RI	Site Summary	9/15/2004
155	Rhone Poulenc (SLLI)	RI	Site Summary	2/28/2007
5307	Rivergate Industrial Park Tract O Property	Site investigation	No Site Summary	NA
2376	RK Storage and Warehousing	Not in DEQ CUP	Site Summary	9/1/2005
2437	RoMar Realty of Oregon	NFA	Site Summary	5/31/2005
2104	Santa Fe Pacific Pipeline	Not in DEQ CUP	Site Summary	9/1/2005
1347	Schmitt Forge	NFA	No Site Summary	NA
5324	Schnitzer Burgard Industrial Park	Source control decision	No Site Summary	NA
395	Schnitzer Investment - Doane Lake (Air Liquide America Corp.)	NFA under CERCLIS, XPA	Site Summary	5/31/2005
2377	Shaver Transportation	NFA	Site Summary	9/1/2005
183	Siltronics	RI, Unilateral Order	Site Summary	2/28/2007
2980	South Rivergate Industrial Park	Other remedial action	Site Summary	5/31/2005
3343	JR Simplot	recommended	Sic Summary	3/31/2003
4696	Ash Grove Cement	recommended		
2630	St. Helens Road Petroleum Contamination	Site screening recommended	No Site Summary	NA
1067	St. Johns - Keeler #2 Right-of-Way	Further investigation of area	No Site Summary	NA
200 5120		facilities recommended	a. a	0/1/2005
989, 5130	ST Services/Shore Terminal	Source control decision	Site Summary	9/1/2005
1235	Sulzer Bingham Pumps	XPA	Site Summary	5/31/2005
		RI	Addendum	2/28/2007
2117	Texaco/Equilon Enterprises - Pipeline		Site Summary	3/8/2005

Table 4.2-1. DEQ ECSI Sites, DEQ Status, and Date of Site Summary.

		h	Site Summary	Date of Site Summary
ECSI ^a	Site	Site Status ^b	(and Addendum)	(and Addendum) ^c
169	Texaco/Equilon Enterprises - Bulk Terminal	RI	Site Summary	3/8/2005
170	Time Oil	BRA	Site Summary	2/28/2007
2367	Transloader International (General Construction)	Not in DEQ CUP	Site Summary	9/1/2005
277	Triangle Park (Riedel Environmental)	RI	Site Summary	10/10/2005
1160	Trumbull Asphalt Plant	DEQ SE	Site Summary	4/26/2005
176	Union Carbide	Operations & Maintenance	No Site Summary	NA
178	UPRR Albina Yard	RI	Site Summary	2/28/2007
2017	UPRR St. Johns Tank Farm	CNFA	No Site Summary	NA
1641	USACE - Portland Moorings	FFA	Site Summary	3/8/2005
1338	U.S. Coast Guard - Marine Safety Station	Source control decision	Site Summary	4/26/2005
5109	U.S. Navy and Marine Reserve Center	SI recommended	No Site Summary	NA
330	Van Waters and Rogers	RCRA Corrective Action	Site Summary	5/31/2005
		Implemented	·	
2423	V&K Service	Site screening recommended	No Site Summary	NA
		-	-	
333	West Coast Adhesive Co.	RA recommended	No Site Summary	NA
2066	Willamette Cove	RI	Site Summary	2/28/2007
3172	Willamette River Westside CSO Construction	Negotiations	No Site Summary	NA
1549	Willbridge Terminal	RI/FS	Site Summary	9/17/2004
			Addendum	2/28/2007
3395	Willbridge Switching Yard	XPA	Site Summary	2/28/2007
RM 11 to 11.8			211 2 31111111	
No	Former Albina Engine and Machine Works Shipyard	See #3036, #5117, #5449,	Site Summary	11/20/2007
ECSI#		#5561 and #4497 below		
5328	Abandoned Tanner Creek Sewer	SI recommended	No Site Summary	NA
4590	Albers Mill	RI recommended	No Site Summary	NA
4775	Boxer NW Building	Not in DEQ CUP	No Site Summary	NA
1019	Cascade Brake Products	Not in DEQ CUP	No Site Summary	NA
5561	CDL Pacific Grain/Cargill	Not in DEQ COI	Site Summary	11/20/2007, with Albina site
2201	CDET acric Grain/Cargin		Site Summary	summary
2500	Courtyard Hotel	NFA	No Site Summary	NA
2313	Gender Machine Works, Inc.	CNFA	No Site Summary	NA NA
5449	Glacier NW	DEQ SI	No Site Summary	11/20/2007, with Albina site
5447	Glaciel IVV	DEQ 51	No Site Summary	summary
1080	Hoyt Street Railyard (former)	RD/RA	No Site Summary	NA
1624	Hoyt Street Railyard - Pearl Court	RD/R/1	110 Bite Buillinary	1111
4960	Pearl Building			
5443	HSRY - Blocks 19,21,22,25 - The Fields	Engineering control	No Site Summary	NA
1301	Mammal Survey & Control Service	Not in DEQ CUP	No Site Summary	NA
1302	Master Chemical Inc.	NFA	No Site Summary	NA
5117	PacifiCorp Albina Riverlots	Source control decision	Site Summary	11/20/2007, with Albina site
3117	1 active of p Albina Riverious	Source control decision	Site Summary	summary
5117	PacifiCorp Knott Substation	Source control decision	No Site Summary	NA
3067	RiverTec Property	Not in DEQ CUP	No Site Summary	NA NA
1139	Tarr Inc.	RI	No Site Summary	NA NA
3036	Tucker Building	CNFA	Site Summary	11/20/2007, with Albina site
3030	Tucker building	CNIA	Site Summary	
1962	Union Station Agricultural Marketing Contar City	DD/D A	No Cita Cummar	summary
2407	Union Station Agricultural Marketing Center Site	RD/RA	No Site Summary No Site Summary	NA NA
1885	Union Station Horse Barn	PNFA		NA NA
1414	Union Station - Parcel B South	RD/RA	No Site Summary	NA NA
2183	Union Station - Track #5	CNFA	No Site Summary	NA NA
3215	US Postal Service Processing & Distribution Center	ROD	No Site Summary	NA NA
2761	Valvoline	NFA CEDCLIST 1	No Site Summary	NA NA
	Vermiculite Northwest, Inc (former)	CERCLIS-led	No Site Summary	NA NA
4535	Waterfront Pearl Condominiums Construction Site	NFA	No Site Summary	NA 11/20/2007ith Albinith
4497	Westinghouse	Cleanup occurring under	Site Summary	11/20/2007, with Albina site
1221	Will Elli, C. D. d. 1	TSCA	N. C'. C	summary
1331	Wilbur-Ellis Co Portland	NFA NEC CUE	No Site Summary	NA NA
776	Williamson & Bleid	Not in DEQ CUP	No Site Summary	NA
	hin Shared Conveyance Systems ^d			
1820	ANRFS	RI recommended	No Site Summary	NA
1076	Ashland Chemical	XPA recommended	No Site Summary	NA
5059	Calbag-Nicolai	Source control decision	No Site Summary	NA
1405	Carson Oil	RI recommended	No Site Summary	NA
4784	Container Management	Source control decision	No Site Summary	NA

Table 4.2-1. DEQ ECSI Sites, DEQ Status, and Date of Site Summary.

			Site Summary	Date of Site Summary
ECSI ^a	Site	Site Status ^b	(and Addendum)	(and Addendum) ^c
4015	Container Recovery	CNFA	No Site Summary	NA
4008	Front Avenue MP	NFA	No Site Summary	NA
TSCA site, no	GE - NW 28th	Cleanup occurring under	No Site Summary	NA
ECSI#		TSCA		
4655	Greenway Recycling	CNFA	No Site Summary	NA
2406	PGE - Forest Park	Source control decision	No Site Summary	NA
5103	SFI	NFA	No Site Summary	NA
1196	Galvanizers	Source control decision	No Site Summary	NA
146	Paco Pumps	NFA	No Site Summary	NA
69	Wilhelm Trucking	Source control decision	No Site Summary	NA

BRA - baseline risk assessment

CERCLIS - Comprehensive Environmental Response, Compensation and Liability Act

CNFA - Conditional No Further Action

CUP - Cleanup Program

DEQ - Oregon Department of Environmental Quality

ECSI - Environmental Cleanup Site Information

FFA - Federal Facilities Agreement

FS - feasibility study

MOA - memorandum of agreement

NA - not applicable

NFA - No Further Action

PA - preliminary assessment

PNFA - Partial No Further Action

RCRA - Resource Conservation and Recovery Act

RD/RA - Record of Decision/Remedial Action

RI - remedial investigation

ROD - Record of Decision

SE - site evaluation

SI - site investigation

TSCA - Toxic Substances Control Act XPA - expanded preliminary assessment

^a ECSI sites that are shown on this table but are outside the boundary shown on Map 4.2-1 include ECSI #87 (Nurnberg Scientific Co.), #1306 (Mocks Bottom Concrete and Debris Landfill), #1897 (Sylvan Cleaners), #3301 (Forest Park Drainage Tunnel), #3807 (Roadway Express). In addition, the individual terminals that are a part of Willbridge Bulk Fuel Facility (i.e., ECSI #25 - Chevron, #160 - Shell Oil, and #177 - Unocal) are not depicted on this map.

^b Obtained from http://www.oregondeq.com/lq/ECSI/ecsiquery.asp?listtype=lis&listtitle=Environmental+Cleanup+Site%20Information+Database

^c Information on sites with site summaries was updated on the basis of USEPA/DEQ comments on the Round 2 Report (USEPA 2008b) in November 2008. Information on sites with no site summary was obtained from the above website between December 2008 and June 2009, and updated July 2011.

 $^{^{\}rm d}$ Based on independent investigations performed in 2007-2008, as documented in Table 4.4-3.

										Pathwa	y Summary					
						Gre	oundwater			Direct Discha	arge		Overland T	ransport	Riverbank	Erosion
							Status		Stormw	ater	Overw	ater		Status		ıtus
Site Name	ECSI#	River Mile	River Bank		Industrial Sector (Historical and Current)	COIs	Pathway Sta	NAPL	COIs	Pathway Status	COIs	Pathway Status	COIs	Pathway Sta	COIs	Pathway Stat
ECSI Sites within Study Area																
ACF Industries	794	3.7	West	Former UST area, sandblasting, painting, adjacent rail tracks	Electrical Production, Metals	4,7	H-c, C-d	?	1,4,7 (Stormwater Ditch)	H-b, C-d		N/A		H-d, C-d		N/A
Alder Creek Lumber Co.	2446	2.7	West	Wood waste leachate, private outfalls, overwater dock, potentially contaminated dredge material	Wood Products	NS	H-c, C-c	?	11	H-c, C-d		H-b, C-b	11	Н-с, С-с	11	H-c, C-
Anderson Brothers	970	8	West	Former UST, paint spill area, historic waste disposal system	Bulk Fuel		H-d, C-d	?	1,3,4,5,6,7,9	H-a, C-d		N/A		N/A		N/A
ARCO	1528	4.9	West	Truck-loading rack area, remanufacturing warehouse, tank farms, historical spill areas, groundwater plume, seepage from interceptor well and seawall, dock operations	Bulk Fuel, Shipbuilding, Wood Products	1,3,4,7	H-a, C-b	Y	1,3,4,7	H-b, C-c	3,4,7	H-a, C-a		N/A		N/A
Arkema	398	7.3	West	Former unlined MPR pond and trench, historic discharge through pipe, unpaved areas with contaminated soils, historic spill areas, stormwater outfalls, contaminated groundwater plume	Chemical Manufacturing	1,2,5,7,10	H-a, C-a	Y	5	H-a, C ^b -a	4,10	H-a, C-d	NS	H-c, C-d	5,7,10	H-a, C-a
Babcock Land Co.	2361	4.4	West	Foundry sand, historic dock operations	Wood Products	NS	Н-с, С-с	?	NS	Н-с, С-с	NS	H-c, C-d	NS	H-c, C-c	NS	H-c, C-
Burgard Ind. Park - Boydstun Metals, Portland Blast Media	2362	4.1	East	Oil storage area, contaminated soils, stormwater outfall, unknown source	Metals, Shipbuilding	1	H-c, C-c	N	3,6,7	H-c, C-c		N/A		N/A		H-d, C-
Burgard Ind. Park - Noncontiguous Properties	N/A	4.1	East	Former shipyard sewer and stormwater discharges, groundwater contamination on NW Pipe leased property (2)	Metals, Shipbuilding	1,2,4	H-c, C-c	N	11	H-c, C-c		N/A	NS	H-c, C-c	NS	H-c, C-
Burgard Ind. Park - NW Pipe	138	4	East	ASTs and 55-gallon drums, pipe lining and coating building, transformer storage area, asphalt dipper tank, industrial well, dust suppressant use, alleged solvent and petroleum dumping areas, catch basins and storm drains	Metals, Shipbuilding	1,3,4	H-c, C-d	N	1,3,4,6,7	H-b, C-b ^c		N/A		N/A		N/A
Burgard Ind. Park - Portland Container Repair	2375	4	East	PCE groundwater contamination (source unknown), PCB-contaminated soil (since removed), fuel truck parking area, wash pad area	Metals, Shipbuilding	1	H-c, C-c	N	4(?)	H-c, C-c		N/A		N/A		N/A
Burgard Ind. Park - Schnitzer Steel, Calbag Metals	2355	4	East	Former NW Oil Co. tanks, former sanitary sewer and stormwater discharges, former shipyard shipways, ASR on ground surface, storm drains and outfalls, over-water activities	Bulk Fuel, Metals, Commodities, Shipbuilding	1,4,7	H-a, C-c	N	1,4,6,7	H-a, C-b ^c	1,3,4,7	H-a, C-a	NS	H-c, C-c	3,4,6,7	H-c, C-
Calbag Metals - Front Ave.	2454	8.5	West	Metal recycling operations, incinerator ash, stormwater runoff to Outfall 19	Metals		H-d, C-d	N	6,7,9	H-a, C-a ^c		N/A		N/A		N/A
Cascade General (Portland Shipyard /Vigor Industrial) (OU1)	271	8.5	East	Paint shed and blast booth area; BWTP; Buildings 43,50, and 80 areas; Building 73, 4, and 58; WSI storage area; substations; USTs; N. Channel Ave. fabrication site; drydocks and berths	Metals, Shipbuilding, Wood Products	1,7	H-c, C-c	N	1,3,4,6,7,8,9	H-b, C-a ^{c,b}	3,4,7,8,9	H-a, C-a	NS	H-c, C-c	NS	Н-с, С-
Chase Bag	2424	9.2	West	Subsurface groundwater VOC plume, former UST, observed leaking drums along east and south boundaries, observed pool of petroleum substance	Chemical Manufacturing	1	H-c, C-c	?	1,2,7	H-c, C-c		N/A		N/A		N/A
Chevron Asphalt Refinery	1281	8	West	Historic spills and boilovers	Asphalt	3,4,7	H-c, C-d	Y	3,4,7	H-a, C-d ^{c,1}		N/A		N/A		N/A
Christenson Oil	2426	8.8	West	Historic spills, stormwater conveyance, unnamed creek	Bulk Fuel	NS (1) ^d	H-c, C-c	?	1,3,4,7	H-a, C-c ^c		N/A		N/A		N/A
City of Portland - BES WPCL	2452	6.1	East	Historic operations (lumber mill, fruit box manufacturing), fill and debris material, subsurface electrical conduit, historic lumber mill deck. Currently, WPCL.	Wood Products	11	H-c, C-d	N	11	H-c, C-d	NS	H-c, C-d	4,7	H-c, C-d	NS	Н-с, С-с

									•		y Summary		T			
						Gro	oundwater			Direct Discha	arge		Overland Tr	ansport	Riverbank	Erosion
					Industrial Sector	COIs	ay Status	NAPL	Stormwa		Overw <u>s</u>		COIs	ay Status	COIs	ay Status
ite Name	ECSI#	River Mile	River Bank	Potential Upland and Overwater Sources	(Historical and Current)	0	Pathway	Z	COIs	Pathway Status	COLS	Pathway Status	0	Pathway	O	Pathway
City of Portland Outfalls	2425	2.7 to 9.8	East/ West	Stormwater and/or combined sewer outfalls draining multiple properties	NA				Detailed Information provided for Specific Outfalls in Table 4.4-1	H-a ^j , C-a ^j						
Columbia American Plating	29	9.5	West	Metal plating operations, spills and releases	Metals	1,2,7,10	H-c, C-d	N	1,2,3,6,7,9,10	H-a, C-a		N/A		N/A		N/A
Consolidated Metco	3295	2.8	East	PAH-contaminated fill material, cutting fluid spills, catch basins and storm drains	Steel Manufacturing	3,4	H-c, C-c	N	3,4,6,7,9	H-b, C-a ^{c,1}		N/A		N/A		N/A
Crawford Street Corp.	2363	6.5	East	Historic and current manufacturing operations, historic and current site runoff, sandblast fill material, former UST, electrical transformer, railroad right-of-way, historic dock operations, historic private outfalls, beach metal debris	Steel Manufacturing, Wood Products	11	H-c, C-d	N	1,3,4,6,7	H-b, C-c	1,3,4,7	H-b, C-d	1,3,4,6,7	H-b, C-c	1,3,4,6,7,9	H-b, C-c
ESCO Landfill - Sauvie Island	4409	2.6	West	Repository of non-hazardous waste from ESCO steel foundries. Permitted solid wastes include bag house dust, refractory bricks, and spent mold sands (zircon-rich and other suitable sands)	Steel Manufacturing	7,9,10	H-c, C-c	N	NS	H-c, C-c ^c		N/A		N/A		N/A
Evraz Oregon Steel Mills	141	2.4	East	Former Ramsey Lake sump, riverbank fill area, stormwater collection system, historic overwater spills from oil sump transfers	Steel Manufacturing	4 7	H-c, C-d H-c, C-c	Y (H)	3,4,6,7	H-a, C ^{b,c,g} -c	1,2,4	H-a, C-d		N/A	6,7	H-a, C-a
ExxonMobil Oil Terminal	137	5	West	North and Center tank farms, fuel loading rack, over-water fuel transfer spills	Bulk Fuel	1,3,4,7	H-a, C-b	Y	1,3,4,7	H-b, C-c ^c	1,3,4	H-a, C-a		H-d, C-d		H-c, C-d
Foss Maritime/Brix Maritime	2364	5.7	West	Former gasoline and lube oil UST and pipelines, former gasoline dispenser area, former 30-weight oil pipeline area, current lube oil and diesel UST and pipelines, catch basins, transformers, overwater activities (vessel servicing and emissions)	Bulk Fuel	1,3,4,7	H-b, C-d	N	1,3,4	H-c, C-d	1,2,3,4,7	H-a, C-a	NS	H-c, C-d	NS	H-c, C-c
Fred Devine Diving and Salvage	2365	8.4	East	Maintenance operations, former USTs, ASTs, PGE transformers, catch basins, overwater spills, vessel emissions, storage area NE of warehouse	Other	NS	H-c, C-d	?	2,3,4,7,9	H-b, C-d	4	H-a, C-b	4,7,8,9	H-c, C-d	NS	H-c, C-d
Freightliner TMP	2366	8.5	East	Former USTs, former wheel paint booth, stormwater discharges	Other	1,2,4	H-c, C-c	Y?	3,6,7	H-b, C-c ^c		N/A		N/A		N/A
Freightliner TMP2 (Parts Plant)	115	9.3	East	Former UST, former wet filter paint booths, stormwater discharges	Metals	1,2,4	H-c, C-c	Y?	7	H-b, C-c ^c		N/A		N/A		N/A
Front Avenue LP Properties (CMI NW, Hampton, Lonestar NW/Glacier NW, Tube Forging)	1239	8.3	West	Slag fill material, Parcels 1, 2, and 3 former and current operations, caustic-lube oil and graphic lube oil discharges to storm drain, overwater activities	Metals	1,2,3,4,6,7	H-c, C-c	N	1,2,3,4,6,7,9	H-b, C-c ^c	4	H-b, C-b	1,2,3,4,7	H-c, C-d	7	Н-с С-с
Gasco (NW Natural, Koppers, Pacific Northern Oil)	84, 2348	6.5	West	Former retort area, former tar processing area, former light oil plant Kopper Co. Plan/Current KI tank farm, former naphthalene plant, former coke oven area, former pitch plant/tar loading area, former tar settling ponds, former Kopper Co./Current KI pencil pitch storage area	Bulk Fuel, Manufactured Gas, Commodities	1°,2 ^f ,3,4,7,10	H-a, C-a	Y	1°,2 ^f ,3,4,7, 10	H-a, C ^b -a	3,4	H-a, C-b	1 ^e ,2 ^f ,3,4,7,10	H-a, C-b	1°,2°,3,4,7	H-a, C-a
GE Decommissioning	4003	9.5	West	Former equipment handling and pressure washing areas, report of subsurface oil in storage yard, former transformer pit outlet drain, catch basins and storm drains	Electrical Production	4,6,7	H-c, C-c	N	3,4,6,7	H-a, C-a ¹		N/A		N/A		N/A
Georgia Pacific - Linnton	2370	3.6	West	Gasoline UST and soil remediation pile, ASTs, former ACF site, former wood-treating plant, former Linnton Oil fire training grounds, dock and former overwater fueling	Bulk Fuel, Commodities, Wood Products	1,3	H-c, C-d	N	1,3,4	H-c, C-d	NS	H-b, C-b		H-d, C-d	NS	H-c, C-c

										Pathwa	y Summary					
						Gro	undwater			Direct Disch	arge		Overland Tr	ansport	Riverbank	Erosion
					[Status		Stormw	ater	Overwa	ater		Status		atus
site Name	ECSI#	River Mile	River Bank	Potential Upland and Overwater Sources	Industrial Sector (Historical and Current)	SIO O	Pathway Sta	NAPL	COIs	Pathway Status	COIs	Pathway Status	COIs	Pathway Sta	SOOS	Pathway Stat
Goldendale Aluminum	2440	10	East	Former alumina and pitch handling operations, ASTs, former USTs, storage buildings, transformers, outfalls, overland runoff areas, historic grain shipment facility, dock operations and spills	Commodities		H-d, C-d	N	3,4,7	H-b, C-d ^c	3,4,7	H-a, C-b	1,2,3,4,7	H-c, C-d		N/A
Gould Electronics/NL Industries	49	7.2	West	Former smelter and other site operations, historical landfilling operations, surface and subsurface soil contamination, former East Doane Lake sediment, current onsite containment facility	Steel Manufacturing, Metals		H-d, C-d	N	1,3,5,7,10	H-a, C-d ¹		N/A		N/A		N/A
GS Roofing	117	7.5	West	Facility operations, former USTs, storm sewer catch basins/drains, and overwater separators, former wastewater discharge, landfilled materials, railroad spur, finished products storage area	d Asphalt	1,2,4,7	H-c, C-c	Y(H)	1,3,4,7	H-b, C-c ^b		N/A	NS	H-c, C-c	NS	Н-с, С-
Gunderson	1155	8.8	West	Former TCA tank, marine paint and blast areas, launchways, former salvage yard, hazardous materials storage areas, marine barge launchways, railcar storage on outfitting dock, fill material in Area 3	Metals, Shipbuilding	1,3,4,7	H-a, C-a	N	4,6,7,8,9	H-a, C-a	1,7	H-a, C-b	1,3,6,7	H-a, C-a	1,3,6,7	H-b, C-a
Jefferson Smurfit	2371	4	East	Former fuel ASTs and USTs, stormwater outfalls	Wood Products		H-d, C-d	?	4,7	H-c, C-d ^c		N/A		N/A		N/A
Kinder Morgan Linnton Terminal (GATX)	1096	4.1	West	Petroleum fuel storage areas, dock operations	Bulk Fuel	1,3,4,7	H-a, C-b	Y	1,3,4,7	H-c, C ^b -c	1,2,4	H-a, C-a		H-d, C-d	NS	H-c, C-c
Kittridge Distribution Center	2442	8.4	West	Historic acetylene plant and lime recovery	Metals		H-d, C-d	N	1,4,6,7,10	H-a, C-d		N/A		H-c-C-d		N/A
Lakeside Industries	2372	8.5	West	Former dry wells, Gunderson VOC groundwater plume, dock operations	Bulk Fuel	1	H-c, C-c	N	NS	Н-с, С-с		H-a, C-b	NS	H-c, C-d	NS	H-c, C-d
Linnton Oil Fire Training Grounds	1189	3.5	West	Residual contaminated soil pockets (remaining after remediation), historical main training area, upper and lower ponds, historical north drainage system (direct discharge to river)	Electrical Production		H-d, C-d	N	3,10	H-a, C-d		N/A		H-d, C-d		N/A
Linnton Plywood (Columbia River Sand and Gravel)	2373, 2351	4.7	West	Eroded bank at maintenance shop area; private outfalls, tug and barge operations at CRSG and historic log operations	Wood Products	4,7,9	H-c, C-d	N	1,2,3,4,6,7,9	H-b, C ^{b,c} -d	4,7	H-a, C-b	3,4,6,7	H-b, C-d	4,7	H-c, C-d
Mar Com - North Parcel	4797	5.6	East	Stained soils, sandblast grit piles, contaminated riverbank soil	Metals, Shipbuilding		H-d, C-d	N		H-d, C-d		N/A	4,6,7	H-b, C-d	1,2,3,4,7,8,9	H-c, C-d
Mar Com - South Parcel	2350	5.6	East	Former sawmill, Building C, steel fabrication building, former warehouse, machine shop, compressor shed, paint booth, contaminated soil in knoll and SW corner	Wood Products, Shipbuilding	1,2,3,4,7,8,10	H-c, C-d	N	1,2,3,4,6,7,8,9	H-b, C-d ^c	1,2,3,4,7,8,9	H-a, C-d	1,2,3,4,6,7,8,9	H-b, C-d	1,2,3,4,7,8,9	H-b, C-c
Marine Finance (Hendren Tow Boats)	2352	5.8	West	Former metal salvage operation, former USTs, former drum storage area, former warehouse, pooled water below storm drain, overwater dock, stormwater pipe, barge/tug moorage	Metals, Shipbuilding		H-d, C-d	N	1,3,4,7,8	H-b, C-d	1,2,3,4,7	H-a, C-b	1,3,4,7,8	H-b, C-d	1,2,3,4,7,8,10	H-b, C-c
McCall Oil	134	7.9	West	Bulk fuel storage, marine fuel transfers, rail fuel transfers, former CCA and solvent storage, drum storage, underground pipeline corridor, catch basins, upgradient facilities (Chevron, TFA), dock operations	Chemical Manufacturing, Bulk Fuel	1,2,3,4,7	H-c, C-d	Y	1,2,3,4,6,7,9	H-b, C-c	1,2,3,4	H-a, C-a		H-d, C-c	2,3,7	H-c, C-c
McCormick & Baxter Creosoting	74	7	East	Former onsite waste disposal area, former central processing area, former tank farm area, former small waste disposal areas and trench, former dock operations	Wood Products	3,7,10	H-a, C-d	Y	3,7,10	H-a, C-d	3,7,10	H-a, C-d	3,7,10	H-a, C-d	3,7,10	H-a, C-d
McWhorter Inc.	135	8.8	West	Historic spills or releases from tanks and pipelines, former creek	Chemical Manufacturing	NS (1,3,4) ^d	H-c, C-d	?	1,2,3,4,9	Н-а, С-с		N/A		N/A		N/A

										Pathwa	y Summary					
						Gro	oundwater			Direct Discha	arge		Overland T	ransport	Riverbank	Erosion
							ıtus		Stormw	ater	Overw	ater		ıtus		ıtus
iite Name	ECSI#	River Mile	River Bank	Potential Upland and Overwater Sources	Industrial Sector (Historical and Current)	COIs	Pathway Status	NAPL	COIs	Pathway Status	COIs	Pathway Status	COIs	Pathway Status	COIs	Pathway Stat
Metro Central Transfer Station	1398	7.2	West	Former steel warehouses, household hazardous waste drop-off site	Steel Manufacturing	1,5,7	H-c, C-c	?	1,2,5,6,7,10	H-c, C-a ^l		N/A		N/A		N/A
Mt. Hood Chemical Corp.	81	8.5	West	Former commercial cleaning product packaging and distribution, chlorinated VOC plume	Chemical Manufacturing	1	H-c, C-c	?	1	H-c, C-c ¹		N/A		N/A		N/A
Olympic Pipeline	2374	3.5-7.9	West	Pipeline pump station (area of 1995 spill), AST farm, soil stockpile area, injection pump area	Bulk Fuel	1,3,4,7	H-c, C-d	N	11	H-c, C-c		N/A		N/A		N/A
Owens Corning - Linnton	1036	3.8	West	Historic releases in pole barn storage area, former wood-processing area, former UST, process area releases in northern portion, historic releases during product unloading at dock	Bulk Fuel, Wood Products		H-d, C-d	N	11	H-c, C-c ^c	3,4	H-b, C-d	3,4	H-c, C-d	3,4	H-c, C-d
PGE Substation E	3976	10.4	West	Former UST	Electrical Production	NS	H-c, C-d	?	H-c, C-d	N/A		N/A		N/A		N/A
POP - Terminal 1 South (Riverscape)	2642	11	West	B-5 area, B-37 (dry well area), B-38 area, B-102 area, B-3, B-11, B-97, berths	Commodities		H-c, C-d	N	11	H-c, C-d	NS	H-b, C-d		N/A	NS	H-c, C-d
POP - Terminal 1 North	3377	10.6	West	Suspected former UST, former wood-filled ravine, soil beneath Warehouse No. 101	Commodities, Shipbuilding, Wood Products	1,3,4,7	H-c, C-d	N	11	Н-с, С-с	NS	H-b, C-d		N/A		H-d, C-d
POP - Terminal 2	2769	10	West	Gearlocker, former Buildings 3060 and 3070, former USTs, berths 201, 202, and 203	Commodities, Shipbuilding, Wood Products		H-d, C-d	N	3,4	H-c, C-c	NS	H-a, C-a		N/A	NS	H-c, C-d
POP - Terminal 4, Auto Storage	172	4.8 to 5.6	East	Completely paved storage yard	Commodities		H-d, C-d	N	11	H-c, C-d ^c		H-d, C-b		N/A		H-d, C-d
POP - Terminal 4, Slip 1	2356	4.3	East	Railroad tracks in western portion of OU1, former paint storage area in OU2, riverbank of Wheeler Bay	Bulk Fuel, Commodities		H-d, C-d	N	3,4,5,6,7,9	H-b, C-c	3,10	H-a, C-b		H-d, C-d	3,7	H-a, C-d
POP - Terminal 4, Slip 3	272	4.7	East	East end of Slip 3, pencil pitch in limited area of riverbank and Slip 3 bank	Bulk Fuel, Commodities	3,4	H-a, C-d	Y	3,5,7,9	H-a, C-a	3,4	H-a, C-d		H-d, C-d	3	H-a, C-a
Portland General Electric - Harborton	2353	3.3	West	Pockets of subsurface contaminated soils near monitoring wells	Electrical Production, Bulk Fuel		H-d, C-d	N		H-d, C-d		N/A		N/A	?	H-d, C-d
Portland Terminal Railroad Co. (aka Guilds Lake)	100	9.5	West	Railroad switching yard	Rail Yard	1,2,3,4,6,7,9	H-c, C-d	?	1,2,3,4,6,7,9	Н-с, С-с		NA		NA		NA
Premier Edible Oils	2013	3.6	East	Near-surface and smear zone contaminated soil in the following areas: 1) former NW Oil Company tank farm, 2) southern shoreline, 3) vicinity of former PEO diesel USTs, 4) WWTP, 5) former process buildings and truck-loading area; historic outfalls	Chemical Manufacturing, Bulk Fuel, Commodities	1,2,3,4,7,9	H-c, C-a	Y	1,3,4,7	H-a, C-a	4,7	H-a, C-d	1,3,4	H-b, C-c	1,3,4	H-b, C-c
Rhone Poulenc (Starlink)	155	7.2	West	Former insecticide and herbicide areas, former lake area, former East Doane Lake	Chemical Manufacturing	1,5	H-a, C-a	Y	1,2,5,7,10	H-a, C-d ^{b,l}		N/A		N/A		N/A
RK Storage and Warehousing	2376	4.5	West	Former UST, former stockpiled oily sludge, former stockpiled sandblast grit	Wood Products, Chemical Manufacturing		H-d, C-d	N	NS	H-c, C-d	NS	H-a, C-d	NS	H-c, C-c	NS	H-c, C-c
RoMarRealty of Oregon	2437	3.8	East	Historic releases from stored scrap metal equipment and parts	Commodities, Wood Products		H-d, C-d	N	4,6,7	H-c, C-d		N/A		N/A		N/A
Ryerson and Son	2441	4.1	East	Historic stormwater trench to slip, USTs	Metals	NS	H-c, C-c	N	NS	H-c, C-c		N/A		N/A		N/A

Table 4.2-2. Upland Site Pathway Assessment Summary.^a

										Pathwa	y Summary					
						Gro	undwater			Direct Discha	arge		Overland Tr	ansport	Riverbank I	Erosion
							Status		Stormwa	ater	Overw	ater		Status		ıtus
iite Name	ECSI#	River Mile	River Bank	Potential Upland and Overwater Sources	Industrial Sector (Historical and Current)	COIs	Pathway Sta	NAPL	COIs	Pathway Status	COIs	Pathway Status	COIs	Pathway Sta	COIs	Pathway Stat
Santa Fe Pacific Pipeline	2104	7	West	Containment area at the SFPP site	Bulk Fuel		H-d, C-d	Y		H-d, C-d		N/A		N/A		N/A
Schnitzer Investment - Doane Lake (Air Liquide)	395	7.3	West	Former discharge of calcium hydroxide into Doane Lake, former acetone UST, unknown source of subsurface contamination, compressor oil spill	Metals	6,7,10	H-c, C-c	N	1,2,6,7,10	H-a, C-a ^l		N/A		N/A		N/A
Shaver Transportation	2377	8.4	West	Diesel fuel AST, former diesel fuel USTs, storage building, overwater activities	Bulk Fuel		H-d, C-d	N		H-d, C-d	4	H-a, C-a		H-d, C-d		H-d, C-
Siltronic	183, 84, 155	6.6	West	Gasco disposal ponds and adjacent lowland areas, Gasco disposal piles, potential Gasco waste product fill (WWTP area and Fab 1 and parking lot), potential disposal area, Koppers via north drainage ditch and City Outfall 22C, former Western Transportation tanks, Olympic pipeline, TCE release and associated plume	Manufactured Gas	1,2,3,4,7,10	H-a, C-a	Y	1,2,3,4,7,9,10	H-b, C ^{b,c} -a	3,4	H-b, C-d	1 ^h ,2,3,4,7, 10	H-b, C-d	2,3,4,7,10	H-b, C-
South Rivergate Ind. Park	2980	2.5 to 3.4	East	JR Simplot: warehouse storage and transfer of urea, truck storage and transfer of anhydrous ammonia, tank storage and transfer of diesel fuel, overwater transfer of urea, anhydrous ammonia, and diesel fuel. Ash Grove Cement: storage tanks and manufacturing	Commodities	NS	H-c, C-c	N	10	H-c, C ^b -c	10	H-a, C-a	NS	H-c, C-c	NS	H-c, C-
ST Services/Shore Terminal (aka NuStar and Valero)	1989, 5130	5.4	West	Terminal tank farm, dock operations	Bulk Fuel	1,3,4	H-c, C-d	N	11	H-c, C-d	NS	H-a, C-a	NS	H-c, C-c	NS	H-c, C-6
Sulzer Bingham Pumps	1235	10.3	West	Former and existing USTs, historic sandblasting areas, hazardous waste storage area (including radioisotopes), electrical substations, historic welding and machine operations on piers, metal slag along riverbank	Metals, Steel Manufacturing, Shipbuilding	1,3,4,7,9,10	Н-с, С-с	?	3,4,7	H-a, C-c	7	H-b, C-b	6	H-c, C-d	7	H-b, C-0
Swan Island Upland Facility (OU2)	271	8.4	East	Impacts to soil/riverbank from historical operations such as electrical substations, module fabrication/painting, and sandblast grit storage	Shipbuilding	1,3,7	H-c, C-c	N	3,4,7,9	H-c, C-c		N/A	NS	H-c, C-c	NS	H-c, C-
Swan Island Upland Facility (OU3)	271	8.4	East	No current or historical sources are known to be present on the facility (which is almost entirely paved with asphalt-concrete)	Shipbuilding	NS	H-c, C-c	N	3,6,7,9	H-b, C-c ^{,b}		N/A	NS	H-c, C-c	NS	H-c, C-
Texaco/Equilon - Bulk Terminal	169	8.8	West	Pipe containment, ASTs, foundry sand, historic wooden flume and utilities (possibly a preferential GW pathway)	Bulk Fuel	1,3,4	H-c, C-c	Y	1,3,4,7	H-c, C-c ¹		N/A		N/A		N/A
Texaco/Equilon - Pipeline	2117	8.8	West	Dock and overwater fueling activities	Bulk Fuel	1,3,4	H-c, C-c	Y	1,3,4	H-c, C-d	1,3,4	H-a, C-d	NS	H-c, C-d	NS	H-c, C-
Time Oil	170	3.5	East	Former wood treatment formulation and storage area, former Main Terminal tank farm, former Bell Terminal tank farm, dock operations	Bulk Fuel	1,2,3,4,7,10	H-c, C-d	Y	3,4,7,10	H-a, C-d ^c	NS	H-b, C-d	1,3,4,7,10	H-c, C-d	3,7	H-c, C-
Transloader International	2367	5.6	West	Dolphin and floating walkway, outfall (ownership unknown)	Wood Products	NS (3,4) ^d	H-c, C-c	?	NS	H-c, C-d	NS	N/A	NS	H-c, C-c	NS	Н-с, С-
Triangle Park (Riedel Env.)	277	7.4	East	Former lumber mills, wood processing, rail car servicing, oil and fuel storage, former concrete plant, former sludge disposal pond, former ASTs and USTs, former power plant, possible underground fuel storage vault, former chemical storage areas, oil spill	Shipbuilding, Wood Products, Electrical Production	1,2,3,4,5,6,7,9, 10	H-c, C-a	N	1,2,3,4,5,6,7,10	H-b, C-a	3,4	H-b, C-d	1,2,3,4,5,6,7,10	H-b, C-a	1,2,3,4,5,6,7,10	H-b, C-
Trumbull Asphalt Plant (Owens Corning Fiberglass)	1160	9.1	West	Asphalt tank farm, roofing production line (historic wastewater discharge to Outfall 18), boiler lines and fuel tank, fume line	Asphalt	1,4	H-c, C-c	Y	3,6,7,9	H-b, C-c		N/A		N/A		N/A
Union Carbide	176	4	East	Former calcium carbide and ferroalloy processing facility, electrical substation, portion of stormwater runoff directed to Willamette	Metals, Steel Manufacturing		N/A		1,3,4,5,6,7,9,10	Н-с, С-с		N/A		N/A		N/A

										Pathwa Pathwa	y Summary					
						Gr	oundwater			Direct Discha	arge		Overland T	ransport	Riverbank	Erosion
							tus		Stormw	ater	Overw	ater		tus		tus
iite Name	ECSI#	River Mile	River Bank	Potential Upland and Overwater Sources	Industrial Sector (Historical and Current)	COIs	Pathway Status	NAPL	COIs	Pathway Status	COIs	Pathway Status	COIs	Pathway Status	COIs	Pathway Stat
UPRR Albina Yard	178	10 to 11	East	Existing and former fueling areas, locomotive washing area, wastewater treatment plant, freight car repair shop (former paint stripper area, former UST)	Rail Yard	2,3,4,7,9	H-c, C-d	N	2,3,4,6,7,9	H-a, C-a	NS	H-b, C-d		H-d, C-d	6	H-c, C-
UPRR St. Johns Tank Farm	2017	4.6	East	Petroleum-contaminated soil	Rail Yard	3,4,7	H-c, C-d	N	3,4,7	H-c, C-d		N/A		N/A		N/A
US Coast Guard - Marine Safety Station	1338	8	East	Dock and overwater maintenance operations, fuel storage and buried product lines, garage, buoy storage yard, former drum storage area, Mt. Jefferson building, catch basins	Wood Products		H-d, C-d	N	3,7	H-b, C-c ^c	1,2,3,4,7	H-b, C-a	NS	H-c, C-d	NS	H-c, C-
USACE - Portland Moorings	1641	6	West	Former sandblasting area, oil-stained soil at west end of property, historic sunken barge	Shipbuilding	1,3,7,10	Н-с, С-с	?	3,4,7,8	H-c, C-c	4	H-a, C-a	3,4,7,8	H-c, C-c	NS	Н-с, С-
U.S. Navy and Marine Reserve Center	5109	8.2	West	UST cleanup site	Other	NS	Н-с, С-с	?	4	Н-с, С-с		N/A		N/A		N/A
Van Waters and Rogers (Univar)	330	8.9	West	Former recycling area, loading dock area, spill areas	Chemical Manufacturing	1	H-d, C-c	Y	1,4,5,7	H-c, C-c ^{b,l}		N/A		N/A		N/A
Willamette Cove	2066	6.8	East	Spills and historic waste disposal practices on the west, central, and east parcels, slag and beach debris, contaminated groundwater and seeps, riverbank soil, historic drydock activities	Shipbuilding, Wood Products	1,3,4,7	H-c, C-c	N	NS	H-b, C-d	NS	H-b, C-d	NS	H-c, C-c	3,6,7	H-b, C-
Willbridge Bulk Fuel Facility (Kinder Morgan, Chevron, ConocoPhilips)	1549	7.5	West	ConocoPhillips, Chevron, and Kinder Morgan bulk terminals and dock operations	Bulk Fuel	1,3,4,7,9	H-a, C-b	Y	1,3,4,5,7,9	H-b, C-b ^{c,l}	1,3,4,7	H-a, C-a	NS	H-c, C-c	3,5,7	H-b, C-6
Willbridge Switching Yard	3395	8	West	Railroad switching yard; train assembly and breakdown only. No fueling or railcar/locomotive maintenance. One 300-gallon AST removed.	Rail Yard		H-d, C-d	N	7	H-d, C-d		N/A		N/A		N/A
CSI Sites between RM 11-11.8				•												
CDL Pacific Grain/Cargill	5561	11.4E	East	Grain exporting terminal	Commodities	NS	H-c, C-c	?	NS	H-c, C-c	NS	H-c, C-a	NS	Н-с, С-с	NS	Н-с, С-с
Glacier NW	5449	11.3E	Е	Historical shipyard. Currently, aggregate loading and unloading.	Commodities, Shipbuilding	NS	H-c, C-c	?	NS	H-c, C-c	NS	H-c, C-b	NS	H-c, C-c	NS	H-c, C-
Ross Island/KF Jacobson	TBD	11.1E	East	Sand and gravel loading and unloading	Commodities	NS	Н-с, С-с	?	NS	Н-с, С-с	NS	H-c, C-b	NS	Н-с, С-с	NS	Н-с, С-с
Tucker Building	3036	11.3	East	Former electrical transformer and other equipment repair facility. Served as PP&L's district office, storage, and warehouse space	Electrical Production	1,3,4,7	H-c, C-c	N	3,4,6,7	H-b, C-d		N/A		N/A		N/A
Westinghouse	4497	11.5	East	Former electrical transformer repair facility	Electrical Production		H-c, C-c	?	6	H-b, C-d		N/A		N/A		N/A
PacifiCorp Albina Riverlots	5117	11.3 to 11.5	East	Former shipyard and machine works property, former electrical transformer storage	Electrical Production, Shipbuilding		H-c, C-c	?	4,6	H-b, C-b ¹		N/A		N/A		N/A
PacifiCorp Knott Substation	5117	11.4	Е	Active substation	Electrical Production	NS	Н-с, С-с	?	11	Н-с, С-с		N/A		N/A		N/A
Vermiculite Northwest, Inc. (former)	2761	11.2	East	Former vermiculite processing/handling area, possibly containing asbestos	Other	NS	Н-с, С-с	?	NS	H-c, C-c		N/A		N/A		N/A

Table 4.2-2. Upland Site Pathway Assessment Summary.^a

										Pathwa	y Summary					
						Gı	roundwater			Direct Discha	arge		Overland T	ransport	Riverbanl	« Erosion
							Status		Stormw	ater	Overv	vater		Status		ıtus
Site Name	ECSI#	River Mile	River Bank	Potential Upland and Overwater Sources	Industrial Sector (Historical and Current)	COIs	Pathway Sta	NAPL	COIs	Pathway Status	COIs	Pathway Status	COIs	Pathway Sta	SIOO	Pathway Stat
Boxer NW Building	4775	11.8	West	Former heating oil tank (now filled), diesel soil contamination	Other	NS (4) ^d	H-c, C-c	?		H-d, C-d		N/A		N/A		N/A
Albers Mill	4590	11.6	West	Possible contaminated fill material (Liberty Ship debris); former fuel oil storage tank (now filled) and associated contaminated soil; six former USTs (removed) and associated soil contamination, historic docks	Commodities	3,4,7	H-c, C-c	?	3,4,7	H-c, C-d	3,4,7	H-c, C-d	7	H-c, C-c	7	H-c, C-6
Waterfront Pearl Condominiums Construction Site	4535	11.7	West	Historic flour mill, contaminated fill material (Liberty Ship debris), contaminated subsurface soil (74,000 tons removed), former overwater activities	Commodities	7	H-c, C-d	?	3,4,7	H-c, C-d	3,4,7	H-c, C-d	7	H-c, C-d	7	Н-с, С-с
Hoyt Street Railroad (former) Hoyt Street Railroad - Pearl Court Pearl Building	1080 1624 4960	11.6	West	Former railyard and fueling facilities, former ASTs and USTs	Rail Yard		H-d, C-d	Y(H)		H-d, C-d		N/A		N/A		N/A
US Postal Service Processing & Distribution Center	2183	11.7	West	Former railyard and fueling facilities, former ASTs and USTs	Rail Yard, Bulk Fuel, Manufactured Gas	1,3,4,7	H-c, C-d	?	1,3,4,7	H-c, C-d		N/A		N/A		N/A
Union Station - Track #5	1414	11.6	West	Former train diesel refueling area	Rail Yard, Bulk Fuel		H-d, C-d	N	3,4	H-c, C-d		N/A		N/A		N/A
Union Station Agricultural Marketing Center Site	1962	11.6	West	Former rail yard, contaminated dredge fill	Rail Yard		H-d, C-d	N	3,4,7	H-c, C-d		N/A		N/A		N/A
Union Station - Parcel B South	1885	11.6	West	Rail yard and rail station, contaminated dredge fill	Rail Yard		H-d, C-d	N	3,4,7	H-c, C-d		N/A		N/A		N/A
Union Station Horse Barn	2407	11.6	West	Former rail yard, manufactured gas plant (south)	Rail Yard, Manufactured Gas	1,3,4	H-c, C-d	N	3,4,7	H-c, C-d		N/A		N/A		N/A
Gender Machine Works, Inc.	2313	11.4	West	Former foundry and machine shop, soil contamination	Steel Manufacturing		H-d, C-d	N	3,4,7	H-c, C-c		N/A		N/A		N/A
Cascade Brake Products	1019	11.3	East	Potential improper disposal of solvent and waste brake fluid	Other	NS	Н-с, С-с	?	NS	Н-с, С-с		N/A		N/A		N/A
Master Chemical Inc.	1302	11.5	East	Chemical manufacturing facility	Chemical Manufacturing		H-d, C-d	N		H-d, C-d		N/A		N/A		N/A
Valvoline	3215	11.2	East	Former foundry, bulk fuel tank spills and associated contaminated soil (removed)	Metals	NS	H-c, C-d	?	1,3,4,7	H-c, C-d		N/A		N/A		N/A
Williamson & Bleid	776	11.5	East	Hazardous waste generator, improper storage and disposal	Other	NS (1,4) ^d	H-c, C-c	?	NS	H-c, C-c		N/A		N/A		N/A
Wilbur-Ellis Co Portland	1331	11.6	West	Former warehouse and distribution center for agricultural chemicals and fertilizer, some pesticide formulation	Chemical Manufacturing	NS (4) ^d	H-c, C-d	?	1,2,3,4,5,6,7	H-c, C-d		N/A		N/A		N/A
Mammal Survey & Control Service	1301	11.6	East	Former pesticide manufacturing facility	Chemical Manufacturing	NS	Н-с, С-с	?	NS	H-c, C-d		N/A		N/A		N/A
Tarr Inc.	1139	11.3	East	Bulk fuel and chemical storage, former USTs (decommissioned) and associated soil contamination (4,000 yd ³ removed), oil spill on nearby gravel lot, possible dry well	Bulk Fuel	1,3,4	H-c, C-c	?	1,3,4	H-c, C-d		N/A		N/A		N/A
RiverTec Property	3067	11.6	West	Former lead-smelting operations	Metals	NS	Н-с, С-с	?	NS	H-c, C-d		N/A		N/A		N/A
Courtyard Hotel	2500	11.8	East	Contaminated soil from unknown source (removed)	Other	NS	H-c, C-d	?		H-d, C-d		N/A		N/A		N/A

										Pathwa	y Summary					
						Gr	oundwater			Direct Discha	ırge		Overland T	ransport	Riverbank	Erosion
							ıtus		Stormw	ater	Overw	ater		Status		ıtus
site Name	ECSI#	River Mile	River Bank	Potential Upland and Overwater Sources	Industrial Sector (Historical and Current)	COIs	Pathway Status	NAPL	COLS	Pathway Status	COIs	Pathway Status	\$IOO	Pathway Sta	\$IOO	Pathway Stat
CSI Sites within Shared Conveyance Syst	ems ⁱ															
ANRFS (aka ABF)	1820	9.5	West	Freight terminal and truck maintenance shop, USTs	Other				3,6,7,9	H-b, C-d						
Ashland Chemical	1076	9.5	West	Former food processing facility, currently a chemical storage facility, stormwater discharges to COP storm sewer pipe	Chemical Manufacturing				3,6,7,9	H-b, C-c						
Calbag-Nicolai	5059	10.3	West	Nonferrous scrap metal facility	Metals				3,4,6,7,9	H-b, C-a						
Carson Oil	1405	9.7	West	Historic pipe leaks and spills, LUSTs, vehicle maintenance activities involving fuels, oil & grease, petroleum-based solvents, surface water discharges to COP storm sewer	Bulk Fuel				1,3,4,6,7,9	H-b, C-c						
Container Management	4784	9.5	West	Container reconditioning facility, water from oil/water separator discharged to COP storm sewer	Metals				3,4,5,6,7,9	H-b, C-c						
Container Recovery	4015	9.3	West	Truck fabricating activities, furnace manufacturing, sheet metal fabrication, stormwater discharges to COP storm sewer	Metals				3,6,7,9	Н-ь, С-с						
Front Avenue MP	4008	9.9	West	Former truck, crane, and rigging operations center; historical releases to soil, catch basins and sump	Other				1,3,4,6,7	H-b, C-d						
GE - NW 28th	No ECSI#	10	West	Former commercial PCB storage facility	Electrical Production				6	H-b, C-b						
Greenway Recycling	4655	8.4	West	Former automobile wrecking yard, vehicle towing and storage, garbage hauling, current construction debris transfer station	Metals				1,4,6,7	H-b, C-d						
Galvanizers	1196	9.4	West	Zinc galvanizing operation since 1940s; some storage of process chemicals, and hazardous and non-hazardous wastes	Metals				3,4,7,9	H-b, C-b ^l						
PGE - Forest Park	2406	8.3	West	Electrical equipment storage	Electrical Production				6	H-c, C-d						
Paco Pumps	146	9.1	West	Pump manufacturing and refurbishing facility	Metals				4,6	H-c, C-d						
Wilhelm Trucking (aka Magnus/Wilhelm)	69	9.6	West	Former lead bearing rehabilitation plant (lead molting operations). Currently, trucking terminal with main shop, wash pads, fuel tanks, and mobile fueling.	Metals				6,7	Н-с, С-с						
SFI	5103	10	West	Former metal working and forge hammering operations	Steel Manufacturing				1,3,4,6,7	H-a, C-c						
dditional ECSI Sites Identified by USEPA	in the Mar	ch 2010 Ger	eral Notic	ce Letters					_		_		_	_		
Hercules, Inc.	988	9.8	West	Manufacturer of water-soluble polymers for paper, emulsions and defoamers	Chemical Manufacturing	NS	H-c, C-c	?	NS	Н-с, С-с		N/A		N/A		N/A
Island Holdings (Cenex Ag Inc., Watumul Properties)	260	9	East	Dumping of waste materials and pesticides into storm drain	Other	NS	H-c, C-d	?	NS	H-c, C-d		H-c, C-d	NS	Н-с, С-с	NS	H-c, C-
Lynden Farms (Foster Poultry Farms, Samuelson Properties, ATC Leasing)	4461	8.9	East	UST release, PCBs detected in soil during UST removal. Site redeveloped with stormwater treatment	Other	NS	H-c, C-c	?	NS	H-c, C-d		H-c, C-d	NS	H-c, C-d	NS	H-c, C-

Table 4.2-2. Upland Site Pathway Assessment Summary.^a

Table 4.2-2. Opland Site Laulway Assessing										Pathwa	y Summary					
						Gro	undwater			Direct Discha	arge		Overland T	ransport	Riverbank 1	Erosion
							atus		Stormw	ater	Overw	ater		atus		atus
					Industrial Sector	COIs	way St	NAPL	OIs	hway atus	OIs	hway atus	COIs	way St	COIs	way St
Site Name	ECSI#	River Mile	River Bank	Potential Upland and Overwater Sources	(Historical and Current)		Path		ŏ	Path Sta	ŭ	Path Sta		Path		Path

Notes:

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI. This table is not an exhaustive list of current or historical sources of contamination. Identification and evaluation of potential sources is ongoing.

g EOSM's permitted discharge from their wastewater plant was not a complete pathway.

ECSI number: DEQ Environmental Cleanup Site Information database number

COI: A chemical is listed as a pathway COI if it was detected in sampled media, identified as having been released to site media, or documented to have been released directly to the river from site operations.

- 1: VOCs
- 2: SVOCs
- 3: PAHs 4: TPHs
- 5: Pesticides/Herbicides (e.g., DDT, chlordanes, aldrin)
- 6: PCB Aroclors and congeners
- 7: Metals
- 8: Butyltins
- 9: Phthalates
- 10: Other (e.g., PCDD/Fs, cyanide)
- 11: None reported

Pathway: The potential for impacting in-water media rated as follows:

- a: The pathway is known to be a contaminant migration pathway the pathway discharges to the river and there are contaminants of interest (COIs)
- associated with the pathway.
- b: Likely a complete pathway.
- c: Insufficient data to make determination.
- d: The pathway is either not complete or has been determined by DEQ to be insignificant (DEQ 2010a)
- N/A: Pathway does not exist at site.

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

NAPL: Available information indicates the presence of historic or current NAPL (Y/N).

N/A = Not applicable, pathway is not present at site (e.g., riverbank at an inland site).

NS = No sampling of upland COIs reported. For stormwater/wastewater, no sampling beyond permit requirements reported.

? = Unknown, typically due to lack of sampling information.

ASR - automobile shredder residue

AST - aboveground storage tank

BTEX - benzene, toluene, ethylbenzene, and xylenes

BWTP - ballast water treatment plant

CCA - chromium copper arsenate

COI - contaminant of interest

COP - City of Portland

CRSG - Columbia River Sand and Gravel

DEQ - Oregon Department of Environmental Quality

DSL - Oregon Division of State Lands

DTL - direct to locomotive

ECSI - Environmental Cleanup Site Information

EOSM - Evraz Oregon Steel Mills

USEPA - U.S. Environmental Protection Agency

GW - groundwater

KI - Koppers International

LUST - leaking underground storage tank

LWG - Lower Willamette Group

MPR - manufacturing process residue

NAPL - non-aqueous phase liquid

NPDES - National Pollutant Discharge Elimination System

PAH - polycyclic aromatic hydrocarbon

PCE - tetrachloroethene

PCB - polychlorinated biphenyl

PEO - Premier Edible Oils

PGE - Portland General Electric

RM - river mile

SFPP - Santa Fe Pacific Pipeline

SWPCP - stormwater pollution control plan

SVOC - semivolatile organic compound

TCA - trichloroethylene

TFA - tank farm area

TPH - total petroleum hydrocarbon

UST - underground storage tank

VOC - volatile organic compound

WPCL - Water Pollution Control Laboratory

WWTP - wastewater treatment plant

^b This site has an active NPDES permit with a direct discharge to the river. See Table 4.3-1 for additional information.

^c Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^dCOIs identified based on review of LUST files and confirmed release records on the ECSI database.

^e VOC COIs include only BTEX for the Gasco site.

Non-PAH SVOCs include only carbazole, dibenzofuran, 2,4-dimethylphenol, 1- and 2-methylphenhene, 2- and 4-methylphenol, and phenol for the Gasco site.

^h VOCs characteristic of Gasco are likely to have been transported overland.

ⁱStormwater COIs at these ECSI sites were identified based on independent investigations, see Table 4.4-3.

^jDEQ identified the COP outfalls as a group. Not all outfalls are known current or historical sources.

^k The overwater pathway is designated H-a or C-a when a release has been documented in the DEQ ERIS database, USCG records, or other similar documentation. If no spills have been recorded for a facility that had or has overwater pathways, the pathway is H-b, C-b.

¹ These sites have or had groundwater infiltration into the City storm sewer.

Table 4.2-3. Shoreline or Nearshore Facilities Upstream of RM 11.8 Listed in DEQ's ECSI Database.^a

ECSI#	Facility or Site Name/Status	Address	Type(s) of Operation	Hazardous Substances/Waste Types	Detected Chemicals in Upland Samples ^b	Potential Pathways to River ^c
71	Martin Electric (aka. Warren Oliver Co.)/ NFA - 1993	91 Foothills Rd. Lake Oswego, OR 97034	Electrical equipment firm	PCBs from transformer waste oils	PCB 1221(S)	Unknown
123	Huntington Rubber Corp. (combined with Willamette Oaks Building -ECSI #883)/ O&M 6/08	7030 SW Macadam Ave. Portland, OR 97219	Rubber products manufacturer	Petroleum	Petroleum-contaminated wastewater	WW
129	Jeff Lohr Residence (aka. Agnes Olsen Residence, Ivan B. Carlson Residence, The Barlow House [1887], Eileen Olsen Property)/FA 8/01	1206 Washington St. Oregon City, OR 97045	Private home	PCBs, oil	Oil- or fuel- related compounds(S), PCBs(S)	Unknown
151	Portland General Electric Station L/ NFA 1994 sediment cap	1841 SE Water Ave. Portland, OR 97214	Steam electric plant, electrical equipment maintenance and warehousing	PCBs, heavy metals, BTEX, PAHs	PCB(S)	DR, GW
263	West Linn Paper Company (aka. Crown Zellerbach, James River Corp West Linn Mill, Simpson Paper Co. Evergreen Mill, West Linn Paper Co. Willamette Falls Mill, Simpson Hog Fuel Site)/ No further remedial action under federal program 10/09	4800 Mill St. West Linn, OR 97068	Wood pulping and specialty paper mill in operation since 1888	Oil, PCBs, PCDD/Fs	Oil- or fuel- related compounds(S), PCB 1221(S)	DR, GW
283	Willamette Falls Locks (COE Civil Willamette Falls Locks, US Army Corps of Engineers)/ XPA recommended 1992	Between lock gates 4 & 5, west side of West Linn, OR 97068	Water transportation, freight	Heavy metals, ammonia, methylene chloride, oils, latex, clarified white water	Ammonia(S), arsenic(S), chromium(S), lead(S), methylene chloride (surface water)	DR
334	I-5/I-84 pesticide spill/DEQ spill response initiated cleanup, site screening recommended 2/94	I-5 & I-84 interchange Portland, OR 97232	450 lbs. CAPTAN (endosulfan) spilled from overturned truck on 2/86	Endosulfan	No information in ECSI	Unknown
383	Old Town Parking-Helistop Structure/ RA 1992	33 NW Davis St. Portland, OR 97209	Broadway Cab Co. service center (mid-1950s-1985)	PAHs, ammonia, heavy metals, PAHs, BTEX	VOCs (GW), PAHs (GW)	GW
602	South Waterfront Redevelopment Area - now Strand Condominium Towers (aka. Lincoln Steam Plant, Pacific Power & Light)/ Remedial action 10/05	SW River Dr. Portland, OR 97201	Parcel 3A - site of former Lincoln Steam Plant	PAHs, lead, arsenic, asbestos, PCBs	Lead(B), oil(S)	DR, GW, SW
689	Zidell Marine Corporation(aka. North Macadam Project, Zidell Explorations)/ROD 2/05, consent decree 6/06, remedial design 9/06	3121 SW Moody Ave. Portland, OR 97201	Ship dismantling, barge construction, tube forging; numerous oil spills reported; fire pits for burning debris and insulation; ballast water discharged onsite	Metals, petroleum hydrocarbons, asbestos, PCBs	Antimony(B), arsenic(S), benzene(GW), chromium(S), lead(S), nickel(B), oil(B), PCBs(B), PAHs(S), tributyltin(S). Metals, PAHs, PCBs, and butyltins also present in sediments.	DR, GW, SW
812	BLE Inc. (aka. BLE Inc. Jeepers Its Ericksons, Ericksons Automotive, Groundwater - Foothills Road Industrial Area, Lake Oswego Area Groundwater Contamination, Lake Oswego Public Water Supply RPN)/ Remedial action recommended 6/00	Eastern end of Lake Oswego; impacted city well at 101 Foothills Rd. Lake Oswego 97034	Inactive public water supply wells	PCE, TCE, cis-1,2-DCE	VOCs(GW)	GW

Table 4.2-3. Shoreline or Nearshore Facilities Upstream of RM 11.8 Listed in DEQ's ECSI Database.^a

ECSI#	Facility or Site Name/Status	Address	Type(s) of Operation	Hazardous Substances/Waste Types	Detected Chemicals in Upland Samples ^b	Potential Pathways to River ^c
875	Schnitzer - SW Moody Ave. (also #1401 SW Moody Right-of-way)/ Unit B: NFA, Units A & C: Phase I RA done 12/95, Phase II RA incorporates development	Units A, B, & C Moody Ave. Portland, OR 97201	Former metals salvaging, processing, & pesticides formulation; property transferred to OHSU	Unit A soils: DDTs, hexachloropentadiene, PCBs, TCE, 1,2 DCE, acetone; Unit A groundwater: barium, lead, cadmium, chromium, lead, zinc, acetone, carbon disulfide, benzene, toluene, 4- methyl-2-pentanone, ethylbenzene, cineole, cyanide; Unit C soils: lead, PCBs, cPAHs	Unit A soils: DDTs, hexachloropentadiene, PCBs, TCE, 1,2-DCE, acetone; Unit A groundwater: barium, lead, cadmium, chromium, lead, zinc, acetone, carbon disulfide, benzene, toluene, 4- methyl-2-pentanone, ethylbenzene, cineole, cyanide; Unit C soils: lead, PCBs, cPAHs	SW, GW
876	North Waterfront Park/ PA recommended 7/92	NW Front Ave. Portland, OR 97209		Benzene, toluene, xylene, ethylbenzene	Benzene(GW), ethylbenzene(B), toluene(B), xylenes(B)	SW, GW
985	Grunbaum Property (aka. Winter Products [former], North Macadam District Project, Konell Construction & Demolition Corp.)/Confirmed Release List 4/04	3604 SW Macadam Ave. Portland, OR 97201	Winter manufactured die-cast zinc furniture hardware with finishes used in the die-cast process; treated wastewater discharged to City sewer. Winter Products relocated in mid-1980s. Currently being redeveloped by Dane Development.	Electroplating wastes - zinc, copper, nickel, cyanide; petroleum products, PCE, TCE	Arsenic (GW), lead (S), petroleum (S), PCE (B), TCE (GW)	SW, GW
986	Winkler Scrap Metal Inc./ Confirmatory sampling recommended 10/96	1737 SE Rhine St. Portland, OR	Scrap metal recycling, including transformers	PCBs, solvents, phenols, BEHP, dioxin/furans	No information in ECSI	Unknown
1006	Oaks Bottom Landfill (aka. Sellwood Disposal Site)/ NFA 1996	1S/1E/S23 Portland, OR 97202	Closed solid waste landfill	Former demolition debris and brush landfill	No information in ECSI	Unknown
1066	Gross Property Disposal Site/ NFA 1992	3S/1E/S2 West Linn, OR 97068	Vacant farm land	PCBs	PCBs(S)	Unknown
1135	NW Cast Metal Products, Broad Spectrum Electronics Lab (aka. Auric Ent., H & M Electronics, Pacific Meats, NW Cast Metal Products, Ross Electric)/ Site confirmatory sampling required 3/96	79 SE Taylor St. Portland, OR 97214	Former Southern Pacific Railroad warehouse, 1912 International Harvester Building, warehouse for several other parties over the years, lab located on 3rd floor in corner of building	Alleged dumping of PCBs, solvents, lead, arsenic, mercury, zinc, cyanide compounds, phenols, acids	PAHs (S)	Unknown
1138	Portland Gas Manufacturing Site (aka Portland Gas & Coke Co.,MGP, Portland Gas Light Co.)/ RI 10/08	NW 1st and Everett Portland, OR 97209	Former coal/gas manufacturing (Portland Gas and Coke) (1860- 1913)	Coal and oil tars, BTEX, spent iron oxide, process wastewaters	VOCs, PAHs (GW); VOCs, PAHs, and cyanide present in sediment	SW, WW, DR?, GW
1258	Abes Main St. Cleaners (aka. Chris & Jessies Main St. Cleaners, ODEQ Abes Main St. Cleaners, Parker J Former Abes Main St. Cleaners)/Remedial action	10863 SE Main St. Milwaukie, OR 97222	Laundry/dry cleaner	Perchloroethylene, trichloroethylene, Stoddard solvent	Tetrachloroethylene(B)	GW, WW
1292	Gibson-Homans Co./USEPA SI 1985, site screening recommended in 1994	3419 SW Moody Ave. Portland, OR 97201	Manufactures protective coatings, including asphaltic roof coatings, aluminum roof coatings, putty, caulk, sealants, wood preservatives, adhesives	No noticeable discharges	No information in ECSI	Unknown
1394	Louis Dreyfus Facility/ Placed on Confirmed Release List 3/97 (low priority)	(foot of) N Holladay St. Dock & Elevator Portland, OR 97227		Petroleum	TPH(S)	DR, GW (unknown)

Table 4.2-3. Shoreline or Nearshore Facilities Upstream of RM 11.8 Listed in DEQ's ECSI Database.^a

ECSI#	Facility or Site Name/Status	Address	Type(s) of Operation	Hazardous Substances/Waste Types	Detected Chemicals in Upland Samples ^b	Potential Pathways to River ^c
1923	Westwood Corp.(aka. Swinterton Builders)/ FS 2000, NFA 2000	3030 SW Moody Ave., Ste. 250 Portland, OR 97201	Foundry & scrap business (1930s-1984)	Diesel-range petroleum, metals, possibly PCBs and PAHs	Diesel, kerosene, lead (S)	SW, GW
1925	Mackenzie/Saito Property (North Macadam District Project)/ PA recommended 11/96	690 SW Bancroft St. Portland, OR 97201	Lumber mill (former)	Oil-range hydrocarbons, PAHs	Benzene(GW), PAHs(GW), ethylbenzene(GW), oil(S), toluene(GW), xylenes(GW)	GW
1973	PECO Mfg. Co., Inc./ RA 1/09	4707 and 4720 SE 17th Ave. Portland, OR	Manufacturer of specialty cast and machine parts	PCBs, PCE, TCE	PCBs(S), PCE and TCE(GW)	GW
2114	Sullivan Electrical Substation/ Site screening recommended	5600 Willamette Falls Dr. West Linn, OR 97068	Electrical substation	No information in ECSI	No information in ECSI	Unknown
2232	Innventures (aka. CM Company Inc. a corp. of Id., Marriott Residence Inn, Portland Development Commission - lot 5)/ Hotspot cleanup, site effectively capped, delisted 2002	2115 SW River Pkwy. Portland, OR 97201	Lumber storage (~1900-1950) for the Portland Lumber Company; scrap steel storage (1950s-1970s); 1994-1995 storage for PAH- contaminated soil	Diesel & heavy oil, petroleum hydrocarbons, metals	PAHs, gasoline, oil or fuel-related compounds (S)	Unknown
2247	Heath Oregon Sign Company/ Placed on confirmed release list 9/02	4644 SE 17th Ave. Portland, OR	Sign manufacturing	Metals, PCBs, TCE, PCE	Arsenic(S), berylium(S), PCBs(S), TCE and PCE(GW)	GW
2301	Clackamette Cove Area (aka. City of Gladstone, Clackamas County Sheriff's Office, Dakota Minerals, Klineline Sand & Gravel, Portland Traction Railroad, City of Oregon, Jack Parker Property, Northwest Aggregates Co., Western Pacific Construction Materials Co.)/ RA 1/04	16288 Main St. Oregon City, OR 97045	No information in ECSI	Gasoline (BTEX, PAHs), heavy metals, asphalt, diesel & lube oil-range TPH, PAHs, chlorinated hydrocarbons	Arsenic(B), chlorobenzene(GW), chromium(S), dichlorobenzene(GW), iron(GW), lead(B), TPH(S)	GW
2409	Ross Island Sand & Gravel Co. (Hardtack Island Plant)/RA 11/05 & land-use assessment 3/06	Hardtack Island-Willamette River Milepost 15, 4315 SE McLoughlin Blvd Portland, OR 97201	No information in ECSI	PCBs, PAHs, petroleum, metals, pesticides/herbicides	Copper(S), PCBs(S), PAHs(S), tributyltin(S)	GW
2414	Eastbank Riverfront Project (aka. Eastbank Esplanade, Portland Development Commission)/ Partial NFA 1999	Portland, OR 97214	No information in ECSI	Lead, petroleum	Lead(S), petroleum(S)	Unknown
2492	South Waterfront Redevelopment Area 3/ ROD 1/04, RA 2/04, Inventory 4/04	SW River Pkwy. & SW Harbor Dr. Portland, OR 97201	Portland Lumber Company (former)	PAHs, metals, diesel, lead, oil	PAHs(B), cadmium(GW), chromium(GW), diesel(S), lead(GW), oil(S)	GW
2613	Willamette View Inc. (aka. Spears, Willie Hot, Willamette View Manor, Willamette View Retirement Home,)/ Site screening recommended 2001	12705 SE River Rd. Portland, OR 97222	Retirement home	diesel-range TPH, lead (offsite source suspected)	TPH(B)	GW
2616	Erickson's Automotive (aka. BLE Inc. Jeepers Its Ericksons, Ericksons Automotive, Groundwater - Foothills Road Industrial Area, Lake Oswego Area Groundwater Contamination, Lake Oswego Public Water Supply RPN)/ NFA 3/04	101 Foothills Rd. Lake Oswego, OR 97034	No information in ECSI	Petroleum, PAHs, VOCs (benzene, toluene, ethylbenzene, xylenes, and chlorinated hydrocarbons)	Dichloroethylene(GW), naphthalene(GW), tetrachloroethylene(GW), trichloroethylene(GW)	GW

Table 4.2-3. Shoreline or Nearshore Facilities Upstream of RM 11.8 Listed in DEQ's ECSI Database.^a

ECSI#	Facility or Site Name/Status	Address	Type(s) of Operation	Hazardous Substances/Waste Types	Detected Chemicals in Upland Samples ^b	Potential Pathways to River ^c
3104	Rodda Paint Building (former)/ Placed on Inventory 4/02	6932 SW Macadam Ave. Portland, OR 97219	Paint-making operation (former)	Toluene, xylene-based solvents, mineral spirits, paint wastes containing metals, water-based resins, petroleum hydrocarbons, chlorinated VOCs	Acetone(S), butylbenzenes(S), chloroform(GW), cumene(B), dichloroethane(GW), dichloroethylenes(GW), ethylbenzene(S), propylbenzene(B), tetrachloroethylene(GW), toluene(GW), trichloroethane(GW), trichloroethylene(GW), trichloromonofluoromethane(GW), trimethylbenzene (GW), vinyl chloride (GW), xylenes (GW)	GW, SW, WW, DR
3993	Pacific Richfield - South Waterfront (aka. North Macadam Investors, North Macadam Central district, Rosebud Holdings, Waterfront South)/ Cleanup 1/04 & partial NFA 4/06	3305-3401, 3500 SW Bond St. Portland, OR 97239	Previously used for sand & gravel operations (1930-1989); small welding shop operated for short period afterward.	Petroleum hydrocarbons, SVOCs, PAHs in localized areas	TPH (S), arsenic (S), low levels of PAHs (GW)	Unknown
4007	Prometheus Property (aka. Lakeside Industries [circa 1989], North Landing, The Landing at Macadam, LLC)/ Placed on Confirmed Release List 11/05	Bond & Lowell St. T1S/R1E/S10 Portland, OR 97201	Undeveloped, former asphalt manufacturing plant (formerly Lakeside); 6-8 USTs with leakage	PAHs, diesel, PCBs, metals	Diesel (S), HPAH (S)	GW, SW
4026	Lake Oswego Chip Facility (Crown Zellerback, Georgia Pacific Wood Chip Facility, Foothills Park, James River Paper Company, City of Lake Oswego)/ RA 2/05 & NFA 10/05	199 Foothills Rd. Lake Oswego, OR 97034	Chip processing, rail lines, barge loading, wood chip loading	PAHs, metals, herbicides	Gasoline (GW), PAHs (S)	GW, SW
4036	US Bank/Blocks 25 & 29 excavated in 2004, partial NFA 5/05	3505-3439 & 3400-3500 SW Bond Ave. Portland, OR 97239	Currently being redeveloped for mixed urban res./comm.; past uses include shipbuilding (1943-1945), steel and metal fabricating, electrical products manufacturing. Blocks 25/29 used for storage of logging and surplus Zidell equipment. Recently used for warehouse/office space with parking/loading dock.	Localized areas of petroleum hydrocarbon contamination	TPH (S)	SW
4085	Two Main Place/ quick cleanup performed for redevelopment/ Conditional NFA 2009	101 SW Main St. Portland, OR 97204	Parking lot for approximately past 20 years; gas stations and laundries in the past	Gasoline and chlorinated hydrocarbons	Petroleum (S, GW), PCE (GW)	Unknown
4416	Oak Tower Redevelopment/ RA 4/06 & proposed for inventory 10/06	225 Oak St. Portland, OR 97204	Heating oil spill	TPH, PAHs, TCE	Diesel (S), TCE (GW)	Unknown
4420	South Waterfront at River Place - Stanford's Rest., RiverPlace Square Apts (Trammel Crow)/ Added to database 5/05		No information in ECSI	No information in ECSI	No information in ECSI	Unknown
4421	South Waterfront at River Place - SW River Drive & SW River Parkway w/ storm drains/ Consent decree 1989	Parcel 2 Area A, SW River Dr. and SW River Pkwy., Portland, OR 97201	No information in ECSI	No information in ECSI	No information in ECSI	Unknown
4422	South Waterfront Park - on the river (aka. South Waterfront Redevelopment Area, Parcel 3A/3B)/ RA (capped PAH- contaminated soil, bank stabilization) 10/05	Parcel 3A & 3B, Area D Foot of SW Montgomery St., Portland, OR 97201	Parcel 3A - site of former Lincoln Steam Plant	No information in ECSI	No information in ECSI	Unknown

Table 4.2-3. Shoreline or Nearshore Facilities Upstream of RM 11.8 Listed in DEQ's ECSI Database.^a

ECSI#	Facility or Site Name/Status	Address	Type(s) of Operation	Hazardous Substances/Waste Types	Detected Chemicals in Upland Samples ^b	Potential Pathways to River ^c
4423	South Waterfront Park- PGT Building(aka. South Waterfront Parcel 3B)/ NFA 1994, added to database 5/05	Parcel 3B SW River Pkwy. Portland, OR 97201	No information in ECSI	No information in ECSI	No information in ECSI	Unknown
4424	South Waterfront River Place Lot 108- NE corner SW River Dr/SW River Pkwy/ FS 2/05, asbestos removal alternatives 5/05	Parcel 3B, Area D SW River Pkwy./SW River Dr. (NE Corner) Portland, OR 97201	No information in ECSI	Buried asbestos	No information in ECSI	Unknown
4426	East Portland Gas Works (former)/ Site screening recommended 6/05	110 SE 2nd Ave. & 5 SE Martin Luther King Ave. Portland, OR 97214	Former gas plant	PAHs	No testing has been completed	Unknown
4527	Neighborhood Park (public Storage)/ NFA 2007	3508 SW Moody Ave. Portland, OR 97239	Machine shop and door manufacturer (1950's-1960's), now storage units	PAHs, VOCs, metals	Diesel-range petroleum hydrocarbons (GW), VOCs (B), metals (B), PAHs (S)	Unknown
4578	Everett Street Building/site screening recommended 1/06 (Kronke, Trutz)	509 NW Everett St. Portland, OR 97209	No information in ECSI	PAHs and lead, unknown source	PAHs (S), lead (S)	Unknown
4597	Traschel Property (aka. American Cleaners)/Independent cleanup 3/06	502/503 Main St. Oregon City, OR 97045	Former dry cleaner, auto sales, auto repair	Gas, diesel, VOCs	Diesel (B), PCE (GW), gas (S), waste oil (S)	Unknown
4612	Waterside Development Project/ Site screening recommended 2006	4850 SW Macadam Ave. Portland, OR 97201	No information in ECSI	No information in ECSI	Barium (B), diesel-range petroleum hydrocarbons (S), heavy-oil total petroleum hydrocarbons (S), naphthalene (GW), lead (S)	Unknown
4621	King Crusher/ Added to Independent Cleanup Program 2006	1306 NE 2nd Ave. Portland OR 97323	This is a heavy equipment manufacturer (rock crushing equipment).	Petroleum Hydrocarbons	No information in ECSI	Unknown
4629	South Waterfront Central District Blocks 46 and 49/ Recommended for Confirmed Release List 2009	601 SW Abernathy St. Portland, OR 97201	Past use: warehouse (furniture, doors, lumber), road construction equipment storage, asphalt storage, and gravel storage. Current use: vacant land and temporary parking area. Three USTs formerly onsite; operational practices.	TPH, PAHs, VOCs, and metals	No information in ECSI	GW
4825	South Waterfront Central District Blocks 46 and 49 Was originally a subset of ECSI # 4629/ Remedial Action 2006	601 SW Abernathy St. Portland, OR 97201	No information in ECSI	Oil-range petroleum hydrocarbons and polynuclear aromatic hydrocarbons.	No information in ECSI	Unknown
4632	Rexel/Taylor Electric Warehouse/ PPA and closeout 2010	1709 SE 3rd St. Portland, OR	No information in ECSI	Estimated 10 gallons of oil released during an onsite fire	PCBs	SW, GW
4723	Pacific Pride/ Site evaluation 2008	6230 SW Macadam Ave. Portland, OR 97239	The site is the former location of an auto wrecking yard (Mesher/Union Auto Wrecking Co.; 1930-35), a former boat building facility (Willamette Boat & Manufacturing Co.; 1936-41), and a bulk fuel storage facility	TPH, PAHs, VOCs, and metals	PAHs (GW), VOCs (GW), TPH-diesel (GW), TPH-gas (B)	GW

Table 4.2-3. Shoreline or Nearshore Facilities Upstream of RM 11.8 Listed in DEQ's ECSI Database.^a

ECSI#	Facility or Site Name/Status	Address	Type(s) of Operation	Hazardous Substances/Waste Types	Detected Chemicals in Upland Samples ^b	Potential Pathways to River ^c
4772	Macadam Sunset Fuel - Pacific Pride Site 2/ Site evaluation 2008	6230 SW Macadam Ave.	The site is the former location of an auto wrecking yard (Mesher/Union Auto Wrecking Co.; 1930-35), a former boat building facility (Willamette Boat & Manufacturing Co.; 1936-41), and a bulk fuel storage facility	TPH, PAHs, VOCs, and metals	PAHs (GW), VOCs (GW), TPH-diesel (GW), TPH-gas (B)	GW
4724	JC Cleaners/ NFA 2009	6141 SW Macadam Ave. Ste. 101 Portland, OR 97239	Dry cleaning facility, former metal fabrication	PCE and TCE	No information in ECSI	GW
4789	Lake Texaco Service/ Site screening recommended 2007	496 N State St. Lake Oswego, 97034	The property has been an operating service station since 1939.	Gasoline and heavy oil and grease	No information in ECSI	GW
4811	Blue Heron Paper Mill/ Site investigation 2008	419 Main St. Oregon City, 97045	Wood pulping and paper manufacturing activities since 1908	PCBs, metals, TPH, PCDD/Fs	No information in ECSI	Unknown
4824	Pollock Building/ Site screening recommended 2007	406 A Avenue Lake Oswego, OR 97034	Former dry cleaning operation	PCE	No information in ECSI	GW
4914	ODOT Right-of-Way, SW Harbor Dr. below I-405 RAMP/ Site screening recommended 2007	East edge of SW Harbor Drive, below westbound I-5 exit ramp onto I-405 Portland, OR 97201	No information in ECSI	No information in ECSI	No information in ECSI	Unknown
4925	Oregon Plating Company/ Site evaluation 2009	436 SE 6th Ave Portland, OR 97214	Electroplating activities for the past 75 years	Acids, bases, toxic metals (chromium, copper, nickel, silver, zinc, lead, cadmium), cyanide salts, ammonium salts, and chlorinated solvents (methylene chloride)	No information in ECSI	SW, GW
4956	Downtown Portland Sediment Areawide Investigation/ Site investigation 2008	Willamette River, from Ross Island to downtown Portland	No information in ECSI	No information in ECSI	No information in ECSI	Unknown
5249	PGE Willamette River Sediment Investigation/ Negotiations 2009	River Mile 13.1 E to 13.5 E and upland sources	No information in ECSI	PCBs, chlordanes, DDTs, and dioxins	PCBs, chlordanes, DDTs, and dioxins (S)	Unknown
5258	Westmoreland Cleaners/ NFA 2010	6701/6717 SE Milwaukie Ave., Portland, OR 97202	Dry cleaning facility	TCE, PCE	TCE, PCE (GW)	GW
5277	South Waterfront Central District Greenway/ Site investigation 2009	South Waterfront Central District, Portland, OR 97329	Former cement manufacturing debris, possible shipbuilding or shipbreaking activities	Lead, PCBs	No information in ECSI	Unknown
5327	Macadam Landing/ Conditional NFA 2010	6633-6639 SW Macadam Ave. Portland, OR 97329	Former roofing activities, housing development, USTs	TPH-Diesel, VOCs, PAHs	TPH-Diesel (S)	Unknown
5392	BENT 3-Portland Streetcar Extension/ Site screening recommended 2010	SE MLK Blvd & SE Taylor, Portland, OR 97214	No information in ECSI	PAHs	PAHs (S)	Unknown
No ECSI#	Portland General Electric Company	301 SE Morrison St. Portland, OR	Spill from pole transformer	PCBs	No information in ECSI	DR

						Potential Pathways
ECSI#	Facility or Site Name/Status	Address	Type(s) of Operation	Hazardous Substances/Waste Types	Detected Chemicals in Upland Samples ^b	to River ^c

Notes:

^a Source: http://www.deq.state.or.us/lq/ecsi/ecsi.htm

^b S=soil or sediment, GW=groundwater, B=both

^c Pathways Identified in ECSI Site Summary Reports: GW = groundwater, SW = stormwater/surface runoff, WW = wastewater discharge, DR = direct release, spill

BEHP - bis-2(ethylhexyl) phthalate

BTEX - benzene, toluene, ethylbenzene, and xylenes

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DCE - dichloroethene

DEQ - Oregon Department of Environmental Quality

ECSI - Environmental Cleanup Site Information

FS - feasibility study

HPAH - high molecular weight polycyclic aromatic hydrocarbon

NFA - No Further Action

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

PCE - tetrachloroethene

PPA - prospective purchaser agreement

RA - risk assessment

RI - remedial investigation

ROD - Record of Decision

SI - site investigation

SVOC - semivolatile organic compound

TCE - trichloroethene

TPH - total petroleum hydrocarbons

UST - underground storage tank

VOC - volatile organic compound

Table 4.3-1. Discharge Monitoring Requirements for Individual NPDES Permits within the Study Area.^a

Facility File No	. Permit No.	Facility Name	Conventional Monitoring Parameters ^b	Chemical Monitoring Requirements b	Mixing Zone (RMZ)	Zone of Immediate Dilution (ZID)
68471	100752	Arkema, Inc.	Outfalls 001, 002, 003, and 004: Flow - N/A Oil & grease - 10.0 mg/L pH - 5.5-9.0 TSS - 130 mg/L Floating solids - No visible discharge	Outfalls 001, 002, 003, and 004: <u>Lead</u> - 0.4 mg/L <u>Zinc</u> - 0.6 mg/L <u>Copper</u> - 0.1 mg/L	Outfalls 001, 002, 003, and 004: The mixing zone is that portion of the Willamette River within a 25-foot radius from the point of discharge. The Zone of Immediate Dilution (ZID) is that portion of the Willamette River within a radius of 2.5 feet from the point of discharge.	Outfalls 001, 002, 003, and 004: The ZID is that portion of the Willamette River within a radius of 2.5 feet from the point of discharge.
108460	102452	Columbia River Sand & Gravel - Linnton Dist. Facility	Oil & grease sheen Outfall 001: Suspended solids - 40 mg/L (daily), 20 mg/L (monthly avg.) Turbidity - 90 NTU (daily), 60 NTU (monthly avg.)		The regulatory mixing zone will be a strip 15 meters wide and 100 meters long going downstream of the effluent pipe.	N/A
64905	101007	Evraz Oregon Steel Mills, Inc.	Outfall 001: Flow - 0.79 MGD TSS - 1,420 lb/day (daily), 532 lb/day (monthly avg.) TDS - 1136 mg/L (monthly avg.) Turbidity - 25 NTU (above stream background levels) Oil & grease - 15 mg/L pH - 6.0-9.0 Total residual chlorine - 0.34 mg/L (daily), 0.17 mg/L (monthly avg.) Excess thermal load (May-Oct) - 30 x 10 ⁶ Kcal/day (7-day moving avg. of daily max) Temperature - N/A Whole effluent toxicity testing - N/A	Outfall 001: Copper - 34 µg/L Zinc - 243 µg/L Total arsenic - 24 µg/L (quarterly avg.) Inorganic arsenic - N/A Cyanide - N/A Total phenols - N/A	Outfall 001: The mixing zone is that portion of the Willamette River within a 30.5-meter radius from the point of discharge.	Outfall 001: The ZID is that portion of the Willamette River within a radius of 3 meters from the point of discharge.
			Outfall 002: Flow - N/A Turbidity - No visually discernible plume at a radius of 10 meters from the discharge point		Outfall 002: The mixing zone is that portion of the Willamette River within a 10-meter radius from the point of discharge.	Outfall 002: The ZID is that portion of the Willamette River within a radius of 1 meter from the point of discharge.
			Internal monitoring point: Flow - N/A	Internal monitoring point: Lead (total recoverable) - 0.23 lb/day (daily), 0.078 lb/day (monthly avg.) Zinc (total recoverable) - 0.35 lb/day (daily), 0.117 lb/day (monthly avg.)	N/A	N/A
			Intake water monitoring: Turbidity - N/A		N/A	N/A
3690	102465	Ash Grove Cement	Outfall 001: Flow - 2,000 L/hr TSS - 50 mg/L (daily), 25 mg/L (monthly avg.) pH - 6.5-8.5 Temperature - N/A		Outfall 001: The allowable mixing zone shall not exceed a strip of the river 1 meter wide extending from the riverbank.	N/A
70725	994109	Columbia Boulevard Wastewater Treatment Plant (CBWTP)	The CBWTP discharges its effluent to the Columbia River; discharge monitoring requirements are applicable to the Columbia River only.	This permit covers CBWTP effluent discharged to the Columbia River and CSO and SSO discharges to the Willamette River; discharge monitoring requirements are applicable to the Columbia River only.	N/A	N/A

Table 4.3-1. Discharge Monitoring Requirements for Individual NPDES Permits within the Study Area. ^a

Facility File N	No. Permit No.	Facility Name	Conventional Monitoring Parameters ^b	Chemical Monitoring Requirements ^b	Mixing Zone (RMZ)	Zone of Immediate Dilution (ZID)
93450	101128	Wacker Siltronic Corporation	Outfall 001: Flow - N/A TSS - 61 mg/L (daily), 23 mg/L (monthly avg.) BOD - 30 mg/L (daily), 15 mg/L (monthly avg.) Fluoride - 32 mg/L (daily), 17.4 mg/L (monthly avg.) Total phosphate - 15 mg/L (daily), 10 mg/L (monthly avg.) Turbidity - N/A pH - 6.0-9.0	Outfall 001: Total chromium - 0.05 mg/L (daily), 0.02 mg/L (monthly avg.) Total toxic organics - 1.37 mg/L	N/A	N/A
			Outfall 002: Flow - N/A Total phosphate - 15 mg/L (daily), 10 mg/L (monthly avg.) TSS - N/A		N/A	N/A
			Outfall 003: Free available chlorine - 0.5 mg/L (daily), 0.2 mg/L (monthly avg.) Total bromine - 0.5 mg/L (daily), 0.2 mg/L (monthly avg.) pH - 6.0-9.0 Temperature - N/A Excess thermal load (June-Sep) - 22 x 10 ⁶ Kcal/day (7-day moving avg. of daily max)	Outfall 003: Bioassays - N/A	Outfall 003: The mixing zone shall consist of that portion of the Willamette River which forms a trapezoid set at right angle to the end of the outfall pipe at Outfall 003. The narrow end is 20 feet wide with the end of the outfall pipe centered on it. The wide end is 55 feet wide and is 200 feet from the outfall. The mixing zone changes with the daily tides from pointing upstream to pointing downstream and back.	Outfall 003: The ZID shall consist of that portion of the Willamette River which forms a trapezoid within the RMZ with the same orientation as the RMZ. It has a narrow end 2 feet wide centered on the end of the outfall pipe. The wide end is about 23 feet wide and is 20 feet from the outfall.
70596	101393	Vigor Industrial LLC (aka Cascade General, Inc.)	Outfall 001: Flow - 1.0 MGD pH - 6.0-9.0 TSS - 50 mg/L TDS - N/A Oil & grease - 10 mg/L Outfall 002: Flow - N/A TSS - 10 mg/L Oil & grease - 10 mg/L Oil & grease - 10 mg/L	Outfall 001: Copper (total recoverable) - 0.34 mg/L Zinc (total recoverable) - 2.6 mg/L Outfall 002: Copper (total recoverable) - 0.23 mg/L Lead (total recoverable) - 0.15 mg/L Zinc (total recoverable) - 1.0 mg/L Tributyltin (total recoverable) - 0.02 mg/L Iron - N/A Manganese - N/A Whole effluent toxicity testing - N/A Priority pollutant scan - N/A	Outfalls 001 and 002: The allowable mixing zone is that portion of the Willamette River within a 10-meter radius from the points of discharge (i.e., the multi-port outfall diffuser).	Outfalls 001 and 002: The ZID is that portion of the Willamette River within a 3-meter radius from the outfall diffuser.
			Outfalls 005, 006, 007, and 008: Flow - N/A Temperature - 184 x 10 ⁶ Kcal/day Excess thermal load - N/A		Outfalls 005, 006, 007, and 008: The allowable mixing zone is that portion of the Willamette River within a 10-meter radius from the points of discharge.	N/A
108015	101314	City of Portland, Port of Portland, Multnomal County - Municipal Stormwater Permit	h MS4 Discharge and Ambient monitoring: TSS, hardness, pH, conductivity, DO, temperature, nitrate- nitrogen, total phosphorous, oil and grease (non-polar and total)		s N/A	N/A

Table 4.3-1. Discharge Monitoring Requirements for Individual NPDES Permits within the Study Area.^a

Facility File N	No. Permit No.	Facility Name	Conventional Monitoring Parameters b	Chemical Monitoring Requirements ^b	Mixing Zone (RMZ)	Zone of Immediate Dilution (ZID)
47430	101642	Koppers, Inc.	Outfall 001: Flow - N/A Temperature - 25°C pH - 6.5-8.5 Oil & grease - 15.0 mg/L (daily), 10.0 mg/L (monthly avg.) Turbidity - N/A	Outfall 001: Phenols - 0.7 mg/L (daily), 0.5 mg/L (monthly avg.) Cyanide - 8.5 μg/L (daily), 4.9 μg/L (monthly avg.) PAHs (total) - 250 μg/L Benz(a)anthracene - 0.032 μg/L Benzo(a)pyrene - 0.032 μg/L Benzo(b)fluoranthene - 0.032 μg/L Benzo(k)fluoranthene - 0.032 μg/L Chrysene - 0.032 μg/L Dibenz(a,h)anthracene - 0.032 μg/L Benzene - 25 μg/L BTEX - 250 μg/L Silver - N/A Pentavalent arsenic - N/A Cadmium - N/A Copper - N/A Mercury - N/A Lead - N/A Tin - N/A Selenium - N/A Zinc - N/A	N/A	N/A
74995	101180	Starlink Logistics (aka Rhone Poulenc)	Outfall 001: TSS - 30 mg/L Temperature - 73.5°F (7-day moving avg. of daily max) pH - 6.5-8.5	Outfall 001: Chlorinated phenols - 1.0 mg/L (daily), 0.5 mg/L (monthly) Phenol - 1.0 mg/L (daily), 0.5 mg/L (monthly) Arsenic - 0.36 mg/L Lead - 0.017 mg/L Mercury - 0.0004 mg/L Bromoxynil - 1.2 mg/L DDT - 0.1 µg/L 2.37,8-TCDD - 10 pg/L OCDD - N/A 2.37,8-TCDF - N/A Total TCDF - N/A Total PeCDF - N/A Bioassay - N/A	The mixing zone is that portion of the Willamette River within a 25-foot radius from the point of discharge.	The ZID is that portion of the Willamette River within a 2.5-foot radius from the point of discharge.
			Internal Monitoring Point 101: Flow - 1 L/sec TSS - 20 mg/L	Internal Monitoring Point 101: <u>Lead</u> - 0.082 mg/L <u>Arsenic (trivalent)</u> - 0.36 mg/L		
100025	102446	Kinder Morgan/Portland Bulk Terminal 4	Outfall 001: pH - 6.5-11 TSS - 130 mg/L Oil & grease - 10 mg/L Floating solids - No visible discharge Oil & grease sheen - No visible sheen	Outfall 001: Total copper - 0.100 mg/L Total lead - 0.120 mg/L Total zinc - 0.300 mg/L	The mixing zone is a strip 3 meters wide extending downstream for 3 meters from the point of discharge.	N/A

Table 4.3-1. Discharge Monitoring Requirements for Individual NPDES Permits within the Study Area.^a

Facility File No	o. Permit No.	Facility Name	Conventional Monitoring Parameters ^b	Chemical Monitoring Requirements ^b	Mixing Zone (RMZ)	Zone of Immediate Dilution (ZID)
100517	101613	Univar USA	Outfall 001: pH - 6.5-8.5 Oil & grease - 15 mg/L (daily), 10 mg/L (monthly avg.) Flow (June-Sep) - 14 gpm (monthly avg.) Flow (Oct-May) - 23 gpm (monthly avg.)	Outfall 001: Benzene - 8 μg/L (daily), 5 μg/L (monthly avg.) Chloroethane - 8 μg/L (daily), 5 μg/L (monthly avg.) 1,2-Dichloroethane - 8 μg/L (daily), 5 μg/L (monthly avg.) 1,2-Dichloroethene - 40 μg/L (daily), 25 μg/L (monthly avg.) 1,1,1-TCA - 21 μg/L (daily), 13 μg/L (monthly avg.) 1,1,2-TCA - 8 μg/L (daily), 5 μg/L (monthly avg.) Trichloroethene - 77 μg/L (daily), 53 μg/L (monthly avg.) Tetrachloroethene - 21 μg/L (daily), 15 μg/L (monthly avg.) Vinyl chloride - 18 μg/L (daily), 11 μg/L (monthly avg.) Cyanide - 65 μg/L (daily), 50 μg/L (monthly avg.) Iron (total/dissolved) - N/A Manganese (total/dissolved) - N/A Total phenols - N/A Arsenic (total) - 105 μg/L Arsenic (inorganic) - N/A	Outfall 001: That portion of the Willamette River extending across the river, 10 meters downstream, and 5 meters upstream.	Outfall 001: That portion of the Willamette River extending 1 meter across the river, 1 meter downstream, and 0.5 meter upstream.
115018	102880	The Pinnacle Condominium Owners' Association	Outfall 001: pH - 6.5-8.5	Outfall 001: Copper - 82.8 µg/L Lead - 22.9 µg/L Mercury - 0.7 µg/L Silver - 7.2 µg/L Zinc - 721 µg/L Iron (total/dissolved) - N/A TPH - 1,000 µg/L BTEX - 250 µg/L Benzene - 25 µg/L Arsenic (total) - 27.7 µg/L Arsenic (inorganic) - N/A Manganese (total/dissolved) - N/A Cyanide - N/A Total phenols - N/A	Outfall 001: The mixing zone will be a strip measuring 2 meters out from the end of the discharge pipe and 2 meters downstream.	

Notes:

BOD - biological oxygen demand

BTEX - benzene, toluene, ethylbenzene, and total xylenes

CBWTP - Columbia Boulevard Wastewater Treatment Plant

CSO - combined sewer overflow

DO - dissolved oxygen

N/A - information not available

NPDES - National Pollutant Discharge Elimination System

PAH - polycyclic aromatic hydrocarbon

RMZ - Regulatory Mixing Zone

SSO - sanitary sewer overflow

TDS - total dissolved solids

TSS - total suspended solids

ZID - Zone of Immediate Dilution

^a DEQ Wastewater permits database accessed 5/20/2009 (http://www.deq.state.or.us/wq/sisdata/facilitycriteria.asp)

^b Values listed are daily maximums unless stated otherwise.

Table 4.3-2. 1974 City Identification of Industrial Users in Portland Harbor and Wastewater Discharge Location.

	Wastewater Characteristics				_				
						g/L		Discharge	CSO
Facility/Address	RM ^a	Pretreatment	pН	BOD	SS	n-hex	Chemical	1,000 gal/day	Outfall
Facilities Discharging Industri	al Wastew	ater to a Municipal Sanit	ary System	in 1974					
H.B. FullerCo	2.6E		8	988	1842			9	NA
10425 N Rivergate									
Consolidated Metco Inc. 13940 N Rivergate	2.8E	Chem treatment	6.5				Zn = 5.0	27	NA
Palmco	3.6E	Closed system except	7.2	1920	279			10	NA
12025 N Burgard		gravity separator for							
		truck wash area							
Container Corp of America	4.0E		6.8	760	590			35	NA
12005 N Burgard									
Borden Chemical	4.5E		9.8	810	860			6	NA
10915 N Lombard									
Port of Portland	4.9E							143	NA
11000 N Lombard									
Koppers Co	6.3W							58	NA
7540 NW St Helens Rd									
Bird and Son, Inc.	7.5W		7.1	400	457			111	NA
6350 NW Front	= «XXX							120	37.1
Shell Oil Co	7.6W	Oil-water separation						129	NA
5800 NW St. Helens Rd Standard Oil Co	7 733	0:1				266		1.7	NIA
5570 NW St. Helens Rd	7.7W	Oil-water separation				266		167	NA
Union Oil Co	7.8W	Oil-water separator						250	NA
5300 NW St Helens	7.0 VV	On-water separator						230	NA
Flint Kote	8.0W		7.8	100	40			25	NA
5700 NW Front	0.0 **		7.0	100	70			23	14/1
Chevron Asphalt	8.1W	Oil-water separation						177	NA
5501 NW Front		P							

Table 4.3-2. 1974 City Identification of Industrial Users in Portland Harbor and Wastewater Discharge Location.

Preintliner Corp. RM Pretreatment PH BOD SS n-lex Chemical 1,000 gal/day Outfail			_		Wastew	ater Chara	cteristics		_	
Freightliner Corp. 8.3E 97 NA				_			g/L		Discharge	CSO
Port of Portland 8.5E Ballast water 203 NA	Facility/Address	RM^a	Pretreatment	pН	BOD	SS	n-hex	Chemical	1,000 gal/day	Outfall
Port of Portland S.5E Ballast water treatment chem/ settling S.5E S.5	Freightliner Corp.	8.3E							97	NA
Teatment chem/settling Settling Settli	6936 N Fathom Ave									
Port of Portland 8.5E SET SE	Port of Portland	8.5E	Ballast water						203	NA
Port of Portland 8.5E	5200 N Lagoon Ave									
March Section Sectio			settling							
Pacific Chain 8.7W		8.5E							187	NA
4200 NW Yeon Western Farm Assoc. 8.8E Settling, vibrating screens 7.4 660 165 383 NA 6135 N Basin Ave screens McCloskey Varnish 8.8W 6.7 7600 20 < NA 4155 NW Yeon Gunderson Bros 9.1W Screens 188 NA 4700 NW Front Volney Felt Co 9.1W Gravity separator 6.6 750 766 112 NA 3750 NW Yeon Columbia-American Plating 3003 NW 35th Ave 9.2W New point source completion Jan. 1975 NA Reimann and McKenney 3000 NW St Helens 9.2W Air flotation w/chemical feed 9.2 880 510 695 25 NA Canteen Company 5001 N Lagoon 9.5 7.6 528 128 5 NA Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA										
Western Farm Assoc. 8.8E Settling, vibrating 7.4 660 165 383 NA 6135 N Basin Ave screens Formula of the company screens NA Screens Screens NA Screens NA Screens Screens NA Screens Screens Screens Screens Screens NA Screens Screens NA Screens NA Screens Screens NA Screens Screens NA Screens Screens NA Screens Screens Screens Screens Screens NA Screens Screens Screens <td></td> <td>8.7W</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>143</td> <td>NA</td>		8.7W							143	NA
Screens Scre										
McCloskey Varnish 8.8W 6.7 7600 20 <<1 NA 4155 NW Yeon Gunderson Bros 9.1W 188 NA 4700 NW Front Volney Felt Co 9.1W Gravity separator 6.6 750 766 112 NA 3750 NW Yeon Columbia-American Plating 9.2W New point source completion Jan. 1975 NA NA 3003 NW 35th Ave 22W Air flotation 9.2 880 510 695 25 NA 3000 NW St Helens W/chemical feed 7.6 528 128 5 NA Canteen Company 9.5E 7.6 528 128 5 NA Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA		8.8E	Settling, vibrating	7.4	660	165			383	NA
4155 NW Yeon Gunderson Bros 9.1W 188 NA 4700 NW Front Volney Felt Co 9.1W Gravity separator 6.6 750 766 112 NA 3750 NW Yeon Columbia-American Plating 3003 NW 35th Ave 9.2W New point source completion Jan. 1975 Reimann and McKenney 9.2W Air flotation 9.2 880 510 695 25 NA 3000 NW St Helens w/chemical feed Canteen Company 9.5E 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA			screens							
Gunderson Bros 9.1W 188 NA 4700 NW Front Volney Felt Co 9.1W Gravity separator 6.6 750 766 112 NA 3750 NW Yeon Columbia-American Plating 9.2W New point source NA 3003 NW 35th Ave completion Jan. 1975 Reimann and McKenney 9.2W Air flotation 9.2 880 510 695 25 NA 3000 NW St Helens w/chemical feed Canteen Company 9.5E 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA	· ·	8.8W		6.7	7600	20			<<1	NA
4700 NW Front Volney Felt Co 9.1W Gravity separator 6.6 750 766 112 NA 3750 NW Yeon Columbia-American Plating 9.2W New point source completion Jan. 1975 NA Reimann and McKenney 9.2W Air flotation w/chemical feed 9.2 880 510 695 25 NA 3000 NW St Helens 3000 NW St Helens 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA									400	
Volney Felt Co 9.1W Gravity separator 6.6 750 766 112 NA 3750 NW Yeon Columbia-American Plating 9.2W New point source completion Jan. 1975 NA NA Reimann and McKenney 9.2W Air flotation w/chemical feed 9.2 880 510 695 25 NA 3000 NW St Helens W/chemical feed 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA		9.1W							188	NA
3750 NW Yeon Columbia-American Plating 9.2W New point source completion Jan. 1975 NA Reimann and McKenney 9.2W Air flotation 9.2 880 510 695 25 NA 3000 NW St Helens w/chemical feed Canteen Company 9.5E 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA			~ .							
Columbia-American Plating 3003 NW 35th Ave 9.2W completion Jan. 1975 New point source completion Jan. 1975 NA Reimann and McKenney 3000 NW St Helens Canteen Company 9.2W w/chemical feed 880 510 528 510 695 25 5 7.6 NA Canteen Company 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 360 186 126 126 92 NA	•	9.1W	Gravity separator	6.6	750	766			112	NA
3003 NW 35th Ave completion Jan. 1975 Reimann and McKenney 9.2W Air flotation 9.2 880 510 695 25 NA 3000 NW St Helens w/chemical feed 7.6 528 128 5 NA Canteen Company 9.5E 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA		0.0111								37.1
Reimann and McKenney 9.2W Air flotation 9.2 880 510 695 25 NA 3000 NW St Helens w/chemical feed V V V V V V V NA Canteen Company 9.5E 7.6 528 128 5 NA 2001 N Lagoon V V Oil-water separation 7.6 360 186 126 92 NA	9	9.2W	•							NA
3000 NW St Helens w/chemical feed Canteen Company 9.5E 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA	3003 NW 35th Ave		completion Jan. 1975							
3000 NW St Helens w/chemical feed Canteen Company 9.5E 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA	Reimann and McKenney	9 2W	Air flotation	9.2	880	510	695		25	NA
Canteen Company 9.5E 7.6 528 128 5 NA 2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA		7.211		7.2	000	310	0,5		23	1171
2001 N Lagoon Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA		9.5E	w/chemical feed	7.6	528	128			5	NA
Hercules Powder 9.5W Oil-water separation 7.6 360 186 126 92 NA		7.51		7.0	320	120			3	1111
1		9.5W	Oil-water separation	7.6	360	186	126		92	NA
DOUGHWEEDE AT HORADON DH	3366 NW Yeon	<i>7.5</i> , ,	air flotation, pH	,	200	100	120		72	1111
adjust	22222111 2011		· •							

Table 4.3-2. 1974 City Identification of Industrial Users in Portland Harbor and Wastewater Discharge Location.

14010 4.3-2. 1774 City Identific					ater Chara				
		-	_		m	g/L		Discharge	CSO
Facility/Address	RM^a	Pretreatment	pН	BOD	SS	n-hex	Chemical	1,000 gal/day	Outfall
Fred Meyer (Dairy)	9.6E		6.4	1190	323			205	NA
4950 N Basin									
Glidden - General Paint	9.6W	Chem. precipitation	6.9	1580	420			2	NA
2800 NW 31st		Batch process							
Richardson Ink Co	9.7W		9	420	110			3	NA
3529 NW Yeon Ave (address									
should be 3259)									
Industrial Air Products	9.8W		12.4					58	NA
3255 NW 26th									
Industrial Battery and	10.6E	none	3					0.1	NA
Charge Inc.									
3166 N Greeley									
ZEHRUNG	10.7W		7.1	192	48			20	NA
2201 NW 20th									
City Galvanizers Co	11.2E	Proposed chemical	5		31		Zn = 30.0	2	NA
820 N Russell		treatment							
Facilities Discharging Industri	ial Wastewo	ater to a Municipal CSO	System (Th	at Could Ove	erflow to Ri	ver) in 1974	!		
Galvanizers Co	9.8W	Proposed chemical	7		456		Zn = 10.0	7	17
2406 NW 30th Ave		treatment					Ni = 0.5		
Schmitt Steel	9.8W							50	17
2407 NW 28th Ave									
Boysen Paint	10.4W		8	100	156			3	15
2100 NW 22nd									
Chase Bag Co	10.4W		8.9	536	84			2	15
2550 NW Nicolai									
Electric Steel Foundry	10.4W							1020	15
2141 NW 25th Ave									
Electric Steel Foundry	10.4W							215	15
2760 NW Yeon									

Table 4.3-2. 1974 City Identification of Industrial Users in Portland Harbor and Wastewater Discharge Location.

		_		Wastew	ater Chara	cteristics		_	
		_	_			g/L		Discharge	CSO
Facility/Address	RM^a	Pretreatment	pН	BOD	SS	n-hex	Chemical	1,000 gal/day	Outfall
Griffith Rubber Mills	10.4W							108	15
2439 NW 22nd Ave									
Imperial Paint	10.4W		8.2	250	4240			1	15
2315 NW Yeon (address									
should be 2526)									
Rentex NW Industrial	10.4W	Screening gravity	10.5	1014	725	632		83	15
1848 NW 23rd Ave		separation							
Willamette Iron and Steel	10.4W						Pb = 4.0	598	15
2840 NW Front									
Consolidated Freightway	11.1W	Oil-water separator				154		100	12
2028 NW Quimby St		under design							
Pacific Steel Foundry	11.2W							92	13
1979 NW Vaughn Street									
American Plating Co	11.4E		3.6		17		Ci = 1.0	15	44A
2751 N Williams Ave							Cu < 1.0		
							Cn = 3.3		
							Zn = 0.8		
Crawford and Doherty	11.4W							90	11
2531 NW 28th Ave									
Opera House Laundry	11.4W		10.7	300	32			1	11
1804 NW Northrop									
Pancich Fish Company	11.4W		7.0	80	92			6	11
300 NW 13th Ave									
Portland Bolt and	11.4W	None	6		50		Zn = 20.0	4	11
Manufacturing							Cr = 10.0		
930 NW 14th Ave									
Centennial Mills	12.4W		6.0	7942	7342			196	9
1362 NW Front Ave									

Table 4.3-2. 1974 City Identification of Industrial Users in Portland Harbor and Wastewater Discharge Location.

				Wastew	ater Chara	cteristics			
		_	_		m	g/L		Discharge	CSO
Facility/Address	RM ^a	Pretreatment	pН	BOD	SS	n-hex	Chemical	1,000 gal/day	Outfall
Facilities Not Discharging Indi	ustrial Was	stewater to a Municipal S	System in 19	74					
Oregon Steel Mills	2.3E	Domestic only to						168	NA
14400 N Rivergate Blvd		sewer						(water use)	
NW Natural Gas Co	6.2W	Domestic only to						336	NA
7900 NW St Helens Rd		sewer							
Pennwalt Chemical Co	7.3W	Domestic only to	8.3	200	320				NA
6400 NW Yeon		sewer							
Rhodia, Inc	7.4W	Industrial waste not							NA
6200 NW St. Helens		discharged to City							
		system							
Oregon Steel Mills	8.2W	Domestic only to						144	NA
5250 NW Front		sewer						(water use)	
Precision Equipment Inc	11.0W	Hauled to waste						3	NA
1627 NW Savier		disposal site							
Wagstaff Batteries Mfg. Co.	11.5E	Use dry wells for						0.4	NA
2124 N Williams		industrial waste							

Source: City of Portland Columbia Blvd. WWTP NPDES Permit Report Condition G-7 - Industrial Users. September 30, 1974

Notes:

BOD - biological oxygen demand

CSO - combined sewer overflow

NA - not applicable

RM - river mile

SS - suspended sediment

^a River mile of site, except when facility discharges to a combined system, the river mile for outfall overflow is shown.

Table 4.3-3. 1967 OSSA Identification of Major Sources of Industrial Wastes in Portland Harbor.

Source	RM	Type of Waste	Present Treatment	Sanitary Waste Disposal	Needed Action
Union Pacific	11.1	Oily water	Oil -water flotation unit, discharge to	City	Continued surveillance
Railway			river		
Gunderson Bros.	8.6	Acetylene lime wastes	Lime retention in sump, thence to	Septic tank, cesspools	Connect to city sewer when
Engr. Corp.			river		available
Reimann &	8.5	Caustic waste	Baffled sump (discharges via Guilds	Discharge to river	Interception planned by city by
McKenney			Lake sewer)		December 1967
Chevron Asphalt Co.	8.0	Heavy oils and asphalts	Sedimentation tank (discharge via	City	Interceptor sewer under
			NW 54th Ave. sewer)		construction
Standard Oil Co.	7.7	Oil and caustic wastes	Sedimentation tank (discharges to	Doane Ave. sewer	To be intercepted by city sewer
[Willbridge]			Willamette River via Doane Avenue)		(under construction)
Union Oil Co.	7.7	Oil wastes	Sedimentation tank (discharges to	Septic tank, drainfield	To be intercepted by city sewer
[Willbridge]			Willamette River via Doane Avenue)		(under construction)
Shell Oil Company	7.6	Oil wastes	Oil water separation thence to river	Septic tank, cesspool	To be intercepted by city sewer
[Willbridge]			via Balboa Creek		(under construction)
Pabco	7.6	Felt paper wastes	Save all	Septic tank, drainfield	City constructing sewers in area
Pennsalt	7.4	Some salt waste in cooling	Continuous monitoring	Septic tank, drainfield	Connect domestic wastes to city
[Arkema]		water			sewer when sewer is completed
McCormick & Baxter	7.2	Creosote	Discharge to river	Septic tank, drainfield	Connect domestic wastes to city
					sewer when sewer is completed
Air Reduction	7.0	Carbide wastes	Discharge to Doane Lake, seepage to	Septic tank, drainfield	Connect domestic wastes to city
(Pacific) Company			river		sewer when sewer is completed
[Kittridge]					_
Chipman Chemical	7.0	Chlorophenolic	In-plant control and treatment	Septic tank, drainfield	Treated effluent and sewage
Co.					wastes to city sewer when sewer is
[Rhone Poulenc]					completed
MP Kirk & Sons	7.0	Battery acid	Discharge to Doane Lake, seepage to	Septic tank, drainfield	Connection of domestic wastes to
[Gould]			river		city sewer when completed

Table 4.3-3. 1967 OSSA Identification of Major Sources of Industrial Wastes in Portland Harbor.

Source	RM	Type of Waste	Present Treatment	Sanitary Waste Disposal	Needed Action
Cargill, Inc.	4.7	Grain wash water	Discharge to river	To the river	Connect to city sewer as soon as facilities available
Dulien Steel Complex	4.5	Domestic sewage	None	To the river	Connect domestic wastes to city in 1967-68
Mobil Oil Co. [ExxonMobil]	4.4	Oily water	Oil-water separator to storm sewer to river	Septic tank, storm sewer	Connect domestic wastes to city sewer when sewer is completed
Richfield Oil Co. [ARCO]	4.3	Oily water	Oil-water separator to river (occasional)	Septic tank to river	Connect domestic wastes to city sewer when sewer is completed
Linnton Plywood	4.2	Glue wastes	Discharge to river	Septic tank, effluent to river	Connect domestic waste and glue wastes to city sewer
Tidewater Oil Co.	4.0	Oily water and hot laundry wastes	Discharge to river	Septic tank, drainfield	Connect to city sewer

Source: OSSA. 1967. Implementation and Enforcement Plan for the Public Waters of the State of Oregon, Oregon State Sanitary Authority, Portland, OR. May 1967.

Notes:

OSSA - Oregon State Sanitary Authority

Table 4.3-4. Active NPDES Permitted Discharges to the Portland Harbor Study Area.^a

14010 4.5 4.	Active NFDES Fermined Discharges to the Fortiand Harbor Study	7 Hou.	Permit	
File No.	Facility	Category	Type	River Mile ^b
Major NPDI	ES - Individual Permit			
108015	City of Portland, Port of Portland, Multnomah County - Municipal Stormwater Permit	STM	NPDES-DOM-MS4-1	multiple
93450	Wacker Siltronic Corporation	IND	NPDES-IW-B14	6.5
70725	Columbia Boulevard Wastewater Treatment Plant (CBWTP)	STM	NPDES-DOM-A1	multiple ^c
Minor NPDI	ES - Individual Permit			_
64905	Evraz Oregon Steel Mills, Inc.	IND	NPDES-IW-B08	2.3
3690	Ash Grove Cement	IND	NPDES-IW-B16	2.8
100025	Kinder Morgan/Portland Bulk Terminal 4	IND	NPDES-IW-B15	4.6
108460	Columbia River Sand & Gravel - Linnton Dist. Facility	IND	NPDES-IW-B16	4.7
108460	Columbia River Sand & Gravel - Linnton Dist. Facility	IND	NPDES-IW-B15	4.8
47430	Koppers, Inc.	IND	NPDES-IW-B15	6.0
74995	Starlink Logistics	IND	NPDES-IW-B15	7.2
68471	Arkema, Inc. (closed, now stormwater only)	IND	NPDES-IW-B16	7.3
70596	Vigor Industrial LLC (aka Cascade General, Inc.)	IND	NPDES-IW-B15	8.3
100517	Univar USA	IND	NPDES-IW-B15	8.9
115018	The Pinnacle Condominiums Owners' Association	IND	NPDES-IW-B16	11.4
General Per	mits			
65589	Owens Corning (Corp.)	IND	GEN01	3.7
106458	Hexion Specialty (aka Borden Chemicals)	IND	GEN01	4.5
62231	Northwest Natural Gas Company	IND	GEN01	6.0
8550	GS Roofing Products Company, Inc.	IND	GEN01	7.4
110322	Oregon Transfer Co.	IND	GEN01	9.0
101321	Freightliner Truck Manufacturing Plant 2 (TMP2)	IND	GEN01	9.2
102334	Sulzer Pumps	IND	GEN01	10.2
44571	Glacier Northwest, Inc.	IND	GEN01	11.1
65589	Owens Corning (Corp.)	IND	GEN05	3.7
54175	McCall Oil And Chemical Corporation	IND	GEN05	7.9
64905	Oregon Steel Mills	STM	GEN12Z	2.3
100415	J. R. Simplot Company - Rivergate Terminal	STM	GEN12Z	2.6
108101	Alder Creek Lumber Co., Inc.	STM	GEN12Z	2.8
109186	Time Oil Co NW Terminal	STM	GEN12Z	3.4
32876	Morse Bros. Linnton Terminal	STM	GEN12Z	3.5
109845	Jefferson Smurfit Corporation (U.S.)	STM	GEN12Z	3.6
111236	Portland Container Repair Corporation	STM	GEN12Z	3.6
65589	Owens Corning (Corp.)	STM	GEN12Z	3.7
108103	Schnitzer Steel Industries, Inc DBA	STM	GEN12C	3.9
108103	Schnitzer Steel Industries, Inc DBA	STM	GEN12Z	3.9
6739	Northwest Pipe Company	STM	GEN12Z	4.2
108460	Columbia River Sand & Gravel - Linnton Dist. Facility	STM	GEN12Z	4.7
4248	BP West Coast Products (ARCO)	STM	GEN12Z	4.8
113672	Toyota Logistics Services, Inc.	STM	GEN12Z	4.8
112017	Exxon Mobil Oil Corporation	STM	GEN12Z	5.0
112103	Olympic Pipe Line Co.	IND	GEN12Z	5.1
109938	Shore Terminals LLC	STM	GEN12Z	5.3
108394	USACE - US Government Moorings	STM	GEN12Z	6.0
111157	Pacific Terminal Services	IND	GEN12Z	6.2
93450	Siltronic Corporation	STM	GEN12Z	6.5

Table 4.3-4. Active NPDES Permitted Discharges to the Portland Harbor Study Area. ^a

14010 4.5-4.	Active NFDES Fermitted Discharges to the Fortiand Harbor Study		ermit	
File No.	Facility	Category	Type	River Mile ^b
107922	Air Liquide (See Liquid Air File 50791)	STM	GEN12Z	7.3
110646	Metro Central Transfer Station	STM	GEN12Z	7.3
8550	GS Roofing Products Company, Inc.	STM	GEN12Z	7.4
107564	Chevron U.S.A Willbridge Transportation	STM	GEN12Z	7.6
100122	Chevron U.S.A. Inc Willbridge Distribution Center	IND	GEN12Z	7.7
107172	Brenntag Pacific Inc. (aka Quadra Chemicals Western Inc.)	STM	GEN12Z	7.8
90845	Conocophillips Company	STM	GEN12Z	7.8
54175	McCall Oil and Chemical Corporation	IND	GEN12Z	7.9
16055	Paramount Petroleum	STM	GEN12Z	8.0
104856	Tube Forgings of America, Inc.	STM	GEN12Z	8.1
100408	Western Star-Truck MFG (aka Freightliner TMP)	STM	GEN12Z	8.2
111878	RM Beverage Delaware, - Maletis Beverage	STM	GEN12Z	8.3
101536	United Parcel Service, Inc.	STM	GEN12Z	8.3
70596	Vigor Industrial LLC (aka Cascade General, Inc.)	STM	GEN12Z	8.3
104250	Columbia Distributing Company	STM	GEN12Z	8.5
114961	Greenway Recycling	STM	GEN12Z	8.6
107443	Roadway Express, Inc.	STM	GEN12Z	8.6
109872	Western Wire Works, Inc.	STM	GEN12Z	8.7
101620	Auto Truck Transport Corporation	STM	GEN12Z	8.7
87693	Equilon Enterprises L.L.C. (DBA)-Shell Oil Products	STM	GEN12Z	8.8
30386	Gunderson, Inc.	STM	GEN12Z	8.8
108730	HAJ DBA Christenson Oil	STM	GEN12Z	8.8
111845	Becker Trucking, Inc. See File #109849	STM	GEN12Z	8.9
113286	Environmental Fibers International	STM	GEN12Z	8.9
103380	Pacific Rail Services	STM	GEN12Z	8.9
110272	Container Recovery, Inc.	STM	GEN12Z	9.0
100721	Tarr Acquisition LLC (Rudie Wilhelm Warehouse Co.)	STM	GEN12Z	9.1
103803	Owens Corning Corp.	STM	GEN12Z	9.1
107658	ABF Freight System, Inc	STM	GEN12Z	9.1
100447	Carson Oil Co., Inc.	STM	GEN12Z	9.2
101321	Freightliner Truck Manufacturing Plant 2 (TMP)	STM	GEN12Z	9.2
111065	IMACC Corporation - Container Management Services	STM	GEN12Z	9.2
112482	Barrich, Inc MRP Services Inc.	STM	GEN12Z	9.2
109852	Portland Terminal Railroad Company	STM	GEN12Z	9.4
110778	Rose City Moving & Storage Company	STM	GEN12Z	9.5
108673	Fred Meyer Dairy Plant (Swan Island Dairy)	STM	GEN12Z	9.6
104892	Galvanizers Company	STM	GEN12Z	9.7
110199	Federal Express Corporation	STM	GEN12Z	9.8
109851	Peninsula Truck Lines, Inc.	STM	GEN12Z	9.9
107985	Stevedoring Services of America, Inc.	STM	GEN12Z	10.0
104836	ESCO Corporation	STM	GEN12Z	10.1
107213	Ash Grove Cement	STM	GEN12Z	10.1
110258	McCracken Motor Freight, Inc.	STM	GEN12Z	10.1
114024	Port of Portland Terminal 2	STM	GEN12Z	9.7
107179	Calbag Metals Co.	STM	GEN12Z	10.2
102334	Sulzer Pumps	STM	GEN12Z	10.2
107655	Savage Services Corp.	STM	GEN12Z	10.3
111331	Sakrete of the Pacific Northwest	STM	GEN12Z	10.9

Table 4.3-4. Active NPDES Permitted Discharges to the Portland Harbor Study Area. a

		P6	ermit	
File No.	Facility	Category	Type	River Mile ^b
111356	CLD Pacific Grain, LLC	STM	GEN12Z	11.4
100571	Tarr Acquisition, LLC	STM	GEN12Z	11.2
109826	USDOT; National Railroad Passenger Corp. (AMTRAK)	STM	GEN12Z	11.6
119612	Harris Rebar Portland Facility	STM	GEN12Z	9.2
118681	IFCO Systems	STM	GEN12Z	4.6
118394	KBB Precast Plant	STM	GEN12Z	10.5
70613	Kinder Morgan Bulk Terminal 5	STM	GEN12Z	1.4
32300	Kinder Morgan Linnton Terminal	STM	GEN12Z	4.1
80841	Kinder Morgan Liquids Terminal LLC	STM	GEN12Z	7.5
119308	RB Recycling, Inc.	STM	GEN12Z	3.6
120521	SAIA Motor Freight	STM	GEN12Z	9.0
119241	SiC Processing USA LLC	STM	GEN12Z	8.4
	TENEX	STM	GEN12Z	1.2
120475	TP Freight	STM	GEN12Z	8.8
102121	Union Pacific Railroad Albina Yard	STM	GEN12Z	10.8
107609	United States Postal Service	STM	GEN12Z	11.6
109186	Time Oil Co NW Terminal	STM	GEN12C	3.4
105307	Jacobsen & Co. Inc., K.F.	STM	GEN12A	11.0
4248	BP West Coast Products (ARCO)	IND	GEN15A	4.8
32300	Kinder Morgan Linnton Terminal	IND	GEN15A	4.1
87693	Equilon Enterprises L.L.C. (DBA)-Shell Oil Products	IND	GEN15A	8.8
110908	Hoyt Street Properties, LLC	IND	GEN15A	11.6

Notes:

CBWTP - Columbia Boulevard Wastewater Treatment Plant

CSO - combined sewer overflow
DEQ - Oregon Department of Environmental Quality

GEN - general

GIS - geographical information system

IND - industrial

NPDES - National Pollutant Discharge Elimination System

ODOT - Oregon Department of Transportation

SSO - sanitary sewer overflow

 $STM\ -\ municipal\ stormwater$

USACE - U.S. Army Corps of Engineers USDOT - U.S. Department of Transportation

Definitions:

GEN01 - Cooling water/heat pumps

GEN05 - Boiler blowdown

GEN12Z - Industrial stormwater

GEN12A - Stormwater: Sand, gravel and other non-metallic mining

GEN12C - Stormwater: Construction activities - 1 acre or more

GEN15A - Tank cleanups and treated groundwater

NPDES MS4 - Municipal Stormwater Permit

 $NPDES-IW-B08-Primary\ smelting\ and/or\ refining\ -\ Ferrous\ and\ non-ferrous\ metals\ not\ elsewhere\ classified\ above$

NPDES-IW-B14 - Facilities not elsewhere classified which dispose of process wastewater (includes remediated groundwater) - Tier 1 sources

NPDES-IW-B15 - Facilities not elsewhere classified which dispose of process wastewater (includes remediated groundwater)

NPDES-IW-B16 - Facilities not elsewhere classified which dispose of non-process wastewaters

^a River miles were determined by Integral GIS based on City-provided GIS layers.

^b DEQ Wastewater permits database accessed February 2011 (http://www.deq.state.or.us/wq/sisdata/facilitycriteria.asp)

^c Discharges from the CBWTP are directed to the Columbia River. The CBWTP also covers CSO and SSO discharges to the Willamette River

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	_		Documented	In-River		
Site Name and ECSI#	River Mile		Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
			· ·	2/22/2007	Diesel oil	Unknown	Storm drain, then to river	Sheen observed on puddle of water. Absorbent materials used to clean up sheen and boomed nearby catch basin.
			_	11/22/2006	Unknown oil	Unknown	Storm drain/outfall	Sheen observed at outfall 001 that originated from vehicle drippings.
				12/28/2005	Lubricating oil	Unknown	Storm drain	Material released from several maintenance pick-up trucks leaking oil around parking log. Heavy rain later washed material into nearby storm drain.
Evraz Oregon Steel Mills #141	2.2	E	Current: Manufacturing of carbon steel coils and plates. Pipe production capabilities are currently being held.	2/4/2000	Hydraulic fluid	1-2 gal	Storm drain, then to river	
				1/14/1998	Unknown oil	Unknown	Outfall to river	Unknown sheen coming from outfall, 10 ft x 800 ft.
			_	12/22/1997	Hydraulic fluid	Some of (~15 gal) 40-70 gal	Catch basin/river	
				7/1/1994	Unknown oil	Unknown	River	Explosion in gas plant resulting in sheen in storm drain.
				3/28/1994	Crude oil	Unknown	River	M/V Overseas Chicago slopped oil off deck of the ship.
				4/29/1945	Oil	Unknown	River	Transfer pipe from vessels to sump was observed to be leaking badly (prior to EOSM ownership).
				12/6/2010	Unknown	Unknown	River	Leak from shaft of propeller of vessel Blue Water Shipping M/V B INDONESIA due to unknown reasons. Dock facility at Ash Grove facility is creating a sheen.
				4/10/2006	Unknown	Unknown	River	Occurred at JR Simplot
				1/12/2006	Hydraulic oil	1 quart	River	Occurred at JR Simplot
				4/18/2004	Tar	Unknown	River	Occurred at JR Simplot
			Current: JR Simplot - storage and distribution of urea and anhydrous ammonia; Union Chemical - manufacturer of	1/23/2004	Hydraulic oil	4 gal	River	During repairs of unmanned barge there was a spill of hydraulic oil into river at Ash Grove Rivergate.
South Rivergate Industrial	2.5	Е	adhesives and glues; Ash Grove Cement - manufacturer of	9/28/2002	Anhydrous ammonia	Unknown	River	Occurred at JR Simplot
Park #2980	2.3	L	calcium oxide; POP/Ft James - distribution of paper	5/29/2001	Granular urea	500 lb	Dock, ship deck, river	Occurred at JR Simplot
			products; Douglas Walters/T&G Trucking.	1/15/2001	Conveyor residual lube oil into river (during maintenance of conveyor)	Unknown	River	Occurred at JR Simplot
			-	12/28/2000	Urea	500 lbs	River	Urea spilled during offloading from a ship.
			-	5/5/1998	500- by 50-ft sheen	Unknown	River	Occurred at JR Simplot
			-	11/16/1999	Sheen on river	Not available	River	Occurred at JR Simplot
				4/13/1998	Urea	1,000-1,600 lb	River	Occurred at JR Simplot
			Current: None; Historical: Aboveground oil storage,	1/18/1994	Hydraulic oil	Unknown	River	M/V Shiokaze hydraulic value packing malfunctioned resulting in a release.
Premier Edible Oils #2013	3.6	Е	manufacturing, packaging, and distribution of chemicals, metals, and metal products, edible oil processing and storage facility.	1988	Edible oil	20-50 gal	GAL	No spills indicated in DEQ ERIS database, spill reported in CSM.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	<u> </u>		Documented	In-River		<u>-</u>
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				9/2/2003	Diesel	10 gal	Barge deck and river	
Noncontiguous Burgard Industrial Park Properties 3.7 #none	2.7	Е	Current: Boydstun Metal Works - automotive trailer manufacturing and automotive parts storage; Morgan CFS -	11/18/2003	Hydraulic fluid	<1 gal	International Slip Waterway	
	3.7	Е	container unloaded (lumber and building materials); — Northwest Pipe - no manufacturing, storage; Schnitzer Steel Remnant - storage; Historical: WWII shipyard.	3/29/2001	Oily water	Unknown	International Slip Waterway	
			Remnant - storage; Historicai: wwn snipyard.	5/1/1981	Transformer fluids containing PCBs	Unknown	Upper and lower decks and bilge of ship	
				2/22/2010	No. 2-D Fuel oil	Unknown	River	Personnel fueling a generator on the deck of small work barge spilled diesel fuel. A small amount was released to the water causing a sheen. PRP listed as Vigor Industrial.
				2/11/2010	Unknown oil sheen	Unknown	River	Unknown sheen in water near vessel at Berth 305.
				12/30/2009	Hydraulic oil	0.5 gal	River	Sheen in water caused by worker unplugging a scupper on the ITB BALTIMORE causing sheen in water. Vigor Industrial reported 0.5 gal to river. Booms and pads applie
				12/15/2009	Hydraulic oil	Unknown	Storm drain	Hydraulic line burst on dirt sorter and discharge material into storm drain that leads to river.
				10/21/2009	Motor oil	Unknown	River	An air compressor on deck of M/V YUKON had a line fair causing a spill of motor oil at Berth 313.
chnitzer-Calbag #2355	4	E	Current: Metals recycling, truck maintenance and repair, warehousing; Historical: Ship construction/shipyard activities (1945-1972, Oregon Shipbuilding), metals	10/16/2009	Gasoline	2 gal	International Slip Waterway	Sinking of boom boat. 2 gallons released from motor into water. 20' boom boat got caught under the dock and sunk to the tide coming in. Approximately 2 gallons of fuel wa lost. Coast guard called. The boat was taken out of the Willamette by crane. Schnitzer says the fuel was non recoverable.
			recycling, truck maintenance and repair, warehousing; upland log storage and log rafting.	1/8/2009	Hydraulic oil	Unknown	River	Release of oil from shiploading container crane due to hydraulic line bursting.
				11/12/2008	Unknown oil sheen	Unknown	River	Unknown sheen observed at dock at RM 3.4.
				8/8/2008	Motor oil	Unknown	River	Oil released from barge due to left over fuel in crushed car leaking onto barge and into river.
				3/17/2008	Unknown oil	Unknown	River	Vehicle dropped in water due to crane grabbing loose piec of car, causing a small sheen.
				12/20/2007	Scrap car body residuals	2-5 gal	River	Scrap car on barge fell into river due to operator error and resulted in sheen on water. 2-5 gallons of oil released duri scrap car transfer.
				11/11/2007	Oil	1 gal	International Slip Waterway	Discharged from crushed automobile mistakenly dropped in Slip.
			-	11/30/2004	Unknown oil	Unknown	River	Unknown sheen observed in river at International Termina
			_	11/18/2003	Hydraulic oil	<1 gal	River	
				9/2/2003	Diesel	10 gal	River	
				12/28/2002	Hydraulic oil	10-15 gal	River	Spill traced to Schnitzer facility, cause not indicated.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	ver		Documented 1	In-River		_	
Site Name and ECSI#	River Mile		Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments	
			*		0.1	TT 1	International Slip		
				3/29/2001	Oily water	Unknown	Waterway		
				5/9/2000	No. 2-D Fuel oil	2 gal	River	Spill due to open valve on facility crane barge.	
			_	2/15/2000	Unknown oil	Unknown	River	Unknown sheen observed within slip at the dock. Suspect	
			_	2/13/2000	Chkhowh on	Clikilowii	Kivei	sheen originated from M/V WATTE HELFA.	
			_	10/13/1998	Hydraulic oil	Unknown	River	Heavy piece of equipment broke hydraulic hose on dock.	
chnitzer-Calbag #2355				2/17/1998	Unknown oil	Unknown	River	Unknown sheen milky in color, dark in spots observed 100 x 100 ft.	
			_	10/28/1997	Unknown sheen	Unknown	River	Unknown rainbow sheen observed, 75 sq ft.	
				7/9/1997	Oil/water mixture	Unknown	River	Released via storm drain during fire fighting activities to extinguish automobile bodies which caught fire.	
			_	5/1/1981	Transformer fluids containing PCBs	Unknown	Upper and lower decks and bilge of ship		
				10/3/2008	Unknown oil sheen	Unknown	River	Unknown sheen observed coming from Outfall #1.	
			-	7/23/2007	Unknown oil sheen	Unknown	River	Unknown sheen observed at Berth 415.	
			_	7/8/2005	Crude oil	Unknown	River	MSO PORTLAND reported release of crude oil from a bar due to unknown causes.	
			-	9/24/2004	Unknown oil	Unknown	River	Unknown sheen observed in river at Terminal 4.	
			-	6/24/2004	Unknown oil	Unknown	River	Unknown sheen observed in river at Terminal 4.	
				8/10/2003	Unknown oil	Unknown	River	Unknown sheen observed in river at Terminal 4.	
			Current: Bulk liquid storage, flour milling and soda ash handling. Historical: Grain storage, cold storage, liquid	4/8/2001	Industrial fuel oil, ship bunker or intermediate fuel oil	10 gal	River	Transversal shipping ship leaking intermediate fuel oil through cracks in hull at Terminal 4.	
Port of Portland Terminal I, Slip 1 # 2356	4.3	E	storage, flour milling, container food freight, break-bulk berth handling, fire boat moorage, and importing ore and	9/25/1993	Hydraulic oil	0.5 gal	River	Hydraulic hose failure originating at Cargill facility. Cargil and Riedel Environmental conducted cleanup.	
			ore concentrates.	10/8/1984	Oil	2-5 gal	River	On October 8, 1984, an oil spill was observed at Berth 405 Cargill reported that 2 to 5 gallons of gear grease had spill out of a bucket by the grain hopper on Pier 1. Riedel Environmental responded to clean up the spill.	
			_	3/20/1972	Grain	Unknown	River	On March 20, 1972, according to a Coast Guard report, Cargill released grain into the Willamette River at Pier 1.	
				12/6/1971	Bauxite	Unknown	River	On December 6, 1971, according to a Coast Guard report, release of bauxite occurred from Portland Stevedoring unloading operations at Pier 2.	
				10/8/2010	Gear oil	Unknown	River	Leak from fire pump on dock creating sheen on water.	
			_	1/31/2008	Aer-o-lite 3% (fire fighting foam)	Unknown	River	Release of foam from oil water separator due to separator being overfilled due to rain.	
Linder Morgan Liquids	4.4	***	Bulk petroleum facility since installation of fuel ASTs in	1/14/2002	Unknown oil	Unknown	River		
Cerminal - Linnton #1096	4.4	W	1918.	8/30/2001	Unknown oil	Unknown	River	Unknown sheen observed in river at Kinder Morgan facility	
			_	6/14/1999	Potash	5-7 tons	River		
			_	10/3/1998	Unleaded gasoline	200 gal	River	Dock line broke on In-City VOYAGER barge.	
				3/3/1998	Potash	<200 lbs	Vessel-Barge	, ,	
			-	2/12/1991	Diesel Oil	Unknown	River	Operator error (overfilling).	

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	River _		Documented	l In-River		<u></u>		
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments		
				1/23/2005	2-D Fuel oil	10 gal	River	Approximately 10 gallons of 2-D fuel oil was released from crane barge due to an overfill with a piece of equipment; cleanup was initiated with booms and absorbents.		
			_	-		8/28/1997	Oil	Unknown	Unknown	While dismantling the dock at Berth 412, an oil pipe line wa cut and some product in the line spilled out. Foss Environmental cleaned up the spill.
				6/18/1997	Pencil pitch	200-1,000 lb	River	Approximately 200-1,000 lb of pencil pitch entered Slip 3 after an operator error on the Dravo.		
				9/25/1996	Pencil pitch	Unknown	River	Pencil pitch is an identified contaminant source in the upland soils and in-water sediments of Slip 3, and Hall-Buck has		
				7/30/1996	Pencil pitch	Unknown	River	been cited by DEQ for numerous violations for pencil pitch handling. This is one of the documented releases of pencil pitch into the air, into the terminal, and/or into the river.		
			Current: Loading soda ash at docks; Historical: Loading soda ash, unloading pencil pitch, storage and unloading of	5/13/1996	Oil	Unknown	River	On May 13, 1996, a thin sheen was observed in the river near Berth 411 by Port and Hall-Buck employees. It appeared that the source was from one of two operations: a broken-down crane the Port had on the dock may have leaked oil during servicing, or Hall-Buck operations. It is unclear who was the responsible party. Both the DEQ and the U.S. Coast Guard were notified.		
Port of Portland Terminal 4, Slip 3 # 272	4.6	E	bulk oil, import and export of ore and concentrate,	5/28/1993	Pencil pitch	Unknown	River			
, эпр 3 т 272			unloading diesel, No. 6 fuel, and Bunker C oil and transferring via pipeline.	4/16/1993	Oil	Unknown	River	Oil was observed on the water in Slip 3. The oil was being discharged with the treated water from the oil/water separator. Foss Environmental Services responded to clean up the oil in the boom area.		
				12/25/1992	Fuel and lube oils	10 gal	River	Approximately 10 gallons of a mixture of weathered light fuel and lube oils seeped into the Willamette River from soil at the east end of Berth 411. Floating booms were placed to contain further discharge.		
			_	12/00/1992	Oil	Minor amount	River	The U.S. Coast Guard observed a minor oil release to the Willamette River at Slip 3. The Port contracted Century West to initiate the abatement of the migrating oil seep.		
				3/2/1992	Pencil pitch	Unknown	River			
			_	2/25/1992	Pencil pitch	Unknown	River	Jones Oregon Stevedoring Co. complained of uncontrolled pencil pitch dust generated by unloading of MV Agness on February 25.		
				7/2/1991	Oil	Unknown	River	The U.S. Coast Guard observed a slight sheen at the head of slip that appeared to be related to the seep at Berth 412.		
				6/2/1991	Oil	Unknown	River	Jones Oregon Stevedoring reported oil leaking out of bank at Slip 3.		
			_	1/5/1990	Pencil pitch	Unknown	River			
				3/15/1988	Pencil pitch	Unknown	River			
					-					

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	•		Documente	ed In-River		
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
			.	10/16/1987	Pencil pitch	Unknown	River	October 16, 1987, when pencil pitch was spilled into the Willamette while Jones was unloading the vessel PARKGRACHT.
Port of Portland Terminal				12/28/1971	Oil	Unknown	River	Portland Harbor Police observed slightly colored to brightly colored oil slick on the water between Piers 4 and 5. The slick covered an area approximately 500 ft wide and 1,000 ft long. The oil was heaviest under the southeast end of Pier 5. Employees of Union Pacific Railroad were attempting to clean up the oil with booms and other absorbent materials.
4, Slip 3 # 272				12/19/1971	Grain	Unknown	River	On December 19, 1971, according to a Coast Guard report, Jones Stevedoring and Cargill released grain into the Willamette River at Pier 1.
				1971	Oil seep	Unknown	River	1971, month/day unknown. Oil seep into Willamette River from southern bank of Slip 3.
				12/15/1970	Oil	Unknown	River	Five oil leaks discovered in original Union Pacific pipeline. December 15, 1970, leak occurred during Union Pacific's pipeline repairs when oil flowed through the sand and escaped into the water.
Linnton Plywood Association #2373	4.7	W	Linnton Plywood - sawmill and lumber company, plywood manufacturing, and warehousing in plywood building. CRSG - sand barging and distribution.	2/17/1995	Pale oil	20-55 gal	Storm drain, sheen on river	
				1/16/2006	Unknown	Unknown	River	Orphan sheen discovered around docks of BP ARCO, 900-ft containment boom deployed to contain sheen.
				10/31/2005	Diesel	15,000 spilled (at least 1,000 gal to river)	Ground/river	
				1995, 2003, 2004	Reported sheen on water inside boomed area (multiple separate incidences)			
				5/14/2000	Crude oil	Sheen	Released from ship, created sheen on river	
ARCO #1528	4.9	W	Current: Petroleum storage and distribution; Historical: Petroleum storage and distribution, foamite plant, toy	6/9/2000	Hydraulic oil	1 barrel	Release from ship to river	
			manufacturing lumber company.	8/13/1997	#2 Diesel	25,000 gal, unknown total amount to river	Ground/river	
				E/4/100E	Automotive ecoline	Halmourn (un to 20 cal)	Released from leaking	
				5/4/1995	Automotive gasoline	Unknown (up to 20 gal)	gasket onto soil then flowed to river	
				8/9/1995	Gasoline	2 gal	Discharge to river (equipment failure on dock)	
			·	4/23/1986	Crude oil	1 cup from ballast pipeline	From ballast pipeline to river	

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	iver _		Documented	d In-River		_
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
POP - Terminal 4 (Auto Storage Facility) #172 \$2642	5	E	Current: Unloading, storing and processing of new automobiles; Historical: Unloading, storing and processing of new automobiles, unloading of steel and export of lumber products on the northern third of the facility.	3/18/1985	Unknown oil	Unknown	Unknown	
N. 1.1.1127	<i>7.</i> 1	W		1/20/2004	Oil residue	4 gal	River via outfall	25 ft out into the river spanning 50 ft on either side of the outfall. Cleanup conducted.
Exxon Mobil #137	5.1	W	Petroleum storage and distribution.	5/4/2004	Oil	Not reported	River	•
			-	3/20/1999	Gasoline	2 gal	River	Occurred from loading arm at Mobil dock.
				6/15/2010	Hydraulic oil	1 gal	River	Removal of hydraulic cylinder cause release of oil into ri PRP listed as Nustar Energy.
C Camriaga/Chama			-	6/5/2010	3M Foam	Unknown	River	Discharge of material to river.
Services/Shore erminals #1989	5.3	W Bulk petroleum storage and marine terminal.	1/20/2004	Other oil	Unknown	Fixed	Heavy film sheen in water coming from leaking oil water separator.	
				8/11/2003	JP8 fuel	50-100 gal	River	SEA COAST barge off-loading JP-8, boomed.
				9/15/1999	Diesel fuel	50-100 gal	River	Release of fuel due to work on piping system.
				7/22/2010	Diesel oil	Unknown	River	Release of diesel fuel from vessel due to equipment failu
				7/21/2008	Unknown oil	1 gal	River	
				7/13/2008	Clarity oil	0.5 cup	River	Equipment failure.
				7/3/2008	Clarity oil	0.5 cup	River	Release from vessel to water due to overboard discharge turning on during maintenance.
				9/9/2004	Lube oil	Unknown	River	
				1995 - 2004	Fuel	<25 gal at a time	River	Small amounts of fuel (<25 gallons at a time) released in Willamette from maintenance activities, periodically from 1995 - 2004.
			-	6/7/2003	Diesel oil	1 pint	River	Tug JON BRIX released small amount of oil.
				4/21/2003	Hydraulic oil	Unknown	River	Pump failure at Foss facility.
				7/8/2002	No.2 Diesel fuel	5 gal	River	During refueling, glass valve not open all the way.
			-	7/8/2002	Fuel	5 gal	River	2 uring returning, glass varie not open un ure way.
oss Maritime/Brix Marino 2364	5.5	W	Current: Marine vessel transportation services and maintenance; Historical: Above and tugboat service and fueling.	10/18/2000	Diesel oil	Unknown	River	M/V FIRE BOAT WILLIAM developed leak in diesel tardue to unknown causes. Spill occurred during refueling do to hole in gas tank - previous weld had failed.
				5/29/2000	Gear oil	2-3 cups	River	Discharged from tug JOSEPH T's bilge pump.
				2/7/2000	Diesel oil	Unknown	River	The material was released from the sounding tube on the LEWISTON due to unknown causes. Area was boomed a pads applied.
				12/15/1999	Fuel oil	17 gal	River	During refueling.
			-	11/11/1999	Diesel fuel	15-20 gal	River	During refueling.
				11/2/1999	Diesel fuel	1 gal	River	During refueling - result of improperly aligned valve.
				1/23/1999	Diesel fuel	1 gal	River	Discharged from tug SARA BRIX.
				12/23/1998	Bilge slop	5 gal	River	
				9/30/1998	Unknown oil	Unknown	River	Sheen observed. Sheen was 75 yds x 10 yds, blue in col
				9/18/1998	Residual oil	Unknown	River	Released from Foss Barge 208 - washed overboard as re of heavy rains and clogged scuppers.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River			Documented	In-River		<u> </u>	
Site Name and ECSI#	River Mile			Date	Materials Released	Volume Spilled	Spill Surface	Comments	
				5/31/1998	Diesel fuel	5 gal	River	Released from tug HOWARD OLSEN at Union Docks (Wilbridge Area to NW St. Helens Rd and NW Kittridge). gallons recovered on deck, 5 gallons released to river.	
				3/21/1998	Oil	5 gal	River	Released from tug FAIR WIND.	
				1/12/1998	Oil	25 gal	River	Vessel bilge.	
				1/12/1998	Diesel oil	5 gal	River	Separator line broke on a marine vessel.	
				10/14/1997	Diesel oil	Unknown	River	Sheen observed around tug JIM MOORE	
				9/2/1996	Diesel oil sheen	Unknown	River	Observed sheen around tug JIM MOORE.	
				4/23/1996	Cable lube grease	Unknown	Storm drain	Released from dumpster. Two 5-gal drums thrown into dumpster, rain washed material from dumpster into nearby storm drain then to river.	
				3/27/1996	Fuel oil	1 gal	River	Released from ship due to overfilling.	
				1/24/1996	Oily waste	2.5 gal	River	Released from two separate incidents.	
				10/16/1995	Diesel oil	Unknown	River	Crack in weld of hull of oil barge.	
				7/15/1995	Oil	7 gal	River	•	
				6/19/1995	Oil	7 gal	River		
				1/18/1995	Diesel oil	Unknown	River	Material released from tugboat shaft.	
ss Maritime/Brix Marin	e			8/8/1994	Oil	3 gal	River	Released at Pacific Northern Terminal.	
364				8/6/1994	Lubricating oil	Unknown	River	Material leaked from barge deck to river.	
				2/19/1994	Oil	Unknown	River	Released at Union Dock.	
				1/20/1994	No 2-D fuel oil	Unknown	River	Soft patch failure on tugboat Clarkston.	
				12/30/1993	Oil	Unknown	River	Sheen observed around tug.	
				12/2/1993	Unknown oil	Unknown	River	Sheen observed, 50 ft x 200 ft silvery color.	
				9/23/1993	Waste oil	1 gal	River	Tugboat T.J. Brix leaked while offloading. Equipment failure.	
				4/21/1993	Diesel oil	Unknown	River	Small amount of product spilled into water when changing out fuel line on dock. Operator error.	
				2/19/1993	Diesel	1 gal	River		
				2/18/1993	Black oil	1.5 gal	River		
				10/30/1992	Oil	Unknown	Not given	Willamette River - Columbia River. Sheen 75 ft x 10 ft.	
				7/22/1992	Diesel Oil	Unknown	River	Material spilled when valve was being replaced. Operato error.	
				7/10/1992	Diesel	1 gal	Not given		
				5/10/1992	Diesel Oil	50 gal	River	Released from hole in vessel.	
				9/12/1991	Waste lubricating oil	3 gal	River	Released from tug to river. Tugboat, sump system overflowed.	
				2/23/2006	Unknown oil - air compressor	1 gal	River		
			Current: None; Historical: shipbuilding and repair,	2/23/2006	Discharge from pipe onto ground and subsequently to	Unknown	River		
ar Com #2350	5.6	E	sandblasting and painting, moorage.	7/11/2000	river Diesel fuel	10-15 gal	River	Hose rupture.	
			sandorasting and painting, moorage.	6/6/2000		Unknown, 50 x 100 ft sheen	River	110se rupture.	
				10/15/1997	Oily/water materials	50 gal	River	Release from vessel.	
				4/2/1997	Sandblasting paint/dust	Unknown	River		

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	iver		Documented	In-River		_
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				4/1/1997	Oil-contaminated bilge water	20 gal	River	
Mar Com #2350				~1970s	Barge in shipway tipped over releasing fuel oil	Unknown	In shipway	The barge/fuel oil release was addressed at the time by excavating the saturated soils/material and placing it on the top of the bank adjacent to the spillway.
Marine Finance (Hendren Cow Boats) #2352	5.8	W	Current: Tugboat business, houseboat/sailboat construction; Historical: Above and metal salvage, moorage.	5/7/2003	Oily bilge water	1 gal	River	Tug pumped oil bilge water to river in vicinity of St Johns Bridge.
				2/4/2008	Hydraulic oil	2 cups	River	Release of materials from hydraulic connection on side of ship due to residual hydraulic pressure. Absorbents applied.
				11/25/2006	Diesel oil	Unknown	River	Sheen observed in river during deballasting a forpeak tank. Release could be due to residual fuel in tank from a recently repaired small bulkhead fracture.
U.S. Moorings #1641	6	W	Government port, supply, repair facilities for dredge and other support vessels, warehousing facilities, fuel storage, motor pool garage and parking.	2/6/2004	Hydraulic oil	Unknown	River	Workers were repairing hydraulic ram on board the Yaquina (ACOE dredge). During install of a new ram, and pulling plug on threaded fitting, approximately 1 pint of hydraulic of sprayed out, partially landing on the deck and partially falling into the Willamette. Approximately 2 ounces was released into the Willamette. Workers used sorbent pads to pick up some sheen. After minimal cleanup, they could not find a sheen.
				1/15/2004	Hydraulic oil	10 gal	River	Equipment failure on dredging arm swell compensator on the starboard side of the vessel caused a 10-gallon hydraulic fluid spill to river. 50-ft by 300-ft sheen. Also trace amounts of hydraulic oil in 2004 and 2003.
				1/24/2003	Unprocessed/semi- processed oil	1 gal	River	Gray sheen observed inside oil boom at ACOE dock.
				11/24/1996	Oil slick of black fuel oil	Unknown	River	
				3/9/1996	Unknown oil	Unknown	River	
				12/29/1990	Sinking of anchor barge	350 gal (diesel)/	River	
				12/29/1990	Raggy at its moorings - diesel / motor oil	unknown (motor oil)	Kivei	
				4/6/2010	Motor oil	1 cup	River	Equipment failure.
			-	7/11/2009	Diesel fuel No. 2-D	0.5 pint	River	Equipment failure.
			-	1/28/2009	Misc. motor oil	2 tbsp	River	Equipment failure.
				11/18/2007	Hydraulic oil	Unknown	River	Release of hydraulic oil from a crane due to broken hydraulic line.
JSACE #1641	6.2	W	Maintenance port for USACE vessels.	9/26/2007	Unknown	Unknown	River	USACE advising of a large sheen which appears to be coming from a tugboat near their facility on the Willamette.
				3/10/2006	Gear Oil	9 gal	River	A bow thruster on a dredge ship was being tested when some oil was noticed leaking out of the tunnel.
			-	12/19/2000	Hydraulic oil	2 gal	River	Released from ESSAYON.
				9/30/1999	Lube oil	Unknown	River	150 sq ft sheen caused by spill from bow thruster on
				9/30/1999	Lube oii	Chkhowh	KIVCI	ESSAYON.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River			Documented	In-River		<u></u>
Site Name and ECSI#	River Mile		Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
USACE #1641			_	9/23/1990	Hydraulic oil	10 gal	River	Released from ESSAYON.
ODITEL #1041				12/28/1989	Motor oil	1 gal	River	Released from ESSAYON while refueling.
			_	6/18/2007	Unknown oil sheen	Unknown	River	Unknown sheen observed at Gasco dock.
			Current: Liquefied natural gas storage and distribution, —	10/22/2003	Coal tar pitch	2 gal	River	KI operations.
			solid and liquid coal tar pitch storage and distribution;	3/2000	Oily water	<25 gal at a time	River	NW Natural operations.
Gasco #84	6.2	W	northern portion - bulk fuel storage and distribution; Historic: Oil manufactured gas plant, coal tar formulation, storage and distribution.	10/17/1998	Industrial fuel oil, ship bunker or intermediate fuel oil	Unknown	River	MV CHESAPEAKE (Moremal Marine) blew fuel line whil emptying the hose. Sprayed oil on dock and deck and some fell into river.
				1998	Fuel oil (PNO)	Few gallons	River	NW Natural operations.
			_	10/1/1969	coal tar pitch	Unknown	River	KI operations.
Willamette Cove #2066	6.7	Е	Current: Vacant; Historical: Plywood manufacturing plant (west parcel), ship repair and maintenance (central parcel) - US Government facilitated during Great Depression and wars (WWI, WWII, and the Korean War), cooperage plantmanufactured wood vats.	None				8/16/01: 30-ft cabin cruiser partly submerged in Willamette River. Sheen noted when discovered.
			Current: None; Historical: Inorganic chemical	3/9/1995	Fuel oil	1 gal	Overwater dock	
Arkema	7.3	W	manufacturing company from 1941 to 2001. Produced sodium chlorate and potassium chlorate, chlorine, sodium hydroxide, hydrogen gas, hydrochloric acid and DDT.	1/19/1986	Sodium dichromate or sodium chlorate	100-200 gal	Unknown	According to ERNS Database, Incident No. 43729, Atofina transfer line/leaking valve in line; estimated 100-200 gallon sodium dichromate released (affected media not reported). Incident report also notes sodium chlorate unclear which was released, not enough information provided.
				4/16/2010	Unknown oil	Unknown	Outfall 22	Unknown sheen near Outfall 22.
			_	4/12/2010	Unknown oil	Unknown	Outfall 22	Unknown sheen near Outfall 22.
				3/19/2009	Unknown oil	Unknown	Outfall 22	Release of hydrocarbon from outfall due to unknown cause resulting in sheen in river.
				1/14/2009	Unknown	Unknown	Outfall 22	Spill of materials from Outfall 22 causing sheen on river.
Willbridge Terminals Kinder Morgan, Shell,	7.5	W	Bulk petroleum storage since early 1900s.	1/12/2009	Unknown oil	Unknown	Outfall 22	Unknown sheen observed in containment area at Outfall 22 of the Conoco Phillips facility.
Conoco Phillips) #1549			_	1/5/2009	Unknown	Unknown	Outfall 22	Unknown sheen observed.
				11/13/2008	Unknown	Unknown	Outfall 22	Release into outfall system from stormwater pipe.
				10/25/2008	Diesel	0.5 cup	River	Release from inert gas generating system on tanker due to incomplete combustion. Release of diesel from tanker COLORADO VOYAGER at upper berth of Willbridge, resulted in 3 ft x 5 ft sheen.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River			Documented	In-River		_
Site Name and ECSI#	River Mile		Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				10/10/2008	Unknown oil	Unknown	Outfall 22	Oil sheen observed in outfall system on Conoco Phillips property. Sheen bypassed oil water separator which came from either Conoco or Chevron as they share same outfall. Sheen is light in color and estimated at 50 ft x 50 ft.
				4/22/2008	Unknown oil sheen	Unknown	Outfall 22	Unknown sheen coming out of Outfall 22 from unknown source.
				4/16/2008	Oil sheen	Unknown	Outfall 22	Sheen in river observed coming from outfall due to unknown reasons.
				4/8/2008	Unknown oil sheen	Unknown	Outfall 22	Unknown sheen coming out of Outfall 22 from unknown source.
				3/26/2008	Unknown oil sheen	Unknown	Outfall 22	Unknown sheen from unknown source.
				3/21/2008	Unknown oil sheen	Unknown	Outfall 22	Unknown sheen from unknown source.
				3/13/2008	Unknown oil sheen	Unknown	Outfall 22	Unknown sheen from unknown source.
				3/8/2008	Unknown oil sheen	Unknown	Outfall 22	Unknown sheen from unknown source.
				2/29/2008	Unknown oil sheen	Unknown	Outfall 22	Ongoing observation (since 1/17/08) of petroleum sheen that has been discharging from outfall. Sporadic sheen.
				2/28/2008	Unknown	Unknown	Outfall 22	Release into outfall system from stormwater pipe.
Villbridge Terminals Kinder Morgan, Shell, Conoco Phillips) #1549				5/2/2007	Lube oil	55 gal	Storm drain	On May 2, 2007, a 55-gallon drum of lube oil was spilled into a storm drain that drains to the Willamette River at a warehouse located at the Chevron leasehold. Booms were placed around the sheen and a vacuum truck was called in to clean the sheen.
				4/18/2007	Diesel	Unknown	River	Fuel line broke causing discharge to river. Release originated on Kinder Morgan portion of the facility.
				2/9/2007	Unknown	Unknown	River	50' x 100' sheen reported near Kinder Morgan, Chevron Conoco. Release originated on Kinder Morgan portion of the facility.
				9/20/2006	Unknown	Unknown	River	Hose ruptured while loading a barge resulting in discharge to river. Release originated on Kinder Morgan portion of the facility.
				7/23/2006	Hydraulic Oil	Unknown	River	A ship loader fell onto the ship, hydraulic fluid was noticed dripping onto the dock, sheen was also noticed in the river. Release originated on Kinder Morgan portion of the facility.
				7/6/2006	Hydraulic Oil	Unknown	River	Hydraulic line broke on a ship loader which resulted in the release of material into the river. Release originated on Kinder Morgan portion of the facility.
				2/14/2005	Jet fuel, JP-8	2 gal	River	Release occurred when transferring jet fuel from barge to transfer station. Booms and pads applied, valve shut off immediately.
				12/30/2004	Unknown oil	Unknown	Outfall 22	Release of unknown material from an outfall due to unknown causes.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River			Documented	In-River		
Site Name and ECSI#	River Mile		Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
			·	7/30/2003	Jet fuel, JP-8	Unknown	River	Small amount of aviation fuel released to river from hose used to depressure pipeline. Release occurred on downriver side of marine dock adjacent to hose riser manifold at 5524 NW Doane St.
				3/27/2003	Unknown oil	Unknown	Outfall 22	Unknown sheen of unknown oil observed.
				10/15/2002	Marine fuel oil	Unknown	River	Material released from barge at Conoco Phillips due to faulty connection to discharge header.
				9/29/2002	Unknown oil	Unknown	Outfall 22	Unknown sheen observed at 5528 NW Doane Ave.
				4/18/2002	Unprocessed/semi- processed oil	1 gal	River	Sheen observed between the SN YUKON and the containment boom at berth 314.
			11/21/2001	Other oil (possibly gas turbine oil GST 1000)	Unknown	River	Potential leak of hydraulic oil from propeller shaft of Chevron COLORADO 651. Release occurred at Chevron Willbridge Upper Berth.	
				9/28/2001	Diesel fuel	1 gal	River	Transferring fuel from tank to barge (Tidewater) sheen on river under dock. Leak from barge, fracture on bulkhead of tank.
				3/26/2001	Diesel fuel	1 gal	River	Tug refueling area at Conoco Tank Farm released diesel to water.
				11/13/2001	Unprocessed/semi- processed oil	1 gal	River	Chevron COLORADO leak from blade seal on controllable pitched propeller.
				1/12/2001	Unprocessed/semi- processed oil	1 gal	River	Oil sheen released from dry dock #4 during the re-float of Navy ship TIPPACANOE
Willbridge Terminals (Kinder Morgan, Shell,				10/30/2000	Motor, bearing, propeller and other lubrication oils	1 gal	River	Chevron COLORADO hit log with the hydraulic propeller.
Conoco Phillips) #1549				6/14/2000	Unknown oil	Unknown	Outfall 22	Unknown sheen observed.
				12/11/1999	No. 2-D Fuel oil	Unknown	Outfall 22	Spill occurred while fueling a tug at Tosco Dock.
				9/4/1993	Automotive gasoline	Unknown	Outfall 22	Unknown rainbow sheen observed 200 ft x 3 ft
				3/4/1992	Unknown oil	Unknown	Outfall 22	Sheen observed
				12/2/1991	Unknown oil	Unknown	Outfall 22	Unknown sheen observed
				11/1/1989	Oil	10 gal	River	
				6/12/1989	Asphalt	7,000 gallons	River	An asphalt spill of 7,000 gallons into the Willamette River at the Chevron Willbridge Site Dock occurred on June 12, 1989. Cleanup operations were immediately implemented. The final phase of cleanup included sampling the river bottom of the dock area and analysis for TPH. No areas were found to contain elevated TPH levels.
				9/9/1984	Heavy hydrocarbon	NA	River	Seepage from docking facility.
				9/4/1984	Heavy hydrocarbon	NA	River	Seepage from docking facility.
				8/1/1984	Black oil	NA	River	Seepage from docking facility.
				12/1/1982	Petroleum product	90 gal	Saltzman Creek	
				3/1/1982	Oily water	NA	Saltzman Creek	Leak from weephole in flume wall.
				12/1/1981	Diesel	NA	Saltzman Creek	Leak from drum on pick up.
				4/1/1981	Undocumented solvent	NA NA	Saltzman Creek	
				4/1/1980	Lube oil	2 gal	River	
				10/1/1979	Aviation gasoline	70 gal	River Overwater dock	100% recovered.
				3/7/1979	Bunker oil	2 - 5 gal	Overwater dock	100% recovered.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River			Documented	In-River		_
Site Name and ECSI#	River Mile		Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				1/19/1979	Aviation fuel	3,297 gal	River	M/V Pecos struck the Shell Oil dock while berthing and ruptured a Jet A line releasing aviation fuel into the river.
				6/1/1978	Gasoline	NA	River	
				6/1/1976	Gasoline	NA	River	
				12/1/1975	Asphalt	100 gal	Saltzman Creek	Tank overflow.
Willbridge Terminals				2/23/1973	Fuel	Unknown	River	An oil spill occurred at the Union Oil Dock on February 23, 1973 during a transfer to the vessel Dredge OREGON. An occurred to containment boom was deployed to contain the spill.
(Kinder Morgan, Shell, Conoco Phillips) #1549				1/13/1971	Gasoline	2,500 gal	River	On January 13, 1971, oil tanker M/V Houston hit a gasoline main at the Shell Oil dock and over 2,500 gallons of gasolin was released to the Willamette River.
				8/19/1956	Oil	Unknown	River	Portland Harbor Patrol observed oil in the River possibly coming from "old pipes" under the Shell Oil dock.
				8/18/1956	Oil	Unknown	River	Portland Harbor Patrol observed oil in the River possibly coming from "old pipes" under the Shell Oil dock.
				3/10/1956	Gasoline	1,000 gal	Dock	Occurred at Shell Oil dock while loading a barge.
				1/21/1956	Bunker oil	20 gal	Dock to river	Occurred at Shell Oil dock.
				11/25/2009	Diesel fuel	1,000 gal	Storm drain to river	BES Portland reported fire retardant foam went into the storm drain near the 5036 N. Lagoon outfall, which leads into the Willamette, due to a fire at Freightliner. Up to 1,000 gallons diesel unaccounted for.
Freightliner	7-8	E Tru	ck parts and manufacturer.	1/25/2007	Unknown	Unknown	Storm drain to river	During regular Port inspections at the Dredge Base, a sheen was observed concentrated around the northern partition of the mooring barge. The source of the sheen was determined to be originating from City outfall M-1, located northwest of the barge location, where the sheen was observed entering the river. The Port later discovered that a release had originated from the nearby Freightliner facility, which also discharges stormwater to outfall M-1. Available records indicate the Coast Guard was notified and Freightliner responded to the spill. Response activities included booming the area proximal to the barge.
				11/29/2006	Pure gear oil	450-500 gal	River	Discharge from City Outfall M-1. Rupture of oil line (synthetic 50 weight lube oil) at facility.
				11/29/2006	Oil water mixture	1,000 gal	River	Discharge from City Outfall M-1. Rupture of oil line (synthetic 50 weight lube oil) at facility.
				7/29/2004	Unknown oil	Unknown	River	Material release discovered from an unknown source in the catch basin at Freightliner, 6936 N Fathom St.
			4/9/2002	Diesel sheen	Unknown	Sheen at storm water outlet	Fuel line rupture on truck.	
				7/25/1995	Untreated wastewater	3,000 gal	Storm drain to river	Released to river due to an open valve.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	ver .		Documented			_
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				3/3/2005	Diesel	10-30 gal	River	Spill contained and cleaned up.
Shaver Transportation	8.4	W	Current: General towing and lightering; Historical: Mobile telephone service and marine transportation.	9/29/2001	Diesel oil	1 gal	River	Tug SANDY sank at Shaver dock.
2311			telephone service and marme transportation.	8/19/1998	Oil	2-5 gal	River	Released when tug picked up 20 ft section of bunker hose with its propeller that contained oil.
				7/21/1996	Diesel oil	Unknown	River	Released when floating shop facility partially sunk.
				11/14/1996	Unknown oil	Unknown	River	Sheen observed (50 ft x 1000 ft, yellow-green color)
Willbridge Terminals (WMCSR-NWR-94-06)	7.7	W	Current: Distribution of refined petroleum products (gasoline, diesel fuel, lubricating oil), fuel storage.	5/16/1996	No.2 Fuel oil	Unknown	River	Fuel valve closed on diesel engine on crane (on a barge) causing filter to overflow.
2355			(gasonine, dieser ruei, rubricating on), ruei storage.	1989	Asphalt	6,300 gal	River	Multiple instances of sheen was observed on water (1998-2004), no spills >1 gallon.
				5/9/2010	No. 1-D fuel	Unknown	River	Spill occurred during fueling of Sea Link Marine at fuel dock.
				8/7/2006	Diesel	Unknown	River	Material release from a tank barge due to operator error.
				10/16/1998	Unprocessed/semi- processed oil	Unknown	River	USCG reported 250 ft x 1/4 mile long light sheen near McCall Oil Dock.
McCall Oil #134	7.9	W	Asphalt manufacturing and chemical manufacturing, storage and distribution.	10/13/1998	Oil	2 gal	River river.	Oil/water separator outflow was clogged and oil released to river.
				12/10/1996	Unknown	<1 gal	Parking lot - storm drain	Material washed onto parking lot.
				6/1/1994	Oil	1 quart	River	
				1991 and mid-1970s	Asphalt	Unknown	River	
				Mid-1970s	Oil and water	Unknown	River	
				2/3/2011	No. 2-D fuel oil	Unknown	River	Release of fuel from boat at marina. The tank "burped" and small amount came out the vent.
				12/11/2010	Gasoline	Unknown	River	While refueling Sheriff's office boat at Station Portland Dock, fuel tank "burped" causing a release of unknown amount of fuel. Sheen was observed near dock and flowing with river. Sheen was approximately 2 ft x 50 ft.
				6/5/2010	Gasoline	Unknown	River	Discharge of fuel from police vessel. After fueling, the vess drove away from fuel pier with gas tank uncapped.
JS Coast Guard - Marine	8	Е	Current: USCG marine safety and marine inspection offices; Historical: Roofing shingle manufacturer, lumber	5/8/2010	Motor oil	2 qts	River	Due to engine problem, oil leaked from engine and discharg to river.
afety Station #1338			company.	4/6/2010	Motor oil	1 cup	River	An engine malfunction caused a release to the water.
				10/28/2009 7/11/2009	Motor oil No 2-D fuel oil	Unknown 1 pint	River River	Spill of materials to river due to operator error. USCG was refueling county sheriff boat at fuel dock. When recapping the tank and departing, the tank burped and
			_	1/28/2009	Motor oil (Castrol GRX	Unknown	River	released 1 pint of diesel fuel into river. Release of oil occurred when individual slipped while filling
					10W30)			up outboard engine.
				6/5/2008	Gasoline	2 gal	River	Overflow during vessel fueling.
				6/9/2007	Gasoline	Unknown	River	Overflow during vessel fueling.
				9/11/2007	Motor oil	1 quart	River	Discharge during engine vessel maintenance.
				12/7/2004	Petroleum	Sheen	River	

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	ver _		Documented	In-River		<u> </u>
Site Name and ECSI#	River Mile		Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				8/18/2002	Diesel - bilge from tug	10 gal	River	Release from bilge of tug ST.NICHOLAS. 400-by 100-ft sheen.
US Coast Guard - Marine			_	9/9/1999	ZEP paint and varnish remover	1 gal	River	Hose rupture.
Safety Station #1338			_	11/28/1998	Diesel	30 gal	River	Unknown cause, suspect bilge pumping. No responsible party identified.
				10/8/1996	Fuel	Unknown	River	
				1991	Hydraulic oil	1 gal	River	Released from POLAR SEA.
				5/10/2006	Hydraulic oil	1 pint	River	Pleasure cruiser broken line spilled material into river.
			_	2000	Paint	5 gal	River	1 pint of hydraulic oil spilled into Willamette - date unknown. Crews cleaned up spill.
Fred Devine Diving and Salvage #2365	8.2	E	Current: Moorage; Historical: Moorage and waterfront structures (1940s), cleaner and solvent storage.	11/27/2000	Oil	3 gal	River	Release of oil / Mobile L EAL 224H from a hose on a hydraulic unit bursting; approx. 30 ft x 30 ft sheen observed report indicates 3 gallons of oil released to Willamette Rive spill dissipated in the water.
			_	3/10/1999	Unknown oil	Unknown	River	Oil sheen near Fred Divine outfall (outfall one mile) 40 ft x 1,000 ft - unrecoverable.
				3/8/1995	Diesel	Unknown	River	Bag of used sorbent pads had a split in it and caused a releat of diesel. Estimated 40 ft x 70 ft sheen on lagoon. Pads and boom deployed around spill.
				7/29/2010	Unknown material	Unknown	River	Spill of unknown material from vessel EDISONS WEST.
				3/4/2010	Unknown oil	Unknown	River	Sheen observed while running engine test on GLOBAL SENTINAL at dock.
				2/22/2010	Diesel fuel No. 2-D	Unknown	River	Diesel spilled on barge, small amount discharged to river.
			_	12/30/2009	Hydraulic oil	0.5 gal	River	
			_	10/21/2009	Motor oil	1 gal	River	
			_	10/6/2009	Unknown oil sheen	Unknown	River	Unknown sheen observed in Portland Shipyard.
				9/9/2009	AFFF foam	3 gal	River	Discharge from deck nozzle on USNS CARL BRASHEAR Equipment failure.
Cascade General #271	8.4	E	Current: Cascade General - Ship repair yard and other industrial operations, POP - parking lot/undeveloped property; Historical: Military shipyard and military ship dismantling (1942-1949), POP - leased out to ship repair/industrial operators (1950-1996), Cascade General -	7/13/2009	"A triple F"	5 gal	River	Release of "A triple F" from sprinkler to drain onboard vess USNS CARL BRASHEAR due to operator error while installing "A triple F" switches. Release occurred at Berth 313.
			ship repair/industrial operations (1996-present).	3/9/2009	Sandblasting dust	Unknown	Storm drain	Sandblasting debris entering storm drain near 5020 N Channel Ave.
			2/23/2009	Hydraulic oil	1 gal	River	Hydraulic hose failed releasing hydraulic oil onto deck of vessel GLOBAL SENTINAL and less than 1 gallon into river. The vessel was in dry dock and a hydraulic hose broke on the crane. The vessel was pre-boomed, the oil sprayed over the knife edge of deck. Approximately 1 cup of oil sprayed over side. PRP listed as Transoceanic Table Ship Company Inc.	
			_	2/19/2009	Unknown oil sheen	Unknown	River	Unknown sheen observed.
			-					

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	•		Documented	In-River		
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				11/10/2008	Unknown oil	0.5 gal	River	Released from deck of barge due to runoff from rain at Berth 310. PRP listed as DIX corporation, Max J. Kurney Construction.
				9/18/2008	Unknown oil	1 cup	River	Released from rudder of vessel M/V HIM BRENTON REEF due to leak. Released at Dry Dock #3.
				9/16/2008	Hydraulic oil	1 cup	River	ACOE Dredge Essayons lost less than 1 cup of hydraulic oil from the propeller system, sheen was contained inside boom. Sheen non-recoverable.
				8/25/2008	Lubricating oil	Unknown	River	While testing propeller shaft in shipyard for overhaul and while returning the shaft, sheen was observed in water next to ship. Chevron Texaco listed as PRP.
				7/18/2008	Unknown sheen	Unknown	River	Unknown sheen observed.
				6/17/2008	Unknown oil	Unknown	River	Discharge of oil from SS CAP JACOB due to unknown causes.
				6/3/2008	Unknown oil	Unknown	River	Discharge of residual oil from deck of tanker vessel due to heavy rainfall. Chevron Shipping company listed as PRP.
Cascade General #271				5/12/2008	Hydraulic oil	2 gal	River	Release of oil into Swan Island Lagoon due to drain plug in pipe accidentally kicked by workers at berth 302 of Cascade General. Area was pre-boomed, pads applied and bubbler used to confine sheen.
Cascade General #271				6/3/2008	Residual oil	~2 tbsp.	~2 tbsp. River General. Area was pre-boomed, pads applied used to confine sheen. Chevron reported ~2 tablespoons of residual deck of tanker at 5555 N Channel Ave.	
			9/27/1997	Diesel fuel	50 gal	Storm drain	Unknown source, 50 gallons diesel 20 yds in storm drain.	
				8/23/2007	Sandblasting dust	50 lbs	River	Sandblasting vessel and large quantities of grit and sandblasted material went into the Swan Island Lagoon.
				6/28/2007	Lubricating oil	Unknown	River	Leak from vessel.
				4/13/2007	Lubricating oil	100 gal	River	Release 100 gallons lube oil from T/V Chevron Mississippi. CRC for cleanup actions. Booms deployed by RP.
				4/10/2007	Oily mixture	Unknown	River	While cleaning out bunker tank on M/V POLAR ENDEAVOR, an oily mixture going to shore through hose from a portable tank to a slop tank had a leak and released material to river.
				3/5/2007	Unknown oil	Unknown	River	Materials released from unknown source created sheen on water between vessels and dock. Material is inside boom surrounding vessel, but is not known where material originates.
				12/4/2006	Other oil	Unknown	River	Release into river from leaky pipe.
				9/23/2006	Oil, misc: lubricating	Unknown	River	Check valve failure.
				9/23/2006	Lube oil	~5 gal	River	Check valve failed at Dry Dock One, spilled 5 Gal lube oil to Willamette River.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

	River		-	Documented	d In-River		<u></u>
Site Name and ECSI#	River Mile Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
		•	9/13/2006	Diesel	1 gal	River	Less than one gallon of oil spilled to the Willamette River by Cascade General. Work boat burped while unmanned. Equalizer line may be clogged causing all the fuel to build up in one tank rather than remaining equalized between both tanks. Mechanics at work to resolve. Sheen too light to recover.
			4/18/2006	Sandblasting dust	Unknown	River	
			5/13/2004	Hydraulic oil	<5 gal	River	Small amount of hydraulic oil spilled on dock, when dock is submerged, a sheen is seen in the water.
			11/25/2003	Lube oil	15 gal	River	22-50 gallons released during transfer of the USNS JOHN OLMSTEAD docked. 15 gallons released to river.
			6/29/2003	Hydraulic oil	Unknown	River	Release of hydraulic oil to water from a crane on a vessel at Berth 302/303. Fluid reportedly spilled while testing a hose that sprung a leak. Material contained and cleanup was conducted.
			5/29/2003	Lube oil	55 gal	River	Released from vessel, UNIVERSE EXPLORER, due to broken lube line.
			3/28/2003	Oil	1 gal	River	A piece of metal fell into the lagoon. Approximately 1 gallon of oil released to surface water.
			4/11/2002	Oil	2 L	River	Release of 2 liters of oil into the Willamette.
			8/10/2001	Unprocessed/semi- processed oil	1 gal	River	Slight sheen on Willamette River. No additional information available.
Cascade General #271			12/16/2000	Oil	0.5 gal	River	Residual oil spilled from equipment being loaded onto a barge; most contained on barge - 0.5 gal released to Willamette River.
			12/6/2000	Oil	0.5 gal	River	Residual oil spilled from equipment while loading onto barge.
			11/20/2000	None released	None	None	Pacific Scout fishing trawler caught on fire in dry dock.
			10/17/2000	Waste oil	2 gal	River	A gasket on 6-inch oil slop line failed causing waste oil to spill from the line into Swan Island Lagoon; approx. 15 ft x 3 ft sheen observed; report indicates 2 gallons of bunker-like waste oil released to Willamette River; booms applied and contractor called for cleanup.
			10/4/2000	Lubricating oil	5 gal	River	Release of lubricating oil from 6-inch slop line during testing operations due to a cracked valve; approx. 40 ft x 3 ft rainbow-colored sheen observed; report indicates 5 gallons of oil released to Willamette River; containment boom deployed and absorbent pads used.
			6/9/2000	Hydraulic oil	1 barrel	River	Materials released while testing emergency fire pump. No known reason for release.
			5/22/2000	Diesel	3 gal	River	3 gal fuel can of diesel fell in river.
			4/5/2000	Unknown	0.5 gal	River	Unknown cause.
			3/21/2000	Diesel	~5 gal	River	5 gal diesel into river, after check ball valve failed.
			2/23/2000	Generator fuel	~1 gal	River	10 gal spilled during generator testing, ~1 gal reached river.
			10/23/1999	Lubricating oil	30 gal	River	Lube oil flushing pump/ruptured hose. Oil spilled into boomed containment area at #304.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River			Documented	d In-River		<u> </u>
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				1/29/1999	Hydraulic oil	5 gal	River	
				01/00/1999	Hydraulic oil	5 gal	River	water while draining the stem lube of a vessel on Dry Dock 3. Cascade General received a notice of violation for the release from the Coast Guard.
				10/20/1998	Generator fuel	5 gal	River	
				10/00/1998	Diesel fuel	25 gal	River	Approximately 25 gallons of cliesel fuel was released from a generator. Cascade General received a notice of violation from the U.S. Coast Guard.
				10/1/1998	Diesel fuel	25 gal	River	Approximately 25 gallons of diesel fuel was released from a generator. Cascade General received a notice of violation from the U.S. Coast Guard.
				12/23/1997	Diesel	25-50 gal	River	
				11/13/1997	Crude oil	100 gal	River	Line broke during pressure testing, 50-100 gallons went into river.
				9/27/1997	Diesel	22 gal	River	
				9/27/1997	Diesel	50 gal	River	Fuel tank on truck struck piece of I-beam and damaged tank. Approximately 50 gallons diesel released 20 yards in storm drain.
				8/28/1997	Unknown oil	25-40 gal	River	~25 gal of black waste oil released from an outfall into Swan Island Lagoon.
Cascade General #271				3/21/1997	Wastewater	Unknown	River	During a facility inspection, DEQ observed the discharge of wastewater into the river via an unauthorized discharge point. DEQ subsequently issued NON #NWR-HW-97-030/NWR-WQ-97-043 on 5/1/1997.
				3/18/1997	Wastewater	Unknown	River	During a facility inspection, DEQ observed the discharge of wastewater into the river via an unauthorized discharge point. DEQ subsequently issued NON #NWR-HW-97-030/NWR-WQ-97-043 on 5/1/1997.
				9/23/1996	Unknown	Unknown	River	While performing over-water tank washing on the vessel SAN FRANCISCO, Cascade General failed to cap the end of the discharge line resulting in the release of the residual material.
				4/9/1996	Unknown oil	~25 gal	River	Oil released into the river when a stern line broke on the USS HIGGINS.
				10/9/1995	Ballast water	40 gal	River	Oil in lines used to release ballast water spilled during dry docking. Release of approximately 40 gallons of petroleum from vessel OMI COLUMBIA. The Coast Guard issued a notice of violation to Cascade General for release (USCG #PEN-210-95, Oregon Incident Report #95-2006).
				2/7/1995	Oil	Unknown	River	An oil spill was observed at Berth 305 coming from the storm drain at the berth. The Coast Guard was notified.
				8/23/1994	Bunker fuel	Unknown	River	A hose came out of the top of the tank and released bunker fuel onto the Pier. Bunker fuel was cleaned up with dry agent and absorbent material.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River			Documented	I In-River		_
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				3/2/1994	Slops	Unknown	River	Pacific Dynamics was observed dumping slops down a manhole or storm drain in the yard.
				2/4/1994	Gasoline	0.5 gal	River	A forklift tipped over and the gas tank leaked. Sorbent pads were used to cleanup. Report indicates 0.5 gallon released to river.
				9/18/1993	Unknown oil	Unknown	River	An oily substance was observed in the water at Berths 301 through 304. Cascade General was notified and they reported that an oil boom had opened and were catching as much of the material as possible.
				8/19/1993	Unknown	Unknown	River	Cascade General employees were observed using high pressure water hoses to blast an unknown substance off a barge into the water.
				7/20/1993	Hydraulic oil	~50 gal	River	
				7/4/1992	Hydraulic oil	Unknown	River	A small hydraulic oil spill occurred on the main deck of Dry Dock 4 after a line ruptured on the hydraulic oil pumper.
				6/8/1992	Water and sludge oil	Unknown	River	WSI slop tank overflowed with water and sludge oil on Pier D Berth 313 (east end of Dry Dock 4).
				2/13/1992	Fuel	Unknown	River	Fuel was observed coming from a storm drain at Berth 311, approximately 30 ft x 60 ft. Coast Guard stated it was a thin film and not to worry about it.
Cascade General #271				1/8/1992	2-D Fuel oil	3 barrels	River	Oil released from F/V PACIFIC EXPLORER into river during fuel bunkering operations.
				9/16/1991	Waste oil / lubricants	35 gal	River	Sheen observed at Rivermile 8.5; report indicates 35 gallons of waste oil/lubricants released to Willamette River; Northwest Marine conducted cleanup and recovered 30 gallons of product.
				9/16/1991	Waste oil/lubricants	~35 gal	River	
				6/25/1991	Oil	Unknown	River	Oil sheen observed.
				6/9/1991	Sandblasting dust	Unknown	River	Sandblast sand released to river from side of a Greek-flag vessel. Cascade General was identified as the prime contractor.
				4/27/1991	Hydraulic fluid	15-20 gal	River	Estimated 15 to 20 gallons of hydraulic fluid released from a punctured drum on the pier. Chempro contacted to clean up material on pier and in the river. Blankets placed to absorb the material on the pier.
				4/17/1991	Lube oil	150-200 gal	River	Discharged oil into storm drain that discharged into River from Exxon's vessel EXXON BENICIA.
				7/19/1989	Hydraulic oil	1 gal	River	Estimated 1 quart of hydraulic oil was released to Willamette River due to equipment failure; a hydraulic hose on a man lift arm broke during a painting operation on the SS ATIGUN PASS. Cascade deployed booms and used skimmers to clean up the material.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	iver _		Documented	In-River		_
Site Name and ECSI#	River Mile	Bank	Major Industrial Operations	Date	Materials Released	Volume Spilled	Spill Surface	Comments
				11/30/1987	Petroleum residue	Unknown	River	Port employees were observed cleaning equipment with commercial oil emulsifier known as Gamlin. The petroleum residue was draining into the Willamette River.
				6/11/1987	Diesel	~25 gal	River	
			-	4/11/1982	Ballast water	900 bbls	River	Release of on to winamette River discharged from ship
				5/14/1980	Oil	Unknown	River	repair facility.
Cascade General #271				8/18/1974	Paint & debris	25 gal	River	The river eroded filled area and control house for drydock fell into the river. Estimated release of 25 gallons of paint, a small quantity of oil and a substantial amount of debris.
				3/20/1973	Waste oil	2-4 gal	River	Release of waste oil from tanker wash water tank area (possibly aged Bunker C). Spill migrated to an 8 ft tunnel below the storage tank area. The tunnel connected to a 10-inch outfall in the vicinity of Berth 310; approx. 200 sq ft slick observed in SW corner of small boat base; estimated 2-4 gal released to Willamette River from outfall.
				5/20/2010	Hydraulic oil	Unknown	Storm drain	During storm water sampling at Outfall 377, a sheen was observed on the water at catch basin.
Gunderson LLC #1155	8.8	W	Current: Manufacturing rail cars and marine barges; Historical: Rail car and marine vessel manufacturing, ship	5/17/2010	Hydraulic oil (vegetable)	Unknown	River	observed on the water at catch basin. Vegetable oil discharge from hydraulic system during
Guilderson LLC #1133	0.0	**	dismantling and auto salvage.	2/26/2001	gtea-415 & toluene	1.5 gal	River	
				8/23/2000	Water-based paint	Unknown	Storm drain	Employees in paint department rinsed pain brushes into storm drain.
				3/18/1994	Unknown oil	Unknown	River	Holding tank on barge fell off barge resulting in release.
Equilon Property (Pipelin Containment) #2117	e 8.8	W	Current: Storage/distribution of gasoline, diesel and ethanol; Historical: Beginning in 1928 -Storage/distribution of petroleum, bunker fuel, jet fuel, and lubrication oil.	1994, 1992, 1989, 1988	Diesel	~250 gal	River	Action was taken.
		,	Current: Storage/distribution of gasoline, diesel and	3/23/1998	Diesel oil	20-25 gallons	Outfall to river	100 ft sheen in cove by dock originating from storm water outfalls.
Texaco Portland Termina #169	8.8	W	ethanol; Historical: Beginning in 1928 -Storage/distribution of petroleum, bunker fuel, jet fuel, and lubrication oil.	2/8/1996	Diesel oil	Unknown	River	Spill containment tank/flood waters entered and overflowed the tank.
			ruer, and indirection on.	9/19/1992	No.2-D Fuel oil	Unknown	River	Tidewater tank barge No. 64 overfilled, sheen observed.
Goldendale Aluminum #2440	10	Е	Current: Storage of lubricating and hydraulic oils; Historical: Alumina and electrode binder pitch unloading facility, grain shipment facility.	12/28/1991	Bunker C fuel	8,000-11,000 gal	River	Estimated 8,000-11,000 gallons of intermediate fuel oil was spilled by M/V Tai Chung (owned by Taiwan Navigation Company), a bulk aluminum oxide carrier, during bunkering operations from a fuel barge tied up next to it.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River	_		Documented	In-River		
Site Name and ECSI#	River Mile			Date	Materials Released	Volume Spilled	Spill Surface	Comments
				9/9/2010	Hydraulic oil	1 gal	River	Discharge of hydraulic oil from fire hubs. PRP listed as USACE.
				10/26/2000	Diesel or motor oil	Unknown	River	A spill was reported from two different sources, including diesel that had been tracked around the property from a leaking vehicle and motor oil near a storm drain (source unknown). SSA put pads and booms around the storm drain but a sheen was present on the river at Berth 203. Foss Environmental was contacted for cleanup and the incident was reported to the National Response Center and the Oregon Emergency Response System.
				10/25/2000	Hydraulic oil	1 gal	River	
				10/9/1998	Hydraulic Oil	2 gal	River	1-inch pipe on deck of vessel PACIFIC KING cracked during hatch cover operation releasing ~1 liter to the water.
				10/17/1997	Unknown	Unknown	Potential release to the river	An employee exited an SSA truck while the engine was still running and the vehicle rolled over the bullrail at Berth 206 and sank in the Willamette River. No sheen or debris in the river was observed. The vehicle was pulled from the river approximately two hours after it sank.
POP - Terminal 2 #2769	10	W	Current: Marine terminal; Historical: Marine terminal, shipyard-ship construction during WWII (unknown to 1949), exporter of agricultural and manufactured wood products.	2/5/1996	Motor oil	1 gal	River	Approximately 1 gallon of motor oil was released to the dock on the northern portion of the property, due to a damaged barge lift operated by one of SSA's customers. Due to rain, the sheen expanded to a larger area and discharged to the Willamette River through the storm water conveyance system. Absorbent booms were placed around the catch basins once the spill was identified and the release was reported to the Coast Guard. Absorbent booms were also placed in the river in the vicinity of the storm water outfalls to prevent the remainder of the material from dispersing. The oil was subsequently cleaned up from the dock and properly disposed of off-site.
				1/15/1995	Paint spilled from vessel into river	Unknown	River	green paint and thinner)into river. NRC Incident #276445.
	Pallet load of paint spilled	Unknown	River	M/V PAC PRINCE spilled pallet load of paint (grey, green, and orange colored paint, and thinner). Incident occurred at Terminal 2, Berth 4. NRC Incident #276446.				
				12/5/1992	Hydraulic fluid	Unknown	River	A piece of SSA equipment was found to be leaking hydraulic fluid. Despite application of sorbent material by SSA, hydraulic fluid was discharged to the storm water system and subsequently released to the Willamette River in the vicinity of Berth 204 where it created a sheen several hundred square feet in size.

Table 4.3-5. Overwater Releases from ECSI Sites within the Study Area.

		River			Documented	In-River		
Site Name and ECSI#	River Mile	Bank		Date	Materials Released	Volume Spilled	Spill Surface	Comments
			<u> </u>	6/17/1978	Oil and bilge water	Unknown	River	
				2/26/2010	Hydraulic oil	1 gal	River	Spill from Tidewater Barge Line tug boat due to equipment failure. A hydraulic seal failed on the vessel, resulting in a spill of 3 gallons on deck and 1 gallon into river.
				12/18/2008	Gear box oil	Unknown	River	Release of gear box oil from small winch on dock due to unknown cause. Small sheen resulted.
				8/17/2008	Gear oil	8-10 gal	River	Gear oil released due to operator error during repair of dockside machinery.
POP - Terminal 2 #2769				6/12/2008	Gear oil, 8090 weight	1 qt	River	5 gallon bucket on dock kicked over and released ~ 1 qt to river.
				10/29/2001	Unprocessed/semi- processed oil	10 gal	River	Sheen observed near M/V ROVER. Sheen old, gray and weathered, not from vessel.
				2/16/2001	Hydraulic oil	Unknown	River	Unknown sheen observed between V.COMOS VERDE and river bank. Sheen size 50 ft x 200 ft at Cargill Incorporated.
				2/12/1998	Hydraulic oil	Unknown	River	Malcom Drilling Co. machine leaked hydraulic oil onto soil and into river.
				9/12/1995	Other oil	Unknown	River	M/V ESPERANZA release of bilge water.
				8/18/1995	Unknown oil	unknown	River	Sheen observed near M/V OCEAN CROWN, 40 ft x 300 ft.
				3/30/2008	Hydraulic oil	4 gal	River	Hydraulic line on the TASMANSEA broke releasing approx. 15 liters of hydraulic oil to the deck of the boat.
Glacier Northwest	11-12	11-12 E Cemer	11-12 E Cement manufacturer.	10/23/2006	Unknown organic chemical	Unknown	River	Drum containing organic chemicals spilled onto deck of M/V OCEAN EXPLORER and into river.
				8/26/2004	Oil	1 gal	River	Hydraulic line failure on dock.
				2/10/2000	Hydraulic oil	Unknown	River	Hydraulic line failure caused a release.

Notes:

Spills information obtained from National Response Center Online Database (www.nrc.uscg.mil) and Supplemental Preliminary Assessment, Swan Island Upland Facility (Ash Creek and Newfields 2006).

AST - aboveground storage tank

CRSG - Columbia River Sand and Gravel

CSM - conceptual site model

DEQ - Oregon Department of Environmental Quality

ECSI - Environmental Cleanup Site Information

EOSM - Evraz Oregon Steel Mills

ERIS - Emergency Response Information System

KI - Koppers International

NA - not available

NRC - National Response Center

POP - Port of Portland

SSA - Stevedoring Services of America

TPH - total petroleum hydrocarbon

USACE - U.S. Army Corps of Engineers

USCG - U.S. Coast Guard

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	e Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Unknown	Multnomah Channel	Pleasure craft	12/26/2007, 1/27/2010	A 12/26/2007 report to the NRC stated that a release of gas from a sinking vessel entered the river. An incident report to the NRC on 1/27/2010 noted spray paint was being applied to a vessel in Freds Marina, with residue noted on the surface of the water.	Direct discharge to river	NRC Incident Reports ^a
Alaska Sea Cloud	2-3	Barge	11/13/2001, 4/10/2006 and 4/12/2006; 9/21/2006	On November 13, 2001, a report to the NRC stated that an unknown amount of residual oil was released from a barge and a sheen was noted on the river. A similar report occurred on April 10, 2006 discussing a release from a barge with a sheen on the river. No volume estimate of substance was noted in the NRC report. Another release occurred from the same barge on April 12, 2006 when approximately three ounces of oil was released from the deck of a barge into the river. On September 21, 2006, the SEA CLOUD was moored at an undisclosed location in Portland Harbor at which time it was reported to the NRC that an overboard discharge line released approximately two tablespoons of oily bilge water into the river due to a defective check value.	Direct discharge to the river	NRC Incident Reports
Blue Water Shipping Company	2-3	Transportation	6/1/2001	On June 1, 2001 M/V MED INTEGRITY discharged an unknown amount of oil to the Willamette River while located at JR Simplot.	Direct discharge to the river	NRC Incident Report #568009, NRC Incident database
Steinfields Products	2-3	Food processing plant, including a pickling plant	12/4/1997	A report to the NRC stated that approximately 400 gallons of diesel oil was released from a boiler backup storage tank overflow. Approximately 100 gallons of oil reached a nearby storm drain and was discharged into the Willamette River.	Discharge of material to river via storm drain	NRC Incident database
Sunshine Maritime, Ltd	2-3	Transportation	1/12/2006	A discharge of approximately 1 quart of hydraulic oil from vessel M/V SEA LADY occurred due to unknown causes.	Direct discharge to river	NRC Incident Report #784964
James River/Western Transportation	2-3, 4-5	Marine transportation including oil bunkering	8/10/1994, 10/24/1994, 10/3/1995	An Aug. 1994 report to the NRC stated that approximately of 10 gallons of diesel oil was released from M/V WESTERN STAR into the Willamette River during fueling. Oct. 1994 and Nov. 1994 reports to the NRC stated that approximately 1 pint of lubricating oil and 2 gallons of hydraulic oil were released into the Willamette River, respectively. In 1995, a lube oil spill to river occurred, but the location was not identified. No additional information available.	Direct discharge to river	NRC Incident database, Notice of Federal Interest for an Oil Pollution Incident
Fritz Maritime Agencies	2-3, 4-5	Marine transportation company	3/18/1994, 1/22/1998	In 1994, an unknown amount of petroleum product at Terminal 4 directly to the Willamette River. In January 1998, approximately one pint of hydraulic oil was reportedly released into the river.	Direct discharge to river	NRC Incident Reports
West Coast Marine Cleaning	2-3, 7-8	Cleanup contractor	12/23/1999, 5/2000 and 11/2000	In December 1999 a 3-gallon spill of waste oil from a vacuum hose occurred during tank cleaning of a barge when a hose connection came loose. In May 2000, a spill from diesel can of no more than 2 gallons occurred. In November 2000, a discharge of approximately 1/2 gallon of waste oil occurred due to a transfer hose rupture.	Direct discharge to river	USCG Pollution Reports; NRC Incident Report #547979
General Metals of Tacoma	3	Unknown	9/8/2009	Release due to 22 ft steel hull work boat sinking. Cause and amount of discharge is unknown.	In river	NRC 917199
M/V BIG BLUE	3-4	Cargo vessel	3/29/2001	In March 2001 at the International Terminals Slip, the ship discharged approximately 15 gallons of hydraulic and bunker oil during deballasting.	Direct discharge to river	NRC Incident Reports #561131 & 56143
M/V C. MEHMET	3-4	Merchant vessel	3/5/2001	A discharge of less than 1 gallon of IFO 380 oil occurred from this vessel due to a holed flange.	Direct discharge to river	USCG Pollution Report
M/V SP5 ERIC GIBSON	3-4	Product transfer	11/18/2003	A report to the NRC stated that approximately 1 gallon of hydraulic oil was released into the Willamette River from a container/roll-on or roll-off vessel due to a broken hydraulic fitting on a cargo crane.	Direct discharge to river	NRC Incident Reports
Mark Marine Service, Inc.	3-4	Marine towing company	1/8/1999 and 9/2000	A January 1999 report to the NRC stated that an approximately 1 bucket of lube oil was released from a tugboat into the Willamette River. In 2000, OSFM incident report stated that two tugs sank in Multnomah Channel near Alder Creek Lumber Company. An oil slick and debris were observed in the vicinity of Fred's Marina and Lucky Landing.	Direct discharge to river	NRC Incident Reports; Oregon State Fire Marshal database
Pan Ocean Shipping Co., Ltd.	3-4	Transportation	11/14/2006	M/V OCEAN JADE discharged 45 liters of hydraulic oil to the deck of the vessel, with at least 1 liter reaching the river. Discharge the result of a broken pipe.	Direct discharge to river	NRC Incident Reports
Tidewater Barge Lines	3.7	Transportation	4/22/2008	Unknown amount of unknown material released from barge due to runoff during rain.	Direct discharge to river	NRC 868798
Tidewater Barge Lines	4.2	Marine transportation company	8/17/1999	5 gallons of hydraulic oil (vegetable) were released into the river by Tidewater Barge Lines tug MAVERICK due to a leaking seal on a hydraulic ram.	Direct discharge to river	NRC 495417/ OERS 99-1918
HELM STAR	4.3	Marine vessel	11/4/1991	An oil spill from the vessel HELM STAR was observed at Berth 406. Riedel Environmental was contacted to clean up the spill.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
M/V ARGO MASTER	4.3	Marine vessel	5/27/1991	According to a Coast Guard report, a release of grain occurred from the M/V ARGO MASTER at Pier 1.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
M/V ATLANTIC BULKER	4.3	Marine vessel	12/28/2002	Unknown sheen observed adjacent to Port of Portland Terminal #4.	In river	NRC 632864
M/V BURKSHIRE	4.3	Marine vessel	12/5/1971	According to a Coast Guard report, a release of 187 gallons of oil occurred from the M/V BURKSHIRE at Pier 1.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
M/V JAY RATNA	4.3	Marine vessel	10/24/1971	According to a Coast Guard report, a release of 15 gallons of oil occurred from the M/V JAY RATNA at Pier 1.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
M/V OCEAN BEAUTY	4.3	Marine vessel	5/4/1994	The vessel M/V OCEAN BEAUTY was discharging ballast at Berth 401 and a sheen was discovered around the vessel; quantity/material not reported.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
M/V ORIENTAL ANGEL	4.3	Marine vessel	7/27/1993	An approximately 5 ft X 5 ft sheen was caused by the release of 0.1 gallon of lubricating oil from packing gland on rudder post of vessel M/V ORIENTAL ANGEL at Berth 401.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
NAPIER STAR	4.3	Marine vessel	3/22/1994	An approximately 480 ft X 300 ft silvery sheen of unknown oil was observed within Slip 1 at Berth 408 around the vessel NAPIER STAR; sheen reportedly contained within the slip; quantity of material not reported.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Not yet identified	4.3	Unknown	9/20/1973	A minor spill occurred from a ship docked the night before at the grain berth. The U.S. Coast Guard was notified and attempted to clean up the spill.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Not yet identified	4.3	Unknown	4/12/1991	An oily film and what appeared to be sludge was observed between Berth 403 and 408. The Coast Guard arrived and determined that substance was unknown and that it was not regular oil. It was determined that it was edible oil and grain dust.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Not yet identified	4.3	Unknown	4/14/1996	A boat sinking at Pier 2 caused a sheen on the water.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
OCEAN LARK	4.3	Marine vessel	8/17/1988	An oil slick from the grain ship OCEAN LARK (a grain ship) was reported. The Coast Guard was subsequently notified.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Pacific Molasses	4.3	Bulk liquid distribution	7/2/1982	On July 2, 1982, an oil slick was reported at Pier 2, Berth 408 2. The U.S. Coast Guard was notified and observed the spill. The Coast Guard reported that although not confirmed, the source may have been Barge #6 belonging to Pacific Molasses. The Coast Guard in turn followed up with Pacific Molasses.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Pacific Molasses	4.3	Bulk liquid distribution	4/25/1989	On April 25, 1989, 10 gallons of tallow was released from a ship line into Slip 1. The Coast Guard subsequently issued a Notice of Federal Interest in a Pollution Incident to Pacific Molasses for the release.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Portland Stevedoring Company	4.3	Stevedoring	11/9/1971	On November 9, 1971, Portland Stevedoring released bauxite ore into the Willamette River while unloading the MARABU PORR at Pier 2.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
S/S SHELLY	4.3	Marine vessel	5/11/1971	According to a Coast Guard report, an oil slick associated with the S/S SHELLY was observed at Pier 1.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
SANKO POPPY	4.3	Marine vessel	4/11/1989	The vessel SANKO POPPY was bunkering and an overflow occurred, spilling oil into the slip at Pier 1. A containment boom was placed in the slip.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Unknown Vessel	4.3	Marine vessel	4/20/1981	A release of diesel fuel occurred at Berth 403 from a Chinese vessel. The slick was estimated at 550 ft. (quantity not reported).	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
YONEUN	4.3	Marine vessel	4/4/1982	An oil spill was reported at Berth 401. The crewmen from YONEUN were reported to be in small boat trying to get the oil out with paper towels. The U.S. Coast Guard was notified. It was reported that the vessel had dumped its bilge water into the river.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
ANGEL HONESTY	4.6	Marine vessel	8/27/1993	An oil spill at Berth 410 at the stern of the vessel ANGEL HONESTY was observed. The Coast Guard was notified. The oil reportedly dissipated quickly.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Brix Maritime Co.	4.6	Transportation company	3/7/1992	A leak at Berth 411 occurred from a Brix Maritime barge fueling the vessel GORGOVA. The U.S. Coast Guard and a Brix investigator came to the site to evaluate the release.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
CELTIC PRINCESS	4.6	Marine vessel	1/30/1985	An oil slick at the bow of the CELTIC PRINCESS at Berth 410 was observed. The vessel crew said they were not responsible for the oil slick and its origin remains underdetermined.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Hall-Buck Marine Terminals / ANSAC PROSPERITY	4.6	Marine vessel	7/27/1992	On July 27, 1992, approximately 0.12 gallons of diesel released to river from overfilling during fueling operations on the carrier ANSAC PROSPERITY at Hall-Buck at Berth 411. Sorbents were used to collect the product.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
HANDY PRINCE	4.6	Marine vessel	6/14/1991	An oil slick was reported at Berth 411 which appeared to be coming from the vessel HANDY PRINCE. A small hole was noted on the vessel where there was liquid coming out and going into the river. The Coast Guard was notified and they documented the spill.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
KEN SPANKER	4.6	Marine vessel	4/7/1992	During transfer at Berth 411, approximately 300 gallons of black oil was released; the spill was reportedly contained on the vessel KEN SPANKER.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
M/V ANSAC ASIA	4.6	Marine vessel	3/27/1996	A release of oil occurred during fuel transfer to the M/V ANSAC ASIA when a tank was overfilled at Berth 411; approximately 1 gallon of 2-D fuel oil released to Willamette River; Riedel used sorbents to recover the material.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
M/V DONA AMALIA	4.6	Marine vessel	5/7/1971	A release of a small quantity of bauxite ore occurred to the Willamette River during unloading operations on the vessel M/V DONA AMALIA at Pier 4.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
M/V MARITIME FAITH	4.6	Marine vessel	5/28/1997	An approximately 25' X 25' sheen was discovered around and emanating from vessel M/V MARITIME FAITH at Berth 411; cause unknown; quantity not reported.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
M/V MAY STAR	4.6	Marine vessel	2/27/1993	Diesel was spilled while transferring material to the M/V MAY STAR at Berth 411; quantity not reported, spill reportedly contained on vessel.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
M/V SEASWAN	4.6	Marine vessel	5/20/1997	Approximately 1 teaspoon of 2-D fuel oil released during fuel transfer operations caused by a valve left open; vessel reported as M/V SEASWAN at Berth 411; absorbents used for cleanup of the spill.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Not yet identified	4.6	Unknown	5/26/1989	A sheen was noted on Slip 3.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Not yet identified	4.6	Unknown	3/10/1992	A light rainbow sheen was observed on water at the head of Berth 412 behind Jones gearlocker. OTC was aware of situation and had notified the environmental authorities	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Not yet identified	4.6	Unknown	1/11/2005	Approximately 0.5 cup of oil released from an outboard motor on a "little skiff" associated with a crane barge in Slip 3; cause reported as equipment failure; cleanup completed and included applying booms and absorbents and the skiff was removed from the water.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
PACIFIC QUEEN	4.6	Marine vessel	3/8/1981	A large oil spill was found at Berth 414 after PACIFIC QUEEN departed and reportedly cleaned its bilges. The Coast Guard and DEQ were notified.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Zidell Explorations Inc.	4.7	Ship scrapping	9/6/1973	On September 6, 1973, the hull of the USS PRINCETON sank while moored at the Kingsley Lumber dock in Linnton. The hull, which was owned by Zidell, released an estimated 50,000 gallons of heavy black oil directly to the Willamette River. Cleanup activities took at least three weeks and both a state enforcement action and federal suit were brought against Zidell for the incident.	Direct discharge to river	On Scene Commander's Report
M/V AOMORI WILLOW	4-5	Unknown at this time	5/30/2001	A report to the NRC stated that an approximately 1 gallon of diesel oil was released onto the deck of a vessel then into the Willamette River due to tank overflow during an internal fuel transfer.	Direct discharge to river	NRC Incident Report #567788
M/V CENTURY LEADER	4-5	Freight vessel	4/6/2000	Vessel discharged approximately 1 liter of hydraulic oil to river due to the bursting of a hydraulic seal.	Direct discharge to river	USCG Pollution Report
ANSAC HARMONY	4-5	Unknown	1/26/2003	According to a Coast Guard report, Cowlitz Clean Sweep cleaned up an oil spill in the river in the vicinity of Terminal 4.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
SS BATTLE CREEK VICTORY	4-5	Marine vessel	2/5/1957	In February 1957, an oil spill was observed by the Portland Police Bureau as water and oil were pumped from the SS BATTLE CREEK VICTORY. The vessel was docked at Terminal 4, Pier No. 2. The vessel's agent, Pope & Talbot, informed the police that the spill would be cleaned up.	Direct discharge to river	NARA historical USCG record
Trident Shipping Limited	4-5	Tank leak	4/8/2001	A leak of approximately 50 gallons of IFO 180 occurred on the M/V ASTYPALEA. Leak was a result of cracks in the forward starboard fuel tank of the vessel.	Direct discharge to river	NRC Incident Report and Transmittal, Fed. Proj S01035
Tidewater-Shaver Barge Lines	4-5	Marine transportation company	8/8/1947	In 1947, a release of oil into the Willamette River was observed coming from an unidentified barge operated by Tidewater-Shaver Barge Lines.	Direct discharge to river	Portland Fire Marshal records
Tidewater Barge Lines	4-5, 5-6, 7-8, 8-9, 9-10	Marine transportation company	2/1991, 4/1991, 6/22/1993, 7/16/1993, 6/22/1994, 8/1994, 6/30/1995, 2/10/1999, 3/26/2001, 9/28/2001 and 1/28/2004	Two 1991 NRC database reports involved Tidewater Barge vessels. The first incident involved, M/V LEIRA which released approximately 1 gallon of lubricating oil directly into the Willamette River at an unidentified location. Tank Barge TW 704 released approximately 15 gallons of gasoline into the Willamette River at River Mile 10. In 1993, approximately 10 gallons of gasoline and 2 gallon of fuel oil were released into the river during two separate incidents. A 1994 report stated that approximately 1 gallon of gasoline was released into the Willamette River. A 1995 report to the NRC stated that approximately 5 gallons of oil was released into the Willamette River due to operator error while refueling. A Feb. 1999 report to the NRC stated that approximately 3 gallons of diesel oil was released into the Willamette River from the vessel, DEFIANCE. In March 2001, less than 1 cup of diesel fuel oil was released into the Willamette River during the fueling of a tug due to a leaky hatch on the vessel. In September 2001, a 1-gallon leak of No. 2 diesel from the right collision bulkhead of Barge No. 1 was discovered at the Tosco dock. In January 2004, a report to the NRC stated that an unknown amount of jet fuel (JP-8) was released into the Willamette River from a barge due to an unknown cause.	Direct discharge to river	NRC Incident Reports # 560738, 581299
Tidewater Barge Lines	4.8	Marine transportation company	2/22/2007	One ounce of diesel oil was released into the Willamette River at approx. RM 4.8 from a Tidewater Barge Lines barge due to a leak in a tank.		
Transversal Shipping Company	4-5, 5-6	Shipping company	3/10/1997, April 2001	A March 1997 report to the NRC stated that an unknown amount of oil from M/V SEMENA washed off the deck during a rain storm into the Willamette River. An April 2001 OSFM incident report stated that a Bunker C fuel oil slick had drifted towards the mouth of Terminal 4, Berth 408. The spill was traced to Transversal Shipping across the river. Another incident occurred in April 2001, when a vessel docked at Transversal caught fire. The City's Fire Boat responded and pumped water for five hours. Transversal was identified as an agent for the vessel.	Direct discharge of hazardous substance.	NRC Incident database; Oregon State Fire Marshal database
M/V BIO BIO	5	Marine vessel	3/18/1994	A light sheen was observed in the water around vessel M/V BIO BIO I docked at Berth 415. The source and quantity of the material are unknown.	Direct discharge to river	Port of Portland 104(e) Response for T4 Auto Storage Area

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Not yet identified	5	Unknown	4/11/1982	Diesel spill on the deck of a ship at Berth 414 and released approximately one gallon of oil to the Willamette River.	Direct discharge to river	Port of Portland 104(e) Response for T4 Auto Storage Area
Not yet identified	5	Unknown	3/15/1985	An unknown quantity of oil was released to the Willamette River in the vicinity of Berths 415 and 416.	Direct discharge to river	Port of Portland 104(e) Response for T4 Auto Storage Area
Not yet identified	5	Unknown	9/25/1995	An oily film was observed upriver from Berth 416. The Coast Guard was contacted. The source of the film could not be determined.	Direct discharge to river	Port of Portland 104(e) Response for T4 Auto Storage Area
Toyota	5	Auto import and storage	6/25/1981	An oil release occurred at Berth 415 from a pipe originating at the Toyota plant (quantity not reported).	Direct discharge to river	Port of Portland 104(e) Response for T4 Auto Storage Area
Toyota	5	Auto import and storage	6/4/1995	The culvert between Berths 415 and 416 overflowed during a heavy rain event and caused a soap-like foam to form on the river. The foam extended halfway to the Berth 416 float and was monitored but dissipated quickly with the heavy rain and flow of the river. The Coast Guard was notified and they determined on-site response was not necessary based on the nature of the observations.	Discharge to river via overland flow	Port of Portland 104(e) Response for T4 Auto Storage Area
Unknown	5-6	Pleasure craft	4/28/2008	A NRC incident report stated that there was a discharge of 2 oz. of oil from a vessel due to addent engine oil and accidentally spilling some into the water.	Direct discharge to river	NRC Incident Reports
Advanced American Diving	5-6	Diving and salvage operations	1/23/2005	Overfill of barge at POP, Terminal 4. 5-10 gallons diesel causing sheen on water. Contained in boom	Direct discharge to river	OERS # 05-0173
Advanced American Diving	5-6	Diving and salvage operations	7/29/1998	A report to the NRC stated that a barge disturbed "some kind of contamination" in the bottom of the Willamette River.	In-water disturbance	NRC Incident Report #448107
Gelco Construction	5-6	Road construction	7/13/2005	Discharge occurred during re-lining of a storm drain. Approximately 1 quart of asphalt liner was released through the line and into the river.	Discharge to river via storm sewer	NRC Incident Report #765482
M Cutter	5-6	Towing and mooring	2/5/1996	A report to the NRC stated that an unknown amount of diesel oil was released from the D/B PAUL BUNYUN into the Willamette River due to a previously frozen fuel line.	Direct discharge to river	NRC Incident Reports
M/V ZANIS GRIVA	5-6	Transportation	10/17/2001	A report to the NRC stated that approximately 2 barrels of hydraulic oil were released from the vessel into the Willamette River due to equipment failure.	Direct discharge to river	NRC Incident Report #583407
Keystone Shipping Co.	5-6, 7-8, 8-9	Marine transportation company	8/13/1991, 6/6/1992, 10/17/1995, 3/3/1997, 3/16/1998	A 1991 report stated that approximately 2 gallons of waste oil/lubricating was released into the river when a contractor error opened a bilge valve on the T/S DELAWARE TRADER. In June 1992, the State Fire Marshal reported a ship fire on Keystone's "bulk oil ship," the ATIGUN PASS. The fire was caused when welding torches igniting "paraffin/oil" on the bulkheads. It is not clear from the report whether fire fighting activities flushed contaminated water into the river. A 1995 report to the NRC stated that approximately 1 gallon of oil was released from the tanker KEYSTONE CANYON into the Willamette River due to equipment failure. A 1997 report to the NRC stated that an unknown amount of soot was released from M/V FREDERICKSBURG into the Willamette River when the engines were "fired up" and shot out of the exhaust pipe. In 1998, the Portland Harbor Master responded to a pump room fire aboard Keystone's vessel, S/S FREDERICKSBURG. The vessel was moored at MarCom's dock and being repaired. An operator cutting a bolt from a flange with a blow torch and dropped the bolt into the bilge. The bolt ignited gasoline which was in the bilges. It is not clear from the report what impact the vessel's fire had on the river.	Direct discharge to river	National Response Center; Portland Harbor Master records, PSY Suppl. PA App. F (2006) ^b
Olympic Tug & Barge	6-7, 7-8	Marine transportation company	10/16/2007	Approximately 1 gallon of hydraulic oil was released into the Willamette River from a tug boat at 8010 NW St. Helens Road.	River	NRC 851759
Olympic Tug & Barge	6-7, 7-8	Marine transportation company	5/10/2007	Approximately 4 ounces of lubricating oil was released into the Willamette River from Olympic Tug & Barge's MAX SONDLAND at Olympic Tug and Barge facilities.	River	NRC 834961
Olympic Tug & Barge	6-7, 7-8	Marine transportation company	8/18/2006	Approximately 8 ounces of intermediate fuel oil (IFO) 380 was released into the Willamette River when Olympic Tug & Barge's oil barge BMC 7 was bunkering M/V OAK HARBOR across from Terminal 2.	River	NRC 808285
Olympic Tug & Barge	6-7, 7-8	Marine transportation company	12/18/2008	1 gallon heavy fuel oil and water released from catch basin on a fueling dock into river.	Storm drain to river	NRC 892287
Olympic Tug & Barge	6-7, 7-8	Marine transportation company	10/16/2007	1 quart lubricating oil released to river due to overfilling of lube oil tank on the tug LUCY SONDLAND.	Direct discharge to river	NRC 851752

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Olympic Tug & Barge	6-7, 7-8	Marine transportation compan	8/5/1995, 8/7/1995, y 6/29/1997, 11/3/1999, 1/28/2002	A 1995 report to the NRC stated that approximately 5-8 gallons of oil was released into the Willamette River and an unknown amount of fuel was released during transfer from a ship to an Olympic barge. A June 1997 report to the NRC stated that approximately 50 gallons of diesel oil was released from the tug LELA JOY into the Willamette River due to a tank overflow. A Nov. 1999 report to the NRC stated that approximately 1 gallon of oil was released from M/V PACIFIC FALCON into the Willamette River during refueling. In 2002, approximately 2 gallons of waste oil discharged to Willamette River after a half-full drum was knocked over when Olympic was moving a heavy winch by crane.	Direct discharge to river	NRC Incident Reports
Kaiser Company, Inc.	6-7	Shipbuilding	1943	In 1943, month/day unknown, fuel oil escaping from vessels at the dry docks [was] attributed to negligence or errors on the carriers" built by Kaiser.	Direct discharge to river	Port of Portland 104(e) Response for Willamette Cove
Kaiser Company, Inc.	6-7	Shipbuilding	7/1/1943	Oil was permitted to discharge into the river when CASABLANCA was at dry dock. Port suspected it was an intentional release due to method of release.	Direct discharge to river	7/19/1945 Letter, Port to Kaiser
Kaiser Company, Inc.	6-7	Shipbuilding	7/28/1943	On July 28, 1943, the Kaiser (carrier) vessel LISCOMBE BAY was believed to have been the cause of a release of oil while on dry dock that caused a fire hazard that stopped all welding and work in the area from 7/30/1943 to 8/2/1943.	Direct discharge to river	Port of Portland 104e Response for Willamette Cove
Not yet identified	6-7	Unknown	1914	In 1914, Pontoon No. 1 sank during a docking.	Possible direct discharge to river	Port of Portland 104e Response for Willamette Cove
OLEUM	6-7	Marine vessel	1951	In 1951, the Tanker Oleum caused unspecified damage requiring cleanup of oil from towers, paint trestles and decks.	Direct discharge to river	Port of Portland 104e Response for Willamette Cove
Police Vessel	6-7	Public enforcement	6/5/2010	A report to the NRC stated that discharge of fuel occurred after the vessel pulled away from the dock with the fuel tank uncapped.	Direct discharge to river	NRC Incident Reports
OSPREY ARROW	6-7	Product transfer	10/22/2003	A report to the NRC stated that approximately 2 gallons of pitch was released from the vessel into the Willamette River due to an equipment failure or malfunction.	Direct discharge to river	NRC Incident Reports
Pacific Northern Oil	6-7	Bulk storage terminal	8/19/1999	A report to the NRC stated that approximately 200 gallons of oil (blend of diesel and bunker oil) was released onto the soil and concrete from an overloaded oil/water separator. It was reported that oil was discharged into the Willamette River.	Direct discharge to river	NRC Incident Reports
SS ILICH	6-7	Marine vessel	1944	In 1944, the Russian SS Ilich "capsized at the inner berth of the south pier at the dry dock and sank in about 46 feet of water" [neither the] "War Shipping Administration, its contractors or the Russians" assumed removal responsibility (Port, June 1944). The Ilich was removed by the U.S. Army Corp of Engineers in 1944.	Possible direct discharge to river	Port of Portland 104e Response for Willamette Cove
SS SUMANCO	6-7	Marine vessel	7/1924	The S.S. Sumanco was dry docked. Damage to the vessel fractured bottom plates of oil tanks allowing oil to escape into the river.	Direct discharge to river	Port of Portland 104e Response for Willamette Cove
YONEUN	6-7	Marine vessel	4/10/1982	A release of oil to the Willamette River occurred from the S.S. YONEUN at Berth 401 (quantity not reported). The slick was estimated at 100 ft. in length & 50 ft. in diameter. Cleanup was conducted by the Coast Guard.	Direct discharge to river	Port of Portland 104(e) Response for T4 S1/S3
Portland General Electric Company	6-7, 7-8, 12- 13	- Power barge Pole transformer	12/17/1992, 10/12/1993, 5/20/1999, 10/1/2000, 10/26/2004; 10/30/1999	A 1992 report to the NRC stated that approximately 22 gallons of hydraulic oil was spilled with an unknown amount released into the Willamette River via a storm drain. A 1993 report to the NRC stated that a 5-gallon spill of PCB transformer oil occurred when a transformer exploded. An unknown amount of oil was released into a storm drain discharging into the Willamette River. A May 1999 report to the NRC stated that approximately 15 gallons of transformer oil was released into a nearby storm drain and into the Willamette River. The NRC database reported that it is not known whether the release reached the Willamette River. In November 1999, the NRC reported that approximately 3 gallons of oil was released onto the ground from a ruptured truck reservoir line. The spill reached a nearby storm drain and was released into the Willamette River. In October 2000 the sump on Power Barge Rio DaLuz overflowed during heavy rains, discharging approximately 2 gallons of lubricating oil to the river. In October 2004, approximately 30 gallons spilled from a pole transformer containing fluid with 31 ppm PCB, based on September 30, 1986 sampling. Oil initially discharged to ground and subsequently to the catch basin.	Discharge of material to river via storm drain	NRC Incident Reports; NRC Incident Report #739571

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Sause Brothers	6-7, 7-8, 9-10	Hydraulic line failure	7/2/1992, 8/18/1993, 12/13/1996, 4/2/2006	A 1992 report to the NRC stated that an unknown amount of "hot" oil was release into the Willamette River. A 1993 report to the NRC stated that approximately 1 cup of oil was released from a pinhole leak in a tank on the tank barge NESTUCCA NO. 569658 into the Willamette River. A 1996 report to the NRC stated that approximately 5 gallons was released from the tug TITAN into the Willamette River due to overfueling. In 2006, a 1-gallon release of hydraulic oil at facility dock from shore crane was due to a broken line. "Old age" of hydraulic line cited as cause of release.	Direct discharge to river	NRC Incident Reports; NRC Incident Report #792758
Railroad Bridge	~7	Unknown	8/20/2001	Oil sheen observed	River	OERS # 01-2089
Boart Longyear	7.1, west bank	Drill Rig	8/19/2009	Release of hydraulic oil from drill rig mounted on a barge. Oil discharge was due to equipment failure, an oring failed on equipment. Discharge was contained on barge deck and in moon pool where drill unit goes through barge. Clean up completed with no material escaping to river water.	No discharge to river	NRC 915873
Alaska Tanker Company	7-8	Transportation	6/5/1999	It was reported that a release of an unknown amount of oil was observed coming from the vessel M/V DENALI at Berth 314 on the river side.	Direct discharge to the river	PSY Suppl. PA (2006) ^a
American Trading Transportation	7-8	Transportation company	8/13/1991	In 1991, approximately 2 gallons of waste oil/lubricants was released to the river from the T/S DELAWARE TRADER, owned at the time by American Trading Transportation Co.	Direct discharge to the river	PSY Suppl. PA, App. F (2006)
Ballard Diving & Salvage Inc.	7-8	Ship repair	8/22/2003	A report to the NRC stated that approximately 10 gallons of hydraulic oil was released into the Willamette River from a hydraulic line that was cut during the polishing of propellers on a military vessel (the USNS SISLER Navy vessel).	Direct discharge to the river	NRC Incident Reports
Central Gulf	7-8	Transportation company	7/8/1996	In 1996, an unknown amount of oil leaked out the stern tube of the vessel GREEN HARBOUR into the river.	Direct discharge to the river	PSY Suppl. PA, App. F (2006)
Dynea Overlays Inc.	7-8	Provider of bonding and surface solutions	4/23/2002	A report to the NRC stated that approximately 2 liters of unknown oil type was released into the Willamette River from a vessel due to unknown causes.	Direct discharge to the river	NRC Incident Reports
LONG BEACH and EXXON BENICIA	7-8	Petroleum product distribution company	8/24/1988, 4/17/1991, 3/15/1993	Exxon is the owner of the vessel LONG BEACH which was being repaired at PSY. In 1988, a contractor released sandblast grit and paint chips into the river. An April 1991 report stated that NMIW illegally discharged approximately 150-200 gallons of lubricating oil into a storm drain that discharged into the river from Exxon's vessel EXXON BENICIA. In 1993, a release of approximately 0.01 gallon of Bunker C oil was released into the river from the T/S EXXON BENICIA.	Direct discharge to the river	PSY Suppl. PA App. F
Foss Environmental	7-8, 8-9	Emergency response contactor including cleaning catch basins and oil/water separators	3/9/1995,1/26/1998, 7/13/2001	A 1995 report to the NRC stated that less than 1 gallon of hydraulic oil was released onto asphalt then into the Willamette River from a power steering hose on a vehicle. A January 1998, NRC report stated that approximately one-half gallon of "bilge slop" was released into the river from a vacuum truck vent. The 2001 incident discharged approximately 5 gallons of slop oil due to clogged vacuum line.	Direct discharge to river; indirect discharge to river through separator.	NRC Incident Reports, NRC Incident Report 572917
Garwood Oil	7-8	Petroleum product distribution company	12/30/2003	A report to the NRC stated that approximately 20 gallons of fuel oil was released from a fuel tank on a tractor trailer due to a transport accident. It is not known whether the release reached the Willamette River.	Possible indirect discharge to stormwater system.	NRC Incident Reports
General Steamship Corp.	7-8 8-9 9-10	Marine construction and transportation	7/7/1992, 3/14/1994, 9/16/1996, 6/15/2000	A 1992 report to the NRC stated that an unknown amount of oil was released from M/V BELFOREST into the Willamette River. A 1994 report to the NRC stated that approximately 0.5 cup of motor oil was released from M/V AMERICAN DYNASTY into the Willamette River from a 5-gallon bucket that was knocked over. A 1996 report to the NRC stated that an unknown amount of oil was released from the bulk carrier TAI SHING into the Willamette River due to a leaking bilge or cargo tank. The same day, the vessel ALASKAN JEWEL discharged 1 barrel of hydraulic oil while testing the emergency fire pump. On June 15, 2000, a spill of approximately 10 gallons of lubricating oil was released from the M/V TALL [PAUL] BUCK into the river as reported to the NRC. Also, on June 15, there was a discharge of less than 1 gallon of lube oil caused by crew members of the M/V TALL BUCK over-pressurizing the stern tube. This was discharged to the Swan Island Lagoon.	Direct discharge to river	NRC Incident Reports; NRC Incident Reports # 531544, TALL BUCK Incident Report # 532237, Tall Buck: ERNS Database/NRC Incident No. 532225, PSY Suppl. PA, App. F (2006)
Hickey Marine	7-8	Vessel repair	8/29/1996	A report to the NRC stated that approximately 2 gallons of oil was released from the crane barge SEA LION into the Willamette River due to a broken air compressor hose.	Direct discharge to river	PSY Suppl. PA, App. F (2006)
Industrial Marine, Inc.	7-8	Ship repair	10/17/2006	A report to the NRC stated that during spray painting operations on the bridge wing of M/V CHEMICAL EXPLORER, the over sprayer landed in the Willamette River due to operator error. Approximately one-half cup of "International Paint (called 99)" was released into the Willamette River.	Direct discharge to river	NRC Incident Reports
K-Sea Transportation	7-8	Tank overflow	11/10/2007	Approximately 2 gallons of fuel discharged to the river due to valve misalignment on the Tug SCORPIUS.	Direct discharge to river	NRC Incident Report 854198
Lindblad Expeditions	7-8	Unknown at this time	4/25/2003 and 5/10/2006	An April 2003 NRC report stated that approximately 1 pint of oil was released from a bilge manifold as a result of flushing a leaking hot water heater discharge overboard from the vessel, LAZETTE. In May 2006, an NRC report stated that a fitting broke on a hydraulic crane which resulted in the release of approximately 1 pint of hydraulic oil into the Willamette River.	Direct discharge to river	NRC Incident Reports #643271 796683

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Linden Farms	7-8	Operated a poultry processing facility	5/3/1998	A 1998 report stated that guts and grease were observed discharging from a storm drain at the chicken farm processing facility.	Direct discharge to river	LWG Programmatic Work Plan (referenced as OERS 98-1032)
Marine Vacuum Service, Inc.	7-8	Tank, bilge and boiler cleanup	Potential releases during occupancy from 1993 to 1995	Marine Vacuum leased Bay 1 including two office spaces, a shop, and an adjacent parking lot at the PSY. Also Marine Vacuum conducted overwater activities as part of its operations. Environmental inspections performed in 1995 and 1996 determined the following: (1) floor and walls of the shop were contaminated with oil and it was noted that the shop had two floor drains; (2) parking lot was stained with oil; and (3) three drums of unknown substance were abandoned in Bay 1.	Possible indirect discharge to stormwater system.	PSY Suppl. PA (2006)
Military Sealift Command	7-8	Military transportation	12/1/2004	Approximately 5 gallons of oil was released into the river when a Doppler speed log was replaced on the USNS HENRY K. KAISER.	Direct discharge to river	PSY Suppl. PA, App. F (2006)
O'Briens Oil Pollution	7-8		9/10/2005	A report to the NRC stated that approximately 1 quart of No. 2 diesel oil was released into the Willamette River from a pipeline due to unknown causes.	Direct discharge to river	
Pax Company of Utah (division of Cenex)	7-8	Farm supply company	5/30/1980	Release from dumping 5-7 barrels (225 gallons) of various chemical wastes (including herbicide 2,4-D) into storm sewer manhole in Mock's Landing with some material discharged to the Willamette River; penalty of \$1,000 assessed to Cenex by DEQ.	Discharge of material to river via storm drain	Port of Portland 104(e) Response for SIUF/B311
Northwest Marine Iron Works	7-8	Vessel construction and repair	5/13/1982, 8/25/1988, 10/19/1988, 12/12/1990, 5/23/1991	A 1982 release of approximately 2 gallons of lube oil into the river. In August 1988, NMIW staff were observed dumping sandblast sand and wastewater into the river from a vessel. In October 1988, NMIW staff reported disposed of sandblast sand into river at night. In 1990, sandblast grit was released into the river. A May 1991 report to the NRC stated that approximately 300 gallons of lubricating oil was released from the facility, with 200 gallons spilling into the Willamette River.	Direct discharge to river	NRC Incident Reports
Rainier Petroleum	7-8	Transportation	8/7/2006	An approximate 15-gallon oil spill occurred at the McCall facility involving Brix Maritime Barge #4. Spill caused by operator error (flow "kicked back" causing an overfill). Brix Maritime is identified as operator of the vessel, while Rainier Petroleum is listed as the "managing owner" and Marine Equipment Leasing is identified as the owner.	Direct discharge to river	NRC Incident Report #807033
Roadway Express	7-8	Freight transfer and delivery	2/20/1990	A report to the NRC stated that during a rain storm an unknown amount of oil was being washed into storm drains discharging into the Willamette River. The report stated that a leak developed in a tractor trailer fuel line.	Discharge of material to river via storm drain	NRC Incident Reports
Salmon Bay Barge Line, Inc.	7-8	Fuel transfer	6/29/2000	A 2-gallon discharge of diesel fuel occurred due to overfilling of fuel tank on tug JESSE.	Direct discharge to river	NRC Incident Report #533913
Sea Coast Towing	7-8	Transportation	3/19/2000, 5/8/2001, 8/10/2003 and 10/10/2005	In March 2000, approximately 1 gallon of diesel fuel was released into the Willamette River from the tug vessel JOHN BRIX, which had a leak from its fuel vent. In May 2001, a report to the NRC stated that approximately 3 gallons of diesel fuel was released into the Willamette River during a tank to barge overfill. In August 2003, a report to the NRC stated that approximately 100 gallons of jet fuel (JP-8) was released into the Willamette River during a tank to barge overfill. An October 2005 report to the NRC stated that approximately 1 tablespoon of hydraulic oil was released into the Willamette River from a barge due to an equipment failure.	Direct discharge to river	USCG Pollution Report; NRC Incident Reports #565304, 653457; NRC Incident Reports
Sea-Land Service, Inc./ Sea-Land Transport Co. and SEA-LAND NAVIGATOR, SEA-LAND HAWAII	7-8	Transportation	Potential releases during occupancy from 1963 to 1974; in- water spill on 10/7/1990 and 12/23/1990	Sea-Land Service leased Bay 10 in Building 4 for several years. Building 4 had a series of floor drains which collected wastewater then discharged through a private outfall into the river downstream of Berth 314; also stormwater and wastewater discharged through private outfall in Dry Dock #3. Several vessels owned by Sea-Land have been brought to the PSY dry docks for repair. Both Building 4 and the dry docks are subjects of environmental investigations for contamination from various hazardous substances. In October 1990, while cleaning the aft of the SEA-LAND HAWAII, Lockwood Industries released oil, dust, and paint into the river causing a sheen on the surface. In December 1990, an unknown amount of foam was released into the river during the repair of the vessel NAVIGATOR, owned by Sea-Land.	Possible indirect discharge to stormwater system; also direct discharge from spill.	PSY Suppl. PA App. F (2006); Sewer map at PUB0006726
Sound Freight Lines, Inc.	7-8	Fuel transfer/tug operator	11/6/2007	The tug BLACK HAWK discharged approximately 50 gallons of diesel to the river due to a leaky valve.	Direct discharge to river	NRC Incident Report #853814
M/V SEA RIVER NORTH SLOPE; S/R GALENA BAY	7-8	Transportation	7/6/1994, 10/18/2001	SeaRiver Maritime is the owner of the vessel, M/V SEA RIVER NORTH SLOPE. It was reported that a stern tube on the vessel released approximately 2 gallons of turbine oil into the river. In 2001, a release of approximately 1 pint into the river causing a sheen from a leak in a lube oil cooler on SeaRiver's vessel S/R GALENA.	Direct discharge to river	PSY Suppl. PA (2006)
SS BARBARA	7-8	Marine vessel	6/21/1957	On June 21, 1957, a "large amount of bunker fuel" was released from the dry dock into the river due to operator error by an employee of WISCO while repairing the SS BARBARA. Olympic Steamship Co. was identified as the vessel local agent by the U.S. Coast Guard.	Direct discharge to river	NARA historical USCG records
Tanker Pacific Management	7-8	Transportation	6/9/2000, 7/9/2000	Two separate releases occurred of an unknown amount of oil into the river during the testing of fire equipment aboard the M/V ALASKAN JEWEL. Foam was mixed with hydraulic oil, discharge on deck and over the side.	Direct discharge to river	PSY Suppl. PA, App. F (2006)

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Trans Marine Navigation Corporation	7-8	Marine transportation	6/25/2001	A release was reported of approximately 1 gallon or 5 liters of marine oil gasoline from a faulty cap of a sounding pipe on the vessel M/V DANSUS.	Direct discharge to river	PSY Suppl. PA, App. F (2006), USCG Pollution Report
Transoceanic Shipping Company	7-8	Provider of bonding and surface solutions	1/19/2001, 4/13/2002	A report to the NRC stated that approximately 0.5 gallon of hydraulic oil was released into the Willamette River due to a ruptured hose in the blower thruster on the cable laying ship GLOBAL SENTINAL. In 2002, approximately 2 liters of unknown oil was released into the river from the vessel TYCOM RELIANCE.	Direct discharge to river	NRC Incident Report #554151
Tyco Telecommunications	7-8	Oceanic cable vessel	4/13/2002	M/V TYCOM RELIANCE discharged approximately 2 liters of scar oil to the river due to suspected seal slippage.	Direct discharge to river	USCG Pollution Report
U.S. Army	7-8	Transportation	1/26/1993	Based on Internet research it appears that the U.S. Army was the vessel owner in 1986. In 1993, a release of oil was reported from the SS AUSTRAL LIGHTNING onto the pier at Berth 312. It is not clear whether the oil was discharged into the river.	Possible direct discharge to river	PSY Suppl. PA App. F (2006)
United Parcel Service	7-8	Package delivery depot and equipment maintenance facility	4/28/1993	A report to the NRC stated that approximately 35 gallons of hydraulic oil was released onto the ground when a garbage compactor's hydraulic fitting broke. An unknown amount of oil was released into the Willamette River.	Direct discharge to river	NRC Incident Reports
Tidewater Barge Lines	7.5-7.9	Marine transportation company	10/3/1998	200 gallons unleaded gasoline released into river when dockline broke while pumping to or from Tidewater Barge Lines barge TRI-CITIES VOYAGER	Direct discharge to river	NRC 458351
Tidewater Barge Lines	8.3	Marine transportation company	8/21/1999	One gallon of hydraulic fuel released due to equipment failure.	Direct discharge to river	USGS, 2001. Letter of Warning - 8.21.1999 Incident
Tidewater Barge Lines	8.6-8.8	Marine transportation company	6/28/1976	An unknown quantity of gasoline was released from a Tidewater barge at the Shell Oil docks.	Direct discharge to river	DEQ, 1976. Spill report for 6.28.1976 Incident.
Albina Engine and Machine Works	8-9	Ship repair	4/8/1971	Slick reported at shipyard. No additional information available.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Albina Engine and Machine Works	8-9	Ship repair	6/11/1975	DEQ observed fugitive emissions from Albina Engine & Machine operation of sandblasting equipment and the uncontrolled storage and handling of material. In a letter dated 7/1/1975, DEQ instructed Albina Engine to cease sandblasting operations.	Possible direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
American Classic Voyages	8-9	Marine vessel	11/11/2000	Vessel pumping slops to a pump truck and hose broke behind truck, releasing material onto dock; report indicates 2 gallons of bilge slop released to Willamette River; cleanup crew called and booms/sorbents applied.	Direct discharge to river	ERNS Database, Incident No. 547979; Port of Portland 104(e) Response for SIUF/B311
American Heavy Lift Shipping Co.	8-9	Marine vessel	4/6/1994	A 1994 report to the NRC stated that approximately 30 gallons of waste oil was released from the vessel M/V KING into the Willamette River due to a tank overfill.	Direct discharge to river	NRC Report #233673
American Trading Transportation	8-9	Marine vessel	1991	1991, month/day unknown. 2 gallons of waste oil/lubricants released from F/V Pacific Explorer	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
AMERICAN VETERAN	8-9	Marine vessel	2/2/1992	Oil was observed in Swan Island Lagoon. It appeared that the source of the oil was vessel AMERICAN VETERAN. The vessel left Berth 303 and 304 without cleaning up or containing spill.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Barge F 100	8-9	Marine vessel	2/20/1970	Aerial photographs show release of oil emanating from the Navy Dry Dock. Barge F 100 was repaired on the Navy Dry Dock that date.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
BARGE NESTUCCA	8-9	Marine vessel	3/29/1993	A Light gray to silvery substance was observed in water at Berth 302 around THE BARGE NESTUCCA. There were 15 to 20 patches, each patch was around 2 feet by 2 feet.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311 ERNS Database, Incident No.
BP ARCO / MV ARCO SPIRIT	8-9	Marine vessel	5/14/2000	Release of crude oil from M/V ARCO SPIRIT at Berth 312; cause of release unknown; small sheen observed; unknown quantity of material released to Willamette River; contractor and diving crew called for cleanup.	Direct discharge to river	528969; National Response Center #528969; Port of Portland 104(e) Response for SIUF/B311
BT ALASKA	8-9	Marine vessel	5/19/1993	While heavy sandblasting was occurring on BT ALASKA, a dust cloud was observed settling on top of the water.	Possible direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
CAPE BLANCO	8-9	Marine vessel	2/25/1993	Dust reported accumulating on the water at Berth 314 near the CAPE BLANCO.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
CAPE BOVER	8-9	Marine vessel	3/1/1992	A fuel spill about 40 yards in length and 20 yards in width was observed between Berth 305 and the vessel CAPE BOVER. The Coast Guard was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Cascade General / CAPE ORLANDO	8-9	Ship repair / Marine Vessel	8/19/1994	Unknown colored substance within containment boom of CAPE ORLANDO. Cascade General labor foreman advised they would have it cleaned up.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Cascade General / CAPE ORLANDO	8-9	Ship repair / Marine Vessel	8/30/1994	A sheen was observed at the stern of CAPE ORLANDO at Berth 304 outside of Cascade General's sea curtain. The sheen was reported to Coast Guard.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Cascade General / KISKA TAE 35	8-9	Ship repair / Marine Vessel	12/2/2002	Release of bilge waste during pumping of slop tank of USNS KISKA TAE 35 (tank was overfilled); unknown quantity of material released to Willamette River.	Direct discharge to river	ERNS Database, Incident No. 630598; Port of Portland 104(e) Response for SIUF/B311
Cascade General / U.S. Army Corps of Engineers	8-9	Ship repair / Marine Vessel	12/19/2000	Release from repair on a hydraulic line on U.S. Army Corps Dredge ESSAYONS; approx. 100' x 5' rainbow-colored sheen observed; report indicates 2 gallons hydraulic oil released to Willamette River; booms applied.	Direct discharge to river	ERNS Database, Incident No. 551416; National Response Center #551416; OERS 0-2993; Port of Portland 104(e) Response for SIUF/B311
Cascade General Inc.	8-9	Ship repair	5/12/1993	A foamy, colored substance was observed in the water between pier and dry dock. Cascade General was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Cascade General Inc.	8-9	Ship repair	8/2/1994	A diesel sheen was observed at the head of Dry Dock 3.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Cascade General Inc.	8-9	Ship repair	9/16/1996	Oil sheen of unknown volume reported.	Direct discharge to river	LWG Programmatic Work Plan (referenced as OERS 96-2634)
Cascade General Inc.	8-9	Ship repair	12/21/1999	Sheen observed under pier. No additional information available.	Direct discharge to river	LWG Programmatic Work Plan (referenced as OERS 99-2936)
Cascade General Inc.	8-9	Ship repair	10/18/2001	Approx. 100' x 15' sheen observed; estimated 2 pints of unknown petroleum product released to Willamette River from an unidentified source; Cascade General deployed booms to contain material.	Direct discharge to river	National Response Center #583585; Also reported as ERNS Database, Incident No. 583575; National Response Center #583575; Port of Portland 104(e) Response for SIUF/B311
Cascade General Inc.	8-9	Ship repair	11/9/2002	Sheen on Willamette River. No additional information available.	Direct discharge to river	LWG Programmatic Work Plan (referenced as OERS 2-2728)
Cascade General Inc.	8-9	Ship repair	2/17/2005	Report indicates 1 gallon of oil released from vessel to the Willamette River; cause unknown; booms applied and West Coast Marine hired to do cleanup.	Direct discharge to river	NRC Report #750373; Port of Portland 104(e) Response for SIUF/B311
Cascade General Inc. & ExxonMobil	8-9	Ship repair / Marine Vessel	1/28/1992	Oil sheen was observed in water at bow of EXXON BATON ROUGE.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Cascade General Inc. / TONSINA	8-9	Ship repair / Marine Vessel	7/2/1992	Sandblast dust was observed forming on surface of water between the vessel TONSINA and the pier.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Chevron / WSI / Hydroblast	8-9	Ship repair / Marine Vessel	3/6/1992	DEQ received notification that a WSI contractor (Hydroblast) discharged 6,000 to 7,000 gallons of water containing paint chips from hydroblasting the deck of the CHEVRON CALIFORNIA.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
CHEVRON CALIFORNIA	8-9	Marine vessel	3/16/1993	A light gray film of unknown substance was observed at Berth 302 within the sea curtain of CHEVRON CALIFORNIA. CHEVRON CALIFORNIA reported that approximately 1 gallon of light lubricating oil was in the water and that it did not come from the ship.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Chevron Corporation	8-9	Marine vessel	6/18/1986	Estimated less than 1 gallon hydraulic oil released to Willamette River. Hydraulic line parted on the M/V CHEVRON LOUISIANA; report indicates less than 1 gallon hydraulic oil released to Willamette River.	Direct discharge to river	ERNS Database, Incident No. 48780; Port of Portland 104(e) Response for SIUF/B311
Chevron Corporation	8-9	Marine vessel	9/4/1990	Release of oil from the vessel CHEVRON OREGON at Berth 312.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Chevron Corporation	8-9	Marine vessel	4/9/2000	M/V CHEVRON COLORADO controllable pitch/prop seal failed causing hydraulic oil release; approx. 5' x 10' sheen observed; unknown quantity of oil released to Willamette River; area was preboomed.	Direct discharge to river	ERNS Database, Incident No. 525488; OERS 0-770; Port of Portland 104(e) Response for SIUF/B311
Chevron Corporation	8-9	Marine vessel	6/18/2003	Release of hydraulic oil from vessel.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Chevron LUBE QUEST	8-9	Marine vessel	6/12/1992	An approximately 80 to 100 feet by 6 feet wide fuel-type substance, oil or possibly petroleum, was observed along the pier. The Coast Guard was notified. Source was suspected as the vessel LUBE QUEST.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Chevron LUBE QUEST	8-9	Marine vessel	6/16/1992	An oil streak was observed coming from Chevron LUBE QUEST on the other side of the Lagoon.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
ExxonMobil	8-9	Marine vessel	5/4/1991	Release of sandblast grit into river from EXXON LONG BEACH.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Freighters, Inc. / M/V LUMBER QUEEN	8-9	Marine vessel	5/2/1971	Release of oil from vessel under repair. Slick from M/V LUMBER QUEEN observed at shipyard (quantity not reported).	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
General Steamship / F/T American Dynasty	8-9	Marine vessel	3/15/1994	Release of hydraulic oil. Five-gallon bucket knocked over side. M/V AMERICAN DYNASTY Release of hydraulic oil from bucket knocked over on F/T AMERICAN DYNASTY while at Berth 302; 10' x 10' sheen observed; report indicates 0.5-1 cup hydraulic oil released to Willamette River; booms and sorbent pads deployed.	Direct discharge to river	ERNS Database, Incident No. 230056 & 230087; National Response Center #230087 & #230056; Port of Portland 104(e) Response for SIUF/B311
General Steamship Company	8-9	Marine vessel	6/17/1993	M/V BOGASARI LIMA/line ruptured while transferring product, lubricating oil.	Direct discharge to river	NRC Report #180939 & NRC Report #180932
General Steamship Company	8-9	Marine vessel	2/25/1994	Unknown sheen surrounding vessel, M/V TAI SHING.	Direct discharge to river	NRC Report #223424
General Steamship Company	8-9	Marine vessel	2/11/1997	Unknown sheen, no longer visible. General Steamship vessel in area.	Direct discharge to river	NRC Report #376272
General Steamship Company	8-9	Marine vessel	6/23/1997	Unknown rainbow sheen 50 x 50 ft.	Direct discharge to river	NRC Report #392439
GRAND CANYON STATE	8-9	Marine vessel	5/5/1992	Oil surrounding the vessel GRAND CANYON STATE was observed to be moving towards Berth 306 where the CAPE BRETON was laid up. The material was reportedly dark in some areas with bubble shapes.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Kaiser Company, Inc.	8-9	Shipbuilding	5/10/1946	Sludge observed in Swan Island Basin (lagoon), reportedly from dumping from moored ships (quantity not reported); Kaiser Co. also reported Navy personnel using dump adjacent to Naval barracks for deposit of sludge.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
KENAI	8-9	Marine vessel	8/18/1991	A crane operator observed someone from the vessel KENAI dump unknown materials over the side. The onduty guard could not see anything in the water.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Keystone Shipping Co. / BMC-4	8-9	Marine vessel	10/28/1992	Material was discovered to be leaking during transfer of diesel from T/B BMC-4 to tanker KEYSTONE CANYON Berth 313; amount released reported as unknown; boom had been predeployed.	Direct discharge to river	ERNS Database, Incident No. 142358; National Response Center #142358; Port of Portland 104(e) Response for SIUF/B311
LURLIME	8-9	Marine vessel	1/19/1993	Crude oil from the deck of the vessel LURLIME spilled onto the deck of Dry Dock 4. The spill was contained by plugging drains of dry dock and cleaned up with dry sand and absorbent diapers. None of the oil went into the water.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
USNS Carl Brashear	8-9	Transportation	7/13/2009	A report to the NRC stated that there was a release of 5 gallons of "A Triple F" from a sprinkler to the drain onboard the vessel due to an operator error while installing "A Triple F" switches.	Direct discharge to river	NRC Incident Reports
HMI Beneton Reef	8-9	Tanker	9/16/2008	A report to the NRC stated that duck grease was poured down the drain and the grease was pumped overboard via grey water discharge.	Direct discharge to river	NRC Incident Reports
M/V COLUMBIA	8-9	Passenger ferry	4/27/2005	In 2005, a release of unknown materials caused a sheen on the river from the outboard area of the M/V COLUMBIA, a vessel owned by the Alaska Department of Transportation.	Direct discharge to river	PSY Suppl. PA, App. F (2006)
M/V CSO CONSTRUCTOR	8-9	Marine pipe laying vessel	9/15/1998	In 1998, a release of unknown oil from the vessel created a 10 m ² sheen on the river.	Direct discharge to river	PSY Suppl. PA, App. F (2006)
Maersk Line Limited	8-9	Marine vessel	10/1/1990	October 1990, while cleaning the aft of the SEA-LAND HAWAII a contractor released oil, dust and paint in the river causing a sheen on the surface.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
NORTHERN LIGHT	8-9	Marine vessel	3/18/1993	A 30 x 50 feet patch of gray unknown substance was observed in the water at the stern of the NORTHERN LIGHT.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Northwest Aggregates Co.	8-9	Transportation	3/3/2004	A report to the NRC stated that approximately 14 quarts of gear oil was released from a gear box on a conveyor belt when the conveyor belt broke and the gear box fell into the Willamette River.	Direct discharge to river	NRC Incident Reports
Northwest Marine Iron Works	8-9	Ship repair	9/11/1990	Oil was observed at Berth 304 between bents 50-53.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Northwest Marine Iron Works	8-9	Ship repair	12/9/1990	Oil and debris observed in water; other report indicates material was a milky white substance.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Northwest Marine Iron Works	8-9	Ship repair	8/20/1991	Ballast water observed coming from the vessel SIERRA MADRE. Northwest Marine was the contractor.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Northwest Marine Iron Works	8-9	Ship repair	8/5/1992	A red sandblasting material was observed in water at Dry Dock 3.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Northwest Marine Iron Works	8-9	Ship repair	10/19/1998	DEQ complaint that North West Marine Iron Works while working on the vessel the GOLDEN GATE dumped sandblast sand in the river at night.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Northwest Marine Iron Works & ExxonMobil	8-9	Ship repair	4/8/1991	Large quantities of sandblast sand was washed into river by Northwest Marine while working on the EXXON BENICIA. No additional information available.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Northwest Marine Iron Works / SKIPANON / Barge BMTB 332	8-9	Ship repair / marine vessel	3/27/1992	NW Marine was sandblasting barges SKIPANON and BMTB332. Sandblast material was observed in the water at the head of Dry Dock 3. The problem went on for a few days.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	4/27/1986	Tank ship placed back in water and sheen observed; report indicates 1/2 cup crude oil released to Willamette River; material cleaned up.	Direct discharge to river	ERNS Database, Incident No. 46950
Not yet identified	8-9	Unknown	6/11/1987	32-ft boat sank; report indicates 20 gallons diesel fuel released to Willamette River; cleanup conducted with booms and sorbent pads.	Direct discharge to river	ERNS Database, Incident No. 61769; Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	8/26/1988	Oil on river observed off Freightliner Corp.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	7/26/1990	Oil was observed in the water outside of the curtain at Berth 314.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	9/19/1990	White paint observed in water approximately 25 feet wide at Berth 305.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	11/9/1990	Diesel spill from storm drain.	Discharge of material to river via storm drain	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	11/11/1990	Heavy oil sheen reported around Dry Docks 3 & 4 in the area of the small boat basin; source not related to PSY or contractors; no additional information available.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	11/13/1990	Oil sheen observed, likely originated from refueling LCUs. Did not appear to be substantial.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	12/7/1990	Spill occurred from an overflow during refueling/bunkering operations.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	12/15/1990	Foamy material observed on water; reportedly originated from testing fire suppression equipment.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	3/1/1991	Fisherman observed oil slick outboard from tankers at the shipyard. The spill was reported to DEQ.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	8/8/1991	Diesel spill flowing into the shipyard. Appeared to be coming from across the river.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	8/17/1991	A green substance resembling paint was observed in the water between Berth 311-314.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	9/6/1991	A diesel spill occurred between Berth 312 and 313, 40 to 60 feet in diameter outside the sea curtain.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	10/2/1991	Sandblast sand in water.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	10/12/1991	Oil sheen (diesel) observed. No additional information available.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	11/6/1991	Oil slick observed. No additional information available.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	11/30/1991	Yellowish sheen observed (storm drain).	Discharge of material to river via storm drain	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	12/21/1991	Oil sheen observed. No additional information available.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	1/11/1992	Oil sheen observed.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	2/21/1992	Oil sheen observed on water.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	2/23/1992	A scaly, scummy substance that resembled old paint was observed in the river. It had a translucent appearance.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Not yet identified	8-9	Unknown	2/27/1992	A thick oil spill (reported as black and white) was observed at Berth 305. The Coast Guard was notified, but indicated it wasn't enough to clean up.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	3/11/1992	Sandblast material was observed in the lagoon extending from Dry Dock 1 to Berth 306.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	3/12/1992	Oily substance observed on water at Berth 311. Coast Guard was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	3/19/1992	Orange colored material observed.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	3/24/1992	An oily sheen observed at Berth 312. The Coast Guard was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	3/27/1992	A heavy blue sheen of oil was observed at Pier A and a small amount of a similar sheen was observed at Pier B at the head of Dry Dock 4. The Coast Guard was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	4/1/1992	Sandblast grit observed in water.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	4/2/1992	Sandblast grit was observed being washed into the river.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	4/2/1992	Orangish material observed.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	4/29/1992	A spill of fuel approximately 20 feet by 150 feet was observed on the water at the west end of Dry Dock #3. WSI cleaned it up and the Coast Guard was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	5/6/1992	Oily sheen observed from runoff.	Discharge of material to river via storm drain or overland flow.	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	5/12/1992	Oil sheen observed.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	7/2/1992	An oil spill occurred between the Dry Dock and Pier D at pilings 24-29. The Coast Guard was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	10/7/1992	Oil spill observed. The source appeared to be downstream and was deposited in shipyard by winds.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	10/8/1992	Sheen observed in lagoon; type of material, quantity and source not known.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	12/12/1992	An approximately 20-ft wide and approximately 2 miles long sheen was observed . The material appeared to be lighter weight than diesel. The Coast Guard was notified and determined cleanup was not necessary.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	2/14/1993	A sheen with an approximately 50 yards long and 20 to 30 feet wide area with old and new oil was observed. The Coast Guard was notified. No additional information was available.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	2/25/1993	Film observed on water near Dry Dock 1.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	3/8/1993	An oily substance was observed in the water on the portside of Dry Dock 4. The Coast Guard was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	3/9/1993	Two areas (10 x 3 feet and 15 x 7 feet) of reddish-pink substance were observed in the water.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	6/22/1993	A bright multi-colored substance was observed at Berth 305. The substance was 120 feet long and approximately 20 to 30 feet wide.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	8/4/1993	A 100 x 20 foot patch of sandblast material was observed outside of the sea curtain/oil containment boom at Berth 313. Dry Dock 4 was covered by the same reddish substance.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	9/9/1993	Sand blast scum (approximately 15 to 25 feet wide and 300 to 400 feet long) was observed on top of the water. It was reported to Cascade General and they reported that it would sink to the bottom.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	11/2/1993	Release of chicken fat/clay mixture near Berth 302 to Berth 305.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Not yet identified	8-9	Unknown	8/2/1994	5' x 5' sheen observed in lagoon off of U.S. Navy & Marine Corporate Reserve Center. Caller indicated source could be a remediation site he/she was working on. Boom deployed to contain the material.	Direct discharge to river	ERNS Database, Incident No. 253123
Not yet identified	8-9	Unknown	6/25/1996	Sheen observed in the lagoon.	Direct discharge to river	LWG Programmatic Work Pla (referenced as OERS 96-2014

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Not yet identified	8-9	Unknown	8/14/1996	A substance that appeared to be glue was found coming out of a storm drain, entering the lagoon at Cascade General/USCG area of the Swan Island Lagoon.	Discharge of material to river via storm drain.	LWG Programmatic Work Plan (referenced as OERS 96-2393)
Not yet identified	8-9	Unknown	10/8/1996	During refueling a work boat from shoreside, the surge suppressor failed. No cleanup. Product dissipated.	Direct discharge to river	LWG Programmatic Work Plan (referenced as OERS 96-2852)
Not yet identified	8-9	Unknown	5/31/1997	Approx. 1/4 mile x 2000' rainbow-colored sheen observed; unknown quantity of unknown oil released; source appeared to be coming from upriver; area from which sheen observed was preboomed.	Direct discharge to river	ERNS Database, Incident No. 389384
Not yet identified	8-9	Unknown	11/9/1998	Sheen on river from outfall. USCG determined it to be unrecoverable.	Discharge of material to river via storm drain	LWG Programmatic Work Plan (referenced as OERS 98-2681)
Not yet identified	8-9	Unknown	11/10/1998	Oil coming from outfall M-1. BES boomed and was looking for source.	Discharge of material to river via storm drain	LWG Programmatic Work Plan (referenced as OERS 98-2693)
Not yet identified	8-9	Unknown	4/5/2000	Approximately 0.5 gal released to water.	Direct discharge to river	LWG Programmatic Work Plan (referenced as OERS 0-741)
Not yet identified	8-9	Unknown	5/2/2000	MVA with 80 gallons of diesel going to a storm drain - semi leaking. Drain is 500 - 1000 yards from the river. Fire boat on scene; product not yet visible on river. BES en route. USCG contacted.	Discharge of material to river via storm drain	LWG Programmatic Work Plan (referenced as OERS 0-961)
Not yet identified	8-9	Unknown	11/15/2000	Unknown material resembling blast grit observed "floating" near dock - sinks when touched.	Direct discharge to river	LWG Programmatic Work Plan (referenced as OERS 0-2730)
Not yet identified	8-9	Unknown	1/31/2001	Light sheen discharge from outfall - 50'X50'. No additional information available.	Discharge of material to river via storm drain	LWG Programmatic Work Plan (referenced as OERS 1-223)
Not yet identified	8-9	Unknown	9/23/2001	Approx. 10' x 3' rainbow-colored sheen observed on water; release of unknown quantity of oil to Willamette River from an unidentified source.	Direct discharge to river	ERNS Database, Incident No. 580665; National Response Center #580665; OERS 1-2410
Not yet identified	8-9	Unknown	8/4/2002	Sheen observed on water; release of unknown oil to Willamette River from an unknown source; booms and absorbents applied and material was contained.	Direct discharge to river	ERNS Database, Incident No. 618890; National Response Center #618890
Not yet identified	8-9	Unknown	1/30/2008	NRC Environmental received a call from Port of Portland Marine Security that a tank was observed floating in the water in north Portland Harbor. NRC responded and deployed 100 feet of containment boom around the tank. A four-gas meter and a photoionization detector were used monitor the air inside the tank. All readings were normal and visual/olfactory observations indicated that there was no odor or sheen. It was determined that there were no pollution concerns from the contents of the tank and that no further testing was required. No additional information was available.	Possible direct discharge to river	Port of Portland 104(e) Response for the Dredge Base
Not yet identified	8-9	Unknown	4/1992	A sheen was observed on the lagoon and the source was determined as an outfall between Berth 305 and 306.	Discharge of material to river via storm drain	Port of Portland 104(e) Response for SIUF/B311
NW Marine / Allstate Marine Cleaning / STANDLEY	8-9	Ship repair / marine vessel	6/29/1990	Chempro observed an oil slick on the river while conducting an in-house spill training at Swan Island Lagoon. The Coast Guard was notified and NW Marine and Allstate cleaned up the slick. Report indicates the source was the vessel STANDLEY.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
NW Marine / SEALAND HAWAII	8-9	Ship repair / marine vessel	9/14/1990	Sandblast material and oil were observed in the water at Berths 302 and 304. The oil sheen was observed emanating to Berth 305. The Coast Guard investigated and determined the oil was coming from under the sea curtain at the SEALAND HAWAII. NW Marine was notified and they cleaned up the oil.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
OBSERVER ISLAND	8-9	Marine vessel	2/17/1991	Grey paint spilled in water at Berth 303 from overspraying on OBSERVER ISLAND. Paint was approximately 60-70 yards long and 4-20' wide in places.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
OVERSEAS GALENA BAY	8-9	Transportation	10/19/2001	A report to the NRC stated that approximately 1 pint of lubricating oil was released from the vessel into the Willamette River from a leak in the lube oil cooler in the engine room.	Direct discharge to river	NRC Incident Reports
OVERSEAS OHIO	8-9	Marine vessel	1/25/1994	Brownish colored water observed coming from a drain hole near the deck of the ship OVERSEAS OHIO. Appeared to be leaving an unknown sediment.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
OVERSEAS OHIO	8-9	Marine vessel	1/31/1994	Black or brown substance observed emanating from the OVERSEAS OHIO at Berth 312.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Pacific Detroit Diesel	8-9	Manufacturing	8/28/1997	Approx. 100 yd x 200 yd black oil with gray sheen observed on Swan Island Lagoon; report indicates 25-40 gallons of unknown oil released to lagoon from outfall; source not known; cleanup contractor initiated cleanup.	Discharge of material to river via storm drain	ERNS Database, Incident No. 401531; National Response Center #401531; LWG Programmatic Work Plan (referenced as OERS 97-2198)
Pacific Marine Services / PAC Barge	8-9	Ship repair / marine vessel	10/15/1973	Release of debris and paint from sandblasting and painting. Release of debris and paint to Willamette River from sandblasting and painting work on PAC Barge 302-2 at Berth 309 (quantity not reported).	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Peninsula Truck Lines, Inc.	8-9	Transportation company	4/19991	OSFM incident report stated that an employee washing the bed of a 40-ft trailer spilled approximately 2 gallons of blue dye pigment into the storm sewer. The storm sewer is situated in the City of Portland's stormwater basin No. 18 which discharges to the Willamette River.	The intersection is situated in the City of Portland's OF 18 stormwater basin.	Oregon State Fire Marshal database
Polar Tankers	8-9	Marine vessel	5/14/2000	Release of crude oil from tanker POLAR SPIRIT while on dry dock; leaking drops of oil every few minutes; unknown quantity of oil released to Willamette River; ship boomed; vessel boomed; USCG, PDX Fire called by OERS. Report states ODFW Clean Rivers would also be called.	Direct discharge to river	ERNS Database, Incident No. 528965; National Response Center #528965; OERS 0-1055; Port of Portland 104(e) Response for SIUF/B311
Port of Portland	8-9	Government	7/9/1992	A hydraulic oil leak on a crane for Dry Dock 4 spilled onto the portside of the EXXON NORTH SLOPE which was on the dry dock. No release to the river was indicated.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Portland Truck and Diesel	8-9	Transportation	1/9/2003	A report to the NRC stated that approximately 160 gallons of oil were released from an oil/water separator to the surrounding soil due to equipment failure. The NRC database reported that it is not known whether the release reached the Willamette River.	Possible release to City's storm water conveyance system to either OF18 or 19.	NRC Incident Reports
Sea-Land Service, Inc./ Sea-Land Transport Co. and SEA-LAND NAVIGATOR, SEA-LAND HAWAII	8-9	Transportation company	12/1990	December 1990, day unknown, an unknown amount of foam was released into the river during the repair of a vessel, NAVIGATOR, owned by Sea-Land.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
SIERRA MADRE	8-9	Marine vessel	8/3/1990	Oil was observed in water at the stern of the vessel SIERRA MADRE. The oil dispersed before cleanup could occur.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
SIPCO / OVERSEAS CHICAGO	8-9	Ship repair / Marine Vessel	4/3/1992	Dirty water pumped by SIPCO from OVERSEAS CHICAGO into river.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
T/V ARCO SAG RIVER	8-9	Marine vessel	4/23/1986	In 1986, it was reported that 1 cup of crude oil was released to the river from a ballast pipeline. Discharge of pipeline/oil in line/discharging ballast at Dry Dock 4; report indicates 1 cup of Alaska North Slope crude oil released to Willamette River from T/V ARCO SAG RIVER; 10' x 50' sheen observed; boom placed and cleanup crew contacted.	Direct discharge to river	ERNS Database, Incident No. 46828; Port of Portland 104(e) Response for SIUF/B311
Trans Marine Navigation Company / M/V DANSUS	8-9	Marine vessel	6/25/2001	Release of marine gas from a faulty cap on a sounding pipe on M/V DANSUS while on dry dock; approx. 20 m x 4 m bluish-colored sheen observed; reports indicate 1 gallon or 5 liters of marine gas released to Willamette River; also states release was automotive gasoline; material contained by previously deployed boom.	Direct discharge to river	ERNS Database, Incident No. 570837; ERNS Database, Incident No. 570839; National Response Center #570837; OERS 1-1497; Port of Portland 104(e) Response for SIUF/B311
U.S. Army Corps of Engineers	8-9	Government	12/28/1989	Release of oil during transfer operations. Dredge ESSAYONS (U.S. Army Corps dredge), while transferring; approx. 10' sheen observed; report indicates 1 gallon motor oil released to Willamette River; sorbent material used to cleanup spill.	Direct discharge to river	ERNS Database, Incident No. 112496; Port of Portland 104(e) Response for SIUF/B311
U.S. Army Corps of Engineers	8-9	Government	9/16/1990	Yellow and white paint was observed in the river at Berth 302 near the Corps DREDGE ESSAYONS. Paint was contained within the boom. Cascade General was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
U.S. Army Corps of Engineers	8-9	Government	9/20/1990	Hydraulic oil released from Dredge ESSAYONS due to equipment failure at Berth 303; approximate 6,000 sq. ft. sheen observed; report indicates 10 gallons hydraulic oil released to Willamette River; vessel was boomed in and sorbents used to cleanup spill.	Direct discharge to river	ERNS Database, Incident No. 40514; NRC Report #40514; Port of Portland 104(e) Response for SIUF/B311
U.S. Army Corps of Engineers	8-9	Government	9/23/1990	Hydraulic oil released from Dredge ESSAYONS due to equipment failure at Berth 303; approximately 6,000 sq. ft. sheen observed; report indicates 10 gallons hydraulic oil released to Willamette River; vessel was boomed in and sorbents used to cleanup spill.	Direct discharge to river	ERNS Database, Incident No. 40514; National Response Center #40514; Port of Portland 104(e) Response for SIUF/B311

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
U.S. Coast Guard	8-9	Government	12/9/1991	While pumping out sewage from the Coast Guard vessel POLAR STAR at Berth 312, a spill occurred (reported as DEQ Spill No. 91-163). When the POLAR STAR crew noticed sewage coming from the line, they immediately stopped pumping operations. It was estimated that less than 100 gallons of sewage was released in the Willamette River. No cleanup of the release was performed because of the inaccessibility of the location.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
U.S. Coast Guard	8-9	Government	4/5/1992	Oil sheen on the water caused by an engine problem in USCG RESOLUTE. A propeller hub leaked approximately 1/4 gallon of oil.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
U. S. Navy	8-9, 10-11	Defense agency	4/22/1946, 1/25/1987, 9/29/1989, 1/6/1991, 7/18/1991, 7/24/1991, 10/9/1991, 7/12/1994, 9/24/1994, 6/13/1995, 6/19/1995, 1/7/1996, 5/12/1997, 1/12/2001, 4/18/2002, 6/29/2003, 11/25/2003	A 1946 release of bilge oil into Swan Island Lagoon at Berthing Area B from pumping out bilges of an LST. Navy was owner of vessel USNS WILKES, which released approximately 1 gallon of lubricating oil in bilge into river in 1987. In 1989, Navy BARGE 60 was in repair at the PSY when a contractor released sandblast grit into the river. In January 1991, an oil sheen observed on water from the USNS SILAS BENT. Sheen approximately 20-30' x 80'. Material dissipated. A July 1991, two incidents were reported, including the release of approximately 1 gallon of hydraulic oil and 3 gallons of waste oil/lubricants from the USS WILLIAM H. STANDLEY into the river. In October 1991, two reports to the NRC stated that approximately 5 gallons of aviation fuel and 1 gallon of waste lubricating oil were released from USNS HASSAYAMPA and the USNS TITAN into the Willamette River, respectively. In 1994, a report stated that approximately 1 pint of jet fuel was released into the river when a contractor removed a cargo hose from the USNS GUADALUPE. A Sept. 1994 report stated that approximately 1 ounce of hydraulic oil was released into the river from the M/V SEALIFT ANTARCTIC.	Direct discharge to river	PSY Suppl. PA, App. F (2006) NRC Incident Reports Port of Portland 104(e) Response
				In June 1995, two NRC reports stated that approximately 6 gallons of waste oil was released from the USNS TIPPECANOE into the Willamette River during two separate incidents. An April 1996 report stated that approximately 25 gallons of unknown oil was released into the river when a stern line broke on the USS HIGGINS. A 1997 report to the NRC stated that approximately of 3 gallons of "bilge slops" or oily waste was released from USNS JOHN ERICSSON into the Willamette River when a tank truck in the process of shutting down lost material. In 2001, an oil sheen was observed in the dry dock following repairs to the Navy ship TIPPECANOE. In 2002, a sheen on the river was observed around the Navy vessel, USNS YUKON. In November 2003, 22-50 gallons of lubricating oil released during transfer to Navy vessel docked at Swan Island. Report indicates 2 gallons released to Willamette River. Absorbents and booms deployed and release was secured.		for SIUF/B311
U.S. Navy & Pacific Coast Environmental, Inc.	8-9	Government	10/20/1991	Ballast tank on U.S. Navy vessel pumping over the side; operation was shut down and absorbent pads and a boat were deployed. Report indicates 50 gallons of diesel fuel released to Swan Island Lagoon.	Direct discharge to river	ERNS Database, Incident No. 92949; National Response Center #92949; Port of Portland 104(e) Response for SIUF/B311
United States	8-9	Government	6/11/1946	Fire at Deperming Station; letter indicates "that the standing order forbidding pumping of oily bilges is being disobeyed."	Possible direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
United States / Kaiser Company, Inc.	8-9	Shipbuilding	1/16/1943	Deck and sides of the SS SCHENECTADY, fractured just aft of the bridge superstructure while tied up at outfitting pier.	Possible direct discharge to river	Port of Portland 104(e) Response for SIUF/B311; www.fingerpublishing.com
VENETIA	8-9	Marine vessel	6/2/2003	8' X 8' sheen observed outside boom of UNIVERSE EXPLORER - believed to be from the VENETIA, a neighboring ship.	Direct discharge to river	LWG Programmatic Work Plan (referenced as OERS 3-1115)
Werner Enterprises	8-9	Transportation	1/13/2000, 10/19/2001	In January 2000, a spill from tractor trailer of 60 gallons occurred at the Werner facility. The spill discharged to a storm sewer and approximately 30 gallons reached the river. In October 2001, a report to the NRC stated that approximately 30 gallons of fuel oil was released when a crossover line on a tractor trailer saddle tank ruptured. The oil was released to the roadway then flowed into a storm drain. The roadway is situated in the	Direct discharge to river	NRC Incident Report #516905; NRC Incident Reports
West State Inc.	8-9	Ship repair	4/28/1991	City of Portland's storm water Outfall Basin 18. Diesel spill around starboard side of Dry Dock 3; looked to be emanating from the sea curtain. West State Inc. notified and worked to clean up.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
West State Inc.	8-9	Ship repair	8/11/1992	Sewage liquids spilled from a vessel (name illegible).	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
West State Inc. & Chevron Corporation	8-9	Ship repair / marine vessel	5/4/1991	Release of sandblast grit and paint chips into river from West State Inc. working on CHEVRON RANGER ARIZONA.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
West State Inc. & Chevron Corporation	8-9	Ship repair / marine vessel	1/29/1992	WSI was observed washing out ballast tanks of CHEVRON CALIFORNIA and letting the water flow over the inboard side of the ship.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
West State Inc. & Chevron Corporation	8-9	Ship repair / marine vessel	2/12/1992	Sandblast material was observed being pumped into the river from the vessel CHEVRON CALIFORNIA.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
West State Inc. / SIPCO / SEALAND NAVIGATOR	8-9	Ship repair / marine vessel	2/9/1991	Release from shoveling sandblast sand into river while West State Inc. and SIPCO working on the SEALAND NAVIGATOR.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
West State, Inc. / MARYLAND	8-9	Ship repair / marine vessel	11/14/1987	Alleged oil slick on river from drydock which was being flooded to lower the tanker MARYLAND (formerly STUDEVANT) into the water.	Possible direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
West State, Inc. / OVERSEAS PHILADELPHIA	8-9	Ship repair / marine vessel	5/17/1992	Dust was discharged from vessel OVERSEAS PHILADELPHIA at Berth 304 directly to the lagoon instead of a bag house. Reportedly due to mechanical failure.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
West State, Inc. / SIPCO / SEALAND TRADER	8-9	Ship repair / marine vessel	1/26/1991	Release of sandblast grit into air and river from West State Inc. and SIPCO working on SEALAND TRADER.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
Western Towboat Co.	8-9	Tugboat operator	3/9/2004	During an internal transfer, vessel Ocean Mariner discharged 4 gallons of diesel from an overhead vent. Diesel ran out scupper and discharged to river.	Direct discharge to river	NRC Incident Report #715543
WISCO / SS BARBARA	8-9	Ship repair / marine vessel	6/20/1957	Workmen for WISCO were removing belly plugs from SS BARBARA to drain water ballast from tanks and by mistake took out an oil tank plug. A considerable amount of oil was released to the Willamette River and WISCO was working all night to clean it up.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
WSI / CURY	8-9	Ship repair / marine vessel	3/27/1992	Heavy black oil was observed at the stern of the vessel CURY. The Coast Guard was notified.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
WSI / DELAWARE TRADER	8-9	Ship repair / marine vessel	5/2/1994	WSI working on the DELAWARE TRADER was observed discharging large quantities of muddy water (possibly sandblast grit) onto the Pier at Berths 302 and 303.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
WSI / Lockwood Industries	8-9	Ship repair / marine vessel	1/26/1992	Two Lockwood Industries tankers (#6B-1 and #101) were observed with dripping oil from valves.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
WSI / OVERSEAS OHIO	8-9	Ship repair / marine vessel	1/17/1994	An oily substance and blob of an unknown black substance (1-, 2-, and 3-inch diameters) were observed emanating from the OVERSEAS OHIO at Dry Dock 4. WSI notified the Coast Guard.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
WSI / OVERSEAS OHIO	8-9	Ship repair / marine vessel	1/27/1994	Two hoses were observed from OVERSEAS OHIO dumping a mixture of sand and water into the river.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
WSI / OVERSEAS OHIO	8-9	Ship repair / marine vessel	2/4/1994	Dirty water was overflowing from tank into the river.	Direct discharge to river	Port of Portland 104(e) Response for SIUF/B311
American Transport	9-10	Transportation company	8/1991	American Transport Inc. (now American Energy, Inc.) has been reported as a responsible party for a number of spills in the City of Portland, some of which have entered a waterway. One incident within the Study Area reported in the OSFM database involved 4,400-gallon tanker that broke off its mount, spilling diesel fuel. OSFM reported that 500 gallons were released and material entered a waterway. The location of the spill is situated in the City of Portland's Stormwater Basin No. 19A, which discharges to the Willamette River.	The intersection is situated in the City of Portland's OF 19A stormwater basin.	Oregon State Fire Marshal database NRC Incident Reports, NRC Incident Reports #303504 & 777997
CPS Express	9-10	Transportation company	One-time event occurring in March 1995	OSFM incident report stated that a tractor trailer rig leaked approximately 10-15 gallons of an unknown chemical into the public street. OSFM reported that approximately 10 gallons were released into a storm sewer. The storm sewer is situated in the City of Portland's Stormwater Basin No. 17, which discharges to the Willamette River.	Stormwater from the area flows into the Lower Balch Creek Basin which discharges to City of Portland Outfall 17 thence into the Willamette River.	Oregon State Fire Marshal database
Crowley Marine Services		Marine transportation company	10/5/1990, 2/9/1993, 4/10/1997, 5/2/1997	A 1990 report to the NRC stated that a 10-gallon release occurred with an unknown amount of diesel oil flowing into the Willamette River when a tank was overfilled. A 1993 report to the NRC stated that approximately 2 gallons of ballast water were released into the river. An April 1997 report to the NRC stated that approximately 1 pint of hydraulic oil was released from the tug ADVENTURER into the Willamette River due to a seal leak on a propeller shaft. A May 1997 report to the NRC stated that approximately 0.5 cup of diesel oil was released from the tug CAVALIER into the Willamette River due to a seal failure.	Direct discharge to river	NRC Incident Reports
General Electric Company	9-10	Electrical apparatus decommissioning facility	2/4/1994	A report to the NRC stated that approximately 1 pint of PCB-contaminated oil was released when a capacitor motor leaked onto concrete due to an equipment failure. The report confirmed that there was a release to the water, although a "zero" was the amount reaching the water in the report.	Discharge to river via storm sewer	NRC Incident Reports
LASCO Shipping	9-10	Transportation	10/9/1998	A report to the NRC stated that approximately 1 liter of hydraulic oil was released from the M/V PACKING into the river due to a broken hydraulic hose on a hatch cover.	Direct discharge to river	NRC Incident Reports

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Michael Wakefield dba Three Hats Farm	9-10	Transportation company	One-time event occurring in May 2001	OSFM incident report stated that a semi-tractor trailer jack-knifed during an auto accident. The seam on the trailer tank ruptured, spilling 30-40 gallons of diesel fuel onto the roadway in the vicinity of two storm drains. OSFM estimated that 20-30 gallons discharged into the storm drains. The intersection is situated in the City of Portland's Stormwater Basin No. 15, which discharges to the Willamette River.	Stormwater from the area flows into the Nicolai Basin which discharges to City of Portland Outfall 15 thence into the Willamette River.	Oregon State Fire Marshal database
Portland Bagel	9-10	Bakery	12/1995	OSFM incident report stated that a truck was leaking diesel fuel in a nearby parking lot (3571 NW Yeon). OSFM reported that 2-3 gallons of diesel fuel spilled and may have flowed into a storm sewer sump. The storm sewer is situated in the City of Portland's Stormwater Basin No. 17, which discharges to the Willamette River.	Stormwater from the area flows into the Lower Balch Creek Basin which discharges to City of Portland Outfall 17 thence into the Willamette River.	Oregon State Fire Marshal database
Pro Truck Lines	9-10	Transportation	5/25/1995	A report to the NRC stated that approximately 80 gallons of diesel oil was released to the ground from ruptured fuel line on a truck. An unknown amount of oil was released to the Willamette River via public conveyance system.	Discharge of material to river via storm drain	NRC Incident Reports
Stevedoring Services Inc.	9-10	Terminal stevedoring operations for loading and unloading container cargo, bulk and breakbulk for products	1/15/1995	A report to the NRC stated that an unknown amount of paint thinner was released into the Willamette River when a paint pallet spilled from the M/V PAC PRINCE's crane.	Direct discharge to river	NRC Incident Reports
Truax Oil, Inc.	9-10	Transportation company	12/19/1990	As reported to the NRC, a tanker truck driver lost control of the vehicle. The accident ruptured the tanker, releasing at least 50 gallons of diesel fuel. An unknown amount discharged to the storm drain and then entered the Willamette River. The accident occurred within the City of Portland's Stormwater Basin No. 17, which discharges to the Willamette River.	Stormwater from the area flows into the Lower Balch Creek Basin which discharges to City of Portland Outfall 17 thence into the Willamette River.	National Response Center
ALLUNGA	10	Marine vessel	4/14/1985	A 100 ft. by 300 ft. sheen was observed traversing the lengths of Berths 205 and 206. The Coast Guard determined the source to be soot from the vessel ALLUNGA which was berthed at the WISCO facility for overhaul work.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
City of Portland	10	Government	1/5/2005	January 5 through 6, 2005 – A sheen was observed in the City of Portland's Fireboat Cove adjacent to Terminal 2 during dredging activities associated with a utility locate. Port staff videotaped sediments being sucked up, sprayed into the air and being deposited back into the slip.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
DIMOSTA	10	Marine vessel	5/24/1989	A spill occurred when three barrels of sulfuric acid fell from the vessel DIMOSTA onto the dock near the bullrail and ruptured spilling a small amount of liquid. The liquid was diluted and partially washed away with rainwater into river. The spill was estimated at 165 liters.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
GOLDEN ALPHA	10	Marine vessel	6/28/1992	Approximately one barrel of oil was released from the vessel GOLDEN ALPHA at Berth 206. The spill caused a sheen on the river that extended about 200 feet around the ship's stern.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
MICRONESIAN NATIONS	10	Marine vessel	1/16/1999	Prior to departing Berth 206, the fuel/oil was discharged from the stern of the vessel MICRONESIAN NATIONS. The diameter of the spill was approximately 150 ft. by 200 ft. under the dock. The Coast Guard was notified. No additional information was available.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
Not yet identified	10	Unknown	11/4/1981	Oil was observed on the water underneath Berths 201 to 203. The Coast Guard was notified and they indicated it was a sheen of diesel originating from "down river."	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
Not yet identified	10	Unknown	5/16/1983	An oil and red paint mixture was observed traversing the length of Berth 205. The oil/paint slick was approximately 1,800 feet long and 10 to 12 feet wide. Although the source could not be determined, it appeared to be originating from upstream and extended a short distance beyond the WISCO fence.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
Not yet identified	10	Unknown	7/19/1989	A light sheen was observed on the river in the vicinity of Berth 206.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
Not yet identified	10	Unknown	8/20/2004	A personal watercraft struck piling #221 at Berth 204 and sank. Gasoline was noted leaking from the sunken boat. Fred Devine Diving and Salvage was contacted to recover the vessel.	Direct discharge to river	Port of Portland 104e Response for Terminal 2
OVERSEAS BOSTON	10	Marine vessel	12/20/1993	A thick foamy substance was observed in the water in the vicinity of Berth 206. The source was determined to be a substance originating from the OVERSEAS BOSTON, which was berthed at the Sulzer-Bingham facility.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
SEA VENTURE	10	Marine vessel	10/14/1991	Approximately 25 to 30 gallons of diesel was released from the vessel SEA VENTURE at Berth 203 and caused a sheen on the river. Crowley contacted the Coast Guard and Riedel International was called, the area was boomed off, and absorbents were used to control the spill. Approximately 90 percent of the spill was cleaned up within an hour of its release.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Union Pacific Railroad Company	10	Railroad company	10/30/1994	An oil slick was identified off Terminal 2 in the vicinity of Berth 206. The Coast Guard was contacted and they indicated that the slick was residual oil from a Union Pacific Railroad spill that occurred the previous week. The Coast Guard decided the sheen would break up and did not require clean-up.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
Western Transportation Company	10	Transportation company	7/10/1989	A sheen was observed in the water off of Berths 203 and 204 and appeared to be originating from Western Transportation upstream.	Direct discharge to river	Port of Portland 104(e) Response for Terminal 2
Arrow Transportation Company	10-11	Transportation company	10/10/1990	Material spilled from a hose when Arrow Transportation Company was loading a ship from a truck, approximately 15 gallons of lubricating oil released, approximately 5 gallons reached Willamette River. Spill was cleaned up with sorbent materials.	Direct discharge to river	Port of Portland 104(e) Response for T1 North
M/V MARIA CARLA D'AMICO	10-11	Marine vessel	11/2/1971	Oil slick associated with vessel M/V MARIA CARLA D'AMICO observed adjacent to Terminal 1; estimated 90 gallons released to Willamette River.	Direct discharge to river	Port of Portland 104(e) Response for T1 South; Port of Portland 104(e) Response for T1 North
Not yet identified	10-11	Unknown	6/24/1997	Release of unspecified oil reported based on "unknown sheen sighting"; sheen size approximately 100 ft X 100 ft; some rainbow color; caller was aboard SS BEAVER STATE.	Direct discharge to river	Port of Portland 104(e) Response for T1 North; Port of Portland 104(e) Response for T1 South
Shaver Transportation Company	10-11	Transportation company	11/8/1971	Estimated 3 barrels of Bunker C released to Willamette River by Shaver Transportation fuel barge when a line to the vessel ALBIA broke (reported by Shaver).	Direct discharge to river	Port of Portland 104(e) Response for T1 North
SS EL CENTRO AMERICANO	10-11	Marine vessel	2/13/1982	Oil spill observed on the deck of the vessel SS EL CENTRO AMERICANO at Berth 103 (quantity not reported); no additional information available.	Direct discharge to river	Port of Portland 104(e) Response for T1 North
SS LOCH LOYAL	10-11	Marine vessel	12/11/1971	Oil slick associated with SS LOCH LOYAL observed at Berth 8 (quantity not reported).	Direct discharge to river	Port of Portland 104(e) Response for T1 North
SS MAAS LLOYD	10-11	Marine vessel	2/8/1971	Release of oil from Berth 6 to Willamette River, cleaned up by Shaver (quantity not reported).	Direct discharge to river	Port of Portland 104(e) Response for T1 North
SS MARYLAND or TUG NAVIGATOR	10-11	Marine vessel	5/31/1985	Oil slick observed at Berth 101; estimated at 100 ft in length; source reported as either vessel SS MARYLAND or the tug NAVIGATOR (quantity not reported).	Direct discharge to river	Port of Portland 104(e) Response for T1 North
Zidell Explorations	10-11	Ship scrapping	1968	Oil slick from release at upstream Zidell facility observed at Terminal 1.	Direct discharge to river	Port of Portland 104(e) Response for T1 South; Port of Portland 104(e) Response for T1 North
MARAD / GREEN MOUNTAIN STATE	11	Marine vessel	9/11/1996	An overspray occurred while a contractor was painting the Marad vessel GREEN MOUNTAIN STATE. Marad accepted responsibility for the overspray and contacted the affected tenant, Thermo Pressed Laminates.	Direct discharge to river	Port of Portland 104(e) Response for T1 South
NAVIGATOR	11	Marine vessel	5/30/1985	The tug NAVIGATOR had a wire run through the propeller shaft seal causing it to spew oil when it was departing from Berth 104. No volume was indicated, but the release was reported to the Coast Guard and cleaned up by Crowley Maritime's environmental team on the day of the release.	Direct discharge to river	Port of Portland 104(e) Response for T1 South
Not yet identified	11	Unknown	3/9/1981	A 10 by 1,000 ft spill was observed at Berth 104; no known cause.	Direct discharge to river	Port of Portland 104(e) Response for T1 South
Not yet identified	11	Unknown	9/25/1981	An oil slick was observed emanating from the Fremont Bridge area downstream to Terminal 1 Berths 101 to 106; source reported as upriver (quantity not specified).	Direct discharge to river	Port of Portland 104(e) Response for T1 South; Port of Portland 104(e) Response for T1 North
Not yet identified	11	Unknown	10/19/1981	A spill was reported extending from Berth 105 down to Berth 101, although no ships were in the vicinity, only a barge; 20-30 feet wide.	Direct discharge to river	Port of Portland 104(e) Response for T1 South
Not yet identified	11	Unknown	5/24/1974	A discharge of lube oil occurred from the maintenance shop in the Gearlocker because of an equipment failure and caused an oil sump to overflow into the Willamette River. A 5-foot by 15-foot oil slick was observed and it was estimated that less than one gallon of oil per day entered the river.	Direct discharge to river	Port of Portland 104(e) Response for T1 South
U.S. Maritime Administration	11	Government	Unknown	No Date. While conducting painting activities on the MARAD vessel GREEN MOUNTAIN STATE laid up at Berth 104, MARAD's contractor accidentally oversprayed into an area leased by Thermo Pressed Laminates.	Direct discharge to river	Port of Portland 104(e) Response for T1 South
Unknown Vessel	11	Marine vessel	5/21/1991	An oily sheen was observed downriver from an old paddle-wheel docked at Berth 105.	Direct discharge to river	Port of Portland 104(e) Response for T1 South
Olympic Tug and Barge	11.4	Transportation	11/24/2001	Sheen observed comping from vicinity of the Irving dock.	In river	NRC 586800
M/V Jude Breeze	11-12	Transportation	3/29/2008	A NRC incident report stated that there was a contractor working on the ship that spilled 0.5 gallons of oil into the river while disconnecting a hose.	Direct discharge to river	NRC Incident Reports
		· · · · · · · · · · · · · · · · · · ·	-			

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Rexel/Taylor Electric	12-13	Warehouse	5/18/2006	A 120 gallon spill/unrecoverable sheen on river caused by firefighting efforts at facility warehouse. Spill traced to three utility pole transformers that were damaged in the fire. Oils were released to the ground and water from firefighting efforts washed oil down storm drain. Unknown whether the transformers contained PCB oil.	Discharge of material to river via storm drain	NRC Incident Report #797606
Tidewater Barge Lines	12.1	Marine transportation company	8/28/1994	Diesel released under Steel Bridge from Barge #36	Direct discharge to river	from Second Amended complaint
DREDGE OREGON	Swan Island	Dredge vessel	6/7/2005	40 gallons of hydraulic oil released to river while transferring. Fuel came out of vent during fuel transfer, spilled on deck and between 5-10 gallons entered the river. Absorbents were used to clean up spill.	Direct discharge to river	NRC 761272/ OERS 05-1253
LIBERTY SEA	Terminal 5	Marine vessel	12/8/2000	Sheen of unknown oil observed along side LIBERTY SEA vessel at Columbia Grain Elevators, Terminal 5.	In river	NRC 550405/ OERS 00-2910
JOHNNY PETERSON	Terminal 5	Marine vessel	8/5/2003	Towing vessel pushing barge SANDERLING ran into POP Ship dock at T5 behind the Alcaltel Facility, releasing 750 gallons.	Direct discharge to river	OERS 03-1681
LIBERTY SEA	Terminal 5	Marine vessel	12/8/2000	Sheen of unknown oil observed along side LIBERTY SEA vessel at Columbia Grain Elevators, Terminal 5.	In river	NRC 550405/ OERS 00-2910
JOHNNY PETERSON	Terminal 5	Marine vessel	8/5/2003	Towing vessel pushing barge SANDERLING ran into POP Ship dock at T5 behind the Alcaltel Facility, releasing 750 gallons.	Direct discharge to river	OERS 03-1681
National Oceanic and Atmospheric Administration	Unknown	Research vessel	2/5/2001	A discharge of approximately 1 cup of No. 2 diesel occurred from the R/V MCARTHUR to Willamette River.	Direct discharge to river	USCG Pollution Report
Portland General Electric Company	Unknown	Electric utility company	10/25/2004	In October 2004, approximately 30 gallons spilled from a pole transformer at 3001 SE Morrison containing fluid with 31 ppm PCB based on 9/30/1986 sampling. Oil initially discharged to ground and subsequently to river via storm drains.	Discharge of material to river via storm drain	NRC Report #739571
Portland General Electric Company	Unknown	Electric utility company	11/30/1999	In November 1999, the NRC reported that approximately 3 gallons of hydraulic oil was released into the water, from a ruptured truck reservoir line. The spill reached a nearby storm drain and was released into the Willamette River.	Discharge of material to river via storm drain	NRC Report #507354
Portland General Electric Company	Unknown	Power barge Pole transformer	4/4/2008	Hydraulic lift broke on wiggle tail digging truck and hydraulic oil was released into nearby storm drain at 20717 NW Vaughn St.	Storm drain	NRC 867007
Wilson Oil	Unknown	Transportation company	12/1987	OSFM incident report stated that a tanker truck overturned leaking approximately 3,000 gallons of gasoline on the roadway. The OSFM report does not provide enough information concerning the spill, but it is assumed that some volume of gasoline discharged into storm sewers on St. Helens Road which then flowed to the Willamette River. More research is necessary to determine where the tanker truck picked up the load and the exact location of the accident.	Stormwater system	Oregon State Fire Marshal database
Tosco Company	Unknown	Tug	11/2/1999	Fuel tank vent on tug HOWARD OLSON "burped" during refueling. Approximately 1/2 gallon No. 2-D fuel oil spilled during refueling.	Direct discharge to river	NRC 504542/ OERS 99-2526
Sause Brothers	Unknown	Transportation	7/27/2010	Unknown hydrocarbon sheen observed at Sause Dock.	In river	NRC 948990
Sause Brothers	Unknown	Transportation	3/29/2008	Diesel fuel release from tug boat due to tank overflow. Cracked fuel tank spilled diesel fuel into bilge and bilge automatically turned on releasing 55 gallons into river. Location described as 3710 NW Front Ave.	Direct discharge to river	NRC 866359/ OERS 08-0788
Sause Brothers	Unknown	Transportation	12/28/2007	Sheen observed in river. Source is old underground saturation that seeps to surface occasionally. The 10 ft x 15 ft sheen was contained with absorbents. Weathered oil may have been stirred up from bottom or discharged from groundwater under bank. Unknown origin. Location described as 3710 NW Front Ave.	Direct discharge to river	NRC 858324/ OERS 07-2994
Yong/Trans-Marine Navigation	Unknown	Transportation company	2/12/2000	M/V YONG AN released No. 2 bunker oil when pumping bilges. Valve was stuck open. Location described as Columbia Grain elevator at terminal #5 south of Broadway.	Direct discharge to river	NRC 519661/ OERS 00-0354
M/V COLORADO VOYAGER	Unknown	Marine vessel	12/30/09	A NCR incident report noting the spill of unknown oil from a scupper during the changing of a pad in the scupper.	Direct discharge to river	NRC Incident Reports
Tugboat PORTLAND	Unknown	Tugboat	5/31/1991	Diesel oil release of unknown quantity	Direct discharge to river	NRC 73950
M/V CABLE VENTURE & T/B BMC4	Unknown	Unknown	6/18/1993	Material observed in water during bunkering	Direct discharge to river	NRC 181179
Barwil Agencies	Unknown	Marine vessel	12/19/1993	M/V KIMISIS leaking lubricating oil from discharge pipe. Sheen size 1 meter in diameter	Direct discharge to river	NRC 213241
Barwil Agencies	Unknown	Marine vessel	10/29/2001	Unknown oil released from the M/V ROVER due to rain washing material off deck at 800 N River St.	Direct discharge to river	NRC 584611
M/V COVE ENDEAVOR	Unknown	Marine vessel	1/14/1994	M/V COVE ENDEAVOR leaking bunker oil due to unknown cause. Sheen observed 1000 ft x 100 ft. Location description listed as Schnitzer International Terminal	Direct discharge to river	NRC 216741 and 216707

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
West Coast Shipping Company	Unknown	Unknown	7/6/1995	Loose rivet on starboard bunker tank sheet of T/S CORNUCOPIA. No. 6 fuel oil release. Location described as Union Chemical Dock.	Direct discharge to river	NRC 298604
Anglo Eastern Ship Management	Unknown	Unknown	2/1/1997	Crew of M/V HANDY GUNNER was washing out holds and inadvertently washed oil off deck into water. Location described as Lone Star Cement Terminal.	Direct discharge to river	NRC 375991
Hickey Marine	Unknown	Unknown	2/8/1997	Hydraulic oil released due to steering system hydraulic hose rupture on tug MAVERICK. Location described as Columbia Grain Pier Facility.	Direct discharge to river	NRC 375991
M/V PAN NOBLE	Unknown	Unknown	6/23/1997	Sheen observed coming from M/V PAN NOBLE	Direct discharge to river	NRC 392440
JA RAINBOW	Unknown	Marine vessel	1/28/1998	Vessel JA Rainbow had hydraulic leak. A line burst on rope tightener spilling hydraulic oil on the deck (600 liters, 160 gallons total, 15-20 gallons in the river)	Direct discharge to river	NRC 421623/OERS 98-0223
Barge GOLIATH	Unknown	Barge	3/28/1998	Hydraulic line on Barge GOLIATH broken. Area boomed, 40-45 gallons, mostly contained. Location described as United Grain below BNRE bridge.	Direct discharge to river	OERS # 98-0727
M/V EVRIMEDON	Unknown	Marine vessel	5/4/1998	Leak of unknown oil in ballaster. Location described as Columbia Grain Docks near St. Johns.	Direct discharge to river	NRC 435312
Unocal Agricultural Products	Unknown	Unknown	7/24/1998	Dock electric line puller shaft seal/shaft over heated and expanded allowing an unknown oil to spill.	Direct discharge to river	NRC 447409
Vessel JUNEAU	Unknown	Marine vessel	9/30/1998	3 ft x 70 ft sheen of unprocessed/semi-processed oil observed near vessel. Location described as Schnitzer Steel dock.	Direct discharge to river	OERS # 98-2319
Maritime Fire and Safety	Unknown	Unknown	9/12/2000	A grain vessel leaked an unknown oil into river at Columbia Grain Dock.	In river	NRC 541921
Unocal Inc.	Unknown	Barge	12/4/1995	Release of diesel oil from fuel line on barge.	Direct discharge to river	NRC 316021
Maritime Fire and Safety	Unknown	Unknown	9/12/2000	A grain vessel leaked an unknown oil into river at Columbia Grain Dock.	In river	NRC 541921
NAN CHANG HAI	Unknown	Marine vessel	4/18/2004	Diesel oil sheen observed on river resulting from fueling operation of an excavator located on vessel. Located near 14003 N Rivergate Blvd.	Mobile	NRC 719188
City of Portland OF-18	Unknown	Government	7/28/2006	Unknown sheen originating from outfall under facility that is owned by city at 4350 NW Front Ave. It was formerly OF-18.	In river	NRC 805865
Lindblad Expedition	Unknown	Unknown	10/27/2006	Half a quart of diesel fuel discharged into river from starboard aft storage tank due to unknown causes.	Direct discharge to river	NRC 816238
West Coast Marine Cleaning	Unknown	Cleanup contractor	3/29/2008	Spill reported at 800 N River St/CLD Irving grain elevator. Oil spilled while disconnecting a hose on a ship. Released 1 quart of bilge water due to hose cap coming off end of transfer hose after completing the transfer.	In river	NRC 866396 and 966397
Georgia Pacific Consumer Products NW	Unknown	Unknown	10/1/2008	Lubricating oil release from material handling system's from leaking gear boxes at two locations. This release was discovered during formal inspection. Release went to river and caused sheen. Location described as 13333 N Rivergate Blvd.	Direct discharge to river	NRC 885897
Georgia Pacific Consumer Products NW	Unknown	Unknown	11/20/2008	Motorized sweeper developed oil leak at pressure gauge. Operator did not notice leak and drove across dock. When stopped a puddle developed which seeped between floor boards of dock and some amount was released to river. Estimated less than 2 tablespoons released. Small sheen developed. Location described as 13333 N Rivergate Blvd.	Direct discharge to river	NRC 890593
Georgia Pacific Consumer Products NW	Unknown	Unknown	6/2/2009	Unknown sheen observed at facility, 13333 N Rivergate Blvd.	In river	NRC 907372
Olympic Tug & Barge	Unknown	Marine transportation company	11/3/1998	PACIFIC FALCON tug boat released approximately 1 gallon of No. 2-D fuel oil. Overfilled during refueling.	Direct discharge to river	NRC 462526/ OERS 98-2637
Prodica	Unknown	Barge	11/16/1999	Rainwater washed residual motor oil from deck of the barge HEDGES into water. Location described as 14003 N Rivergate Blvd.	Direct discharge to river	NRC 505967
Chevron Shipping Company	Unknown	Unknown	1/12/2010	Spill of unknown oil from a scupper on a vessel during changing of pad in the scupper.	In river	NRC 928374
Aldridge Motor Sports	Unknown	Unknown	4/13/2005	Owner of company dumped oil and other materials (solvents, gasoline, ethylene glycol) down storm drain at facility to save money.	Storm drain	NRC 755648
Trimet	Unknown	Unknown	10/22/2007	City crew flushing hydrant nearby which flushed some oil down storm drain at N Willams and N Russell.	Storm drain	NRC 852324
British Petroleum	Unknown	Unknown	6/5/2008	Due to remediation system being down, contaminated water entered unknown waterway. System located at 9930 NW St Helens Rd.	Fixed	NRC 873225
Western Star Truck Plant	Unknown	Unknown	12/19/2008	Release of diesel fuel from distribution system due to equipment failure. Release was to the ground and into storm drain near 6936 N Fathom St.	Storm drain	NRC 893015
Reinhard Petroleum	Unknown	Unknown	2/20/2009	Truck leaked diesel due to unknown causes. Material reached storm drain at 4155 NW Yeon St.	Storm drain	NRC 898110

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Knappton Corporation	Unknown	Unknown	1/12/1998	Oil/water separator disconnected and caused a small sheen on board barge. 1-5 gallons released. Location described as 9030 NW St Helens Rd.	Vessel-Barge	OERS # 98-0067
Knappton Corporation	Unknown	Unknown	1/12/1998	Bilge pump problem. ~25 gallons released to river. Pump shut off after 15-20 sec. Product contained in slip area, boom and pads applied. Location described as 9030 NW St Helens Rd.	Vessel-Barge-River	OERS # 98-0075
Knappton Corporation	Unknown	Unknown	7/8/2002	Tug LEWISTON lost 5 gallons while fueling at 9030 NW St Helens Rd. Tug was pre-boomed.	River	OERS # 02-0911
Fesco Agents	Unknown	Unknown	2/22/2000	10 gallon loading equipment leaking inside freight container - improperly stored. Leaked oily substance (hydraulic fluid?). Occurred at POP Berth #603 (Rivergate Area)	Vessel-Cargo	OERS # 00-0431
Cerrahgil Group of Companies	Unknown	Unknown	3/5/2001	Fuel spill (1 gal) on board vessel. Crew used degrease/dispersant to clean spill. Material escaped over board through breach of scuppers (not closed correctly). Occurred at Portland International Terminal.	River	OERS # 01-587
Ership International	Unknown	Unknown	4/27/2004	NON issued for ballast water violation NON-BW-04-001	Direct discharge to river	OERS # 04-4401
Tidewater Barge Lines	Unknown	Marine transportation company	11/18/1996	Released 75 gallons of unknown material due to ruptured hydraulic steering line on Tidewater tug MAVERICK	Direct discharge to river	OERS # 96-3169
Tidewater Barge Lines	Unknown	Marine transportation company	4/8/1991	Seam failed on Barge TW 704 and released gasoline to river	Direct discharge to river	67116
Tidewater Barge Lines	Unknown	Marine transportation company	5/2/1985	15 gallons of diesel fuel released into river from an overflow during fueling of Tidewater Barge Line tug boat INVADER	Direct discharge to river	NRC Incident Report No. 6636
Tidewater Barge Lines	Unknown	Marine transportation company	7/17/1984	150 gallons of diesel fuel was released into river from hole in tank of Tidewater Barge #36.	Direct discharge to river	NRC Database Incident Report No. 3993
Unknown outfall	Unknown	Unknown	5/17/1996	Unknown oil observed in unknown outfall at 9030 NW St Helens Rd.	Storm drain/outfall	NRC 940087
Unknown outfall	Unknown	Unknown	10/27/1998	Outfall dumping milky color substances into river next to Albina RR yard at 2600 N River St	Outfall to river	NRC 461582
Unknown outfall	Unknown	Unknown	8/6/2007	Sheen on river originating from outfall pipe. Sheen observed at 6211 N Ensign St.	In river	NRC 844597
Unknown	Unknown	Unknown	7/17/1992	Unknown rainbow sheen observed 0.5 miles x 40 ft. Location given as 9030 St. Helens Rd.	In river	NRC 127305
Unknown	Unknown	Unknown	11/18/1992	Unknown rainbow sheen observed 300 ft x 50-80 ft. Location given as 9030 St. Helens Rd.	In river	NRC 145369
Unknown	Unknown	Unknown	12/15/1992	Unknown sheen observed between Union and Chevron oil docks. Blue-gray sheen 300 yds x 50 ft.	In river	NRC 149247
Unknown	Unknown	Unknown	1/16/1993	Unknown sheen observed 100 ft x 15 ft. Location given as 9030 St. Helens Rd.	In river	NRC 153669
Unknown	5	Unknown	8/12/1993	Unknown rainbow sheen observed 150 ft x 200 ft.	In river	NRC 192126
Unknown	Unknown	Unknown	7/27/1994	Unknown rainbow sheen observed 5 ft x 5 ft. Location described as Swan Island Navy and Marine Corps Reserve Center	In river	NRC 253123
Unknown	Unknown	Unknown	10/9/1994	Unknown sheen observed near M/V BLED. Sheen 20 ft x 75 ft. Location described as Columbia Aluminum, 2600 N River St, Swan Island.	In river	NRC 264545
Unknown	Unknown	Unknown	12/27/1994	Unknown pink sheen of unknown material observed 50 yds in size. Location described as 9420 NW St Helens Rd.	In river	NRC 274414
Unknown	Unknown	Unknown	12/29/1994	Unknown rainbow sheen of unknown oil observed 3 ft x 15 ft. Location described as 11400 NW St Helens Rd.	In river	NRC 274645
Unknown	Unknown	Unknown	1/12/1995	Unknown blue sheen of unknown oil observed 50 ft x 30 ft. Location described as 9030 NW St Helens Rd.	In river	NRC 276118
Unknown	Unknown	Unknown	2/15/1995	Unknown silvery to rainbow sheen observed, 25 ft x 50 ft. Location described as International Terminals Slip.	In river	NRC 279930
Unknown	Unknown	Unknown	10/30/1995	Unknown rainbow sheen observed 100 ft x 100 ft. Location described as 12005 N. Burgard Rd, International Terminals.	In river	NRC 312450
Unknown	Unknown	Unknown	12/18/1995	Unknown rainbow sheen observed 4 ft x 70 ft. Location described as 9930 NW St Helens Rd.	In river	NRC 317544
Unknown	Unknown	Unknown	1/10/1996	Unknown rainbow sheen observed 1000-2000 sq ft. Location described as 12005 N Burgard Rd.	In river	NRC 319630
Unknown	Unknown	Unknown	2/9/1996	Unknown sheen of unknown oil observed 300 sq yd. Location described as 8010 NW St Helens Rd.	In river	NRC 325102
Unknown	Unknown	Unknown	6/21/1996	Unknown rainbow sheen of unknown oil observed 200 ft x 50 ft. Location described as 5528 NW Doane Ave.	In river	NRC 348336
Unknown	Unknown	Unknown	3/7/1997	Unknown sheen of unknown oil observed 50 ft x 100 ft. Location described as 12005 N Burgard.	In river	NRC 379360

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Unknown	Unknown	Unknown	4/15/1997	Unknown sheen of unknown oil observed downstream of Swan Island. Sheen was approximately 1 mile long.	In river	NRC 383733
Unknown	Unknown	Unknown	5/15/1997	Unknown oil observed	In river	NRC 387344
Unknown	7	Unknown	7/21/1997	Barge and tug observed a light blue sheen, approximately 1 mile.	In river	NRC 396039
Unknown	Unknown	Unknown	9/22/1997	Unknown silver sheen, 100 yds x 100 ft. Location described as 9030 NW St. Helens Rd docks.	In river	NRC 404552
Unknown	6	Unknown	10/7/1997	Unknown rainbow sheen observed 400 ft x 100 ft. Location described as 9030 NW St Helens Rd near dock.	In river	NRC 406565
Unknown	6	Unknown	10/22/1997	Unknown silvery sheen observed on south bank, 10 sq ft in diameter.	In river	NRC 408472
Unknown	Unknown	Unknown	10/11/1998	Unknown sheen observed, 15 ft in size. Location described as 5528 NW Doane.	In river	NRC 459405/ OERS 98-2439
Unknown	Unknown	Unknown	3/16/2000	Unknown sheen observed at 8010 NW St Helens Rd.	In river	NRC 523141
Unknown	Unknown	Unknown	8/29/2000	Unknown sheen of unknown oil observed in river due to equipment failure. Location described as Portland terminal 5528 NW Doane St.	In river	NRC 540398
Unknown	Unknown	Unknown	8/31/2001	Unknown sheen of unknown oil observed on east side of 800 N River St.	In river	NRC 578423
Unknown	Unknown	Unknown	9/19/2001	Unknown sheen of unknown oil observed at 1050 N River St.	In river	NRC 580237
Unknown	Unknown	Unknown	11/24/2001	Unknown gray sheen observed 200 ft x 10 ft.	In river	OERS # 01-3070
Unknown	Unknown	Unknown	10/4/2003	Unknown sheen observed in river at 7900 NW St Helens Rd.	In river	NRC 701558
Unknown	Unknown	Unknown	3/30/2004	Unknown sheen observed at MP 7.8.	In river	NRC 717417
Unknown	Unknown	Unknown	6/8/2004	Unknown sheen of unknown oil observed under St.Johns Bridge.	In river	NRC 724340
Unknown	Unknown	Unknown	7/14/2004	Unknown oil sheen observed at 5880 NW St Helens St.	In river	NRC 728320
Unknown	Unknown	Unknown	7/16/2004	Unknown oil sheen observed on river. Location not given.	In river	NRC 728516
Unknown	Unknown	Barge	10/8/2004	Sheen observed coming from barge at dock.	In river	OERS # 04-2287
Unknown	Unknown	Unknown	1/6/2005	Unknown sheen observed in river at 3660 NW Front Ave	In river	NRC 746355
Unknown	near T4	Unknown	1/11/2005	1/2 cup gear oil spilled to river. The skiff that caused the leak was towed from site, booms and pads applied.	Direct discharge to river	OERS # 05-0082
Unknown	Unknown	Unknown	2/18/2005	Cargill Grain reported unknown sheen from unknown source. Sheen was 15 ft x 200 ft at 800 N River St.	In river	NRC 750415/ OERS 05-0349
Unknown	Unknown	Unknown	2/18/2005	Unknown sheen observed near 800 N River St.	In river	NRC 751175
Unknown	Unknown	Unknown	3/4/2005	Unknown sheen observed from outfall adjacent to 6208 N Ensign.	In river	NRC 751705
Unknown	Unknown	Unknown	4/7/2005	Unknown sheen observed while driving across Fremont Bridge. Bright green sheen was located in river in front of tan colored warehouse.	In river	NRC 755134
Unknown	Unknown	Unknown	7/28/2005	Release of corrosive dye (basazol violet 49L corrosive dye 26% acetic acid) into storm drain from leaking storage container.	Storm drain	NRC 767209
Unknown	Unknown	Unknown	10/6/2005	Unknown sheen observed near 12005 N Burgard Rd	In river	NRC 775225
Unknown	Unknown	Unknown	10/17/2005	Unknown sheen observed from unknown source at river berth 503.	In river	NRC 776422
Unknown	Unknown	Unknown	1/16/2006	Unknown sheen observed at 9930 NW St. Helens Rd.	In river	NRC 785364
Unknown	Unknown	Unknown	3/6/2006	Unknown sheen observed at 14400 N Rivergate.	In river	NRC 790099
Unknown	~4	Unknown	8/9/2006	Unknown sheen observed at terminal 4, berth 410.	In river	NRC 807276
Unknown	Unknown	Unknown	9/27/2006	Unknown sheen observed at Swan Island Lagoon.	In river	NRC 812829
Unknown	Unknown	Unknown	10/17/2006	Unknown sheen observed at 14003 N Rivergate Blvd.	In river	NRC 815114
Unknown	Unknown	Unknown	10/18/2006	Unknown sheen originating from a storm drain.	Storm drain	NRC 815219 and 815373
Unknown	Unknown	Unknown	10/20/2006	Unknown sheen observed at 2600 N River Rd. Reported by Union Pacific Railroad to caller.	In river	NRC 815464
Unknown	Unknown	Unknown	11/5/2006	Unknown sheen reported at marina coming from storm drain located in Port of Portland. Caller reports rocks are covered with oil and boaters noticed the sheen the night prior. Sheen located at 6211 N Enson St.	In river	NRC 817181

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Unknown	Swan Island boat ramp	Unknown	11/22/2006	Discharge of motor oil from sunken pleasure craft due to unknown causes.	Direct discharge to river	NRC 818895
Unknown	Unknown	Unknown	11/28/2006	Petroleum (heavy lubricant oil) released from storm drain due to unknown causes.	Storm drain	NRC 819369
U nknown	6	Unknown	4/19/2007	Dark brown sludge substance observed in river at 6543 N Burlington Ave.	In river	NRC 832833
Unknown	Unknown	Unknown	5/12/2007	Unknown sheen observed. Location not reported.	In river	NRC 835165
Unknown	Unknown	Unknown	5/20/2007	Unknown sheen observed at 7900 NW St.Helens Rd.	In river	NRC 835976
Unknown	~6	Unknown	6/2/2007	Ghost sheen on Willamette, light sheen approximately 1/4 to 1/2 mile long, stretching across river, spotted from the air approximately 1/2 mile down stream from the St John's Bridge. CG was not able to locate sheen from the water.	In river	OERS # 07-1141
Unknown	3.5	Unknown	7/3/2007	Unknown sheen observed.	In river	NRC 840889
U nknown	Unknown	Unknown	7/17/2007	Unknown sheen observed at 8444 N St Helens Rd.	In river	NRC 842444
Unknown	MarCom dock/St Johns Bridge	Unknown	8/8/2007	Unknown sheen observed.	In river	NRC 844852
Unknown	Unknown	Unknown	9/11/2007	Unknown green material on water from unknown source. Sheen is along shoreline at 8010 NW St Helens Rd.	In river	NRC 848519
Unknown Tug	Unknown	Tug	9/26/2007	Sheen observed near tug at 8010 NW St Helens Rd.	In river	NRC 849970
U nknown	Terminal 4	Unknown	10/21/2007	Unknown sheen observed at 11011 N Lombard, Terminal 4	In river	NRC 852259
U nknown	Terminal 4	Unknown	11/7/2007	Unknown sheen observed at 11011 N Lombard.	In river	NRC 853864 and 85389 OERS 07-2520
Unknown Tug	Unknown	Tug	11/10/2007	While fueling tug, one gallon of diesel fuel released.	Direct discharge to river	NRC 854197
Unknown	Unknown	Unknown	12/16/2007	Unknown sheen from unknown source coming out of ground and causing sheen on water at 9420 NW St. Helens Rd.	In river	NRC 857351
Unknown	Unknown	Unknown	12/19/2007	Unknown sheen observed at 14003 N Rivergate Blvd.	In river	NRC 857662
Unknown	Unknown	Unknown	1/19/2008	Unknown sheen observed at 8010 NW St Helens Rd.	In river	NRC 860091
Unknown Material	Unknown	Unknown	3/2/2008	Unknown orange material in river at 11011 N Lombard.	In river	NRC 863868
U nknown	7.5	Unknown	3/31/2008	Unknown sheen observed.	In river	NRC 866537
Unknown	Swan Island Lagoon	Unknown	4/27/2008	Unknown sheen observed.	In river	NRC 869229
Unknown	Unknown	Marine vessel	4/28/2008	Discharge of oil from vessel due to adding engine oil and spilling some into river near 6767 N Basin Ave.	Direct discharge to river	NRC 869332
U nknown	Unknown	Unknown	5/3/2008	Unknown sheen observed at 5531 NW Doane Ave.	In river	NRC 869759
U nknown	Unknown	Unknown	5/29/2008	Unknown sheen reported at New Star Terminal.	In river	NRC 872433
Unknown	Unknown	Unknown	7/23/2008	Unknown sheen observed at 14003 N Rivergate Blvd.	In river	NRC 877755
Unknown	Unknown	Unknown	7/29/2008	Unknown sheen observed at 5424 NW Doane Ave.	In river	NRC 878829
Unknown	Unknown	Unknown	8/9/2008	Unknown sheen observed at 800 N River St.	In river	NRC 880084
Unknown	Unknown	Unknown	9/8/2008	Unknown sheen observed at 12005 N Burgard Rd	In river	NRC 883248
Unknown	Berth 312 and 313 Swan Island	Unknown	9/28/2008	Unknown sheen observed.	In river	NRC 885545
Unknown	Unknown	Unknown	9/30/2008	Unknown oily sheen observed from outfall at end of street at 6211 N Ensign St. Material is releasing from unknown source into Swan Island Lagoon.	In river	NRC 885735
Unknown	Unknown	Unknown	10/6/2008	Unknown silvery sheen observed at 13333 N Rivergate Blvd near dock.	In river	NRC 886344

Table 4.3-6. Overwater Releases from Vessels and Other Spills in the Study Area.

Party	River Mile	Type of Operation (s)	Date of Release	Summary of Release	Pathway to River	Reference
Unknown	Unknown	Unknown	12/29/2008	Spill of material in sewer lines from unknown sources. Location described as Burgard/Manufacturing buildings 9006 N Sever Rd.	Storm drain	NRC 893571
Unknown	Unknown	Unknown	3/17/2009	Unknown sheen observed at Rivergate Terminal	In river	NRC 900220
Unknown	Unknown	Unknown	3/26/2009	Unknown sheen observed at marine shipyard in Swan Island.	In river	NRC 990974
Unknown	Unknown	Unknown	6/16/2009	Unknown sheen observed at 800 N River St.	In river	NRC 908784
Unknown	Unknown	Unknown	6/19/2009	Stormwater runoff observed producing sheen at 5880 NW St Helens Rd.	In river	NRC 909154
Unknown	Unknown	Unknown	7/2/2009	Unknown sheen observed under BNSF railroad bridge possible near Buoy 16.	In river	NRC 910513
Unknown	Unknown	Unknown	7/24/2009	Unknown sheen observed in vicinity of the transfer dock between the ship and shore. Sheen could be creosote from piling or sediment blown up from exhaust cooling system for ship. Location described as 14003 N Rivergate Blvd, middle of dock area.	In river	NRC 912658
Unknown	Unknown	Unknown	8/26/2009	Unknown discontinuous sheen observed	In river	OERS # 09-1967
Unknown	Unknown	Unknown	9/1/2009	Unknown sheen observed under ramp connecter to floating barges at 6208 N Ensign St.	In river	NRC 916666
Unknown	Unknown	Unknown	10/14/2009	Unknown sheen observed at railroad bridge near Willamette Cove, south of St Johns bridge.	In river	NRC 920584
Unknown	3	Unknown	10/20/2009	Unknown sheen observed.	In river	NRC 921113
Unknown	Unknown	Unknown	10/24/2009	Unknown sheen observed at Terminal 411.	In river	NRC 921530
Unknown	Unknown	Unknown	12/24/2009	Unknown sheen in Swan Island Lagoon at 6208 N Ensign. Sheen is trapped between mooring barge and shoreline.	In river	NRC 927056
Unknown	Unknown	Unknown	6/22/2010	Unknown sheen observed at 13333 N Rivergate Blvd.	In river	NRC 945003
Unknown	Unknown	Unknown	8/10/2010	Unknown sheen observed at 5555 N Channel Ave.	In river	NRC 950484
Unknown	Unknown	Unknown	8/10/2010	Unknown silvery to rainbow sheen observed between docks at 13333 N Rivergate Blvd.	In river	NRC 950539
Unknown	Unknown	Unknown	10/4/2010	Unknown sheen possibly coming from old pilings 50 yds offshore at 14003 N Rivergate Blvd.	In river	NRC 955999

Notes:

LWG - Lower Willamette Group

NARA - National Archives and Records Administration

NMIW - Northwest Marine Iron Works

NRC - National Response Center OSFM - Oregon State Fire Marshal PCB - polychlorinated biphenyl PSY - Portland Shipyard

USCG - U.S. Coast Guard

WISCO - Willamette Iron and Steel Company

^a National Response Center Database, http://www.nrc.uscg.mil/ NRC. 2002.

^b Supplemental Preliminary Assessment, Swan Island Upland Facility (Ash Creek and Newfields 2006).

Table 4.4-1. Summary of NPDES-permitted Discharges by Type of Permit in the Study Area.

NPDES Permit Type	Number of Permits (as of Feb. 2011)
General Permits for cooling water/heat pumps (GEN01)	8
General Permits for boiler blowdown (GEN05)	2
General Permits for treatment of groundwater (GEN15A)	4
General Permits for stormwater (GEN12A,C,Z)	86
Individual Permits for facilities not elsewhere classified that dispose of primary smelting/refining of metals not elsewhere classified (NPDES-IW-B08)	1
Individual Permits for facilities not elsewhere classified that dispose of process wastewater (includes remediated groundwater) (NPDES-IW- B14)	1
Individual Permits for facilities not elsewhere classified that dispose of process wastewater (NPDES-IW-B15)	6
Individual Permits for facilities not elsewhere classified that dispose of non-process wastewater (NPDES-IW-B16)	4
Municipal Separate Storm Sewer System Discharge Permit (NPDES-DOM-MS4-1) including CBWTP	1
Individual Permits for facilities that dispose of sewage (50 MGD or more) (NPDES-DOM-A1)	1

CBWTP - Columbia Boulevard Wastewater Treatment Plant

MGD - million gallons per day

NPDES - National Pollutant Discharge Elimination System

Table 4.4-2. Discharge Monitoring Requirements in General NPDES Permits.

		No. in Study		Chemicals Monitor	ing Requirements ^a
Type		Area	Conventional Monitoring Parameters ^a	Parameter	Frequency
GEN01	Cooling water/heat pumps	9	Flow, temp, pH, total residual chlorine		
GEN05	Boiler blowdown	2	Flow, temp, pH, TSS, total residual chlorine ^b		
GEN12A	Stormwater: sand, gravel, and other non-metallic mining	1	pH, TSS, settleable solids, oil & grease; Oil & grease sheen, turbidity		Four times per year; once per month (when discharging)
GEN12C	Stormwater: construction activities - 1 or more acres	6	Inspection/visual characteristics		
GEN12Z	Industrial stormwater	78	pH, TSS, oil & grease, E. coli ^b , visual monitoring	Copper, lead, zinc	Four times per year
GEN15A	Petroleum hydrocarbon cleanups	4	Flow, pH, visual monitoring	TPH, BTEX, benzene, lead ^b	Weekly to quarterly

BTEX - benzene, toluene, ethylbenzene, and xylenes

NPDES - National Pollutant Discharge Elimination System

TPH - total petroleum hydrocarbons

TSS - total suspended solids

^a Permits for specific facilities may include other parameters.

^b Not applicable to all facilities.

^{--- =} not available

Table 4.4-3. Shared Conveyance System Basin Characteristics and Potential Sources.

Outfall ID	River Bank	Organization	Outfall Size (Inches)	Outfall Material ^a	Outfall Status	CSO ^b /SSO ^c	2008 Stormwater Basin Acreage and Zoning ^d	COIs within Outfall Basin Area Identified during Independent Investigations ^e	Other Potential Sources in the Outfall Basins and Associated COIs (in Addition to Sources Identified during Independent Investigations—see previous column)	Potential Sources Adjacent or Upstream and Associated COIs
OF10A	West	CITY OF PORTLAND	30"	Concrete	Active		5 - commercial		No ECSI sites have been identified in this basin.	Albers Mill (ECSI #4590) - PAHs, TPH, and metals
OF11 West C		CITY OF PORTLAND	78"	Concrete	Active	CSO	and residential 942 - open space and residential, some light industrial		Hoyt St. Railroad (former) (ECSI #1080) - none Hoyt St. Trainyard Parcel 1 (ECSI #1624) - none Pearl Block (ECSI #4960) - none Sylvan Cleaners (ECSI #1897) - PCE and TCE Union Station Agric. Marketing Ctr. (ECSI #1962) - PAHs, TPH, and metals Union Station Horse Barn (ECSI #2407) - Metals, PAHs, benzene, and benzo(a)pyrene Union Station Track #5 (ECSI #1414) - PAHs, TPH, and metals US Postal Processing & Distribution (ECSI #2183) - VOCs, PAHs, TPH, and metals Dan Rasmussen Co (former) (ECSI #1684) - VOCs and TPH	Centennial Mills (ESCI #5136) - TPH, metals, PCBs, and asbestos
									Dynagraphics Inc. (ECSI #4523) - TPH Esquire Motors (ECSI #4906) - VOCs and TPH Gender Machine Works (ECSI #2313) - PAHs, TPH, and metals Lu Yen Restaurant (former) (ECSI #2197) - TPH Pacific States Galvanizing (former) (ECSI #1024) - Cadmium, chromium, lead, zinc, PCE, and TPH RiverTec Property (ECSI #3067) - TPH and metals Unocal Service Station #0738 (ECSI #1396) - TPH Wilbur-Ellis Co. (ECSI #1331) - VOCs, SVOCs, PAHs, TPH, pesticides, PCBs, and metals	
OF12	West	CITY OF PORTLAND	16"	Unknown		CSO	NA		No ECSI sites have been identified in this basin.	
OF13	West	CITY OF PORTLAND	24"	Concrete	Active	CSO	8 - residential and heavy industrial		No ECSI sites have been identified in this basin.	
OF14	West	CITY OF PORTLAND	30"	Concrete	Active	CSO	23 - heavy/light industrial and residential		Zehrung (ECSI #187) - Pentachlorophenol and 2,4-D	POP Terminal 1 South (ECSI #2642) - None
OF15	West	CITY OF PORTLAND	102"	Concrete	Active	CSO	1 - heavy industrial	Sulzer Pumps (ECSI #1235) - PAHs,TPH, arsenic, copper, chromium, and zinc	PGE Substation E (ECSI #3976) - none Consolidated Freightways Inc. (ECSI #32) - VOCs and TPH Drew Paints Inc. (ECSI #4465) - VOCs ESCO Plant #3 (ECSI #112) - Phenols Groundwater - NW 22nd Ave. (ECSI #2015) - VOCs	POP Terminal 1 North (ECSI #3317) - None
OF16	West	CITY OF PORTLAND	36"	Concrete	Active	CSO ^f	66 - mostly heavy industrial, some highway	Calbag - Nicolai (ECSI #5059) -TPH, PCBs, metals, phthalates, PAHs Front Ave MP (ECSI #4008) - VOCs, PAHs, TPH, PCBs, and metals	Guilds Lake (ECSI #404) - none Nudelman & Son (ECSI #966) - none	POP Terminal 2 (ECSI #2769) - TPH and PAHs
OF17	West	CITY OF PORTLAND	90"	Concrete	Active	CSO/SSO	1,895 - mostly open space and heavy industrial, small % of residential	GE-NW 28 (No ECSI #, TSCA site) - PCBs Paco Pumps (ECSI #146) - PCBs and TPH Galvanizers (ECSI #1196) - TPH, PAHs, phthalates, arsenic, chromium, copper, and zinc. GW infiltration. SFI (ECSI #5103) - VOCs, PCBs, TPH, PAHs, chromium, cadmium, and lead GE Decommissioning (ECSI #4003) - PAHs, PCBs, TPH, arsenic, chromium, copper, and zinc. GW infiltration.	Guilds Lake Yard (ECSI #100) - Antimony, arsenic, cadmium, chromium, copper, mercury, selenium, zinc, TPH, VOCs, sodium cyanide, ethylene glycol, and creosote constituents Mogul Corp. (ECSI #1307) - No COIs listed in ECSI King Ries (ECSI #4560) - Lead Mercer (ECSI #444) - Chromium and TPH AM Machine (ECSI #2261) - PAHs and TPH Schmidt Forge (ECSI #1347) - TPH	POP Terminal 2 (ECSI #2769) - TPH and PAHs

Table 4.4-3. Shared Conveyance System Basin Characteristics and Potential Sources.

Outfall ID	River Bank	Organization	Outfall Size (Inches)	Outfall Material ^a	Outfall Status	CSO ^b /SSO ^c	2008 Stormwater Basin Acreage and Zoning ^d	COIs within Outfall Basin Area Identified during Independent Investigations ^e	Other Potential Sources in the Outfall Basins and Associated COIs (in Addition to Sources Identified during Independent Investigations—see previous column)	Potential Sources Adjacent or Upstream and Associated COIs
OF18 West		CITY OF PORTLAND	72"	Concrete	Active	CSO ^f	465 - open space and heavy industrial	Columbia American Plating (ECSI #29) - VOCs, SVOCs, PCBs, metals, Other (e.g., cyanide), PAHs, Gunderson (ECSI #1155) - TPH, butyltins, PCBs, phthalates, arsenic, copper, chromium and zinc McWhorter Technologies (ECSI #135) - VOCs, SVOCs, PAHs, TPH, and phthalates Christenson Oil (ECSI #2426) - Cadmium, copper, lead, mercury, zinc, PAHs, VOCs, and TPH Container Recovery (ECSI #4015) - Cadmium, lead, zinc, PAHs, PCBs, and phthalates Wilhelm Trucking (ECSI #69) - PCBs, metals Trumbull (ECSI # 1160) - PAHs, PCBs, phthalates, arsenic, chromium, copper, and zinc Univar/Van Waters (ECSI #330) - VOCs, TPH, pesticide/herbicides, metals. GW infiltration. Container Management (ECSI #4784) - PAHs, TPH, PCBs, metals, phthalates, pesticides ANRFS (ECSI #1820) - Arsenic, chromium, copper, zinc, PCBs, PAHs, BEHP Ashland Chemical (ECSI #1076) - Arsenic, chromium, copper, zinc, PCBs, PAHs, BEHP	Texaco/Equilon - Pipeline (ECSI #2117) - PAHs, VOCs, and TPH PTRR (ECSI #100) - Antimony, arsenic, cadmium, chromium, copper mercury, selenium, zinc, PAHs, PCBs, phenols, TPH, VOCs, sodium cyanide, ethylene glycol, and creosote constituents Schnitzer Investment - NW 35th (ECSI #2424) - VOCs, SVOCs, and metals	Gunderson (ECSI #1155) - Metals, butyltins, PCBs, phthalates, and TPH
OF19	West	CITY OF PORTLAND	42"	Concrete	Active	CSO ^f		Carson Oil (ECSI #1405) - VOCs, PAHs, TPH, arsenic, chromium, copper, zinc, PCBs, BEHP Texaco/Equilon - Bulk Terminal (ECSI #169) - PAHs, VOCs, and TPH. GW infiltration. Greenway Recycling (ECSI #4655) - VOCs, TPH,	Chapel Steel (ECSI #4920) - Aluminum, antimony, lead, nickel, zinc,	
							and heavy residential, small % of highway	PCBs, arsenic, chromium, copper, and zinc PGE - Forest Park (ECSI #2406) - PCBs Calbag Metals (ECSI #2454) - Cadmium, lead,	PAHs, PCBs, and BEHP Penske Truck Leasing - NW Yeon (ECSI #5055) - TPH, PAHs, VOCs. SVOCs, and metals	phthalates, and TPH Lakeside Industries (ECSI #2372) - VOCs, PAHs, TPH, and metals
								mercury, zinc, PCBs, and phthalates Conoco - Willbridge Terminal (ECSI #177) - VOCs, TPH, and metals Chevron Asphalt Refinery (ECSI #1281) - VOCs, PAHs, TPH, and metals. GW infiltration. Front Avenue LP (ECSI #1239)-Metals, PAHs, PCBs, VOCs, SVOCs, phthalates, and TPH Mt. Hood Chemical Corp. (ECSI #81) - methylene chloride (VOCs). GW infiltration.	Dura Industries (ECSI #111) - Cadmium, chromium, and lead Mt. Hood Chemical Property (ECSI #1328) - VOCs Kittridge (ECSI #2442) - Cadmium, lead, mercury, zinc, PCBs, VOCs, and TPH Willbridge Switching Yard (ECSI #3395) - Metals	Shaver Transportation (ECSI #2377) - none Front Avenue LP (ECSI #1239) - Metals, PAHs, PCBs, VOCs, SVOCs, phthalates, and TPH
								Anderson Brothers (ECSI #970) - VOCs, PAHs, TPH, PCBs, metals, pesticides, phthalates Brazil & Co (ECSI #1026) - PCBs	Christenson Oil (ECSI #2426) - VOCs, PAHs, TPH, and metals	
OF19A	West	CITY OF PORTLAND	60"	Concrete	Active		1.5 - heavy industrial		No ECSI sites have been identified in this basin.	Gunderson (ECSI #1155) - Metals, butyltins, PCBs, phthalates, and TPH Front Ave LP (ECSI #1239) - VOCs, SVOCs, PAHs, TPH, PCBs, metals, and phthalates Lakeside Industries (ECSI #2372) - VOCs, PAHs, TPH, and metals

Table 4.4-3. Shared Conveyance System Basin Characteristics and Potential Sources.

Outfall ID	River Bank	Organization	Outfall Size (Inches)	Outfall Material ^a	Outfall Status	CSO ^b /SSO ^c	2008 Stormwater Basin Acreage and Zoning ^d	COIs within Outfall Basin Area Identified during Independent Investigations ^e	Other Potential Sources in the Outfall Basins and Associated COIs (in Addition to Sources Identified during Independent Investigations—see previous column)	Potential Sources Adjacent or Upstream and Associated COIs
OF22	West	CITY OF PORTLAND	60"	Concrete	Active	CSO ^f	94 - mostly heavy industrial, some open space and highway	McCall Oil (ECSI #134) - PAHs, PCBs, butyltins, VOCs, SVOCs, BEHP, TPH, arsenic, chromium, copper, lead, and zinc Chevron Asphalt Refinery (ECSI #1281) - Metals, PAHs, VOCs, and TPH. GW infiltration. Willbridge Terminal (ECSI # 1549) - Metals, PAHs, pesticides/herbicides, phthalates, VOCs, and TPH		McCall Oil (ECSI #134) - Metals, PAHs, PCBs, VOCs, SVOCs, BEHP, and TPH
OF22B	West	CITY OF PORTLAND	48"	Concrete	Active	SSO	32 - heavy industrial	Arkema (ECSI #398) - DDx		Arkema (ECSI #398) - DDx
								Gould Inc./NL Industries Inc. (ECSI #49) - Arsenic, lead, zinc, PAHs, PCBs, pesticides/herbicides, and VOCs. Historical discharges from Doane Lake, and historical GW infiltration into OF22B. Schnitzer Investmentand Air Liquide - Doane Lake (ECSI #395) - Arsenic, Mercury, PCBs, and VOCs. Historical discharges from Doane Lake, historical GW infiltration into OF22B, and stormwater discharge into OF 22B.		Gould Inc./NL Industries Inc. (ECSI #49) - Arsenic, lead, zinc, PAHs, PCBs, pesticides/herbicides, and VOCs. Historical discharges from Doane Lake. Schnitzer Investment and Air Liquide - Doane Lake (ECSI #395) - Arsenic, Mercury, PCBs, and VOCs. Historical discharges from Doane Lake.
								Rhone Poulenc–East Doane Lake (ECSI #155) - VOCs, pesticides/herbicides, metals, and dioxin/furans. Historical discharges from Doane Lake and historical GW infiltration into OF22B. Metro Central Transfer Station (ECSI #1398) - VOCs,		Rhone Poulenc–East Doane Lake (ECSI #155) - VOCs, pesticides/herbicides, metals, and dioxin/furans. Historical Discharges from Doane Lake, and the outfall for the former Rhone Poulenc property is located near RM 6.9.
								SVOCs, pesticides, dioxin/furans, and metals. Historical GW infiltration into OF 22B and current stormwater discharges to OF 22B.		
OF22C	West	CITY OF PORTLAND	84"	Concrete	Active		1,107 - mostly open space, small % of heavy industrial, residential and highway	Koppers Industries Inc. (ECSI #1348) - See Gasco (ECSI #84) - VOCs, SVOCs, PAHs, TPH, and metals Gasco (ECSI #84) - PAHs and cyanide. GW infiltration Siltronic (ECSI # 183) - VOCs, SVOCs, PAHs, TPH, and metals	St. Helens Road Petroleum (ECSI #2630) - VOCs, PAHs, and TPH V & K Services (ECSI #2423) - VOCs and TPH	
								Santa Fe Pacific Pipeline Co. (ECSI #2104) - none		
OF22D	West	CITY OF PORTLAND	48"	CSP	Active		240 - mostly open space, small % of residential and highway	Santa re raeme ripemie co. (Ecst #2104) - none	No ECSI sites have been identified in this basin.	Foss Maritime/Brix Maritime (ECSI #2364) - VOCs, PAHs, and TPH
OF23	West	CITY OF PORTLAND	27"	RCP	Abandoned	CSO	NA - discharges to CBWTP		No ECSI sites have been identified in this basin.	ExxonMobil (ECSI #137) - VOCs, PAHs, TPH, and
OF24	West	CITY OF PORTLAND	12"	CMP	Emergency Overflow point	CSO/SSO	NA - discharges to CBWTP		Babcock Land Co. (ECSI #2361) - No COIs listed in ECSI	metals West Coast Adhesive (ECSI #333) - phenol, formaldehyde, and TPH
OF42	East	CITY OF PORTLAND	10"	STL	Active	CSO ^f	6 - commercial		No ECSI sites have been identified in this basin.	
OF43	East	CITY OF PORTLAND	56"	Other	Active	CSO	and open space 51 - light industrial	Tucker Building (ECSI #3036) - Metals, PAHs, PCBs, and TPH Westinghouse/CBS (ECSI #4497) - PCBs	Master Chemical (ECSI #1302) - No COIs listed in ECSI Mammal Survey & Control Service (ECSI #1301) - Pesticides Shopping Center Prop Nature's Fresh NW (ECSI #1855) - VOCs Steve Adams Prop. (ECSI #1500) - PCBs Union Ave - PBC Site (ECSI #991) - PCBs Wagstaff Battery Mrg. Co. (ECSI #1243) - TPH and lead	

Table 4.4-3. Shared Conveyance System Basin Characteristics and Potential Sources.

Outfall ID	River Bank	Organization	Outfall Size (Inches)	Outfall Material ^a	Outfall Status	CSO ^b /SSO ^c	2008 Stormwater Basin Acreage and Zoning ^d	COIs within Outfall Basin Area Identified during Independent Investigations ^e	Other Potential Sources in the Outfall Basins and Associated COIs (in Addition to Sources Identified during Independent Investigations—see previous column)	Potential Sources Adjacent or Upstream and Associated COIs
OF44	East	CITY OF PORTLAND	12"	STL	Active	CSO ^f	17 - mostly light industrial, some heavy industrial	Tucker Bldg. (ECSI #3036) - Metals, PAHs, PCBs, and TPH	Valvoline (ECSI #3215) - VOCs, PAHs, TPH, and metals Vermiculite NW Inc. (former) (ECSI #2761) - asbestos	
								PacifiCorp Albina Riverlots (ECSI #5117) - PCBs and TPH. GW infiltration.		
OF44A			72"	STL	Active	CSO/SSO	139 - mostly residential and light industrial, some open space and commercial	PacifiCorp Knott Substation (ECSI #5117) - None.	Tarr Inc. (ECSI #1139) - VOCs and TPH Coverall Uniform Supply (ECSI #1775) - PCE Standard Dairy (ECSI #2055) - VOCs and TPH Abraham's Fabric Clinic (ECSI #4592) - No COIs listed in ECSI Grant Warehouse (ECSI #2385) - Asbestos, PAHs, TPH, and metals McCann/Lenske Property (ECSI #4711) - TPH and lead North Portland Bible College (ECSI #4354) - TPH Nurenberg Scientific Co. (ECSI #87) - VOCs and metals Portland Cleaning Works (ECSI #3529) - TPH and PCE	
OF45	East	CITY OF PORTLAND	OF PORTLAND 27" Concrete Active		Active	CSO	10 - heavy and	UPRR (ECSI #178) - Arsenic, chromium, lead, zinc,		
OF46	East	light industrial PAHs, PCBs, phthalates, SVOCs, and TPH		UPRR (ECSI #178) - Arsenic, chromium, lead, zinc,	Industrial Battery Bldg (ECSI #935) - Metals Abraham's Fabric Clinic (ECSI #4592) - No COIs listed in ECSI Betty Campbell Bldg. (ECSI #1902) - TPH and PAHs Flowers by Victor (ECSI #4712) - Pesticides Grant Warehouse (ECSI #2385) - Asbestos, PAHs, TPH, and metals Henry Wong (ECSI #989) - No COIs listed in ECSI McCann/Lenske Property (ECSI #4711) - TPH and lead North Portland Bible College (ECSI #4354) - TPH Nurnberg Scientific Co. (ECSI #87) - VOCs and metals Portland Cleaning Works (ECSI #3529) - VOCs PP&L Mason Station (ECSI #2136) - PCBs	UPRR (ECSI #178) - Arsenic, chromium, lead, zinc, PAHs, PCBs, phthalates, SVOCs, and TPH				
OF47	East	CITY OF PORTLAND	48"	CSP	Active	CSO	9.5 - light industrial	UPRR (ECSI #178) - Arsenic, chromium, lead, zinc, PAHs, PCBs, phthalates, SVOCs, and TPH	Elks Cleaners (ECSI #4954) - TCE (VOCs) Sunny's Dry Cleaners (ECSI #2848) - No COIs listed in ECSI	UPRR (ECSI #178) - Arsenic, chromium, lead, zinc, PAHs, PCBs, SVOCs, and TPH
OF48	East	CITY OF PORTLAND	30"	CMP	Active	CSO	6 - residential 1.5 - stormwater treatment facility	Titis, Tebs, pinnaucs, 5 voes, and 1111	No ECSI sites have been identified in this basin.	Triangle Park (ECSI #277) - VOCs, SVOCs, PAHs, TPH pesticides, PCBs, and metals McCormick & Baxter (ECSI # 74) - PAHs, metals, and creosote
OF49	East	CITY OF PORTLAND	15"	Concrete	Active	CSO	31 - mostly residential, some commercial and open space 1.5 acres - stormwater treatment facility		No ECSI sites have been identified in this basin.	Willamette Cove (ECSI #2066) - none
OF50	East	CITY OF PORTLAND	30"	Concrete	Active	CSO	39 - mix residential, commercial, and light industrial 1 acre- stormwater treatment facility		BES WPCL (ECSI #2452) - none Crawford Street Corp. (ECSI #2363) - VOCs, PAHs, TPH, PCBs, arsenic, chromium, copper, and zinc	
OF52	East	CITY OF PORTLAND	30"	Unknown	Active	CSO/SSO	23 - mostly light industrial with some residential and open space	Crawford Street Corp. (ECSI #2363) - VOCs, PAHs, TPH, PCBs, arsenic, chromium, copper, and zinc	Unocal Service Station #3911 (ECSI #1593) - TPH and PCBs	
OF52A	East	CITY OF PORTLAND	36"	Concrete	Active		25 - mostly light industrial and residential with some commercial and open space		No ECSI sites have been identified in this basin.	Mar Com North Parcel (ECSI #4797) - none Mar Com South Parcel (ECSI #2350) - VOCs, SVOCs, PAHs, TPH, PCBs, metals, butyltins, and phthalates

Table 4.4-3. Shared Conveyance System Basin Characteristics and Potential Sources.

Outfall ID	River Bank	Organization	Outfall Size (Inches)	Outfall Material ^a	Outfall Status	CSO ^b /SSO ^c	2008 Stormwater Basin Acreage and Zoning ^d	COIs within Outfall Basin Area Identified during Independent Investigations ^e	Other Potential Sources in the Outfall Basins and Associated COIs (in Addition to Sources Identified during Independent Investigations—see previous column)	Potential Sources Adjacent or Upstream and Associated COIs
OF52C	East	CITY OF PORTLAND	36"	Concrete	Active		22 - light		Borden Packaging & Ind. Prod. (ECSI #1277) - chlorinated- and	Port of Portland T4 Slip 1 (ECSI # 2356) - PAHs, TPH,
							industrial		alcohol-based solvents	pesticides/herbicides, PCBs, metals, and phthalates
OF53	East	CITY OF PORTLAND	48"	CMP	Active	CSO	21 - residential		Multnomah County - St. Johns Site (ECSI #2421) - VOCs and TPH	POP T4 Auto Storage (ECSI #172) - none
OF53A	East	CITY OF PORTLAND	48"	Concrete	Active	SSO	82 - heavy industrial	Consolidated Metco (ECSI #3295) - VOCs, PAHs, TPH, PCBs, phthalates, zinc, and copper. GW	JR Simplot (ECSI #3343) - TPH	EVRAZ (ECSI #141), during reverse flow - metals, PAHs, PCBs, and TPH
								infiltration.	S. Rivergate Industrial Park (ECSI #2980) - No COIs listed in ECSI	
-								EVRAZ (ECSI# 141) - Metals, PAHs, PCBs, and TPH	Port of Portland Tract O (ECSI #5307) - none listed	
OFM-1	East (Mocks Bottom)	CITY OF PORTLAND	60"	CSP	Active	SSO	162 - light	Fred Devine Diving and Salvage (ECSI #2365) - Metals, PAHs, SVOCs, TPH, and phthalates Freightliner TMP (ECSI #2366) - Metals, PAHs, and PCBs	Roadway Express (ECSI #3807) - TPH, nitric acid, and methyl iodide US Navy and Marine Reserve Center (ECSI #5109) - TPH	Cascade General (ECSI #271) - VOCs, PAHs, TPH, PCBs, metals, butyltins, and phthalates
OFM-2	East (Mocks	CITY OF PORTLAND	60"	CSP	Active		127 - light industrial	1000	GI Trucking (ECSI #1840) - TPH	Cascade General (ECSI #271) - VOCs, PAHs, TPH, PCBs, metals, butyltins, and phthalates
OFM-3	Bottom) East (Mocks	CITY OF PORTLAND	60"	CSP	Active		111 - light industrial	Freightliner TMP Parts Plant (ECSI #115) - Metals Fred Meyer - Swan Island (ECSI #44) - PCBs		Cascade General (ECSI #271) - VOCs, PAHs, TPH, PCBs, metals, butyltins, and phthalates
OFS-1	Bottom) East (Swan Island)	CITY OF PORTLAND	36"	CMP	Active		25 - heavy industrial, some light industrial	Cascade General (ECSI #271) - VOCs, PAHs, TPH, PCBs, metals, butyltins, and phthalates		Cascade General (ECSI #271) - VOCs, PAHs, TPH, PCBs, metals, butyltins, and phthalates
OFS-2	East (Swan Island)	CITY OF PORTLAND	36"	CSP	Active		27 - light industrial, some heavy industrial		AutoVending (ECSI #1430) - TPH Crosby & Overton (ECSI #877) - PCBs	Cascade General (ECSI #271) - VOCs, PAHs, TPH, PCBs, metals, butyltins, and phthalates
OFS-5	East (Swan Island)	CITY OF PORTLAND	36"	CSP	Active		39 - light industrial		No ECSI sites have been identified in this basin.	
OFS-6	East (Swan Island)	CITY OF PORTLAND	36"	CSP	Active		22 - heavy industrial, some light industrial			
Other Non-City		veyance Systems					8			
WR-121	East	Burgard Industrial Park	Unknown	Unknown	Active		19 - heavy industrial	Schnitzer Steel/Calbag (ECSI #2355) - VOCs, TPH, PCBs, and metals		
WR-123	East	Burgard Industrial Park	48"	Concrete	Active		101 - heavy industrial	Boydstun Metal Works (ECSI #2362) - PAHs, PCBs, and metals NW Pipe (ECSI #138) - VOCs, PAHs, TPH, PCBs, and metals Joseph Ryerson (ECSI #2441) - No COIs listed in ECSI		
WR-124	East	Burgard Industrial Park	48"	Concrete	Active	SSO	1.4 - heavy industrial	Schnitzer Steel/Calbag (ECSI #2355) - VOCs, PCBs, TPH, and metals NW Pipe (ECSI #138) - VOCs, PAHs, TPH, PCBs, and		
WR-517	East	Burgard Industrial Park	Unknown	Unknown	Active		10 - heavy	metals	Portland Container Repair (ECSI #2375) - TPH	Schnitzer Steel/Calbag (ECSI #2355) - VOCs, PCBs, TPH,
WR-83	East	Burgard Industrial Park	30"	Unknown	Active		industrial 6 - heavy		Jefferson Smurfit (ECSI #2371) - TPH and metals	and metals Schnitzer Steel/Calbag (ECSI #2355) - VOCs, PCBs, TPH,
WR-84	East	Burgard Industrial Park	30"	Unknown	Active		industrial 14 - heavy industrial		Premier Edible Oils (ECSI #2013) - VOCs, PAHs, TPH, and metals Jefferson Smurfit (ECSI #2371) - TPH and metals Premier Edible Oils (ECSI #2013) - VOCs, PAHs, TPH, and metals Schnitzer Steel/Calbag (ECSI #2355) - VOCs, PCBs, TPH, and metals Time Oil (ECSI #170) - PAHs, TPH, and metals	and metals
WR-85	East	Burgard Industrial Park	10"	Concrete	Abandoned		Unknown - heavy industrial		Basin area has not been delineated.	Premier Edible Oils (ECSI #2013) - VOCs, PAHs, TPH, and metals Schnitzer Steel/Calbag (ECSI #2355) - VOCs, PCBs, TPH, and metals

Table 4.4-3. Shared Conveyance System Basin Characteristics and Potential Sources.

	River		Outfall Size	Outfall			2008 Stormwater Basin Acreage	COIs within Outfall Basin Area Identified during	Other Potential Sources in the Outfall Basins and Associated COIs (in Addition to Sources Identified during Independent	Potential Sources Adjacent or Upstream
Outfall ID	Bank	Organization	(Inches)	Material ^a	Outfall Status	CSOb/SSOc	and Zoning ^d	Independent Investigations ^e	Investigations—see previous column)	and Associated COIs
WR-21	East	Burgard Industrial Park	36"	Sump	Abandoned		Unknown - heavy industrial		Basin area has not been delineated.	Premier Edible Oils (ECSI #2013) - VOCs, PAHs, TPH, and metals Schnitzer Steel/Calbag (ECSI #2355) - VOCs, PCBs, TPH, and metals
WR-207	West	Unknown Multiparty	24"	STL	Active		Unknown - mostly highway		Basin area has not been delineated.	USACE Portland Moorings (ECSI #1641) - PAHs, TPH, metals, and butyltins
WR-514	East	ODOT	Unknown	Unknown	Inactive		NA - former drainage from St. Johns Bridge		Basin area has not been delineated.	
WR-306	East	ODOT	48"	Concrete	Active		Unknown - mostly highway		Basin area has not been delineated.	
WR-308	East	Unknown Multiparty	15"	Concrete	Active		Unknown - mostly highway		Basin area has not been delineated.	
WR-307 (aka OF12A)	West	ODOT	48"	Concrete	Active	CSO	Unknown - mostly highway		Basin area has not been delineated.	
WR-510	West	ODOT	Unknown	Unknown	Active		Unknown		Basin area has not been delineated.	
WR-210	West	Unknown Multiparty	48"	CMP	Abandoned		Unknown		Basin area has not been delineated.	Foss Maritime/Brix Maritime (ECSI #2364) - VOCs, PAHs, and TPH
WR-126	East	Unknown Multiparty	36"	CMP	Active		Unknown		Basin area has not been delineated.	Linnton Plywood (ECSI #2373) - VOCs, SVOCs, PAHs, TPH, PCBs, metals, and phthalates
WR-79	West	Unknown Multiparty	36"	Concrete	Active		Unknown		Basin area has not been delineated.	Owens Corning Linnton (ECSI #1036) - none
WR-102	West	Unknown Multiparty	48"	Concrete	Active		Unknown		Basin area has not been delineated.	ARCO (ECSI #1528) - VOCs, PAHs, TPH, and metals
WR-202	East	Unknown Multiparty	60"	CMP	Active		Unknown		Basin area has not been delineated.	ExxonMobil (ECSI #137) - VOCs, PAHs, TPH, and metals
WR-205	West	Unknown Multiparty	24"	Concrete	Active		Unknown		Basin area has not been delineated.	Gasco (ECSI #84) - VOCs, SVOCs, PAHs, TPH, metals, and cyanide
WR-203	East	Unknown Multiparty	36"	CMP	Active		Unknown		Basin area has not been delineated.	
WR-204	East	Unknown Multiparty	24"	Unknown	Active		Unknown		Basin area has not been delineated.	
WR-211	West	Unknown Multiparty	36"?	CMP	Active		Unknown		Basin area has not been delineated.	Marine Finance (ECSI #2352) - VOCs, PAHs, TPH, metals, and butyltins
WR-209	West	Unknown Multiparty	48"	Unknown	Active		Unknown		Basin area has not been delineated.	ST Services/Shore Terminal (ECSI #1989) - none
WR-208	West	Unknown Multiparty	24"	STL	Active		Unknown		Basin area has not been delineated.	Marine Finance (ECSI #2352) - VOCs, PAHs, TPH, metals, and butyltins
WR-206	West	Unknown Multiparty	24"	STL	Active		Unknown		Basin area has not been delineated.	
Saltzman	West	Unknown Multiparty	96"	Concrete	Active		1,076 - open space		GS Roofing (ECSI #117) - VOCs, PAHs, TPH, and metals	GS Roofing (ECSI #117) - VOCs, PAHs, TPH, and metals.
Creek ^g							and heavy		St. Helens Road Petroleum Contamination (ECSI # 2630) - VOCs,	Discharges through WR-390 and WR-391
							industrial, small %		PAHs, and TPH	
							of highway and residential		V&K Services (ECSI # 2423) - VOCs, and TPH Willbridge Terminal (ECSI #1549) - VOCs, PAHs, TPH, pesticides/herbicides, metals, and phthalates	

Table 4.4-3. Shared Conveyance System Basin Characteristics and Potential Sources.

			Outfall		2008 Stormwater		Other Potential Sources in the Outfall Basins and Associated	
	River		Size	Outfall	Basin Acreage	COIs within Outfall Basin Area Identified during	COIs (in Addition to Sources Identified during Independent	Potential Sources Adjacent or Upstream
Outfall ID	Bank	Organization	(Inches)	Material ^a Outfall Status CSO ^b /SSO ^c	and Zoning ^d	Independent Investigations ^e	Investigations—see previous column)	and Associated COIs

This table is not an exhaustive list of current or historical sources of contamination. The table includes sites identified in DEQ's ECSI database and sites where TSCA cleanup documents could be located. Identification and evaluation of potential sources is ongoing.

Italicized cells indicate upland areas within current or former CSO basins. Non-italicized text indicates upland areas within stormwater basins.

^a Codes for outfall materials are as follows:

CSP - corrugated steel pipe PVC - polyvinyl chloride

Metal

STL - Steel Ditch - drainage pipe, absent of hard-piping

Concrete Other - variable not listed here

CMP - corrugated metal pipe Unknown

^b CSO listed if outfall is a current or historical CSO; see Table 3.2-3 for additional information.

^c SSO listed if there is an emergency overflow connection from a sanitary pump station to the outfall.

d Separated stormwater basins. For CSO outfalls already controlled, these separated areas will continue to discharge stormwater to the river downstream of the diversion. For CSO outfalls controlled in 2011, some of these separated storm basins are diverted to the tunnel.

^e COIs are identified based on recent investigations of up-the-pipe investigations and site summaries. These sources have known or likely stormwater pathways and therefore are included in the conceptual site model (see Section 10).

f Outfall historically drained combined flows before full separation. Contributions of sanitary and industrial wastewater unknown unless noted in Table 3.2-3.

 $^{\rm g}$ This outfall is not included in the outfall layer on the maps in Sections 3 and 4.

BEHP - bis(2-ethylhexyl)phthalate ODOT - Oregon Department of Transportation T4 - Port of Portland Terminal 4

BES - City of Portland Bureau of Environmental Services PAH - polycyclic aromatic hydrocarbon TCE - trichloroethene

CBWTP - Columbia Boulevard Wastewater Treatment Plant PCB - polychlorinated biphenyl TPH - total petroleum hydrocarbons COI - chemical of interest PCE - tetrachloroethene

TSCA - Toxic Substances Control Act CSO - combined sewer overflow PGE - Portland General Electric UPRR - Union Pacific Railroad ECSI - Environmental Cleanup Site Information POP - Port of Portland USACE - U.S. Army Corps of Engineers

SSO - sanitary sewer overflow GW - groundwater VOC - volatile organic compound

NA - not available SVOC - semivolatile organic compound WPCL - Water Pollution Control Laboratory

Table 4.4-4. LWG Summary Statistics for Sediment Trap and Stormwater Based on Land Use Type.

Tuble 4.4 4. Ewo Summary Statistics for Sediment	Trup und Storm water Buse	on Build	ове туре.				Detec	ted Concentrati	ons			Detected and I	Nondetected Cor	ncentrations	
Analyte	CAS RN	Units	N	N Detector	d % Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
	CABIRI	Cints		1\ Detected	70 Detected	wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Maximum	Mean	Median	93tii	(Iuli DL)	(Iuli DL)	(Hall DL)	(Hall DL)	(nan DL)
Heavy Industrial Solid															
Metals															
Arsenic	7440-38-2	mg/kg	13	13	100	3.53	58.6	23.4	22.6	52.5	3.53	58.6	23.4	22.6	52.5
Chromium	7440-47-3	mg/kg	13	13	100	15.5 T	726	165	107	540	15.5 T	726	165	107	540
Copper	7440-50-8	mg/kg	13	13	100	22.6 T	59400	4810	165	24300	22.6 T	59400	4810	165	24300
Zinc	7440-66-6	mg/kg	13	13	100	319	21000	3150	1280	12100	319	21000	3150	1280	12100
PCBs ^c															
Total PCBs	TOTPCBS	μg/kg	24	24	100	48.4 JT	9900 JT	977	288	2600	48.4 JT	9900 JT	977	288	2600
	TOTTCDS	μ6/ Κ6	24	2-7	100	40.4 31))00 J1	711	200	2000	40.4 31))00 J1	211	200	2000
Pesticides	200.00.2	Л	10	2	167	2.4.1	40 NI	10.0	5.0	42.0	0.76 11	40 NI	5.82	2.20	17.0
Aldrin	309-00-2	μg/kg	18	3	16.7	2.4 J	48 NJ	18.8	5.9	43.8	0.76 U	48 NJ	5.82	2.38	17.8
Dieldrin	60-57-1	μg/kg	18	1	5.56	470 J	470 J	470	470	720	0.8 U	470 J	29.3	2.03	79
Total Chlordanes	TOTCHLDANE	μg/kg	18	10	55.6	1.3 JT	1000 JT	155	20.5	730	1.3 JT	5800 UT	251	16	1290
DDx	E966176	μg/kg	18	18	100	4.8 JT	160000 T	9070	81	24700	4.8 JT	160000 T	9070	81	24700
Polycyclic Aromatic Hydrocarbons															
Total PAHs	130498-29-2	μg/kg	14	14	100	960 JT	700000 T	117000	42000	427000	960 JT	700000 T	117000	42000	427000
Phthalates															
Bis(2-ethylhexyl)phthalate	117-81-7	μg/kg	14	14	100	280 J	120000	27200	13300	101000	280 Ј	120000	27200	13300	101000
Water															
Metals															
Arsenic (dissolved)	7440-38-2	μg/L	76	68	89.5	0.024 J	21.1	1.88	0.362	12.7	0.024 J	21.1	2.13	0.576	12
Arsenic	7440-38-2	μg/L μg/L	100	91	91	0.091 J	19.8	2.93	0.87	17.2	0.021 J	20 U	3.12	1.03	16.9
Chromium (dissolved)	7440-47-3	μg/L	76	60	78.9	0.3	13.6	1.95	0.865	6.97	0.23 U	13.6	1.6	0.78	6.93
Chromium	7440-47-3	μg/L	97	94	96.9	0.62	495	20	3.56	111	0.62	495	19.4	3.44	110
Copper (dissolved)	7440-50-8	μg/L	76	76	100	1.9	99.9	16.5	7.93	61.2	1.9	99.9	16.5	7.93	61.2
Copper	7440-50-8	μg/L	97	97	100	3.1	809	66.9	23.3	296	3.1	809	66.9	23.3	296
Zinc (dissolved)	7440-66-6	μg/L	76	71	93.4	1.3	2300	240	99.3	924	1.3	2300	226	94.1	745
Zinc	7440-66-6	μg/L	97	97	100	43.6	11900	547	233	2360	43.6	11900	547	233	2360
man (
PCBs ^c	TOTOGO	/1	21	20	05.2	0.00000400 IT	0.052 T	0.00075	0.00517	0.0262	0.00000400 IT	0.052 T	0.00022	0.00470	0.0240
Total PCBs (dissolved)	TOTPCBS	μg/L	21	20	95.2	0.00000409 JT	0.052 T	0.00875	0.00517	0.0262	0.00000409 JT	0.052 T	0.00833	0.00478	0.0248
Total PCBs	TOTPCBS	μg/L	88	88	100	0.000344 JT	11.6 JT	0.352	0.0526	1.04	0.000344 JT	11.6 JT	0.352	0.0526	1.04
Pesticides															
Aldrin (dissolved)	309-00-2	μg/L	12	1	8.33	0.00034 J	0.00034 J	0.00034	0.00034		0.00034 J	0.0061 U	0.00133	0.000775	0.00275
Aldrin	309-00-2	μg/L	25	6	24	0.00022 J	0.027	0.0118	0.0109	0.0255	0.00022 J	0.027	0.00389	0.00135	0.0208
Dieldrin (dissolved)	60-57-1	μg/L	12	1	8.33	0.0015	0.0015	0.0015	0.0015		0.00042 U	0.0059 U	0.00134	0.00113	0.0027
Dieldrin	60-57-1	μg/L	25	7	28	0.00079	0.25	0.11	0.089	0.244	0.0004 U	0.25	0.0328	0.0013	0.222
Total Chlordanes (dissolved)	TOTCHLDANE		12	7	58.3	0.00054 JT	0.023 JT	0.01	0.013	0.0206	0.00054 JT	0.023 JT	0.00783	0.0054	0.0186
Total Chlordanes	TOTCHLDANE		25	14	56	0.00098 JT	0.13 JT	0.0302	0.0122	0.101	0.00098 JT	0.54 UT	0.0336	0.0084	0.121
DDx (dissolved)	E966176	μg/L	12	11	91.7	0.00066 JT	0.35 JT	0.0382	0.0081	0.183	0.00066 JT	0.35 JT	0.0352	0.0065	0.166
DDx	E966176	μg/L	25	22	88	0.0048 JT	11 JT	0.858	0.0185	3.51	0.002 UJT	11 JT	0.755	0.015	3.22
Polycyclic Aromatic Hydrocarbons															
Total PAHs (dissolved)	130498-29-2	μg/L	28	20	71.4	0.0077 JT	15 JT	2.31	0.965	9.97	0.0077 JT	15 JT	1.68	0.154	7.84
Total PAHs	130498-29-2	μg/L	86	79	91.9	0.048 JA	37 JT	3.26	0.97	13	0.048 JA	37 JT	3.01	0.715	12
Phthalates															
Bis(2-ethylhexyl)phthalate (dissolved)	117-81-7	μg/L	16	4	25	0.38 J	0.82	0.638	0.675	0.802	0.23 U	2 UJ	0.543	0.648	0.865
Bis(2-ethylhexyl)phthalate	117-81-7	μg/L μg/L	48	32	66.7	0.37 J	10	2.77	1.75	8.14	0.23 U 0.19 UJ	10	2.07	0.985	7.97
215(2 carymenty)/philianae	11, 01 /	MB/ L		32	00.7	5.57 3	10	2.77	1.75	0.17	0.17 03	10	2.07	0.703	1.71

Table 4.4-4. LWG Summary Statistics for Sediment Trap and Stormwater Based on Land Use Type.

							Detec	ted Concentratio	ons			Detected and l	Nondetected Cor	ncentrations	
analyte	CAS RN	Units	N	N Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
ight Industrial											(-4)	(=====)	(=====)	()	()
Solid															
Metals															
Arsenic	7440-38-2	mg/kg	2	2	100	3.39	4.43	3.91	3.91	4.38	3.39	4.43	3.91	3.91	4.38
Chromium	7440-47-3	mg/kg	2	2	100	122 J	160 J	141	141	158	122 J	160 J	141	141	158
Copper	7440-50-8	mg/kg	2	2	100	65.8	68	66.9	66.9	67.9	65.8	68	66.9	66.9	67.9
Zinc	7440-66-6	mg/kg	2	2	100	442	517	480	480	513	442	517	480	480	513
non f															
PCBs ^c	TOTOGOG		2	2	100	264	661	162	462	641	264	661	162	162	641
Total PCBs	TOTPCBS	μg/kg	2	2	100	264	661	463	463	641	264	661	463	463	641
Pesticides															
Aldrin	309-00-2	μg/kg	1	1	100	6.2 J	6.2 J	6.2	6.2		6.2 J	6.2 J	6.2	6.2	
Dieldrin	60-57-1	μg/kg	1	0	0						29 UJ	29 UJ	14.5	14.5	
Total Chlordanes	TOTCHLDANE		1	1	100	6.8 JT	6.8 JT	6.8	6.8		6.8 JT	6.8 JT	6.8	6.8	
DDx	E966176	$\mu g/kg$	1	1	100	34 JT	34 JT	34	34		34 JT	34 JT	34	34	
Polycyclic Aromatic Hydrocarbons															
Total PAHs	130498-29-2	μg/kg	2	2	100	20000 T	27000 T	23500	23500	26700	20000 T	27000 T	23500	23500	26700
Phthalates															
Bis(2-ethylhexyl)phthalate	117-81-7	μg/kg	2	2	100	17000	28000	22500	22500	27500	17000	28000	22500	22500	27500
• • • •		P-0 0													
Water															
Metals	7.440.20.2				100	0.00	0.24	0.100	0.402	0.224	0.00	0.24	0.100	0.400	0.004
Arsenic (dissolved)	7440-38-2	μg/L	14	14	100	0.08	0.34	0.189	0.182	0.324	0.08	0.34	0.189	0.182	0.324
Arsenic	7440-38-2	μg/L	20	20	100	0.13	2.27	0.789	0.754	1.87	0.13	2.27	0.789	0.754	1.87
Chromium (dissolved)	7440-47-3	μg/L	14	12	85.7	0.24	1.76	0.804	0.67	1.72	0.24	1.76	0.714	0.57	1.71
Chromium	7440-47-3	μg/L	20	20	100	1.39	12.7	4.18	2.88	10.3	1.39	12.7	4.18	2.88	10.3
Copper (dissolved)	7440-50-8	μg/L	14	14	100	1.7	8.4	4.54	4.5	7.22	1.7	8.4	4.54	4.5	7.22
Copper	7440-50-8	μg/L	20	20	100	2.92	22.9	11.5	9.09	22.2	2.92	22.9	11.5	9.09	22.2
Zinc (dissolved)	7440-66-6	μg/L	14	14	100	15.4	88.8	40.8	34	85.4	15.4	88.8	40.8	34	85.4
Zinc	7440-66-6	$\mu g/L$	20	20	100	28.9	227	108	91.9	217	28.9	227	108	91.9	217
PCBs ^c															
Total PCBs (dissolved)	TOTPCBS	$\mu g/L$	5	5	100	0.000569	0.002	0.00121	0.00121	0.00186	0.000569	0.002	0.00121	0.00121	0.00186
Total PCBs	TOTPCBS	μg/L	20	20	100	0.0017 JT	0.594 J	0.0734	0.0136	0.382	0.0017 JT	0.594 J	0.0734	0.0136	0.382
Pesticides															
Aldrin (dissolved)	309-00-2	μg/L	3	0	0						0.00066 UJ	0.0055 U	0.00114	0.00034	0.00251
Aldrin	309-00-2	μg/L	6	0	0						0.00049 U	0.0088 U	0.00124	0.000318	0.00378
Dieldrin (dissolved)	60-57-1	μg/L	3	0	0						0.00048 U	0.0055 U	0.00113	0.000395	0.00251
Dieldrin	60-57-1	μg/L	6	0	0						0.00049 UJ	0.0088 U	0.00129	0.000925	0.00355
Total Chlordanes (dissolved)	TOTCHLDANE		3	2.	66.7	0.0007 T	0.0029 JT	0.0018	0.0018	0.00279	0.0007 T	0.0029 JT	0.00145	0.00075	0.00269
Total Chlordanes	TOTCHLDANE		6	4	66.7	0.0012 JT	0.0052 JT	0.00235	0.0015	0.00466	0.0012 JT	0.0073 UT	0.00232	0.0015	0.00481
DDx (dissolved)	E966176	μg/L	3	0	0	*****	*****	*****	******	*****	0.0021 UJT	0.013 UJT	0.0031	0.00175	0.00603
DDx	E966176	μg/L	6	2	33.3	0.0071 JT	0.031 JT	0.0191	0.0191	0.0298	0.0011 UT	0.031 JT	0.00774	0.0036	0.025
Polycyclic Aromatic Hydrocarbons		. 0													
Total PAHs (dissolved)	130498-29-2	μg/L	7	7	100	0.06 JT	0.57 JT	0.326	0.35	0.543	0.06 JT	0.57 JT	0.326	0.35	0.543
Total PAHs (dissolved) Total PAHs	130498-29-2	μg/L μg/L	17	17	100	0.06 J1 0.25 T	1.6 T	0.696	0.46	1.6	0.00 J1 0.25 T	1.6 T	0.526	0.46	1.6
	100100 20 2	roll	1,	1,	100	5.25 1	1.0 1	0.070	5.10	1.0	0.25 1	1.0 1	0.070	0.10	1.0
Phthalates Bis(2-ethylhexyl)phthalate (dissolved)	117-81-7	по/І	2	2	100	0.17 J	0.18 J	0.175	0.175	0.18	0.17 J	0.18 J	0.175	0.175	0.18
Bis(2-ethylhexyl)phthalate	117-81-7	μg/L μg/L	14	14	100	0.17 J 1 J	4.2 J	1.93	1.6	4.14	0.17 J	4.2 J	1.93	1.6	4.14

Table 4.4-4. LWG Summary Statistics for Sediment Trap and Stormwater Based on Land Use Type.

Tuble 4.4 4. Ewo Summary Statistics for Sediment	Trup and Storm water Base	ou on build	ове туре.				Detec	cted Concentrati	ons			Detected and	Nondetected Cor	centrations	
					_						Minimum	Maximum	Mean	Median	95th
Analyte	CAS RN	Units	N	N Detected	d % Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	(half DL)	(half DL) ^b	(half DL) ^b
Major Transportation															
Solid															
Metals															
Arsenic	7440-38-2	mg/kg	1	1	100	3.37	3.37	3.37	3.37		3.37	3.37	3.37	3.37	
Chromium	7440-47-3	mg/kg	1	1	100	52.8	52.8	52.8	52.8		52.8	52.8	52.8	52.8	
Copper	7440-50-8	mg/kg	1	1	100	148	148	148	148		148	148	148	148	
Zinc	7440-66-6	mg/kg	1	1	100	799	799	799	799		799	799	799	799	
PCBs ^c															
Total PCBs	TOTPCBS	μg/kg	3	3	100	125 JT	223 JT	163	142	215	125 JT	223 JT	163	142	215
Pesticides															
Aldrin	309-00-2	μg/kg	2	0	0						1.1 U	2.5 U	0.9	0.9	1.22
Dieldrin	60-57-1	μg/kg	2	0	0						4 U	4.1 U	2.03	2.03	2.05
Total Chlordanes	TOTCHLDANE		2	1	50	8.8 JT	8.8 JT	8.8	8.8		4.5 UT	8.8 JT	5.53	5.53	8.47
DDx	E966176	μg/kg μg/kg	2	2	100	3.4 JT	17 JT	10.2	10.2	16.3	3.4 JT	17 JT	10.2	10.2	16.3
	2,001,0	r6 6	-	_	100	51.01	1, 01	10.2	10.2	10.0	301	1, 01	10.2	10.2	1010
Polycyclic Aromatic Hydrocarbons Total PAHs	130498-29-2	110/120	2	2	100	8800 JT	11000 JT	9900	9900	10900	8800 JT	11000 JT	9900	9900	10900
	130496-29-2	μg/kg	2	2	100	8800 J1	11000 J1	9900	9900	10900	8800 J1	11000 J1	9900	9900	10900
Phthalates	117 01 7	/	2	2	100	10000	20000	20000	20000	28000	10000	20000	20000	20000	20000
Bis(2-ethylhexyl)phthalate	117-81-7	μg/kg	2	2	100	19000	39000	29000	29000	38000	19000	39000	29000	29000	38000
Water															
Metals															
Arsenic (dissolved)	7440-38-2	μg/L	10	10	100	0.23	1.58	0.687	0.597	1.48	0.23	1.58	0.687	0.597	1.48
Arsenic	7440-38-2	μg/L	13	13	100	0.52	2.33	1.15	0.982	2.02	0.52	2.33	1.15	0.982	2.02
Chromium (dissolved)	7440-47-3	$\mu g/L$	10	8	80	0.7	5.52	1.96	1.62	4.38	0.7	5.52	1.66	1.28	4.05
Chromium	7440-47-3	μg/L	14	14	100	4.99	28.2	10.5	8.31	22	4.99	28.2	10.5	8.31	22
Copper (dissolved)	7440-50-8	μg/L	10	10	100	4.2	24.8	11.7	9.82	22	4.2	24.8	11.7	9.82	22
Copper	7440-50-8	μg/L	14	14	100	24.6	66	42.9	37.6	65.4	24.6	66	42.9	37.6	65.4
Zinc (dissolved)	7440-66-6	μg/L	10	10	100	39.1	525	118	64.5	375	39.1	525	118	64.5	375
Zinc	7440-66-6	μg/L	14	14	100	113	1140	364	254	871	113	1140	364	254	871
PCBs ^c		~													
Total PCBs (dissolved)	TOTPCBS	μg/L	1	1	100	0.00407 JT	0.00407 JT	0.00407	0.00407		0.00407 JT	0.00407 JT	0.00407	0.00407	
Total PCBs	TOTPCBS	μg/L	11	11	100	0.0085 T	0.185 JT	0.0517	0.0395	0.135	0.0085 T	0.185 JT	0.0517	0.0395	0.135
Polycyclic Aromatic Hydrocarbons															
Total PAHs (dissolved)	130498-29-2	μg/L	1	1	100	0.12 JT	0.12 JT	0.12	0.12		0.12 JT	0.12 JT	0.12	0.12	
Total PAHs	130498-29-2	$\mu g/L$	12	12	100	0.9 JT	12 T	2.96	2.35	7.32	0.9 JT	12 T	2.96	2.35	7.32
Phthalates															
Bis(2-ethylhexyl)phthalate (dissolved)	117-81-7	$\mu g/L$	1	1	100	1.8 J	1.8 J	1.8	1.8		1.8 J	1.8 J	1.8	1.8	
Bis(2-ethylhexyl)phthalate	117-81-7	μg/L	4	4	100	2.6	17	9.95	10.1	16.1	2.6	17	9.95	10.1	16.1
Multiple Land Uses															
Solid															
Metals															
Arsenic	7440-38-2	mg/kg	5	5	100	2.36	5.6	3.37	2.89	5.19	2.36	5.6	3.37	2.89	5.19
Chromium	7440-47-3	mg/kg	5	5	100	22.5	74.3	40.2	37.5	67.6	22.5	74.3	40.2	37.5	67.6
Copper	7440-50-8	mg/kg	5	5	100	32.3	164	64.3	38	141	32.3	164	64.3	38	141
Zinc	7440-66-6	mg/kg	5	5	100	229	1020	556	289	1010	229	1020	556	289	1010
		O 0	-	-											7-7
PCBs ^c Total PCBs	TOTOODO	/1	7	7	100	74.5 JT	696 JT	232	140	578	74.5 JT	696 JT	232	140	578
Total FCDS	TOTPCBS	μg/kg	7	/	100	/4.3 J1	090 J1	232	140	3/6	/4.5 J1	090 J1	232	140	310

Table 4.4-4. LWG Summary Statistics for Sediment Trap and Stormwater Based on Land Use Type.

	•						Dete	ected Concentrat	tions			Detected and	Nondetected Co	ncentrations	
					_					_	Minimum	Maximum	Mean	Median	95th
Analyte	CAS RN	Units	N	N Detected	d % Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	(half DL)	(half DL) ^b	(half DL) ^b
Pesticides															
Aldrin	309-00-2	μg/kg	6	3	50	2.5	21 J	9.27	4.3	19.3	0.78 U	21 J	5.25	2.28	16.8
Dieldrin	60-57-1	μg/kg	6	4	66.7	1.3 J	3.6	2.6	2.75	3.5	1.3 J	13 U	3.16	2.75	5.78
Total Chlordanes	TOTCHLDANE	μg/kg	6	6	100	11 JT	94 JT	32.2	21.5	78.8	11 JT	94 JT	32.2	21.5	78.8
DDx	E966176	μg/kg	6	6	100	6.3 JT	180 JT	55.6	39.5	147	6.3 JT	180 JT	55.6	39.5	147
Polycyclic Aromatic Hydrocarbons															
Total PAHs	130498-29-2	μg/kg	6	6	100	520 JT	19000 JT	7350	3500	18000	520 JT	19000 JT	7350	3500	18000
		100													
Phthalates	117 01 7	/1	_		100	900 I	27000	0920	4450	25200	000 T	27000	0020	4450	25200
Bis(2-ethylhexyl)phthalate	117-81-7	μg/kg	6	6	100	890 J	27000	9830	4450	25300	890 J	27000	9830	4450	25300
Water															
Metals															
Arsenic (dissolved)	7440-38-2	μg/L	11	11	100	0.305	1.37 J	0.744	0.449	1.37	0.305	1.37 J	0.744	0.449	1.37
Arsenic	7440-38-2	μg/L	15	15	100	0.49	2.22	1.39	1.44	2.21	0.49	2.22	1.39	1.44	2.21
Chromium (dissolved)	7440-47-3	μg/L	11	7	63.6	0.48	1.18	0.739	0.67	1.15	0.48	1.18	0.588	0.49	1.13
Chromium	7440-47-3	μg/L	15	15	100	2.84	11.6	7.34	6.41	11.5	2.84	11.6	7.34	6.41	11.5
Copper (dissolved)	7440-50-8	μg/L	11	11	100	2.88	12.7	6.67	6.87	11.8	2.88	12.7	6.67	6.87	11.8
Copper (dissorved)	7440-50-8	μg/L μg/L	15	15	100	10.3	55.6	26.6	24.3	48.7	10.3	55.6	26.6	24.3	48.7
Zinc (dissolved)	7440-66-6		11	10	90.9	49.8	115	74.2	70.1		49.6 U	115	69.7	61.4	104
· · · · · · · · · · · · · · · · · · ·		μg/L	15			49.8 83.6				105		391			
Zinc	7440-66-6	μg/L	15	15	100	83.0	391	217	220	387	83.6	391	217	220	387
PCBs ^c															
Total PCBs (dissolved)	TOTPCBS	$\mu g/L$	1	1	100	0.000661 JT	0.000661 JT	0.000661	0.000661		0.000661 JT	0.000661 JT	0.000661	0.000661	
Total PCBs	TOTPCBS	μg/L	12	12	100	0.00949 JT	0.503 T	0.0836	0.0231	0.295	0.00949 JT	0.503 T	0.0836	0.0231	0.295
Polycyclic Aromatic Hydrocarbons	120,100,20,2	~			100	0.044 777	0.044.75	0.014	0.014		0.014.77	0.044 777	0.044	0.044	
Total PAHs (dissolved)	130498-29-2	μg/L	1	1	100	0.014 JT	0.014 JT	0.014	0.014		0.014 JT	0.014 JT	0.014	0.014	
Total PAHs	130498-29-2	μg/L	12	12	100	0.083 JT	2.6 JT	0.986	0.865	2.22	0.083 JT	2.6 JT	0.986	0.865	2.22
Phthalates															
Bis(2-ethylhexyl)phthalate (dissolved)	117-81-7	$\mu g/L$	1	0	0						0.44 U	0.44 U	0.22	0.22	
Bis(2-ethylhexyl)phthalate	117-81-7	μg/L	4	4	100	1.8 J	8.9	5.03	4.7	8.41	1.8 J	8.9	5.03	4.7	8.41
· • • • • • • • • • • • • • • • • • • •		PO -													
Open Space															
Solid															
Metals															
Arsenic	7440-38-2	mg/kg	1	1	100	1.5	1.5	1.5	1.5		1.5	1.5	1.5	1.5	
Chromium	7440-47-3	mg/kg	1	1	100	17.9	17.9	17.9	17.9		17.9	17.9	17.9	17.9	
Copper	7440-50-8	mg/kg	1	1	100	12.2	12.2	12.2	12.2		12.2	12.2	12.2	12.2	
Zinc	7440-66-6	mg/kg	1	1	100	48.9 J	48.9 J	48.9	48.9		48.9 J	48.9 J	48.9	48.9	
PCBs ^c															
Total PCBs	TOTPCBS	μg/kg	1	1	100	4.13 JT	4.13 JT	4.13	4.13		4.13 JT	4.13 JT	4.13	4.13	
	ЮТСВЗ	μg/kg	1	1	100	4.13 11	4.13 11	4.13	4.13		4.13 11	4.13 J1	4.13	4.13	
Pesticides															
Aldrin	309-00-2	μg/kg	1	0	0						0.24 U	0.24 U	0.12	0.12	
Dieldrin	60-57-1	μg/kg	1	0	0						0.4 U	0.4 U	0.2	0.2	
Total Chlordanes	TOTCHLDANE		1	0	0						0.4 UT	0.4 UT	0.2	0.2	
DDx	E966176	μg/kg	1	1	100	3.9 JT	3.9 JT	3.9	3.9		3.9 JT	3.9 JT	3.9	3.9	
Delegandia Assessadi III describera															
Polycyclic Aromatic Hydrocarbons	120 100 20 2	/1			100	200 ***	200 ***	200	200		200 ***	200	200	200	
Total PAHs	130498-29-2	μg/kg	1	1	100	300 JT	300 JT	300	300		300 JT	300 JT	300	300	
Phthalates															
Bis(2-ethylhexyl)phthalate	117-81-7	μg/kg	1	0	0						30 U	30 U	15	15	
· · · · · · · · · · · · · · · · · · ·															

Table 4.4-4. LWG Summary Statistics for Sediment Trap and Stormwater Based on Land Use Type.

	•						Detec	cted Concentrat	tions			Detected and	Nondetected Co	ncentrations	
					_						Minimum	Maximum	Mean	Median	95th
Analyte	CAS RN	Units	N	N Detected	d % Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	(half DL)	(half DL) ^b	(half DL) ^b
Water															
Metals															
Arsenic (dissolved)	7440-38-2	μg/L	2	2	100	0.124 J	0.138	0.131	0.131	0.137	0.124 J	0.138	0.131	0.131	0.137
Arsenic	7440-38-2	μg/L	3	3	100	0.196	0.228 J	0.209	0.202	0.225	0.196	0.228 J	0.209	0.202	0.225
Chromium (dissolved)	7440-47-3	μg/L	2	2	100	0.54	0.76	0.65	0.65	0.749	0.54	0.76	0.65	0.65	0.749
Chromium	7440-47-3	μg/L	3	3	100	0.87	3.05	1.71	1.22	2.87	0.87	3.05	1.71	1.22	2.87
Copper (dissolved)	7440-50-8	μg/L	2	2	100	0.74 J	1.23	0.985	0.985	1.21	0.74 J	1.23	0.985	0.985	1.21
	7440-50-8		3	3		1.01 J					1.01 J	3.07	1.75		2.88
Copper		μg/L			100		3.07	1.75	1.16	2.88				1.16	
Zinc (dissolved)	7440-66-6	μg/L	2	2	100	3.96	12.3 J	8.13	8.13	11.9	3.96	12.3 J	8.13	8.13	11.9
Zinc	7440-66-6	μg/L	3	3	100	3.69 J	13.1 J	8.46	8.59	12.6	3.69 J	13.1 J	8.46	8.59	12.6
PCBs ^c															
Total PCBs	TOTPCBS	μg/L	5	3	60	0.0000808 JT	0.000641 JT	0.00031	0.000208	0.000598	0.0000524 UT	0.000641 JT	0.000197	0.0000808	0.000554
	1011 025	μg/ L		5	00	0.0000000 31	0.000011 31	0.00031	0.000200	0.000370	0.0000321 01	0.000011 31	0.000177	0.0000000	0.000551
Polycyclic Aromatic Hydrocarbons															
Total PAHs	130498-29-2	$\mu g/L$	5	1	20	0.02 JT	0.02 JT	0.02	0.02		0.015 UA	0.02 JT	0.0105	0.0085	0.0177
Phthalates															
Bis(2-ethylhexyl)phthalate	117-81-7	μg/L	5	1	20	0.83 J	0.83 J	0.83	0.83		0.071 U	0.83 J	0.206	0.055	0.677
• • • •		1.0													
Residential															
Solid															
Metals															
Arsenic	7440-38-2	mg/kg	2	2	100	2.38 T	8.69	5.54	5.54	8.37	2.38 T	8.69	5.54	5.54	8.37
Chromium	7440-47-3	mg/kg	2	2	100	29.2 JT	71.8	50.5	50.5	69.7	29.2 JT	71.8	50.5	50.5	69.7
Copper	7440-50-8	mg/kg	2	2	100	49.6 T	128	88.8	88.8	124	49.6 T	128	88.8	88.8	124
Zinc	7440-66-6	mg/kg	2	2	100	334 T	856	595	595	830	334 T	856	595	595	830
n an f															
PCBs ^c			_	_											
Total PCBs	TOTPCBS	$\mu g/kg$	2	2	100	66.7 JT	377	222	222	361	66.7 JT	377	222	222	361
Pesticides															
Aldrin	309-00-2	μg/kg	3	0	0						0.22 U	40 U	11.9	15.5	19.6
Dieldrin	60-57-1	μg/kg	3	1	33.3	4 NJ	4 NJ	4	4		4 NJ	31 UT	8.17	5	14.5
Total Chlordanes	TOTCHLDANE		3	2	66.7	9.1 JT	22 JT	15.6	15.6	21.4	9.1 JT	29 UT	15.2	14.5	21.3
			3	2						249					
DDx	E966176	μg/kg	3	2	66.7	36 JT	260 JT	148	148	249	36 JT	260 JT	115	48.5	239
Polycyclic Aromatic Hydrocarbons															
Total PAHs	130498-29-2	μg/kg	1	1	100	8200 JT	8200 JT	8200	8200		8200 JT	8200 JT	8200	8200	
Phthalates															
Bis(2-ethylhexyl)phthalate	117-81-7	μg/kg	1	1	100	8200 JT	8200 JT	8200	8200		8200 JT	8200 JT	8200	8200	
Dis(2-etilymexyl)phthalate	117-01-7	μg/Kg	1	1	100	0200 J1	0200 J1	8200	8200		0200 J1	0200 J1	0200	0200	
Water															
Metals															
Arsenic (dissolved)	7440-38-2	μg/L	4	4	100	0.245	0.41	0.321	0.315	0.4	0.245	0.41	0.321	0.315	0.4
Arsenic	7440-38-2	μg/L μg/L	6	6	100	0.255	1.36	0.556	0.415	1.17	0.255	1.36	0.556	0.415	1.17
Chromium (dissolved)	7440-47-3		1	3	75	0.28	0.73	0.53	0.58	0.715	0.28	0.73	0.481	0.413	0.708
· · · · · · · · · · · · · · · · · · ·		μg/L	4	3											
Chromium	7440-47-3	μg/L	0	0	100	0.83	31.8	6.78	1.59	24.8	0.83	31.8	6.78	1.59	24.8
Copper (dissolved)	7440-50-8	μg/L	4	4	100	3.44	6.94	5.52	5.84	6.93	3.44	6.94	5.52	5.84	6.93
Copper	7440-50-8	μg/L	6	6	100	6.92	83.5	21.5	9.28	65.8	6.92	83.5	21.5	9.28	65.8
Zinc (dissolved)	7440-66-6	μg/L	4	4	100	19.6	69.1	35	25.7	63.4	19.6	69.1	35	25.7	63.4
Zinc	7440-66-6	μ g/L	6	6	100	30.7	609	142	49.6	477	30.7	609	142	49.6	477
PCBs ^c															
Total PCBs (dissolved)	TOTPCBS	ug/I	1	1	100	0.00264	0.00264	0.00264	0.00264		0.00264	0.00264	0.00264	0.00264	
, ,		μg/L	1	6						0.117					0.117
Total PCBs	TOTPCBS	$\mu g/L$	6	O	100	0.00114 JT	0.134 J	0.0376	0.0118	0.117	0.00114 JT	0.134 J	0.0376	0.0118	0.117

Table 4.4-4. LWG Summary Statistics for Sediment Trap and Stormwater Based on Land Use Type.

							Detec	cted Concentrati	ons			Detected and I	Nondetected Con	centrations	
Analyte	CAS RN	Units	N	N Detected		Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
Pesticides											· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Aldrin (dissolved)	309-00-2	μg/L	3	0	0						0.00073 UJ	0.0056 UJ	0.00136	0.0009	0.00261
Aldrin	309-00-2	μg/L	3	0	0						0.00077 UJ	0.0053 UJ	0.00125	0.0007	0.00246
Dieldrin (dissolved)	60-57-1	μg/L	3	0	0						0.00049 U	0.0056 U	0.00111	0.00027	0.00255
Dieldrin	60-57-1	μg/L	3	0	0						0.0005 U	0.0053 U	0.00115	0.00055	0.00244
Total Chlordanes (dissolved)	TOTCHLDANE	μg/L	3	1	33.3	0.0011 T	0.0011 T	0.0011	0.0011		0.0011 T	0.012 UT	0.00255	0.0011	0.00551
Total Chlordanes	TOTCHLDANE	μg/L	3	3	100	0.00054 T	0.0039 JT	0.00198	0.0015	0.00366	0.00054 T	0.0039 JT	0.00198	0.0015	0.00366
DDx (dissolved)	E966176	μg/L	3	0	0						0.0012 UJT	0.023 UJT	0.00443	0.0012	0.0105
DDx	E966176	μg/L	3	1	33.3	0.00081 T	0.00081 T	0.00081	0.00081		0.00081 T	0.011 UJT	0.0028	0.0021	0.00516
Polycyclic Aromatic Hydrocarbons															
Total PAHs (dissolved)	130498-29-2	μg/L	3	3	100	0.26 JT	0.45 JT	0.357	0.36	0.441	0.26 JT	0.45 JT	0.357	0.36	0.441
Total PAHs	130498-29-2	μg/L	7	7	100	0.074 JT	1.4 JT	0.445	0.1	1.19	0.074 JT	1.4 JT	0.445	0.1	1.19
Phthalates															
Bis(2-ethylhexyl)phthalate (dissolved)	117-81-7	μg/L	1	1	100	0.2 J	0.2 J	0.2	0.2		0.2 J	0.2 J	0.2	0.2	
Bis(2-ethylhexyl)phthalate	117-81-7	μg/L	6	6	100	1	6.7	3.78	3.6	6.45	1	6.7	3.78	3.6	6.45

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.
- -- data not available.

DL - detection limit

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified. ^c Total PCBs are total PCB congeners whenever available, regardless of their qualification.

Table 4.4-5. Stormwater and Catch Basin Investigations under the JSCS Program.

												SVOCs							TPH-	
Survey Name	Survey ID	Included in Stats?	Study Objective	River Mile(s)	Begin Date	End Date	Number of Samples	Composite (Y/N)	QA Category	Conv.	Metals	(includes PAH & Phthalates)	PAH only	Phthalates Only	PCBs (Aroclors)	Pest.	VOCs	TPH- Gas	Diesel & Oil	Other
ABF Freight	WLCAFF07	Yes	Catch basin solids	9.1	6/4/2007	6/4/2007	2 Catch basin solids	N	Cat 1 QA 1 TOC & Pesticides Cat 2	X	X		X	X	X	X				X
Advanced American Construction Property	WLCAAE06	Yes	Stormwater sampling	5.6	5/26/2006	5/2/2007	3 Stormwaters	N	Cat 1 QA1 Some TPH data Cat 2		X		X					X	X	
Anderson Bros., Stormwater, March 2007	WLCABL06	Yes	Stormwater sampling	7.8, 7.9	12/26/2006	3/7/2007	4 Stormwaters	N	Cat 1 QA 1 VOCs Cat 2		X	X			X	X	X		X	
Ashland Chemical	WLCALF07	Yes	Catch basin solids	9.2	6/21/2007	6/21/2007	1 Catch basin solid	N	Cat 1 QA 1 TOC Cat 2	X	X		X	X	X	X				
Boydstun Metal Works at Burgard Industrial Park	WLCBSA02	No, too old	Catch basin solids	4.2	1/28/2002	1/28/2002	1 Catch basin solid	N	Cat 1 QA 1		X		X				X	X	X	
Calbag Metals/Former ACME Supply and Trading Company	WLCCBA05	Yes	Stormwater and catch basin solids	8.3 - 8.5	1/4/2005	1/6/2005	7 Catch basin solids 10 Stormwaters	Y	Cat 1 QA1 Oil & Grease & some Aroclor & PAH data Cat 2	X	X	X			X			X	X	
Chapel Steel	WLCCSJ05	Yes	Catch basin solids	8.7	6/11/2007	6/11/2007	1 Catch basin solid	N	Cat 1 QA 1 Pesticides Cat 2	X	X		X	X	X	X				X
Christenson Oil	WLCCHK01	Yes	Stormwater and catch basin solids	8.8	11/19/2001	6/9/2007	1 Catch basin solid 6 Stormwaters	N	Mixture of Cat1 QA1 & Cat 2	X	X	X			X		X	X	X	
Consolidated Metco-Rivergate-Response	WLCCMJ04	Yes	Stormwater sampling	2.8 - 3	10/26/2004	4/10/2006	9 Stormwaters	N	Cat 1 QA 1	X	X									
Container Recovery	WLCCRL06	Yes	Catch basin solids	8.9 - 9	6/5/2007	6/5/2007	2 Catch basin solids	N	Cat 1 QA 1 Pesticides Cat 2	X	X		X	X	X	X				X
Fred Devine Diving & Salvage, Inc.	WLCFDB01	No, too old	Stormwater and catch basin solids	8.2 - 8.4	2/21/2002	4/30/2002	4 Catch basin solids 1 Stormwater	N	Cat 2	X	X	X			X					
Freightliner Truck Manufacturing	WLCFLL06	Yes	Stormwater and catch basin solids	9.3	12/20/2006	6/5/2007	2 Catch basin solids 6 Stormwaters	Y	Cat 1 QA 1	X	X		X	X	X					
Galvanizers Company	WLCGLC07	Yes	Stormwater and catch basin solids	9.7	11/2/2006	6/24/2007	3 Catch basin solids 17 Stormwaters	N	Cat 1 QA 1 Grain size & some PAH Cat 2	X	X		X	X	X					
Stormwater-PGE-Forest Park	WLCGFE06	Yes	Source tracing	8.4 - 8.5	5/2/2006	10/11/2006	15 In-line solids	N	Cat 1 QA 1						X	X				
Linnton Plywood Association	WLCLPJ01	No, too old		4.5 - 4.6	10/16/2001	10/16/2001	4 Catch basin solids	N	Cat 2		X	X			X		X	X	X	
McCall Oil, RI, July 2004	WLCMOL00	Yes	Stormwater and catch basin solids	7.8 - 7.9	12/15/2000	5/2/2007	6 Catch basin solids 19 Stormwaters	N	Mixture of Cat1 QA1 & Cat 2	X	X	X			X			X	X	
Northwest Pipe Company	WLCNPI03	No, too old and Cat2	Stormwater source control efforts	3.9 - 4.3	9/9/2003	7/8/2005	8 Stormwaters	N	2003 PCBs, metals, TSS, & oil & grease Cat 1 QA 1 All else Cat 2	X	X		X		X			X		
Zidell Property at 5200 NW Front Avenue	WLCZDJ89	No, too old	One drain sediment	8.1	10/2/1989	10/2/1989	1 Catch basin solid	N	Metals Cat 1 QA1 Aroclors & TPH Cat2		X				X			X	X	
Oregon Steel Mill	WLCOSJ96	No, too old	Stormwater and catch basin solids	2 - 2.4	10/14/1996	10/23/2002	23 Catch basin solids 17 Stormwaters	N	CBSO Cat 1 QA2 Waters Cat 1 QA1	X	X	X			X		X	X	X	

Table 4.4-5. Stormwater and Catch Basin Investigations under the JSCS Program.

												SVOCs							TPH-	
		Included in	g. 1 014 d	River				Composite	0.1.0	~		(includes PAH		Phthalates	PCBs	. .	***		Diesel &	
Survey Name	Survey ID	Stats?	Study Objective	Mile(s)	Begin Date	End Date	Number of Samples	(Y/N)	QA Category	Conv.	Metals	& Phthalates)	only	Only	(Aroclors)	Pest.	VOCs	Gas	Oil	Other
Owens Corning Linnton Site	WLCOLB01	Yes	Stormwater and catch basin solids	3.6 - 3.8	2/2/2001	7/18/2007	2 Catch basin solids 13 Stormwaters	N	Cat 1 QA1 oil & grease & some pH Cat2	X	X		X	X	X			X	X	
Carson Oil	WLCCOF07	Yes	Catch basin solids	9.2	6/7/2007	6/7/2007	2 Catch basin solids	N	Cat 1 QA 1 TOC & pesticides Cat 2	X	X		X	X	X	X				X
Owens-Corning, 3750 N.W. Yeon Avenue	WLCOCF07	Yes	Catch basin solids	9.1	6/15/2007	6/15/2007	1 Catch basin solid	N	Cat 1 QA 1 Pesticides Cat 2	X	X		X	X	X	X				X
Paco / Sulzer Pumps	WLCPPF07	Yes	Stormwater and catch basin solids	9.6 - 10.4	1/28/2004	6/20/2007	23 Catch basin solids 16 Stormwaters	Y	Mixture of Cat1 QA1 & Cat 2	X	X	X			X				X	
USCG catch basin sampling	WLCCGD06	Yes	Stormwater and catch basin solids	8 - 8.1	4/14/2006	6/1/2006	14 Catch basin solids 18 Stormwaters	N	Cat 1 QA 1 SVOC & some VOC Cat 2	X	X	X			X			X	X	X
UPRR Albina	WLCAYH00	No, too old	XPA stormwater and catch basin data	9.9 - 10.8	8/9/2000	8/17/000	4 Catch basin solids 9 Stormwaters	N	Mixture of Cat1 QA1 & Cat 2		X	X			X		X	X	X	
GE 2007 stormwater outfall monitoring	WLCGED07	Yes	Stormwater sampling	9.6	4/12/2007	6/10/2007	16 Stormwaters	Y	Cat 1 QA2	X	X		X	X	X				X	X
City Outfall Basin 19 Inline Solids Sampling at the Former Calbag Metals	WLCOFJ02	Yes	Source tracing	8.3	6/18/2007	6/18/2007	1 Sediment trap	N	QA1Cat1						X					
City Outfall Basin 22B Inline Solids Evaluation	WLCOFJ02	Yes	Source tracing	6.9	9/30/2003	11/8/2006	4 In-line solids	Y	NWTPH-Dx & PAH data Cat 1 QA1 All other data Cat 2	X	X	X			X	X	X	X	X	X
City Outfall Basin 22C Northwest Drainage Pond Evaluation	WLCOFJ02	No, Cat2	Source tracing	6.7 - 6.8	11/24/2003	12/19/2003	4 Soils	N	Cat 2		X	X				X	X	X	X	X
City Outfall Basin 22C, Inline Solids Sampling in the Vicinity of Kopp	WLCOFJ02	Yes	Source tracing	6.3 - 6.4	11/5/2003	9/11/2006	7 In-line solids	Y	Cat1 QA1 Some Cat 2 data	X	X	X			X			X	X	
City Outfall Basin 46 Inline Solids Sampling in the Vicinity of the Union Pacific Railroad Albina Yard	WLCOFJ02	Yes	Source tracing	10.4 - 10.7	8/9/2000	8/2/2005	5 In-line solids	N	QA1Cat1	X	X	X			X			X	X	
City Outfall Basin 47 Inline Solids Sampling	WLCOFJ02	Yes	Source tracing	9.8 - 9.9	6/28/2006	6/28/2006	4 In-line solids	N	Cat 1 QA1 Grain size Cat 2	X					X					
City Outfall Basin 48 Inline Solids Sampling	WLCOFJ02	Yes	Source tracing	7.2	6/20/2006	6/20/2006	1 In-line solid	N	Cat 1 QA1 Grain size & metals Cat 2	X	X		X	X	X	X				
City Outfall Basin 49 Inline Solids Sampling and Basin Priority Reassessment	n WLCOFJ02	Yes	Source tracing	6.3 - 6.4	7/25/2005	7/25/2005	2 In-line solids	N	Cat 1 QA1		X									
City Outfall Basin 52A Catch Basin Solids Sampling Adjacent to Mar Com	WLCOFJ02	Yes	Source tracing	5.5 - 5.6	7/25/2005	7/25/2005	2 In-line solids	N	Cat 1 QA1 Metals Cat 2		X	X			X			X	X	
City Outfall Basin M-2 Dry-Weather Flow Sampling	WLCOFJ02	No, Cat2	Source tracing	8.8	9/19/2002	8/3/2005	4 Waters	N	Cat 2		X									
City Outfall Basin M-3 Dry-Weather Flow Sampling	WLCOFJ02	No, Cat2	Source tracing	9.1 - 9.3	9/19/2002	9/1/2005	5 Waters	N	Cat 2		X									

Table 4.4-5. Stormwater and Catch Basin Investigations under the JSCS Program.

												SVOCs							TPH-	
Survey Name	Survey ID	Included in Stats?	Study Objective	River Mile(s)	Begin Date	End Date	Number of Samples	Composite (Y/N)	QA Category	Conv.	Metals	(includes PAH & Phthalates)	PAH only	Phthalates Only	PCBs (Aroclors)	Pest.	VOCs	TPH- Gas	Diesel & Oil	Other
City Outfall Basin S-5 Inline Solids Sampling	WLCOFJ02	Yes	Source tracing	9 - 9.3	7/26/2005	7/26/2005	2 In-line solids	N	Cat 1 QA1 Phthalates & metals Cat 2		X		X	X						
City Outfall Basin S-6 Inline Solids Sampling	WLCOFJ02	Yes	Source tracing	8.4 - 8.6	6/20/2006	7/19/2006	4 In-line solids	N	Cat 1 QA1 Grain size & metals Cat 2	X	X		X	X	X					
Basin 19 Stormwater sampling	WLCOFJ02	Yes	Source tracing	8.3	3/8/2006	2/14/2007	8 Waters	Y	All 8082 data QA1Cat1 8270 data, except FY05/06 Event 3 data QA1Cat1 All else Cat 2 Will probably need reports to determine which 8270 data is Cat 1/2	X	X	X			X					
Basin 53 Stormwater sampling	WLCOFJ02	Yes	Source tracing	5.1	1/25/2008	3/13/2008	3 Composite waters plus one duplicate	Y	8270 & TOC data Cat 1 QA 1 All else Cat 2	X	X	X			X					X
Port of Portland Terminal 1 North Catch Basin Solids Data	WLCOFJ02	Yes	Source tracing	10.5 - 10.6	5/18/2007	5/18/2007	2 Catch basin solids	N	SVOC Cat 1 QA 1 All other data Cat 2	X	X	X			X					
Siltronic catch basin and stormwater - June 2001, Nov 2006, Feb 2007	WLCSLF01	Yes	Stormwaters and 1 catch basin solid	6.4 - 6.7	6/19/2001	2/14/2007	9 Stormwaters 1 Catch basin solid	Y	TOC & Metals Cat 1 QA 1 All other data Cat 2	X	X		X	X	X		X		X	
Gunderson Outfall Effluent and Seep Monitoring (additional data)	WLCGND05	Yes	Outfall and seep monitoring	8.5 - 9.1	1/28/1999	2/16/2007	55 Waters 132 Catch basin solids	N	Cat 1 QA1		X		X	X	X		X	X	X	X
T4 Spring 2007 outfall monitoring	WLCT4C07	Yes	Stormwater sampling	4.2 - 5.1	3/24/2007	5/20/2007	29 Stormwaters from 7 locations	N	Cat 1 QA 1 except 1668 data which is Cat 2	X	X		X	X	X	X				X
City of Portland 1200Z TSS monitoring data	WLC1200Z	No, Cat2	Outfall monitoring	2.1 - 10.8	05/21/1993	11/16/2007	777 Samples from 71 locations	N	Cat 2	X										
Chevron Willbridge Distribution Center catch basin monitoring	WLCCWK06	Yes	Catch basin solids	7.6 - 7.7	11/16/2006	11/21/2006	5 Catch basin solids	Y	Cat 1 QA 1 except 8081 data which is Cat 2	X	X	X			X	X	X			
Former Chevron Willbridge Asphalt Plant Catch Basin	WLCCAI06	Yes	Catch basin monitoring	7.8 - 8.1	9/5/2006	2/22/2007	2 Stormwaters, 7 catch basin solids, & 2 in-line solids	Y	Catch Basins Cat 2 Waters Cat 1 QA1	X	X	X	X	X	X	X	X	X	X	
Kinder Morgan Linnton catch basin (10/06) and stormwater (2007)	WLCKLJ06	Yes	Catch basin and stormwater monitoring	4.0 - 4.2	10/12/2006	10/24/2007	3 Waters 5 Catch basin solids	N	CBSO 8270 (PAH & phthalates) Cat 2 All else Cat1 QA 1	X	X		X	X	X		X	X	X	
Kinder Morgan Willbridge stormwater and catch basin May 2007	WLCKWE07	Yes	Catch basin and stormwater monitoring	7.4 - 7.5	5/11/2007	11/13/2007	4 Waters 3 Catch basin solids	N	Grain size & 8270 Cat 2 All else Cat 1 QA 1		X		X	X	X	X	X	X	X	
2005 stormwater sampling at the Arco/BP site	WLCARD05	Yes	Source control	4.8 - 4.9	4/25/2005	7/28/2005	2 Waters 3 Catch basin solids	N	Cat 1 QA1 Except Water TPH-G & -D data which is Cat 2		X		X				X	X	X	

Table 4.4-5. Stormwater and Catch Basin Investigations under the JSCS Program.

												SVOCs							TPH-	
		Included i	n	River				Composite				(includes PAH	PAH	Phthalates	PCBs			TPH-	Diesel &	
Survey Name	Survey ID	Stats?	Study Objective	Mile(s)	Begin Date	End Date	Number of Samples	(Y/N)	QA Category	Conv.	Metals	& Phthalates)	only	Only	(Aroclors)	Pest.	VOCs	Gas	Oil	Other
Arkema Stormwater February 15, 2007	C250-0101_WO1	Yes	Stormwater monitoring	7.1 - 7.3	2/15/2007	2/15/2007	4 Stormwaters	N	QA2Cat1	X	X		X			X				
Arkema Stormwater March 2, 2007	C250-0101_WO2	Yes	Stormwater monitoring	7.1 - 7.3	3/2/2007	3/2/2007	4 Stormwaters	N	QA1Cat1	X	X		X			X				
Arkema Stormwater March 19, 2007	C250-0101_WO3	Yes	Stormwater monitoring	7.1 - 7.3	3/19/2007	3/19/2007	4 Stormwaters	N	QA1Cat1	X	X		X			X				
Arkema Stormwater June 5, 2007	C250-0101_WO4	Yes	Stormwater monitoring	7.1 - 7.3	6/5/2007	6/5/2007	2 Stormwaters	N	QA1Cat1	X	X		X			X				
Arkema Stormwater August 14, 2007	C250-0101_WO5	No, missin XY	g Stormwater monitoring	7.1 - 7.3	8/14/2007	8/14/2007	1 Stormwater	N	QA1Cat1	X	X		X			X	X			X
									QA2Cat1, except											
Rhône-Poulenc Outfalls 22B and 22C Effluent	WLCRPI04	Yes	Stormwater monitoring	6.8 - 6.9	10/1/1993	9/23/2004	2 Stormwaters	N	diesel & oil:	X	X	X				X	X		X	
									QA2Cat2											
Willbridge Terminals Catch Basin Solids for Stormwater Source Control	WLCWTI07	Yes	Source control	7.7	9/24/2007	9/26/2007	12 Catch basin solids	N	Cat1	X	X	X			X	X	X	X	X	

Table 4.4-5. Stormwater and Catch Basin Investigations under the JSCS Program.

Survey Name	Comment	Reference ^a	Phase Code
ABF Freight	Conventionals: TOC, Grain Size. Herbicides also analyzed	Oregon Department of Environmental Quality ABF Freight Site Discovery file	ODEQ0005
Advanced American Construction Property		MFA, 2007	MFA0006
Anderson Bros., Stormwater, March 2007		Wohlers Environmental Services, Inc., 2007	WOH0003
Ashland Chemical	Conventionals: TOC, Grain Size. Herbicides also analyzed	Oregon Department of Environmental Quality Ashland Chemical Site Discovery file	ODEQ0006
Boydstun Metal Works at Burgard Industrial Park	VOC limited to PCE & breakdown product.	Bridgewater Group, Inc. 2002	BGI0001
Calbag Metals/Former ACME Supply and Trading Company	Some samples composited, not all. Conventionals: pH, TSS, oil & grease TPH results from NWTPH-HCID	Creekside Environmental Consulting, LLC. 2005, 2006	CEC0001, CEC0002
Chapel Steel	Conventionals: TOC. Herbicides also analyzed	Oregon Department of Environmental Quality Chapel Steel Site Discovery file	ODEQ0008
Christenson Oil	Conventionals: pH, TSS, Oil & Grease	Wohlers Environmental Services, Inc. 2007	WOH0001, WOH0002
Consolidated Metco-Rivergate-Response	Conventionals: pH, TSS, Oil & Grease Metals: Cu, Pb, Zn only	Kennedy/Jenks Consultants, 2007	KJC0003
Container Recovery	Conventionals: TOC, Grain Size. Herbicides also analyzed	Oregon Department of Environmental Quality Container Recovery Site Discovery file	ODEQ0009
Fred Devine Diving & Salvage, Inc.	Conventionals: TSS, COD, pH, Oil & Grease, temperature	EVREN Northwest 2007; Evergreen Environmental Management, Inc.	EVN0001, EEM0001
Freightliner Truck Manufacturing	CBSO are composites, SW are not. Conventionals: TSS, Hexavalent chrome	Maul Foster & Alongi, 2007	MFA0008
Galvanizers Company	Conventionals: TOC	Anchor Environmental, LLC. 2007	AEL0006
Stormwater-PGE-Forest Park		City of Portland, 2007	COP0002
Linnton Plywood Association	Only TPH-Gas & diesel ranges reported	CH2M Hill, 2002	CH20006
McCall Oil, RI, July 2004	Conventionals: TOC, TSS	Anchor Environmental, LLC., 2004	AEL0005
Northwest Pipe Company	Conventionals: TSS, Oil & grease	CH2M Hill, 2005	CH20007
Zidell Property at 5200 NW Front Avenue	Only TPH-Gas & diesel ranges reported	Maul Foster Alongi, 1989	MFA0009
Oregon Steel Mill	Conventionals: TSS, pH, DO, Redox, conductivity, pH, Redox potential, temperature, turbidity.	Exponent, 2003 Hart Crowser 1998	EXP0003, HCI0014

Table 4.4-5. Stormwater and Catch Basin Investigations under the JSCS Program.

Survey Name	Comment	Reference ^a	Phase Code
Owens Corning Linnton Site	Conventionals: TSS, oil & grease, pH, TOC. TPH-Gas result from NWTPH-HCID	Kennedy/Jenks Consultants, 2001, 2002, & 2007	KJC0001, KJC0002
Carson Oil	Conventionals: TOC, grain size Herbicides also analyzed	Oregon Department of Environmental Quality Carson Oil Site Discovery file	ODEQ0007
Owens-Corning, 3750 N.W. Yeon Avenue	Conventionals: TOC, Grain Size. Herbicides also analyzed	Oregon Department of Environmental Quality Site Discovery file	ODEQ0010
Paco / Sulzer Pumps	Some CBSO samples composited, not all. Conventionals: TSS, TOC, grain size, oil & grease.	Sterling Technologies, 2006; GeoDesign 2007; City of Portland 2007	STT0001, GDI0001, COP0001
USCG catch basin sampling	Conventionals: pH, flow, conductivity, temperature, turbidity, Na & K	TEC Inc., 2006	TEC0001
UPRR Albina	TPH-Gas result from NWTPH-HCID Butyltins also analyzed	Jacobs Engineering, 2000	JBE0003
GE 2007 stormwater outfall monitoring	Conventionals: TOC, DOC, TSS TPH - Only diesel range reported PCB congeners also reported.	AMEC, 2008	AMEC0001
City Outfall Basin 19 Inline Solids Sampling at the Former Calbag Metals	<u> </u>	City of Portland, 2008	COP0004
City Outfall Basin 22B Inline Solids Evaluation	1 of the 4 samples is a composite. Conventionals: TOC. Herbicides also analyzed.	City of Portland, 2008	COP0008
City Outfall Basin 22C Northwest Drainage Pond Evaluation	Conventionals: TOC, volatile residue PCDD/Fs & Herbicides also reported	City of Portland, 2007	COP0007
City Outfall Basin 22C, Inline Solids Sampling in the Vicinity of Kopp	1 of the 7 samples is a composite. Conventionals: TOC, Cyanide	City of Portland, 2007	COP0006
City Outfall Basin 46 Inline Solids Sampling in the Vicinity of the Union Pacific Railroad Albina Yard	Conventionals: TOC Butyltins also analyzed	City of Portland, 2006	COP0010
City Outfall Basin 47 Inline Solids Sampling	Conventionals: TOC, grain size	City of Portland, 2007	COP0017
City Outfall Basin 48 Inline Solids Sampling	Conventionals: TOC, grain size	City of Portland, 2008	COP0011
City Outfall Basin 49 Inline Solids Sampling and Basin Priority Reassessment	n Mercury only	City of Portland, 2006	COP0009
City Outfall Basin 52A Catch Basin Solids Sampling Adjacent to Mar Com		City of Portland, 2006	COP0012
City Outfall Basin M-2 Dry-Weather Flow Sampling	Zinc only	City of Portland, 2006	COP0013
City Outfall Basin M-3 Dry-Weather Flow Sampling	Metals: Cu, Pb, Zn	City of Portland, 2006	COP0014

Table 4.4-5. Stormwater and Catch Basin Investigations under the JSCS Program.

Survey Name	Comment	Reference ^a	Phase Code
City Outfall Basin S-5 Inline Solids Sampling		City of Portland, 2006	COP0015
City Outfall Basin S-6 Inline Solids Sampling	Conventionals: TOC, grain size	City of Portland, 2008	COP0016
Basin 19 Stormwater sampling	7 of the 8 samples are composites Conventionals: Oil & grease, nitrate, N-ammonia, total kjeldahl nitrogen, orthophosphate, total phosphorus, hardness, conductivity, TDS, TSS, temperature, pH, BOD, COD, hardness, E. Coli	City of Portland, 2008	COP0003
Basin 53 Stormwater sampling	4 of the 6 samples are composites Conventionals: TSS, TOC, pH, conductivity, temperature PCB Congeners also reported	City of Portland, 2008	COP0018
Port of Portland Terminal 1 North Catch Basin Solids Data	Conventionals: Grain size, TOC	City of Portland, 2007	COP0005
Siltronic catch basin and stormwater - June 2001, Nov 2006, Feb 2007	CBSO was a composite, stormwaters were not. Conventionals: TDS, cyanide, TOC	AMEC, 2003, 2004, 2005	AMEC0003
Gunderson Outfall Effluent and Seep Monitoring (additional data)	Tributyl tin (only) also analyzed	Kleinfelder, 2008	KFI0008
T4 Spring 2007 outfall monitoring	Conventionals: TOC, DOC, turbidity, Oil & Grease PCB congeners also analyzed	Ash Creek Assoc., 2007	
City of Portland 1200Z TSS monitoring data	TSS data	City of Portland data	
Chevron Willbridge Distribution Center catch basin monitoring	Conventionals: Grain size, cyanide	Arcadis, 2007	ARCB0002
Former Chevron Willbridge Asphalt Plant Catch Basin	Solid samples were composites Conventionals: TSS, grain size, cyanide. Some SVOCs full list, others PAH/Phthalates only	Arcadis, 2007	ARCB0001
Kinder Morgan Linnton catch basin (10/06) and stormwater (2007)	Conventionals: TSS, TOC VOC: Benzene only	Delta Environmental Assoc.	
Kinder Morgan Willbridge stormwater and catch basin May 2007	Conventionals: TSS, TOC VOC: BTEX, n-, sec-butlybenzenes, n-propylbenzene, & 1,2,4-trimethylbenzene only	Delta Environmental Assoc.	
2005 stormwater sampling at the Arco/BP site		URS, 2006	URS0003

Table 4.4-5. Stormwater and Catch Basin Investigations under the JSCS Program.

Survey Name	Comment	Reference ^a	Phase Code
Arkema Stormwater February 15, 2007	TSS, perchlorate, Mg, hexchrome, PAH, pesticides	ESI 1/10/2007, Arkema Report 2_stormwater	
Arkema Stormwater March 2, 2007	TSS, perchlorate, Mg, hexchrome, PAH, pesticides	ESI 1/10/2007, Arkema Report 3_stormwater	
Arkema Stormwater March 19, 2007	TSS, perchlorate, Mg, hexchrome, PAH, pesticides	ESI 1/10/2007, Arkema Report 4_stormwater	
Arkema Stormwater June 5, 2007	TSS, perchlorate, pH, Mg, hexchrome, PAH, pesticides	ESI 1/10/2007, Arkema Report 6 & 7_stormwater	
Arkema Stormwater August 14, 2007	Solids, Hg, PCDD/Fs, PAH, PCP, pesticides, herbicides, VOC	ESI 1/10/2007, Arkema Report 9_stormwater	
Rhône-Poulenc Outfalls 22B and 22C Effluent		Rhône-Poulenc Outfalls 22B and 22C Effluent	AMEC0001
Willbridge Terminals Catch Basin Solids for Stormwater Source Control		Upland Stormwater Source Control Status Report	DLT0001

^aSee Appendix A1.

BOD - biological oxygen demand

BTEX - benzene, toluene, ethylbenzene, and xylenes

CBSO - catch basin solid

COD - chemical oxygen demand

DO - dissolved oxygen

DOC - dissolved organic carbon

FY - fiscal year

JSCS - Joint Source Control Strategy

NWTPH - Northwest total petroleum hydrocarbons

QA - quality assurance

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl PCDD/Fs - dioxins/furans

PCP - pentachlorophenol

SVOC - semivolatile organic compound

TDS - total dissolved solids

TOC - total organic carbon

TPH - total petroleum hydrocarbon

TSS - total suspended solids

VOC - volatile organic compound

XPA - expanded preliminary assessment

Table 4.4-6. Non-LWG Summary Statistics for Sediment Trap and Stormwater.

	-						Detecte	d Concentration	ns			Detected and N	Nondetected Con	centrations	
Analyte	CAS RN	Units	N	N Detected	d % Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
Solid															
Metals															
Arsenic	7440-38-2	mg/kg	138	134	97.1	1.38	259	21.6	9.61	65.1	1.38	259	21.1	9.53	62.7
Chromium	7440-47-3	mg/kg			100	15.1	517	117	91.8	301	15.1	517	117	91.8	301
Copper	7440-50-8	mg/kg		184	100	23.9	13200	1370	413	5550	23.9	13200	1370	413	5550
Zinc	7440-66-6	mg/kg		184	100	135	17300	2410	1240	8000	135	17300	2410	1240	8000
	7440 00 0	mg/kg	104	104	100	133	17500	2410	1240	0000	155	17300	2410	1240	0000
Butyltins															
Tributyltin ion	36643-28-4	µg/kg	16	14	87.5	21	77	39.9	34.5	64.7	1.19 U	77	35	32.5	62.8
PCBs ^c															
Total PCBs	TOTPCBS	µg/kg	192	127	66.1	11 T	16700	764	266	3350	1.55 UT	16700	514	94.5	2510
Pesticides															
Aldrin	309-00-2	µg/kg	36	2	5.56	1.1	70.2	35.7	35.7	66.7	1.1	144 U	16.4	2.74	55.1
Dieldrin	60-57-1	µg/kg	36	5	13.9	4.42	47.1	24	12	47.1	1.9 U	463 U	21.4	3.94	47.8
Total Chlordanes	TOTCHLDANE	µg/kg	36		11.1	2.8 A	18 JT	9.38	8.35	17.3	0.93 UA	144 UA	16.9	4.34	47.2
DDx	E966176	µg/kg	36	15	41.7	8.91 A	360 A	58	37.4	163	3.95 UA	718 UA	72.9	39.8	277
Polycyclic Aromatic Hydrocarbons	120400 20 2	А	146	120	04.5	212 4	755000 4	26200	4000	66000	212.4	755000 4	24000	4600	c1200
Total PAHs	130498-29-2	μg/kg	146	138	94.5	213 A	755000 A	26300	4900	66000	213 A	755000 A	24900	4690	61300
Phthalates															
Bis(2-ethylhexyl) phthalate	117-81-7	µg/kg	154	145	94.2	150	475000	34500	20900	101000	60 U	475000	32700	17500	99100
Water															
Metals															
Arsenic (dissolved)	7440-38-2	$\mu g/L$	30	3	10	1.08	5.49	3.42	3.7	5.31	0.028 U	1000 U	33.9	0.425	277
Arsenic	7440-38-2	μg/L	87	42	48.3	0.18 J	20.2	2.9	1.5	8.04	0.028 U	1000 U	7.36	0.5	6.88
Chromium (dissolved)	7440-47-3	$\mu g/L$	32	11	34.4	0.2	5	1.24	0.9	3.16	0.129 U	5 U	1.35	0.98	2.5
Chromium	7440-47-3	$\mu g/L$	113	82	72.6	0.512	88.7	7.91	3	40	0.129 U	88.7	6.03	2.32	29
Copper (dissolved)	7440-50-8	μg/L	40	28	70	2.46	48	12.8	8.27	36.7	0.788 U	48	10.4	5.95	32.4
Copper	7440-50-8	μg/L	139	128	92.1	0.81	1400	72.3	20.5	242	0.81	1400	66.9	18.4	207
Zinc (dissolved)	7440-66-6	μg/L	40	39	97.5	2.34	24000	1980	240	8640	2.34	24000	1930	232	8620
Zinc	7440-66-6	$\mu g/L$	144	141	97.9	2.87 J	48200	1670	260	7650	0.193 U	48200	1640	255	7550
Butyltins															
Tributyltin ion	36643-28-4	\mug/L	2	1	50	0.00544	0.00544	0.00544	0.00544		0.000424 U	0.00544	0.00283	0.00283	0.00518
PCBs ^c															
Total PCBs	TOTPCBS	μg/L	64	2	3.13	0.029 JT	1.4 T	0.715	0.715	1.33	0.00946 UT	1.72 UT	0.197	0.195	0.5
PCDD/Fs															
TCDD TEQ (ND = 0)	TEQ_DIOXIN.0	pg/l	2	1	50	0.042 T	0.042 T	0.042	0.042		0.042 T	8.9 UT	2.25	2.25	4.23
Pesticides		10													
Aldrin	309-00-2	μg/L	10	2	20	0.00021 J	0.00026 J	0.000235	0.000235	0.000258	0.00011 UJ	0.0976 U	0.0108	0.00195	0.0381
Dieldrin	60-57-1		10		0	0.00021 J	0.00020 J			0.000238	0.00011 UJ 0.0004 U	0.0976 U	0.0108	0.00195	0.0381
Total Chlordanes	TOTCHLDANE	μg/L				0.0017 JT	0.0017 JT	0.0017	0.0017		0.0004 U 0.00073 UT	0.0976 UA	0.0108	0.00158	
DDx (dissolved)	E966176		10		10	0.0017 J1 0.00213 A	0.0017 J1 0.247 A	0.0017	0.0017	0.128	0.00073 UT 0.00213 A			0.00138	0.0381
		μg/L	14	13	92.9 75					0.128		0.247 A	0.0387		0.118
DDx	E966176	$\mu g/L$	24	18	75	0.00044 JT	4.48 A	0.592	0.314	1.85	0.00044 JT	4.48 A	0.456	0.264	1.3

Table 4.4-6. Non-LWG Summary Statistics for Sediment Trap and Stormwater.

					_	Detected Concentrations						Detected and N	ondetected Cond	ted Concentrations			
Analyte	CAS RN	Units	N	N Detected % I	Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b		
Polycyclic Aromatic Hydrocarbons Total PAHs	130498-29-2	μg/L	108	85	78.7	0.00509 T	31.8 JA	0.923	0.221	2.09	0.00509 T	31.8 JA	0.79	0.127	2.09		
Phthalates Bis(2-ethylhexyl) phthalate	117-81-7	μg/L	87	63 7	72.4	0.734	40 J	3.6	2.2	9.24	0.27 U	40 J	2.9	1.8	9.17		

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

U - The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

A - Total value based on limited number of analytes.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

-- data not available.

BaPEq - benzo(a)pyrene equivalent

cPAH- carcinogenic polycyclic aromatic hydrocarbon

DL - detection limit

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

^a Whenever several result values match maximum or minimum value, qualifier or descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, the average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

C Total PCBs are total PCB congeners whenever available regardless of their qualification.

Table 4.4-7. Pretreatment Permittees where Industrial Wastewater Could Overflow to Portland Harbor through Control Structures — Status as of February 2011.

Туре	Permittee	Address	Outfall ^a	RM	Permit Period	Basis of Permit Limits	COIs ^b
Food and Beverage-Related	Bridgeport Brewing Co. ^c	1313 NW Marshall	11	11.4W	1990-current ^d	Local	pH, BOD, TSS
Industries	Ocean Beauty Northwest Inc	2450 NW 28th	17	9.8W	2001-current	Local	pH, BOD, TSS
	Portland Brewing Co / Pyramid Brewing Inc	2730 NW 31st	17	9.8W	1990-current	Local	pH, BOD, TSS
Industrial Laundries	Aramark Uniform Services/ Aratex Industrial Laundry	1848 NW 23rd Ave	15	10.4W	1994-current ^d	Local	pH, oil & grease, metals, volatile organics
	Coverall Uniform Supply (Old)	2522 NE MLK Jr Blvd	44A	11.2E	1991-1993	Local	pH, oil & grease, metals, volatile organics
	Hospital Linen Svc.	1804 NW Northrup	11	11.4W	1993-1998	Local	pH, oil & grease, BOD, metals
	Portland Hospital Svc.	1804 NW Northrup	11	11.4W	1999-2000	Local	pH, oil & grease
Rubber Processing Industries	Cascade Rubber Products	1828 NW Quimby	11	11.4W	1989-1995	Local	pH, oil & grease, metals
	Griffith Rubber Mills	2439 NW 22nd Ave	15	10.4W	1989-1990	Local	pH, oil & grease, metals
Bag Manufacturing	Chase Packaging Corp/ Union Camp Corporation	2550 NW Nicolai	15	10.4W	1989-1996	Local	pH, oil & grease, metals
Photographic Processing,	Fred Meyer Photo Service	124 NW 20th Ave	11	11.4W	1990-1992	Local	pH, metals
Printing and Press-Related	Graphic Arts Center	2000 NW Wilson	15	10.4W	1997-2001	Local	pH, metals
Industries	Oregonian Publishing Co	1621 SW Taylor St	11	11.4W	1997-current ^d	Local	pH, oil & grease, metals
Battery Repair	Wagstaff Battery	2124 N Williams Ave	NA	NA	1992-1996	Non-Discharger ^e	NA - industrial wastewater discharges are prohibited
Paint Formulation	Ameritone Paint Corp	2100 NW 22nd Ave	NA	NA	1993-1995	Non-Discharger ^f	NA - industrial wastewater discharges are prohibited
	Drew Paints	1525 NW 23rd	NA	NA	1998-current	Non-Discharger ^f	NA - industrial wastewater discharges are prohibited
Transportation-Related	Boise Cascade Trucking	2017 NW Vaughn	13	11.0W	1988-1995? ^g	Local	pH, oil & grease
Industries	Consolidated Freightways (NW)	1633 NW 21st Ave	15	10.4W	1988-1997	Local	pH, oil & grease
Groundwater-Related Discharge	s Don Rasmussen Co BMW	2001 SW Jefferson	11	NA	2005-2010 ^d	Remediation Site	Permitted but no discharge occurred
	Trimet Butler Blocks	1715 SW Salmon	11	11.4W	1994-1998	Remediation Site	pH, oil & grease, lead
	Trimet Light Rail	2140 SW Jefferson	11	11.4W	1993-1997	Construction Dewatering	
	Terra Vac	330 NW 23rd	15	10.4W	1996-1998	Remediation Site	pH, oil & grease, BTEX, lead
	Unocal 4548	1747 SW Jefferson	11	11.4W	1993-1998	Remediation Site	pH, oil & grease, BTEX, metals
Metals-Related Industries	Blackline Inc	2424 NW St Helens	17	9.8W	1994-current	Categorical	pH, oil & grease, metals, cyanide, TTOs
(Foundries, Metals Coating, etc)	ESCO Corporation	2141 NW 25th Ave	15	10.4W	1998-current ^d	Non-Discharger ^e	NA - industrial wastewater discharges are prohibited; however, batch discharges have been approved in the past. COIs are pH, oil & grease, metals and TTOs
	ESCO Corporation (Plant #3)	2211 NW Brewer	15	10.4W	1993-current ^d	Non-Discharger ^f	NA - industrial wastewater discharges are prohibited; however, batch discharges have been approved in the past. COIs are pH, oil & grease, metals and TTOs
	Galvanizers	2406 NW 30th	NA	NA	<1988-current	Non-Discharger ^e	NA - industrial wastewater discharges are prohibited
	King Cycle Group	2801 NW Nela	NA	NA	2006 - current	Non-Discharger ^e	NA - industrial wastewater discharges are prohibited
	Oregon Retinners	2712 N Mississippi	NA	NA	1993-2007	Non-Discharger ^e	NA - industrial wastewater discharges are prohibited
	Pacific States Galvanizing	820 NW 15th Ave / 805 NW 14th Ave.	NA	NA	1986-1996	Non-Discharger ^e	NA - industrial wastewater discharges are prohibited
	Rejuvenation Inc	2550 NW Nicolai	15	10.4W	2000-current ^d	Categorical	pH, oil & grease, metals, cyanide, TTOs
	Specialty Finishes Inc	3805 N Mississippi	46	10.5E	1999-2003	Categorical	pH, oil & grease, metals, cyanide, TTOs
	Wade Manuf. Co. Foundry	2420 NW 31st	NA	NA	1992-2002	Non-Discharger ^e	Process wastewater discharges are prohibited except for air compressor condensate

Source: City of Portland Annual Pretreatment Reports from 1983 - 2009. Additional pretreatment records consulted to identify permit period and COIs.

Table 4.4-7. Pretreatment Permittees where Industrial Wastewater Could Overflow to Portland Harbor through Control Structures — Status as of February 2011.

Type Permittee Address Outfall RM Permit Period Basis of Permit Limits COIs COIs	Address Outfall ^a RM Permit Period Basis of Permit	Limits COIs ^b
--	---	--------------------------

^aOutfall where potential diversion could discharge to river

^bCOIs identified as those chemicals for which pretreatment permit limits were established

^cLocation of connection to City system uncertain, may not discharge to pipe with a downstream diversion structure

^dSite discharge directed to tunnel in 2006

^ePermitted based on procedures contained in the CoP's approved pretreatment program. NOTE: these facilities elect not to discharge

^fFederal mandate to permit this facility based on its regulated process and zero-discharge limitation (i.e., mandated not to discharge wastewater from its process)

^gNon-Significant Industrial Users not included in 1993-1995 Annual Reports; no records of when permit was terminated but facility not listed in 1996 Annual Report

BOD - biological oxygen demand

BTEX - benzene, toluene, ethylbenzene, and xylenes

COI - contaminant of interest

COP - City of Portland

NA - not applicable

RM - river mile

TSS - total suspended solids

TTO - total toxic organics

Table 4.5-1. Active NPDES Permitted Discharges to the Lower Willamette River, Outside the Study Area. a

1 0010 7.5-1.	Active NPDES Permitted Discharges to the Lower withamette River, Outside the	Loca	ation		Permit	River
File No.	Facility		Longitude	Category	Туре	Mile
	DES - Individual Permit					
84069	BOISE WHITE PAPER, L.L.C.	45.85	-122.8	DOM	NPDES-DOM-A2	MC
16590	CLACKAMAS COUNTY SERVICE DISTRICT #1		-122.6424	DOM	NPDES-DOM-A3	18.6
70735	PORTLAND, CITY OF		-122.6579	DOM	NPDES-DOM-Ba	20.1
89700	TRI-CITY SERVICE DISTRICT		-122.5892	DOM	NPDES-DOM-Ba	25.1
108013	GRESHAM, CITY OF; FAIRVIEW, CITY OF; MULTNOMAH COUNTY		-122.5353	STM	NPDES-DOM-MS4-1	multiple
72634	BLUE HERON PAPER COMPANY		-122.6105	IND	NPDES-IW-B01	25.9
21489	WEST LINN PAPER COMPANY	45.3564	-122.6154	IND	NPDES-IW-B01	26.0
Minor NPI	DES - Individual Permit					
30554	FOREST PARK MOBILE VILLAGE LLC	45.3382	-122.641	DOM	NPDES-DOM-Da	26.0
78980	SCAPPOOSE, CITY OF	45.7526	-122.8559	DOM	NPDES-DOM-Da	MC
109444	ANKROM MOISAN ASSOCIATED ARCHITECTS, INC.	45.479	-122.6728	IND	NPDES-IW-B15	15.4
110220	GSL PROPERTIES, INC.	45.5174	-122.6726	IND	NPDES-IW-B16	12.7
113611	I. WATER SERVICES, INC.	45.4994	-122.6706	IND	NPDES-IW-B16	14.0
General Pe	rmits					
104545	NORCREST CHINA COMPANY; WHEAT MARKETING CENTER, INC.	45.5292	-122.673	IND	GEN01	11.8
38192	HERCULES INCORPORATED		-122.709	IND	GEN01	12.0
48480	LAKE OSWEGO, CITY OF		-122.6325	IND	GEN02	23.2
78985	GLACIER NORTHWEST, INC.		-122.8755	IND	GEN10	MC
14700	NORTHWEST AGGREGATES CO.		-122.8506	IND	GEN10	MC
76839	ROSS ISLAND SAND & GRAVEL CO.		-122.6564	IND	GEN10	14.5
113907	SCAPPOOSE SAND AND GRAVEL CO.		-122.8744	IND	GEN10	MC
	EAGLE STAR ROCK PRODUCTS, LLC	45.8706		STM	GEN12A	MC
107661	LAKE SHORE CONCRETE CO.		-122.6613	STM	GEN12A	20.0
	ACC OP (PSU COLLEGE STATION) LLC		-122.6833	STM	GEN12C	13.2
119758	ANDERSEN CONSTRUCTION COMPANY	45.4197	-122.6725	STM	GEN12C	20.7
114072	CHESAPEAKE HOLDINGS MAC, LLC	45.3626	-122.6374	STM	GEN12C	24.1
118241	CITY LIGHTS DEVELOPMENT, LLC	45.5085	-122.688	STM	GEN12C	13.1
120538	CITY OF OREGON CITY PUBLIC WORKS	45.3709	-122.5855	STM	GEN12C	25.1
119537	CITY OF PORTLAND - BUREAU OF ENVIRONMENTAL SERVICES	45.4622	-122.6608	STM	GEN12C	16.7
119547	CITY OF PORTLAND, BES	45.423	-122.6591	STM	GEN12C	20.0
120514	COLUMBIA COUNTY TRANSIT DIVISION	45.87	-122.8144	STM	GEN12C	MC
115892	D.R. HORTON, INC PORTLAND	45.3617	-122.6344	STM	GEN12C	24.1
119796	DAN OBRIST EXCAVATION, INC.	45.7523	-122.8783	STM	GEN12C	MC
117004	DOUGLAS PARK, LLC	45.3539	-122.6457	STM	GEN12C	26.0
109884	ELK MEADOW DEVELOPMENT LLC		-122.8343	STM	GEN12C	MC
	FIVE STAR BUILDERS		-122.8383	STM	GEN12C	MC
117811	HOFFMAN CONSTRUCTION COMPANY OF OREGON		-122.6812	STM	GEN12C	12.8
117139	ICON CONSTRUCTION & DEVELOPMENT, LLC		-122.6111	STM	GEN12C	26.0
117931			-122.6236	STM	GEN12C	26.0
120223			-122.8751	STM	GEN12C	MC
	KIEWIT - BILFINGER BERGER, AJV (KBB)		-122.6627	STM	GEN12C	13.5
	LARRY OLSON		-122.8213	STM	GEN12C	MC
	LEGACY HEALTH SYSTEM		-122.6701	STM	GEN12C	11.3
119822			-122.6413	STM	GEN12C	18.6
111942	•		-122.6689	STM	GEN12C	14.2
119240	NURTURE 247 LIMITED PARTNERSHIP		-122.6852	STM	GEN12C	11.1 MC
116446	OLSON, LARRY		-122.8803	STM	GEN12C	MC
119663	PACIFIC REALTY OF OREGON, LLC PARK PLACE DEVELOPMENT, INC.		-122.5955	STM	GEN12C	25.0
111958	•		-122.5851	STM	GEN12C	25.1
113966 109786	RENAISSANCE DEVELOPMENT CORPORATION		-122.6321	STM	GEN12C	24.1 MC
118889	RIDGECREST DEVELOPMENT III, LLC ROSS ISLAND SAND & GRAVEL CO.		-122.8545 -122.6631	STM STM	GEN12C GEN12C	MC 15.2
120368	SEMLING CONSTRUCTION INC	45.8383	-122.802	STM	GEN12C GEN12C	MC
118952	SK COMPANY OF OREGON LLC		-122.6637	STM	GEN12C GEN12C	13.7
115743	SOUTH ROSE, LLC		-122.6303	STM	GEN12C GEN12C	26.0
119332	STACY AND WITBECK, INC.		-122.6605	STM	GEN12C GEN12C	12.1
120333	THE KROGER CO		-122.6874	STM	GEN12C GEN12C	16.1
120333	THE LANDING AT MACADAM, LLC		-122.6702	STM	GEN12C GEN12C	16.1
117303	TRAMMELL CROW NW DEVELPMENT, INC.		-122.6702	STM	GEN12C GEN12C	0.8
120332	TURNER CONSTRUCTION CO		-122.709	STM	GEN12C GEN12C	11.2
120332	ZRZ REALTY COMPANY		-122.6702	STM	GEN12C GEN12C	14.0
70725	PORTLAND, CITY OF		-122.0702	STM	GEN12C GEN12C	multiple
111942	NORTH MACADAM INVESTORS, LLC		-122.6689	STM	GEN12C GEN12C	14.2
111942	MARTHA'S GREEN, INC.		-122.6377	STM	GEN12C(AGENT)	19.4
117542	MINITELD ONDER, EVO.	75.74231	144.0311	D 1 W1	CLITIZE(AGEITI)	17.7

Table 4.5-1. Active NPDES Permitted Discharges to the Lower Willamette River, Outside the Study Area.^a

			ation		Permit	River
File No.	Facility	Latitude	Longitude	Category	Туре	Mile
62795	OAK LODGE SANITARY DISTRICT	45.4241	-122.6518	STM	GEN12C(AGENT)	19.8
112041	PARKER PROPERTIES, INC.	45.3754	-122.5997	STM	GEN12C(AGENT)	24.8
119162	RIVERSIDE AT FINLEY, LLC	45.3875	-122.6202	STM	GEN12C(AGENT)	23.3
109995	ARCHER-DANIELS-MIDLAND COMPANY	45.4848	-122.6438	STM	GEN12Z	15.0
118557	BLOUNT, INC.	45.4018	-122.622	STM	GEN12Z	22.7
111529	BOISE WHITE PAPER, L.L.C.	45.8508	-122.884	STM	GEN12Z	MC
110997	CALAWAY PROPERTIES, LLC	45.8505	-122.8195	STM	GEN12Z	MC
118130	CALEDONIAN ALLOYS	45.4532	-122.6439	STM	GEN12Z	18.3
113927	COLUMBIA COUNTY LAND DEVELOPMENT SERVICES	45.8426	-122.8161	STM	GEN12Z	MC
111283	COLUMBIA GRAIN, INC.	45.6358	-122.769	STM	GEN12Z	0.8
117429	COLUMBIA RIVER STONE INC	45.3753	-122.585	STM	GEN12Z	25.1
107211	DARIGOLD, INC.	45.503	-122.6597	STM	GEN12Z	13.8
106750	EAST SIDE PLATING, INC.	45.5134	-122.663	STM	GEN12Z	13.1
107331	ESCO CORPORATION	45.6261	-122.8074	STM	GEN12Z	2.9
64905	EVRAZ INC. NA	45.6256	-122.7794	STM	GEN12Z	2.5
112645	FIRST STUDENT, INC.	45.7775	-122.8775	STM	GEN12Z	MC
107733	HARDER MECHANICAL CONTRACTORS INC	45.451	-122.637	STM	GEN12Z	18.3
103594	ICTSI OREGON, INC.	45.6319	-122.748	STM	GEN12Z	MC
70613	KINDER MORGAN BULK TERMINALS, INC.	45.6346	-122.771	STM	GEN12Z	1.2
109196	MCCORMICK PILING & LUMBER CO.	45.834	-122.8249	STM	GEN12Z	MC
116824	METRO	45.3711	-122.5886	STM	GEN12Z	25.1
100515	MILES FIBERGLASS & COMPOSITES INC.	45.363	-122.6007	STM	GEN12Z	25.4
62795	OAK LODGE SANITARY DISTRICT	45.4241	-122.6518	STM	GEN12Z	19.8
111331	OLDCASTLE APG WEST, INC.	45.5402	-122.6798	STM	GEN12Z	11.0
113693	OREGON TRANSFER CO.	45.4527	-122.6373	STM	GEN12Z	18.3
112042	PACIFIC COAST FRUIT COMPANY	45.5237	-122.6643	STM	GEN12Z	12.3
115817	PCC STRUCTURALS, INC.	45.4494	-122.6345	STM	GEN12Z	18.3
117878	RECOLOGY OREGON MATERIAL RECOVERY, INC.	45.3741	-122.5856	STM	GEN12Z	25.1
101733	STANLEY WORKS, THE	45.3996	-122.6234	STM	GEN12Z	22.7
110122	TRI-CITY SERVICE DISTRICT	45.3759	-122.5892	STM	GEN12Z	25.1
102121	UNION PACIFIC RAILROAD COMPANY	45.5436	-122.6811	STM	GEN12Z	10.9
108162	UNION PACIFIC RAILROAD COMPANY	45.4867	-122.6442	STM	GEN12Z	14.9
107609	US POSTAL SERVICE	45.5294	-122.6789	STM	GEN12Z	11.5
21489	WEST LINN PAPER COMPANY	45.3564	-122.6154	STM	GEN12Z	26.0
112909	WILSON OIL, INC.	45.8469	-122.8215	STM	GEN12Z	MC
104861	ZIDELL MARINE CORPORATION	45.5002	-122.6705	STM	GEN12Z	14.0
100103	PACIFIC SAW AND KNIFE COMPANY - DBA	45.465	-122.6355	STM	GEN12Z	14.2
107631	EDWARDS, MARJORIE L	45.4624	-122.7029	IND	GEN15A	20.2

Definitions:

DOM - Domestic

GEN01 - Cooling water/heat pumps

 $\ensuremath{\mathsf{GEN02}}$ - Filter backwash

GEN10 - Industrial wastewater - WPCF sand & gravel mining

GEN12A - Stormwater from gravel mining

GEN12C - Stormwater - NPDES construction more than 1 acre disturbed ground

GEN12C(AGENT) - Construction that disturbs more than one acre, issued by agent

GEN12Z - Stormwater - NPDES specific SIC codes

GEN15A - Petroleum hydrocarbon cleanups

IND - Industrial

MC - Multnomah Channel

NPDES-DOM-A1 - Sewage - 50 MGD or more

NPDES-DOM-A2 - Sewage - 25 MGD or more, but less than 50 MGD

NPDES-DOM-A3 - Sewage - 10 MGD or more but less than 25 MGD

NPDES-DOM-Ba - Sewage - 5 MGD or more but less than 10 MGD

NPDES-DOM-Da - Sewage - less than 1 MGD

NPDES-DOM-MS4-1 - Municipal Stormwater Permit

NPDES-IW-B01 - Pulp, paper, or other fiber pulping industry

NPDES-IW-B08 - Primary smelting and/or refining, ferrous and non-ferrous metals not elsewhere classified

NPDES-IW-B15 - Facilities not elsewhere classified which dispose of process wastewater (includes remediated groundwater)

NPDES-IW-B16 - Facilities not elsewhere classified which dispose of non-process wastewaters

STM - Stormwater

^aDEQ Wastewater permits database accessed February 2011 (http://www.deq.state.or.us/wq/sisdata/facilitycriteria.asp)

G	D		(E) (C) (C)	D 4/5 4	Sanitary Waste	NT 1 1 4 4
Source	Receiving Stream	RM	Type of Waste	Present Treatment	Disposal	Needed Action
Weyerhaeuser Company	Coast Fork	187	Glue wastes and log	Discharge to log pond	Septic tank, drainfield	(4) (5)
Lumber and Plywood			pond overflow			
Bohemia Lumber Co.	Row River (Culp Creek)	187	Glue wastes and log pond overflow	Waste through 400-yard settling ditch	Septic tank, drainfield	(4) (5)
Hines Lumbar Co. (Westfir)	N. Fork of Middle Fork	187	Glue wastes and log	None	Septic tank, drainfield	(4) (5)
	Willamette		pond (in river)		•	
Springfield Slaughter Plant	Willamette	184	Slaughterhouse wastes	Screening and holding pond		Study by OSSA to determine adequacy of treatment.
Wildish Sand and Gravel Co.	Willamette	184	Gravel removal and process wash water	10-acre holding pond for silt removal and gravel removal operations confined to areas inside berms (provides adequate interim control).	Septic tank, drainfield	Permanent waste control facilities for all waste waters by June 1967.
Natron Plywood	Willamette	184	Glue wastes	50' x 50' lagoon with discharge to slough 1.5 miles from main Willamette	Septic tank, drainfield	(5)
Georgia Pacific Co. (Springfield)	Willamette	184	Glue wastes and log pond overflow	Glue wastes to city	City	(4) (5)
Weyerhaeuser Corp. (Springfield)	McKenzie	172	Kraft mill wastes and log pond discharge	Settling ponds, aerated lagoon land disposal, aerated log pond	, City	Continued surveillance
Georgia Pacific Corp. (Junction City)	Willamette	164	Glue wastes	Settling channels to Flat Creek	Septic tank, drainfield	(5)
Barker-Willamette Lumber Co.	Amazon Creek	146	Glue wastes	Disposal field	Septic tank, drainfield	(5)
International Paper Company	Long Tom	146	Glue wastes and log pond overflow	Settling tank to Noel Creek	Septic tank, drainfield	(4) (5)
Evans Products Co. (Corvallis)	Willamette	132	Hardboard plant wastes batter separator plant wastes	Primary settling pond	Septic tank, drainfield	Secondary treatment or equivalent control of all waste discharges by May 1968 (engineering study underway) (8)

<u> </u>				Opriver from Fortiand Harbor (Sanitary Waste	
Source	Receiving Stream	RM	Type of Waste	Present Treatment	Disposal	Needed Action
Brown and Company (Corvallis)	Willamette	132	Process water from repulping of newsprint for production of bituminous pipe	None	Septic tank, drainfield	Secondary treatment or equivalent control of all waste discharges by May 1968 (plans underway for development of completely closed system)
Vancouver Plywood Corp. (Albany)	Calapooya	120	Glue wastes	Waste washed to storm drain	City	(5)
Steen Bros. Meat Co.	Calapooya	120	Slaughterhouse wastes	Septic tank and drainfield	Septic tank, drainfield	Study by OSSA to determine adequacy of present facilities.
Oregon Metallurgical Co. (Albany)	Willamette	119	Zirconium processing	pH adjustment, discharge to Oak Cr.	Septic tank, drainfield	OSSA study to determine needs (have retained engineering consultant to design treatment and control facilities for proposed expansion). (8)
Wah Chang Corp. (Albany)	Willamette	119	Process water from production of rare earth metals	pH adjustment and chemical sludge removal	Septic tank, drainfield	Program approved by OSSA for improved control of toxic waste discharges and chemical sludge handling by October 1967 (engineering plans underway and equipment on order) (8)
Western Kraft Corp. (Albany)	Willamette	117	Kraft mill wastes	Primary sedimentation	Septic tank, drainfield	Secondary treatment or equivalent control of total mill wastes by May 1968.
Crown Zellerbach Corp. (Lebanon)	South Santiam	109	Sulfite mill wastes and linerboard production wastes	Primary sedimentation. Evaporation of SWL and burning or by-production recovery	City	Secondary treatment or equivalent control of total mill wastes by May 1968.
U.S. Plywood Corp. (Lebanon)	South Santiam	109	Glue wastes and log pond overflow	None	Septic tank, chlorination to log pond	(4) (5)

Source	Receiving Stream	RM	Type of Waste	Present Treatment	Sanitary Waste Disposal	Needed Action
Western Veneer Plywood (Lebanon)	South Santiam	109	Glue wastes	Settling tank to log pond		(5)
Jefferson Woolen Mill	Morgan Creek	109	Dye and wool fibers	None	Septic tank, drainfield	Secondary treatment or equivalent control by May 1968.
Willamette Valley Lumber (Dallas)	Ask Creek to Rickreall Cr.	88	Glue wastes and log pond overflow	Glue wastes to city sewer	City	(4) (5)
Boise Cascade Corp. (Salem)		85	Sulfite mill wastes	Storage of all SWL during summer months	City	Primary settling facilities under construction. Chemical recovery and secondary treatment or equivalent control by July 1972.
U.S. Plywood (Willamina)	South Yamhill	55	Glue wastes	None	Septic tank, drainfield	(5)
Les' Poultry (McMinnville)	North Yamhill	55	Poultry slaughterhouse wastes	Septic tank and inadequate land disposal	Septic tank, drainfield	Connection to city sewer
Publishers Paper Co. (Newberg)	Willamette	50	Sulfite mill wastes	Primary sedimentation year- round and storage of SWL during low flow months (June 1 - November 1)	City	Chemical recovery and secondary treatment or equivalent control of total mill wastes by July 1972.
Butler Farms (formerly Phillips Bros.)	Pudding	36	Silage wastes	Collection ponds and irrigation	Septic tank, drainfield	Continued surveillance
West Food Co. (Salem)	Pudding	36	Mushroom growing and processing water	Lagoon and land irrigation	Septic tank, drainfield	Connect to city sewer (engineering study underway)
Birds Eye Div., General Foods (Woodburn)	Pudding	36	Fruit and vegetable processing	Screens, pre-aeration, oxidation lagoons, land disposal	City	Continued surveillance
Forest Fiber Products	Scoggins Cr.	29	Hardboard mill wastes	Primary settling, land disposal during low flow months	Septic tank, drainfield	OSSA study to determine adequacy of existing facilities during summer 1967.
Arrow Meat Co. (Cornelius)	Council Creek	29	Slaughterhouse wastes	Screening, grease removal, blood removal, land disposal low flow	Septic tank, drainfield	Continued surveillance

				Opriver from Fortiand Transor (C	Sanitary Waste	
Source	Receiving Stream	RM	Type of Waste	Present Treatment	Disposal	Needed Action
Tektronix (Beaverton)	Beaverton Cr.	29	Metal plating	pH adjustment, chemical treatment, settling and oxidation lagoons	Oxidation ditch	Continued surveillance
Kummer Meat Co.	Dairy Creek	29	Slaughterhouse wastes	Screening, grease removal, blood removal, lagooning (non over-flow in low flow)	Septic tank, drainfield	Continued surveillance
Permapost Products Company	Rock Creek	29	Phenols and osmose salts	Baffled oil separation tank, lagoon for holding osmose salts	Septic tank, drainfield	Improved in-plant and process control and continued surveillance
Hervin Dog Food Co.	Tualatin R.	29	Processing of animals for pet food	Activated sludge plant for industrial wastes	Septic tank, drainfield	Improved plant operation and continued surveillance. (8)
Alpenrose Dairy	Fanno Creek	29	Dairy barn wastes, milk and cheese processing wastes	Extended aeration and aerated lagoon irrigation during summer months	Septic tank, disinfection and to IW system	Connect to city sewer.
The Dickinson Co.	Fanno Creek	29	Wastes from processing jams and jellies	Settling pond	Septic tank, drainfield	Connect to city sewer.
Crown Zellerbach Corp. (West Linn)	Willamette	26	Sulfite mill wastes	Primary sedimentation year- round and SWL stored in lagoons during low flow months	City	Reduce load equal to chemical recovery and secondary treatment or equivalent control of total mill wastes by June 1968.
Publishers Paper Co. (Oregon City)	Willamette	26	Sulfite mill wastes	SWL barged to Columbia River during low flow (primary sedimentation facilities under construction)	City	Reduce load equal to chemical recovery and secondary treatment or equivalent control of total mill wastes by June 1968; no barging to Columbia after 1969.
Logan Egg Farm	Foster Creek (Clackamas)	25	Chicken manure and egg washing	Lagoon, land disposal by sprinkle irrigation	Septic tank, drainfield	Continued surveillance
Bigger and Better Poultry	Kellogg Creek	18	Chicken processing waste	Settling and spray irrigation	Septic tank, drainfield	Continued surveillance (contemplating re-location)

				Sanitary Waste	
Source	Receiving Stream	RM Type of Waste	Present Treatment	Disposal	Needed Action

Notes:

Action for Municipalities of the Willamette Basin

- (1) Injunctive action filed in Polk County Circuit Court, 12/19/66.
- (2) Seven private properties connected to private sewer. Program under way to abate private discharges. No progress by city for providing municipal sewerage system.
- (3) A portion of the area (industrial and domestic) is connected to area storm sewers. Program under way to collect and pump area wastes to Portland sewage treatment plant. General Treatment, Studies, or Other Action
- (4) Study requested by OSSA of FWPCA Water Laboratory, Corvallis, Oregon, to determine the effects of log storage and handling practices and to recommend possible alternate procedures.
- (5) Study in progress by FWPCA Water Laboratory, Corvallis to recommend methods of treatment or disposal of glue wastes.
- (6) Secondary treatment of sewage wastes by July 1972.
- (7) Application has been filed for 702 planning funds from HUD. Engineering plans under way for small segment of study area.
- (8) Monthly reports needed.

Table 4.5-3. Summary of Willamette River Sub-basin TMDLs.

]	Parameter	
			Dissolved				
Sub-basin	Approval Date	Temperature	Oxygen	Bacteria	pН	Toxics	Other
Willamette Basin	September 29, 2006	X		X		Mercury	
Lower Willamette Subbasin		X		X		Mercury	
						DDT and dieldrin ^a	
Clackamas Subbasin		X		X		Mercury	
Middle Willamette Subbasin		X		X		Mercury	
North Santiam Subbasin		X		X		Mercury	
South Santiam Subbasin		X		X		Mercury	
Upper Willamette Subbasin		X	X^{b}	X		Mercury	Turbidity ^c
McKenzie Subbasin		X		X		Mercury	
Middle Fork Subbasin		X		X		Mercury	
Coast Fork Subbasin		X		X		Mercury	Ammonia & nutrients
							(phosphorus) d
Columbia Slough Watershed	November 25, 1998	X	X	X	X	DDE/DDT, PCBs, lead,	Chlorophyll a ,
						dieldrin, and 2,3,7,8-TCDD	phosphorus
Mollala-Pudding Subbasin	December 31, 2008	X		X		Iron, chlordane, dieldrin, and DDT	Nitrate
Pudding River	December 18, 1993		X			and DD1	
Tualatin Subbasin	August 7, 2001	X	X	X			Ammonia, phosphorus,
Tuaiaun Subbasin	August 1, 2001	Λ	Λ	Λ			volatile solids
Yamhill Subbasin	March 16, 1992						Phosphorus

 $\textbf{Source:} \ \ Oregon\ Department\ of\ Environmental\ Quality\ (www.deq.state.or.us/wq/tmdls/tmdls.htm);\ accessed\ in\ February\ 2011.$

Notes

TMDL - total maximum daily load

 $^{^{\}rm a}$ TMDL for DDT and dieldrin established in 1998 for Johnson Creek.

^b TMDL developed for the Amazon Diversion Channel and Coyote Creek.

 $^{^{\}rm c}$ TMDL developed for the Fern Ridge Reservoir.

 $^{^{\}rm d}$ TMDL developed in 1995 for the Coast Fork Willamette.

Table 5.1-1 Summary of Detected COIs or Chemical Classes by In-river Media

	Surface	Subsurface	Sediment	Surface		
Analytes	Sediment	Sediment	Traps	Water	X X X X X X X X X X X X X	Biota
Butyltins						
Butyltin ion	X	X	X	X	X	X
Dibutyltin dichloride	X					
Dibutyltin ion	X	X	X	X	X	X
Monobutyltin trichloride	X					
Tetrabutyltin	X	X				X
Tributyltin	X	X				
Tributyltin chloride	X					
Tributyltin ion	X	X	X	X		X
PCDD/Fs						
Heptachlorodibenzofurans	X	X	X	X	X	X
Heptachlorodibenzo-p-dioxins	X	X	X	X	X	X
Hexachlorodibenzofurans	X	X	X	X	X	X
Hexachlorodibenzo-p-dioxins	X	X	X	X	X	X
Octachlorodibenzofuran	X	X	X	X		X
Octachlorodibenzo-p-dioxin	X	X	X	X		X
Pentachlorodibenzofurans	X	X	X	X	X	X
Pentachlorodibenzo-p-dioxins	X	X	X	X		X
Tetrachlorodibenzofurans	X	X	X	X	X	X
Tetrachlorodibenzo-p-dioxins	X	X	X	X	X	X
Herbicides						
2,4,5-T	X					
2,4-D	X	X	X	X	X	
2,4-DB	X	X	X	X		
Dalapon		X		X	X	
Dicamba		X				
Dichloroprop	X				X	
MCPA	X	X				
MCPP	X	X		X		
Silvex	X	X			X	
Inorganics						
Cyanide	X	X		X	X	
Perchlorate	X			X	X	
Metals						
Aluminum	X	X	X	X	X	X
Antimony	X	X	X	X		X
Arsenic	X	X	X	X		X
Barium	X	X				X
Beryllium	X	X				
Cadmium	X	X	X	X		X
Chromium	X	X	X	X		X
Cobalt	X	X				X
Copper	X	X	X	X		X
Iron	X	X		X		X
Lead	X	X	X	X		X
Magnesium	X	X		X		X
Manganese	X	X		X	X	X

	Surface	Subsurface	Sediment	Surface			
Analytes	Sediment	Sediment	Traps	Water	TZW	Biota	
Mercury	X	X	X	X	X	X	
Nickel	X	X	X	X	X	X	
Selenium	X	X	X	X	X	X	
Silver	X	X	X	X	X	X	
Thallium	X	X		X	X	X	
Tin	X	X					
Titanium	X	X		X			
Vanadium	X	X			X		
Zinc	X	X	X	X	X	X	
PAHs							
Acenaphthene	X	X	X	X	X	X	
Acenaphthylene	X	X	X	X	X	X	
Anthracene	X	X	X	X	X	X	
Benzo(a)anthracene	X	X	X	X	X	X	
Benzo(a)pyrene	X	X	X	X	X	X	
Benzo(b)fluoranthene	X	X	X	X	X	X	
Benzo(b+k)fluoranthene	X	X	X				
Benzo(e)pyrene	X	X	X			X	
Benzo(g,h,i)perylene	X	X	X	X	X	X	
Benzo(j+k)fluoranthene	X			X		X	
Benzo(k)fluoranthene	X	X	X	X	X	X	
Benzofluoranthenes	X		7.				
Crysene	X	X	X	X	X	X	
Dibenzo(a,h)anthracene	X	X	X	X	X	X	
Dibenzothiophene	X	X	X			X	
2,6-Dimethylnaphthalene	X	X	X				
Fluoranthene	X	X	X	X	X	X	
Fluorene	X	X	X	X	X	X	
Indeno(1,2,3-cd)pyrene	X	X	X	X	X	X	
2-Methylnapthalene	X	X	X	X	X	X	
1-Methylphenanthrene	X	X	X	71	71	71	
Naphthalene	X	X	X	X	X	X	
Perylene	X	X	X	71	Λ	X	
Phenanthrene	X	X	X	X	X	X	
Pyrene	X	X	X	X	X	X	
Retene	Λ	X	Λ	Λ	Λ	Λ	
1,6,7-Trimethylnaphthalene	X	X	X				
PBDEs	Λ	Λ	Λ				
Congeners		X				X	
PCBs		Λ				Λ	
Aroclor 1016	X						
Aroclor 1016 Aroclor 1221	X X		X				
Aroclor 1221 Aroclor 1232	X X	V	Λ			X	
		X	V			Λ	
Arcelor 1242	X X	X	X	v		X	
Arcelor 1248		X	X	X		Λ	
Aroclor 1254	X	X	X	X		T 7	
Aroclor 1260	X	X	X	X		X	

Table 5.1-1 Summary of Detected COIs or Chemical Classes by In-river Media

	Surface	Subsurface	Sediment	Surface		
nalytes	Sediment	Sediment	Traps	Water	TZW	Biota
Aroclor 1262		X				
Aroclor 1268	X	X				
Congeners	X	X	X	X		X
esticides						
Aldrin	X	X	X	X		X
Chlordanes	X	X	X	X		X
Dieldrin	X	X	X	X		X
DDx (DDD, DDE, DDT)	X	X	X	X	X	X
Endosulfans	X	X	X	X		X
Endrin	X	X	X	X		X
Endrin aldehyde	X	X	X	X		X
Endrin ketone	X	X		X		X
Heptachlor	X	X	X	X		X
Heptachlor epoxide	X	X	X	X		X
alpha-Hexachlorocyclohexane	X	X		X		X
beta-Hexachlorocyclohexane	X	X	X	X		X
delta-Hexachlorocyclohexane	X	X	X	X		X
gamma-Hexachlorocyclohexane (Lindane)	X	X	X	X		X
Methoxyclor	X	X	X	X		X
Mirex	X	X	X			X
Nonachlors	X	X	X	X		X
Oxychlordane	X	X	X	X		X
Toxaphene	X	X				
etroleum						
Fuel oil No.2	X					
Heavy oil	X					
Hydrocarbon, aliphatics	X	X				
Hydrocarbon, aromatics	X	X				
Hydrocarbons, diesel range	X	X	X		X	
Hydrocarbons, gasoline range	X	X	X		X	
Hydrocarbons, heavy oil range	X	X				
Hydrocarbons, residual range	X	X	X		X	
Lube oil	X	X				
Motor oil	X	X				
Pencil pitch	X	X				
Phytane	X					
Pristane	X					
TPH	X	X	X		X	
henols						
4-Chloro-3-methylphenol	X	X		X		X
2-Chlorophenol	X	X				
2,4-Dichlorophenol	X	X				
2,4-Dimethylphenol	X	X			X	
4,6-Dinitro-2-methylphenol						
2,4-Dinitrophenol		X				
2-Methylphenol	X	X	X		X	X
4-Methylphenol	X	X	X			X

Table 5.1-1 Summary of Detected COIs or Chemical Classes by In-river Media

	Surface	Subsurface	Sediment	Surface		
Analytes	Sediment	Sediment	Traps	Water	TZW	Biota
2-Nitrophenol						
4-Nitrophenol		X				X
Pentachlorophenol	X	X	X			X
Phenol	X	X	X	X	X	X
2,3,4,5-Tetrachlorophenol	X	X	X			
2,3,4,6-Tetrachlorophenol		X				
2,3,5,6-Tetrachlorophenol	X	X	X			
2,4,5-Trichlorophenol	X	X				
2,4,6-Trichlorophenol	X	X				
Phthalates						
Bis(2-ethylhexyl) phthalate	X	X	X	X	X	X
Butylbenzyl phthalate	X	X	X	X		X
Dibutyl phthalate	X	X	X	X	X	X
Diethyl phthalate	X	X	X	X		X
Dimethyl phthalate	X	X	X	X	X	X
Di-n-oxtyl phthalate	X	X	X	X		X
SVOCs						
Aniline	X	X	X	X		
Azobenzene		X				
Benzoic Acid	X	X	X	X		X
Benzyl Alcohol	X	X	X			X
Bis(2-chloro-1-methylethyl) ether		X				
Bis(2-chloroethoxy) methane	X					X
Bis(2-chloroethyl) ether	X					
Bis(2-chloroisopropyl) ether	X	X				
4-Bromophenyl phenyl ether						
Carbazole	X	X	X	X	X	
4-Chloroaniline	X	X		X		
2-Chloronaphthalene	X	X				
4-Chlorophenyl phenyl ether						
Dibenzofuran	X	X	X	X	X	X
1,2-Dichlorobenzene	X	X			X	
1,3-Dichlorobenzene	X	X			X	
1,4-Dichlorobenzene	X	X	X	X	X	
3,3'-Dichlorobenzidine	X	X				
Diphenyl	X	X	X			
1,2-Diphenylhydrazine						
2,4-Dinitrotoluene		X				
2,6-Dinitrotoluene						
Hexachlorobenzene	X	X	X	X		X
Hexachlorobutadiene	X	X	X	X		X
Hexachlorocyclopentadiene						
Hexachloroethane	X	X				X
Isophorone		X	X	X		X
2-Nitroaniline						
3-Nitroaniline	X	X				
4-Nitroaniline	X	X				

Table 5.1-1 Summary of Detected COIs or Chemical Classes by In-river Media

	Surface	Subsurface	Sediment	Surface		
Analytes	Sediment	Sediment	Traps	Water	TZW	Biota
Nitrobenzene						X
N-Nitrosodimethylamine	X					
N-Nitrosodiphyenylamine	X	X				X
N-Nitrosodipropylamine	X	X				
1,2,4-Trichlorobenzene	X	X	X		X	
VOCs						
Acetone	X	X	X		X	
Acrolein		X			X	
Acrylonitrile		X				
Benzene	X	X		X	X	
Bromochloromethane					X	
BTEX	X	X	X	X	X	
Butylbenzenes	X	X		X	X	
Carbon disulfide	X	X			X	
Chlorobenzene	X	X	X		X	
Chloroethane	X	X			X	
Chloroform	X	X			X	
Chloromethane		X			X	
Dichlorodifluoromethane	X					
1,1-Dichloroethane	X	X			X	
1,2-Dichloroethane	X	X			X	
1,1-Dichloroethene		X		X	X	
Ethybenzene	X	X	X	X	X	
Isopropylbenzene	X	X			X	
Methylcyclohexane		X				
Methyl n-butyl ketone	X	X			X	
Methyl tert-butyl ether	X	X			X	
Methylene chloride	X	X			X	
Methylene ketone	X	X	X		X	
Methyl iodide		X				
Methy isobutyl ketone	X	X			X	
n-Propylbenzene	X	X			X	
Styrene	X	X			X	
Tetrachloroethenes	X	X			X	
Toluene	X	X	X	X	X	
Trichloroethenes	X	X		X	X	
1,2,3-Trichloropropane	X	X			X	
1,2,4-Trimethylbenzene	X	X		X	X	
1,3,5-Trimethylbenzene		X		X	X	
Vinyl chloride	X	X		X	X	
Xylenes	X	X	X	X	X	

Notes:

BTEX - benzene, ethylene, toluene, xylenes

COI - contaminant of interest

PAH - polycyclic aromatic hydrocarbon

PBDE - polybrominated diphenyl ether

Portland Harbor RI/FS

Final Remedial Investigation Report February 8, 2016

Table 5.1-1 Summary of Detected COIs or Chemical Classes by In-river Media

	Surface	Subsurface	Sediment	Surface		
Analytes	Sediment	Sediment	Traps	Water	TZW	Biota

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

SVOC - semivolatile organic compound

TCDD - tetrachlorodibenzodioxin

TPH - total petroleum hydrocarbon

TZW - transition zone water

VOC - volatile organic compound

Table 5.1-2 Screening of COIs by In-r	Ivel Media for Discussion			37 11			D.D.	<u> </u>	G 1		G 2	
D. () A. ()	Surface	Subsurface	Sediment	Surface		D' 4	BHHRA SCREEN ^a	BERA SCREEN ^b	Screening		Screening	
Detected Analytes	Sediment	Sediment	Traps	Water	TZW	Biota	SCREEN	SCREEN	Code	Contaminant	Code	Indicator Contaminant
Butyltins		N/	37	37	37	37		T	1			
Butyltin ion	X	X	X	X	X	X			1			
Dibutyltin dichloride	X	N/	37	37	37	37			1			
Dibutyltin ion	X	X	X	X	X	X			1			
Monobutyltin trichloride	X	***	37					X ^c	3, 7			
Tetrabutyltin	X	X	X					77	1			
Tributyltin	X	X						X	3, 4			
Tributyltin chloride	X	X 7	37	37	37	37		37	1	v		W
Tributyltin ion	X	X	X	X	X	X		X	<u> </u>	X	<u> </u>	X
PCDD/Fs	***	**	**	**	**	**				T **	ı	**
Total PCDD/Fs	X	X	X	X	X	X	X^d	X^d	6	X		X
TCDD TEQ	X	X	X	X	X	X	X	X	6	X		X
Herbicides												
2,4,5-T	X								1			
2,4-D	X	X	X	X	X				1			
2,4-DB	X	X	X	X					1			
Dalapon	X	X		X	X				1			
Dicamba		X							1			
Dichloroprop	X				X				1			
MCPA	X	X							1			
MCPP	X	X		X			X		3, 7			
Silvex	X	X	X	X	X				1			
Inorganics												
Cyanide	X	X			X			X	3			
Perchlorate	X			X	X			X	3			
Metals												
Aluminum	X	X	X		X	X			1			
Antimony	X	X	X	X	X	X	X	X	7			
Arsenic	X	X	X	X	X	X	X	X		X		X
Barium	X	X		X	X			X	3			
Beryllium	X	X		X	X			X	7			
Cadmium	X	X	X	X	X	X		X		X	5, 7	
Chromium	X	X	X	X	X	X	X	X		X		X
Cobalt	X	X		X	X	X		X	7			
Copper	X	X	X	X	X	X		X		X		X
Iron	X	X		X	X	X		X	3			
Lead	X	X	X	X	X	X	X	X		X	4	
Magnesium	X	X		X	X	X		X	3, 7			
Manganese	X	X		X	X	X		X	7			
Mercury	X	X	X	X	X	X	X	X		X	7	
Nickel	X	X	X	X	X	X		X		X	7	
Selenium	X	X	X	X	X	X			1			
Silver	X	X	X	X	X	X			1			
Thallium	X	X		X	X	X			1			
Tin	X	X							1			

		De	etected In-rive	r Media			BR	A	Screen 1		Screen 2	
Detected Analytes	Surface Sediment	Subsurface Sediment	Sediment Traps	Surface Water	TZW	Biota	BHHRA SCREEN ^a	BERA SCREEN ^b	Screening Code	Contaminant	Screening Code	Indicator Contaminants
Titanium	X	X							1			
Vanadium	X	X		X	X			X	7			
Zinc	X	X	X	X	X	X		X		X		X
PAHs												
Total PAHs	X	X	X	X	X	X		X		X	6	X
Total cPAHs	X	X	X	X	X	X	X			X	4, 6	
Total LPAHs	X	X	X	X	X	X		X		X	4,6	
Total HPAHs	X	X	X	X	X	X		X		X	4, 6	
Benzo(a)pyrene	X	X	X	X	X	X	X	X		X	6	
Naphthalene	X	X	X	X	X	X				X	6	
Phenanthrene	X	X	X	X	X	X		X		X	6	
PBDEs												
Congeners						X	X		3			
PCBs												
Total PCBs (Congeners + Aroclors)	X	X	X	X	X	X	X	X		X		X
PCB TEQ	X	X	X	X	X	X	X	X		X	4	
Pesticides				•		•		•				
Aldrin	X	X	X	X		X	X	I	ı	X		X
Total Chlordanes	X	X	X	X		X	X	X		X		X
Dieldrin	X	X	X	X		X	X	X		X		X
DDx (DDD, DDE, DDT)	X	X	X	X	X	X	X	X		X	6	X
Endosulfans	X	X	X	X		X			1		Ü	
Endrin	X	X	X	X		X			1			
Endrin aldehyde	X	X	X	X		X			1			
Endrin ketone	X	X		X		X			1			
Heptachlor	X	X	X	X		X			1			
Heptachlor epoxide	X	X	X	X		X		X	2, 7			
alpha-Hexachlorocyclohexane	X	X	71	X		X		71	1			
beta-Hexachlorocyclohexane	X	X	X	X		X			1			
delta-Hexachlorocyclohexane	X	X	X	X		X			1			
gamma-Hexachlorocyclohexane (Lindane)	X	X	X	X		X		X	1	X	5	
Methoxyclor	X	X	X	X		X		71	1	71	3	
Mirex	X	X	X	71		71			1			
Nonachlors	X	X	X			X		<u> </u>	1			
Oxychlordane	X	X	X			X			1			
Toxaphene	X	X	Λ	 		1			1			
Petroleum	Λ	Λ							1			
Fuel oil No.2	X					I		1	1			
Heavy oil	X							 	1			
Hydrocarbon, aliphatics	X	v						v	3			
	X	X				-		X X	3			
Hydrocarbon, aromatics		X	T/		W				3	v	2	
Hydrocarbons, diesel range	X	X	X	 	X			X	4 5 7	X	3	
Hydrocarbons, gasoline range	X	X	X		X			X	4, 5, 7			
Hydrocarbons, heavy oil range	X	X				1			1			

		De	etected In-rive	r Media			BR	A	Screen 1		Screen 2	
Detected Analytes	Surface Sediment	Subsurface Sediment	Sediment Traps	Surface Water	TZW	Biota	BHHRA SCREEN ^a	BERA SCREEN ^b	Screening Code	Contaminant	Screening Code	Indicator Contaminant
Lube oil	X	X							1			
Motor oil	X	X							1			
Pencil pitch	X	X							1			
Phytane	X								1			
Pristane	X								1			
TPH	X	X	X							X	6	
Phenols												
4-Chloro-3-methylphenol	X	X		X					1			
2-Chlorophenol	X	X							1			
2,4-Dichlorophenol	X	X							1			
2,4-Dimethylphenol	X	X							1			
4,6-Dinitro-2-methylphenol	X								1			
2,4-Dinitrophenol	X	X							1			
2-Methylphenol	X	X	X			X			1			
4-Methylphenol	X	X	X			X			1			
2-Nitrophenol	X								1			
4-Nitrophenol	X	X				X			1			
Pentachlorophenol	X	X	X		X	X	X			X	7	
Phenol	X	X	X	X		X			1			
2,3,4,5-Tetrachlorophenol	X	X	X						1			
2,3,4,6-Tetrachlorophenol	X								1			
2,3,5,6-Tetrachlorophenol	X	X	X						1			
2,4,5-Trichlorophenol	X	X							1			
2,4,6-Trichlorophenol	X	X							1			
Phthalates												
Bis(2-ethylhexyl) phthalate	X	X	X	X		X	X	X	I	X	Ι	X
Butylbenzyl phthalate	X	X	X	X		X				X ^c	1	
Dibutyl phthalate	X	X	X	X		X			1	7.		
Diethyl phthalate	X	X	X	X		Λ			1			
Dimethyl phthalate	X	X	X	X					1			
Di-n-oxtyl phthalate	X	X	Λ	X					1			
SVOCs	Λ	Λ		Λ			<u> </u>	<u> </u>	1			
Aniline	X	X	X	X		X	Г	T	1			
Azobenzene	X	X	Λ	Λ		Λ			1			
Benzoic Acid	X	X	X	X		X		+	1			
Benzyl Alcohol	X	X	X	Λ		X			1			
Bis(2-chloro-1-methylethyl) ether	X	Λ	Λ	 				1	1			
Bis(2-chloroethoxy) methane	X		 			X		 	1			
•	X		 			Λ	}	 	1			
Bis(2-chloroethyl) ether		v							1			
Bis(2-chloroisopropyl) ether	X	X							1			
4-Bromophenyl phenyl ether	X	N/	v	V					1			
Carbazole	X	X	X	X				 	1			
4-Chloroaniline 2-Chloronaphthalene	X X	X X	1	X				1	1			
	1 Y	ı X		ī		1			• I			

		De	etected In-rive	r Media			BR	A	Screen 1		Screen 2	
Detected Analytes	Surface Sediment	Subsurface Sediment	Sediment Traps	Surface Water	TZW	Biota	BHHRA SCREEN ^a	BERA SCREEN ^b	Screening Code	Contaminant	Screening Code	Indicator Contaminants
Dibenzofuran	X	X	X	X	X	X		X	7			
1,2-Dichlorobenzene	X	X			X			X	3			
1,3-Dichlorobenzene	X	X			X				1			
1,4-Dichlorobenzene	X	X	X	X	X			X	3			
3,3'-Dichlorobenzidine	X	X							1			
Diphenyl	X	X							1			
1,2-Diphenylhydrazine	X								1			
2,4-Dinitrotoluene	X								1			
2,6-Dinitrotoluene	X								1			
Hexachlorobenzene	X	X	X	X		X	X			X	2	
Hexachlorobutadiene	X	X	X	X		X			1			
Hexachlorocyclopentadiene	X								1			
Hexachloroethane	X	X	X						1			
Isophorone	X	X	X	X		X			1			
2-Nitroaniline	X								1			
3-Nitroaniline	X								1			
4-Nitroaniline	X	X							1			
Nitrobenzene	X					X			1			
N-Nitrosodimethylamine	X								1			
N-Nitrosodiphyenylamine	X	X							1			
N-Nitrosodipropylamine	X								1			
1,2,4-Trichlorobenzene	X	X	X						1			
VOCs												
Acetone	X	X	X		X				1			
Acrolein		X			X				3			
Acrylonitrile	X	X							1			
Benzene	X	X		X	X			X	3			
Bromochloromethane	X	X	X		X				1			
BTEX	X	X	X						1			
Butylbenzenes	X			X	X				1			
Carbon disulfide	X	X			X			X	3			
Chlorobenzene	X	X	X		X			X	3			
Chloroethane	X	X			X			X	3			
Chloroform	X	X			X			X	3			
Chloromethane		X			X				1			
Dichlorodifluoromethane	X								1			
1,1-Dichloroethene	X	X		X	X			X	3			
cis-1,2-Dichloroethene	X	X		X	X			X	3			
1,1-Dichloroethene	X	X		X	X				1			
Ethybenzene	X	X	X	X	X			X	3			
Isopropylbenzene	X	X			X			X	3			
Methylcyclohexane		X							1			
Methyl n-butyl ketone	X	X							1			
Methyl tert-butyl ether	X	X							1			
Methylene chloride	X	X			X				1			

Table 5.1-2 Screening of COIs by In-river Media for Discussion and Presentation in the RI

	Detected In-river Media										Screen 2	
Detected Analytes	Surface Sediment	Subsurface Sediment	Sediment Traps	Surface Water	TZW	Biota	BHHRA SCREEN ^a	BERA SCREEN ^b	Screening Code	Contaminant	Screening Code	Indicator Contaminants
Methylene ketone	X	X	X						1			
Methyl iodide		X	X						1			
Methy isobutyl ketone	X	X			X				1			
n-Propylbenzene	X	X			X				1			
Styrene	X	X			X				1			
Tetrachloroethenes	X	X							1			
Toluene	X	X	X	X	X			X	3			
Trichloroethenes	X	X		X	X			X	3			
1,2,3-Trichloropropane	X	X							1			
1,2,4-Trimethylbenzene	X	X		X	X			X	3			
1,3,5-Trimethylbenzene		X		X	X			X	3			
Vinyl chloride	X	X		X	X				1			
Total xylenes	X	X	X	X	X			X	3			

BERA - Baseline Ecological Risk Assessment

BTEX - benzene, ethylene, toluene, xylenes

BHHRA - Baseline Human Health Risk Assessment

COI - contaminant of interest

PAH - polycyclic aromatic hydrocarbon

PBDE - polybrominated diphenyl ether

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RI - remedial investigation

SVOC - semivolatile organic compound

TCDD - tetrachlorodibenzodioxin

TPH - total petroleum hydrocarbon

TZW - transition zone water

VOC - volatile organic compound

Screening Codes:

- 1 COI not a BHHRA or BERA COPC
- 2 COI frequency of detection <20%
- 3 COI not detected in multiple media
- 4 COI represented by other COI (collocation)
- 5 COI is not a widespread source
- 6 COI represents the combining of individual contaminants into a group.
- 7 COI has low exceedance or contribution of risk (HQ<10; 10⁻⁶ risk)

^a See Appendix F

^b See Appendix G

^c This COI is included as a contaminant because it originally screened in from the Round 2 screening BERA, but does not in the Final BERA.

^d Total PCDD/Fs screened in based on TCDD TEQ risk evaluations.

Table 5.1-3 Basis for Screening of COIs Due to Collocation.

Analyte	Basis for Screening	\mathbf{r}^2
Butyltins		
Tributyltin	Tributyltin is represented by tributyltin ion.	NA
Metals		
Lead	Lead is collocated with zinc.	0.72
PAHs		
Total cPAHs	Total cPAHs are collocated with total PAHs.	0.95
Total LPAHs	Total LPAHs are collocated with total PAHs.	0.95
Total HPAHs	Total HPAHs are collocated with total PAHs.	0.98
PCBs		
PCB TEQ	PCB TEQ is computed from same data used to compute total PCBs.	0.82

COI - contaminant of interest

HPAH - high molecular weight polycyclic aromatic hydrocarbon

LPAH - low molecular weight polycyclic aromatic hydrocarbon

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

TEQ - toxicity equivalent

Table 5.2-1. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8).

					_		Detected Concentr	ations				Detec	ted and Not Detected	l Concentrati	ions	
Analyte	Units	# A malaumad	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
	Cints	# Analyzed	# Detected	% Detected	Millimum	Maximum	Location(s)	Mean	Median	73tii	(Iuli DL)	(Iuli DL)	Location(3)	(nun DL)	(Hall DL)	(Hall DL)
Grain Size																
Fines	percent	1420	1420	100	0	105 T	DG01	53.75	61	92.1	0	105 T	DG01	53.75	61	92.1
Conventionals																
Total organic carbon	percent	1698	1694	99.8	0.00715 J	27	G006	1.7892	1.74	3.1535	0.00433 U	27	G006	1.7851	1.735	3.1515
Metals																
Arsenic	mg/kg	1551	1426	91.9	0.7	132	RB08	4.86	3.71 J	8.995	0.7	132	RB08	4.685	3.6	8.69 J
Chromium	mg/kg	1536	1530	99.6	4.07 J	819 J	RB06	35.37	29.3	57.48	4.07 J	819 J	RB06	35.3	29.3	57.33
Copper	mg/kg	1552	1548	99.7	6.19 J	2830	UG01	60.8	38.8 J	171.3	6.19 J	2830	UG01	60.67	38.7	170.9
Zinc	mg/kg	1581	1581	100	3.68 J	4220	HA-43	154	106 J	375	3.68 J	4220	HA-43	154	106 J	375
Butyltins																
Tributyltin ion	μg/kg	358	333	93	0.45 J	47000	SD012	466.2	22	753.6	0.079 U	47000	SD012	433.7	17.5	650.5
PCBs ^c																
Total PCBs	μg/kg	1318	1052	79.8	0.851 JT	35400 T		220.2	26.85 J	736.2	0.851 JT	35400 T		183.4	19.65 J	600.9
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g	237	237	100	2.48 T	264000 T	07R006	2407	412 T	5580 J	2.48 T	264000 T	07R006	2407	412 T	5580 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g	238	238	100	0.00803 JT	14100 JT	07R006	67.938	1.395 J	40.49 J	0.00803 JT	14100 JT	07R006	67.938	1.395 J	40.49 J
Pesticides																
Aldrin	μg/kg	1146	268	23.4	0.00333 J	691 J	G355	4.8871	0.503 J	10.156 J	0.00333 J	691 J	G355	1.9569	0.17 U	5 U
Dieldrin	μg/kg	1190	252	21.2	0.00834 J	356 J	G453	2.5619	0.28 J	6.0135 J	0.00834 J	356 J	G453	1.9188	0.19 U	4.092 J
Total chlordanes	μg/kg	1193	761	63.8	0.031 JT	669 NJT	G355	5.035	0.84 NJT	12.4 NJT	0.031 JT	700 UT	G778	4.771	0.85 UA	13.64 J
DDx	μg/kg	1249	1130	90.5	0.051 NJT	84909 A	OSS002	267.96	7.495 J	459.55 J	0.051 NJT	84909 A	OSS002	242.76	6.69 NJT	371.08 J
PAHs																
Total PAHs	μg/kg	1661	1640	98.7	3.3 JT	7260000 T	G225	27166.6	1180	66630 J	3.3 JT	7260000 T	G225	26824.3	1150 JT	66100 T
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg	1513	932	61.6	7 J	440000 J	G367	1050	140	2200	2 U	440000 J	G367	751	94 J	1720

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.2-2. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8).

		·	·	_	·	`	Detected Concentr	ations				Detec	ted and Not Detected	Concentrati	ions	
				•			Maximum				Minimum	Maximum	Maximum	Mean	Median	95th
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Grain Size																
Fines	percent	1588	1588	100	0.12 T	101 T	C380	52.2	59.61	91	0.12 T	101 T	C380	52.2	59.61	91
Conventionals	•															
Total organic carbon	percent	2036	1923	94.4	0.02 J	35.5	C302	1.551	1.46	3.467	0.02 J	35.5	C302	1.466	1.3	3.4 J
Metals																
Arsenic	mg/kg	1553	1489	95.9	0.5 J	51.4	C708	4.08	3.56	7.33 J	0.5 J	51.4	C708	4	3.51	7.16
Chromium	mg/kg	1530	1524	99.6	6.41 J	464	HA-42	28.8	27 J	46.7	6.41 J	464	HA-42	28.8	26.9	46.7
Copper	mg/kg	1541	1541	100	9.42 J	3290	C384	55.2	35.9	107	9.42 J	3290	C384	55.2	35.9	107
Zinc	mg/kg	1581	1581	100	24	9000	HA-42	147	105 J	333	24	9000	HA-42	147	105 J	333
Butyltins																
Tributyltin ion	μg/kg	433	223	51.5	0.32 J	90000	PSY30C	1410	29	4040	0 U	90000	PSY30C	729	2.1	1120
PCBs ^c																
Total PCBs	μg/kg	1543	939	60.9	0.00138 JT	36800 T	C455	351.21186	70 T	1000 J	0.00138 JT	150000 UT	SD092	282.16061	22.6 JT	666.2 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g	327	325	99.4	0.0578 JT	425000 JT	WB-36	9052.084	290 T	28240 J	0.0578 JT	425000 JT	WB-36	8996.728	281 T	28160 J
PCDD/Fs	100															
TCDD TEQ ($ND = 0$)	pg/g	331	313	94.6	0.000262 JT	24400 JT	WB-36	433.575	1.35 JT	1124 J	0.000262 JT	24400 JT	WB-36	409.997	1.12 JT	864 J
Pesticides	100															
Aldrin	μg/kg	1172	135	11.5	0.11 J	1340 J	C356	23.33	0.88 J	72.96 J	0.0269 UJ	14000 U	WB-36	20.87	0.11 U	17.23 U
Dieldrin	μg/kg	1208	77	6.4	0.038 NJ	100 J	C092	3.595	0.43	13.36 J	0.03 U	12000 U	WB-36	17.15	0.1693 UJ	8 J
Total chlordanes	μg/kg	1195	648	54.2	0.038 JT	2330 JT	C455	19.53	1.57 J	55.33 J	0.0359 UT	10000 UA	WB-36	25.41	0.95 UJT	55 J
DDx	μg/kg	1659	1374	82.8	0.058 JT	3643000 A	WB-24	11367	15.4 J	4938.2 J	0.049 UJT	3643000 A	WB-24	9414.2	9.9 JT	3050.6 J
PAHs																
Total PAHs	μg/kg	1696	1624	95.8	0.15 JT	53300000 T	C302	248670	1390 J	288550	0.15 JT	53300000 T	C302	238120	1174 J	280000
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg	1591	635	39.9	2.4 J	18000	WR-VC-110	345	95 J	1100	2 U	40000 U	HA-43	227	40.5 U	740

Total PCBs are total PCB congeners whenever available and total Aroclors if not.
 data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - non-detect

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

Table 5.2-3. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

Table 5.2-3. Summary Statistics by Ri	ver wine for indicate	or Contaminants	, i cicciti i ilic	s, and TOC III	Surface Sedifficit	i, Study Alea (KW	Detected Conc]	Detected and Not Detected C	Concentratio	ons		
Chemical	Units	Sample	Detected Sample	Percent	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean		Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	_	Standard Deviation	
	Cints	Count	Count	Detected	William	Maximum	Location(3)	Mican	Median	Deviation	Tercentine	(Iuli DL)	(Iuli DL)	Waxiiidii Eocation(3)	(Iun DL)	(Iuli DL)	(Iuli DL)	(run DL)
Study Area																		
Grain Size		5 50	7 - 0	100	0	105 7	D.G.0.1	10.5		21.0			105 5	D.C.0.1	40.5		21.0	
Fines	percent	568	568	100	0	105 T	DG01	48.6	52.1	31.8	94.5	0	105 T	DG01	48.6	52.1	31.8	94.5
Conventionals																		
Total organic carbon	percent	714	710	99	0.00715 J	27	G006	1.69	1.6	1.7	2.97	0.00433 U	27	G006	1.68	1.6	1.7	2.96
Metals																		
Arsenic	mg/kg	650			0.7	132	RB08		3.84	8.07		0.7	132	RB08				
Chromium	mg/kg	638	635	100	7.17	819 J	RB06		29.3	63.3	91.8	7.17	819 J	RB06	40.3	29.3	63.1	
Copper	mg/kg	638	638	100	8.8 J	2830	UG01	72.7	41	150	231	8.8 J	2830	UG01	72.7	41	150	
Zinc	mg/kg	667	667	100	3.68 J	2050 J	T4-UP13	178	114	198	468	3.68 J	2050 J	T4-UP13	178	114	198	3 468
Butyltins																		
Tributyltin ion	μg/kg	183	171	93	0.45 J	47000	SD012	848	66	5080	1500	0.079 U	47000	SD012	792	48	4910	1390
PCBs ^c																		
Total PCBs	μg/kg	572	497	87	1.05 JT	12500 JT	G393	303	43	1030	1470	1.05 JT	12500 JT	G393	267	39	965	1260
PCDD/Fs Homologs	µ Б/ КБ	312	477	07	1.03 31	12300 31	0373	303	43	1030	1470	1.03 31	12300 31	3373	207	37	702	1200
Total PCDD/Fs	ng/g	103	103	100	32.2 JT	27700 JT	G426	1690	510	3640	7070	32.2 JT	27700 JT	G426	1690	510	3640	7070
	pg/g	103	103	100	32.2 J1	27700 J1	G420	1090	310	3040	7070	32.2 J1	27700 J1	G420	1090	310	3040	7070
PCDD/Fs		104	104	100	0.024 IT	00 7 NIT	060000	5.52	1.33	10.4	25 1	0.034 JT	00 7 NITT	060000	5.52	1 22	12.4	25.1
TCDD TEQ (ND=0)	pg/g	104	104	100	0.034 JT	88.7 NJT	06R002	5.52	1.33	12.4	35.1	0.034 J1	88.7 NJT	06R002	5.52	1.33	12.4	35.1
Pesticides	м	4.40	0.5	2.1	0.00222 *		Parior	0.525	0.44	0.010	1.50	0.00000 *	20 ***	***************************************	0.0		2.4	
Aldrin	μg/kg	442	95	21	0.00333 J	6	PSY01	0.635	0.44	0.813	1.68	0.00333 J	20 UJ	HC-S-16; HC-S-28; HC-S-		0.225	2.46	2.56
	_													36; HC-S-39; HC-S-43				
Dieldrin	μg/kg	459			0.00834 J	22.3	M0201	1.14		3.08		0.00834 J	67 U	G036				
Total chlordanes	μg/kg	460			0.0349 JT	60 NJT	GCA11E			5.28		0.0349 JT	97 UT	G026				
DDx	μg/kg	512	425	83	0.051 NJT	430 JT	GCA11E	13.5	5.81	34.2	39.3	0.051 NJT	430 JT	GCA11E	12	5.33	31.4	36.9
PAHs																		
Total PAHs	μg/kg	714	703	98	4.92 JT	478000 T	T4-UP13	8960	1080	34000	41900	4.92 JT	478000 T	T4-UP13	8820	1060	33800	41300
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	653	428	66	7 J	440000 J	G367	1940	180	21400	3080	4.2 U	440000 J	G367	1350	120	17400	2210
RM 01.9-03																		
Grain Size																		
Fines	percent	68	68	100	0.69 T	105 T	DG01	54.7	68	38.6	98.6	0.69 T	105 T	DG01	54.7	68	38.6	98.6
Conventionals																		
Total organic carbon	percent	71	70	99	0.11	27	G006	2.07	2.14	3.17	2.88	0.05 U	27	G006	2.05	2.13	3.16	2.88
PCDD/Fs Homologs	percent	, -	, 0		0.11		0000	2.07	2.1.	5117	2.00	0.02		2000	2.00	2.10	5.10	2.00
Total PCDD/Fs	pg/g	13	13	100	32.2 JT	1700 NJT	02R001	277	130	447	939	32.2 JT	1700 NJT	02R001	277	130	447	939
PCDD/Fs	P5'5	13	13	100	32.2 31	1700 1131	021001	277	150	,	,,,,	32.2 31	1700 1131	021(001	277	150	,	,,,,
TCDD TEQ (ND=0)	pg/g	13	13	100	0.034 JT	5.57 NJT	02R001	0.923	0.302	1.46	2.93	0.034 JT	5.57 NJT	02R001	0.923	0.302	1.46	2.93
Pesticides	P5/5	13	13	100	0.054 31	3.37 1431	021001	0.723	0.302	1.40	2.73	0.054 31	3.37 1131	02R001	0.723	0.302	1.40	2.73
Aldrin	ua/lea	43	18	42	0.0206 J	2.59 NJ	G022	0.872	0.878	0.631	1.8	0.0206 J	10 U	02R001	0.966	0.38	2.05	2.5
Dieldrin	μg/kg	57			0.0200 J 0.0348 J	9.28 J	G022 G009	0.872		1.91		0.0200 J 0.0348 J	20 U	02R001 02R015				
Total chlordanes	μg/kg	57			0.0348 J 0.084 JA			1.15				0.0348 J 0.0387 UT	20 U 16 UT	02R013 02R001; 02R015			3.16	
	μg/kg	57				11 JT	G609	7.88		1.64								
DDx	μg/kg	57	55	96	0.311 NJT	39.2 NJT	G009	7.88	6.23	6.82	20.1	0.311 NJT	39.2 NJT	G009	8.38	6.24	1.23	23.3
PAHs		70	67	02	24 T	240000 T	C(00	5160	460	20000	2010	10 LIT	240000 T	C(00	4000	120	20000	2010
Total PAHs	μg/kg	72	67	93	24 T	240000 T	G609	5160	460	29800	3010	19 UT	240000 T	G609	4800	439	28800	2910
Phthalates																		
Metals																		
Arsenic	mg/kg	72			1.8	132	RB08			15.3		1.8	132	RB08				
Chromium	mg/kg	72			13.1 J	819 J	RB06			165		13.1 J	819 J	RB06				
Copper	mg/kg	72			11.1	148	RB13			24.1		11.1	148	RB13			24.1	
Zinc	mg/kg	72	72	100	43.1	823	RB08	190	119	170	595	43.1	823	RB08	190	119	170	595
Butyltins																		
Tributyltin ion	μg/kg	2	1	50	3.7	3.7	BT002	3.7	3.7		3.7	3.2 U	3.7	BT002	3.45	3.45	0.354	3.68
PCBs ^c																		
Total PCBs	μg/kg	72	65	90	6.3 JT	9780 T	G025	663	74	1700	1970	6.3 JT	9780 T	G025	607	73.5	1630	1880
Bis(2-ethylhexyl) phthalate	μg/kg μg/kg	72			27	270	G017			60.7		5.6 U	2000 U	RB08				
RM 03-04	mb	12	37	31	2,	270	3017	113	73	00.7	220	5.0 0	2300 0	1000	1 72	. 103	232	210
Grain Size																		
Fines	paraant	81	81	100	0.33 T	84.7 T	03R041	40.3	39.6	26.3	77.7	0.33 T	84.7 T	03R041	40.3	39.6	26.3	3 77.7
Conventionals	percent	81	81	100	0.33 1	04./ 1	U3KU41	40.3	39.0	20.3	11.1	0.33 1	04./ 1	U3KU41	40.3	39.0	20.3	11.1
		0.5	0.4	00	0.11	10	SD00C	1.50	1.2	1.40	2.24	0.07.11	10	CD00C	1 5	1.2	1 40	2 21
Total organic carbon	percent	85	84	99	0.11	12	SD006	1.52	1.3	1.42	3.24	0.07 U	12	SD006	1.5	1.3	1.42	3.21

Table 5.2-3. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

				-			Detected Conce	entrations						Detected and Not Detected C	oncentratio			05:1
		Sample	Detected Sample	Percent			Maximum			Standard	95th	Minimum	Maximum		Mean	Median		Percentile
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Deviation	Percentile ^b	(full DL) ^a	(full DL) ^a	Maximum Location(s)	(full DL)	(full DL) ^b	(full DL)	(full DL) ^b
Metals																		
Arsenic	mg/kg	66	60	91	1.8	9.72	G062	3.96	3.57	1.45	6.37	1.8	9.72	G062	4.04		1.41	
Chromium	mg/kg	66	66	100	10.1	117	G092	30.7	26.9	17.7	49.6	10.1	117	G092	30.7	26.9	17.7	
Copper	mg/kg	66	66	100	10.6	134	G094	38	32.5	24.1	82.9	10.6	134	G094	38	32.5	24.1	
Zinc	mg/kg	80	80	100	49.4	786	SED01	159	111	145	506	49.4	786	SED01	159	111	145	500
Butyltins																		
Tributyltin ion	μg/kg	33	31	94	0.53 J	47000	SD012	1570	37	8430	215	0.23 U	47000	SD012	1480	36	8170	212
PCBs ^c	100																	
Total PCBs	u a/lea	72	63	00	1 02 T	3700 NJT	CED01	260	50	015	2110	1 02 T	3700 NJT	SED01	325	20	771	101/
	μg/kg	72	03	88	1.83 T	3700 NJ I	SED01	369	52	815	2110	1.83 T	3/00 NJ1	SED01	323	38	//1	1910
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	17	17	100	88.8 T	6420 NJT	03R005	1170	370	1620	3790	88.8 T	6420 NJT	03R005	1170	370	1620	3790
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	17	17	100	0.16 JT	19 NJT	03R005	2.95	0.906	4.63	9.69	0.16 JT	19 NJT	03R005	2.95	0.906	4.63	9.69
Pesticides																		
Aldrin	μg/kg	55	29	53	0.00333 J	1.65 J	G068	0.517	0.327	0.461	1.46	0.00333 J	2 U	SD11; SD12	0.476	0.255	0.524	1.6
Dieldrin	μg/kg	60	11	18	0.00834 J	1.2 NJ	G784	0.205	0.105	0.338	0.706	0.00834 J	2 U	SD11; SD12	0.324	0.0883	0.517	1.9
Total chlordanes	μg/kg	58	41		0.0349 JT	14 JT	C094	1.48	0.465	2.82	7.47	0.0349 JT	21 UA	03R005	1.54		3.55	
DDx	μg/kg	60	56		0.051 NJT	76.2 JT	C094	9.85	5.13	14.6		0.051 NJT	76.2 JT	C094	9.57		14.3	
PAHs	r6'16	00	20	,,,	0.001 1.01	, 0.2 01		7.00	0.10	1	27.0	0.001 1.01	70.201	207.	,	,0	1	57.,
Total PAHs	μg/kg	81	81	100	20.8 JT	67200 JT	03R005	3850	985	10700	17700	20.8 JT	67200 JT	03R005	3850	985	10700	17700
Phthalates	μg/kg	01	01	100	20.6 31	07200 31	031003	3630	765	10700	17700	20.6 31	07200 31	031003	3630	763	10700	17700
	/1	66	40	61	7.1	17000	C000	1210	120	2450	0060	5 O III	17000	C000	925	00	2740	2100
Bis(2-ethylhexyl) phthalate	μg/kg	66	40	61	7 J	17000	G099	1310	120	3450	9860	5.9 UJ	17000	G099	835	88	2740	3100
RM 04-05																		
Grain Size																		
Fines	percent	44	44	100	0.32 T	94.5	SD027	59.5	69.3	29.3	93.4	0.32 T	94.5	SD027	59.5	69.3	29.3	93.4
Conventionals																		
Total organic carbon	percent	109	108	99	0.00715 J	3.95	BT010	1.57	1.73	0.819	2.74	0.00715 J	3.95	BT010	1.55	1.72	0.827	2.74
Metals	Î																	
Arsenic	mg/kg	93	85	91	1.2	15.5 J	G111	4.5	4	2.26	7	1.2	15.5 J	G111	4.56	4.14	2.17	
Chromium	mg/kg	93	93		7.17	238	52C01	29.3	24.3	27.9	48.1	7.17	238	52C01	29.3		27.9	48.
Copper	mg/kg	93	93		8.8 J	216	G111	38.1	37.5	24.2	62.8	8.8 J	216	G111	38.1		24.2	
Zinc	mg/kg	116	116		3.68 J	2050 J	T4-UP13	234	126	329	849	3.68 J	2050 J	T4-UP13	234		329	
	mg/kg	110	110	100	3.00 3	2030 3	14-0113	234	120	32)	047	3.00 3	2030 3	14-0113	234	120	32)	04,
Butyltins	/1	11	11	100	1.7	72	CD024	20.0	22.2	21.2	65.5	1.7	72	CD024	20.0	22.2	21.2	65.5
Tributyltin ion	μg/kg	11	11	100	1.7	72	SD034	28.8	22.3	21.2	65.5	1.7	72	SD034	28.8	22.3	21.2	63.3
PCBs ^c																		
Total PCBs	μg/kg	68	56	82	2.9 JT	1530 T	G111	103	31.2	245	397	2 UT	1530 T	G111	88.2	25.3	224	288
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	10	10	100	34.8 JT	4400 JT	B010	1640	1780	1340	3690	34.8 JT	4400 JT	B010	1640	1780	1340	3690
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	10	10	100	0.0687 JT	13.3 JT	B009	4.84	3.38	4.79	12	0.0687 JT	13.3 JT	B009	4.84	3.38	4.79	12
Pesticides	188									,		***********						
Aldrin	ua/ka	29	8	28	0.0267 J	3.18 NJ	G111	0.683	0.135	1.07	2.4	0.0266 UJ	20 UJ	HC-S-16; HC-S-28; HC-S-	4.55	0.857	7.59	20
Alum	μg/kg	29	0	20	0.0207 J	3.10 NJ	GIII	0.063	0.133	1.07	2.4	0.0200 UJ	20 03		4.55	0.837	1.39	20
D: 11:		20	_	17	0.0622 1	0.21 311	D010	0.122	0.150	0.0500	0.100	0.0425 11	20 111	36; HC-S-39; HC-S-43	4.55		7.41	2/
Dieldrin	μg/kg	29	5	17	0.0622 J	0.21 NJ	B010	0.133	0.152	0.0598	0.199	0.0435 U	20 UJ	HC-S-16; HC-S-28; HC-S-	4.55	1	7.41	20
														36; HC-S-39; HC-S-43				
Total chlordanes	μg/kg	29	10		0.39 JT	3.11 JT	BT010	1.16	1.07	0.795	2.42	0.0354 UT	23.2 UT	52C01	6.03		8.6	
DDx	μg/kg	77	64	83	0.39 JT	74.5 T	T4-VC13	12.9	9.9	13.8	36.3	0.39 JT	74.5 T	T4-VC13	11.7	8.1	13.2	35.4
PAHs																		
Total PAHs	μg/kg	121	121	100	4.92 JT	478000 T	T4-UP13	35100	8240	71100	137000	4.92 JT	478000 T	T4-UP13	35100	8240	71100	137000
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	122	65	53	21	14000	G111	792	260	2240	2790	4.2 U	19000 U	03R004	653	115	2360	1570
RM 05-06	MENTE	122	0.5	55	21	11000	0111	1,72	200	2270	2170	r.2 U	1,000 0	031004	033	113	2300	1370
Grain Size				400	0.55.77	70.7 T	WE BO :=	20 -	20.5	22.5	55.0	0.55.75	70.7.7	wm n= :=	20 -	20 -	22.5	
Fines	percent	52	52	100	0.55 T	78.7 T	WR-PG-17	38.6	39.7	22.2	75.9	0.55 T	78.7 T	WR-PG-17	38.6	39.7	22.2	75.9
Conventionals																		
Total organic carbon	percent	69	69	100	0.0648	4.87	52A02	1.47	1.5	0.897	2.73	0.0648	4.87	52A02	1.47	1.5	0.897	2.73

Table 5.2-3. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

				_			Detected Conce	entrations						Detected and Not Detected C	Concentratio	ons		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean		Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	1.	Standard Deviation (full DL)	Percentile
Metals		Count	Count	Dettettu	17222222	17247	(-)					(Iun DL)	(Iun 21)		, ,	(")	, ,	
Arsenic	ma/ka	72	67	93	1.92	105	SED02	7.05	3.88	13.2	20.1	1.92	105	SED02	6.88	4	12.8	19
Chromium	mg/kg	72			11.5 J	220	SED02 SED02	45.1	29.9	45.7	156	11.5 J	220	SED02 SED02			45.5	
	mg/kg	72			13.2 J	1150	SED02 SED02	135		189	503	13.2 J	1150	SED02 SED02			189	
Copper	mg/kg	72			42.5 J		SED02 SED02			248		42.5 J	2010	SED02 SED02			248	
Zinc	mg/kg	12	12	100	42.3 J	2010	SED02	192	120	240	312	42.3 J	2010	SEDUZ	192	120	240	312
Butyltins		26	26	100		010	CED02	172	110	100	475		010	CED02	172	110	100	475
Tributyltin ion	μg/kg	26	26	100	6.6	819	SED02	173	119	189	475	6.6	819	SED02	173	119	189	475
PCBs ^c																		
Total PCBs	μg/kg	48	43	90	1.3 JT	250 T	05R003; G218; WR-PG-27	73	46.3	76.2	246	1.3 JT	250 T	05R003; G218; WR-PG-27	67.4	39.5	74.1	236
PCDD/Fs Homologs							WK10-27											
Total PCDD/Fs	pg/g	5	5	100	351 T	3950 JT	GCA05E	1300	637	1500	3370	351 T	3950 JT	GCA05E	1300	637	1500	3370
PCDD/Fs	P5/5	5	J	100	331 1	3,30 31	GCHOOL	1500	037	1500	3370	331 1	3730 31	36/1032	1500	037	1500	3370
TCDD TEQ (ND=0)	pg/g	5	5	100	0.553 JT	11.5 JT	G192	4.4	2.08	4.66	10.6	0.553 JT	11.5 JT	G192	4.4	2.08	4.66	10.6
Pesticides	P5/5	3	3	100	0.555 31	11.5 31	0172	7.7	2.00	4.00	10.0	0.555 31	11.5 31	0172	7.7	2.00	4.00	10.0
Aldrin	ua/ka	64	10	16	0.0178 J	2.57 NJ	G232	0.899	0.72	0.69	2.04	0.0178 J	2.83 U	52A03	0.593	0.36	0.589	1.38
	μg/kg																	
Dieldrin	μg/kg	64			0.038 J	5.3 J	G651	1.17		1.74	4.49	0.038 J	9.1 U	05R003			1.49	
Total chlordanes	μg/kg	65			0.163 NJT	18.5 JT	52A04	2.37		3.44	9.75	0.0427 UT	18.5 JT	52A04			3.15	
DDx	μg/kg	65	54	83	0.82 JT	234 NJT	G206	16.6	7.76	33.4	47.2	0.39 UT	234 NJT	G206	14.4	7.2	30.8	38.4
PAHs																		
Total PAHs	μg/kg	72	72	100	45.1 T	27200 T	52A05	5170	3930	5030	14100	45.1 T	27200 T	52A05	5170	3930	5030	14100
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	69	44	64	46.1	830	G209	252	201	193	579	13 U	830	G209	197	130	176	550
RM 06-07																		
Grain Size																		
Fines	percent	73	73	100	0	96 T	G310	39.6	32	32.1	92.5	0	96 T	G310	39.6	32	32.1	92.5
Conventionals	percent	7.5	73	100	· ·	, o 1	0310	37.0	32	32.1	72.5	V	<i>70</i> 1	3310	37.0	32	32.1	72.3
Total organic carbon	percent	63	63	100	0.0268	19.3	C524	2.32	1.63	3.36	5.41	0.0268	19.3	C524	2.32	1.63	3.36	5.41
Metals	percent	03	03	100	0.0200	17.5	C324	2.32	1.03	3.30	3.41	0.0200	17.5	C324	2.32	1.05	3.30	3.41
	o /l- o	63	60	95	1.7	15.8 T	GWC1	4.11	3.72	2.10	6.60	1.7	15.8 T	GWC1	4 10	3.74	2.16	6.51
Arsenic	mg/kg							4.11		2.18		1.7					2.16	
Chromium	mg/kg	59			9.75	77	06B030		25.9	10.7	38	9.75	77	06B030			10.7	
Copper	mg/kg	59			13.5	606	06B030			87.3	86.2	13.5	606	06B030			87.3	
Zinc	mg/kg	59	59	100	9.7	1090 T	GWC1	123	104	135	196	9.7	1090 T	GWC1	123	104	135	196
Butyltins																		
Tributyltin ion	μg/kg	14	13	93	4.4	350 J	SD060	67.1	32	96.9	248	0.079 U	350 J	SD060	62.3	29	94.8	240
PCBs ^c																		
Total PCBs	μg/kg	48	43	90	1.05 JT	5870 JT	BT016	223	41.6	914	217	1.05 JT	5870 JT	BT016	201	36.8	867	208
PCDD/Fs Homologs	100																	
Total PCDD/Fs	pg/g	15	15	100	152 JT	15000 JT	G671	3440	624	5020	12300	152 JT	15000 JT	G671	3440	624	5020	12300
PCDD/Fs	P8/5	13	13	100	132 31	13000 31	3071	3110	021	3020	12300	132 31	13000 31	30/1	3110	021	3020	12300
TCDD TEQ (ND=0)	ng/g	15	15	100	0.344 JT	88.7 NJT	06R002	16.1	1.72	26.6	62.9	0.344 JT	88.7 NJT	06R002	16.1	1.72	26.6	62.9
Pesticides	pg/g	13	13	100	0.544 31	00.7 1431	001002	10.1	1.72	20.0	02.7	0.544 31	00.7 1431	001002	10.1	1.72	20.0	02.7
	11 a /lea	50	8	16	0.0864 J	1.71 J	G255	0.574	0.432	0.519	1.4	0.0264 UJ	1 71 I	G255	0.335	0.198	0.375	1.03
Aldrin	μg/kg									0.518			1.71 J					
Dieldrin	μg/kg	48			0.097 J	0.966 NJ	G280			0.351	0.755	0.0432 U	3.9 UJ	C533			0.629	
Total chlordanes	μg/kg	50			0.09 JT	3.91 NJT	C533			0.955	2.84	0.0352 UT	3.91 NJT				0.942	
DDx	μg/kg	52	42	81	0.21 JT	370 JA	SD074	18.2	7.04	56.2	34.1	0.21 JT	370 JA	SD074	15.3	6.05	50.7	33.4
PAHs																		
Total PAHs	μg/kg	79	75	95	33 A	103000 T	06R040	3870	1170	12800	8120	13.4 UA	103000 T	06R040	3680	994	12500	7550
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	59	26	44	23	612 J	DM-L	154	97.5	155	523	8 U	612 J	DM-L	106	61	124	323
RM 07-08																		
Grain Size																		
Fines	percent	58	58	100	2.35 T	93.5	SED10	55.2	70	28.8	85.9	2.35 T	93.5	SED10	55.2	70	28.8	85.9
Conventionals	Porcont	30	50	100	2.00 1	, , , ,	SEDIO	33.2	, 3	20.0	33.7	2.00 1	, , , ,	52510	33.2	, 0	20.0	05.7
Total organic carbon	paraant	48	48	100	0.0469	3.47	4806	1.61	1.58	0.654	2.63	0.0469	3.47	4806	1.61	1.58	0.654	2.63
Metals	percent	40	+0	100	0.0407	J. 4 /	4000	1.01	1.50	0.054	2.03	0.0407	J. + 1	4800	1.01	1.36	0.034	2.03
	,/1	<i>c</i> 2	47	7.0	1.2	75 6	4803	710	2.02	12	21.0	1.2	75.6	4902	6.00	4.27	11.3	0.57
Arsenic	mg/kg	62			1.3	75.6		7.16		13		1.3	75.6	4803				
Chromium	mg/kg	54			9.81	173	4806			22.1	42.4	9.81	173	4806			22.1	
Copper	mg/kg	54			13.8 J	314 J	4806			40.7	93.6	13.8 J	314 J	4806			40.7	
Zinc	mg/kg	46	46	100	58.3	492 J	4806	114	98.8	66.7	180	58.3	492 J	4806	114	98.8	66.7	180

Table 5.2-3. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

							Detected Conce	entrations]	Detected and Not Detected C	Concentratio	ons		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean		Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)		Standard Deviation (full DL)	95th Percentile (full DL) ^b
Butyltins		Count	Count	Detected	1711111111111111	Manifelli						(Iun DL)	(Iun DL)	(0)	()	()	()	(-2)
Tributyltin ion	u a/ka	30	30	100	3	1600	BT019	193	135	284	349	3	1600	BT019	193	135	284	349
	μg/kg	30	30	100	3	1000	D1019	193	133	204	349	3	1000	B1019	193	133	204	349
PCBs ^c													***	*** *** ***		-0.1		
Total PCBs	μg/kg	32	22	69	4.52 T	200 T	SD096	32.9	18.3	41.9	80.6	2.2 UT	200 T	SD096	32.6	28.1	35.3	64.3
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	3	3	100	112 T	2600 T	GSP07E	1510	1810	1270	2520	112 T	2600 T	GSP07E	1510	1810	1270	2520
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	4	4	100	0.404 JT	37.5 JT	SD086	11.9	4.91	17.2	32.7	0.404 JT	37.5 JT	SD086	11.9	4.91	17.2	32.7
Pesticides																		
Aldrin	μg/kg	29		14	0.0692 JT	0.46 J	G6841	0.273	0.281	0.19		0.0295 UJ	1.87 U	4806			0.545	
Dieldrin	μg/kg	29			0.038 J	0.35	G680		0.125	0.129		0.032 U	2.3 U	GRAB-07			0.581	1.77
Total chlordanes	μg/kg	29			0.044 NJT	3.9 NJT	G6841	0.761	0.6	0.854	2.26	0.044 NJT	4.34 UT	4806	1.08	0.626	1.18	
DDx	μg/kg	29	25	86	0.474 NJT	39.3 JT	4806	6.04	3.78	7.6	11.7	0.474 NJT	39.3 JT	4806	5.72	3.78	7.09	11.5
PAHs																		
Total PAHs	μg/kg	62	61	98	49 T	38900 JT	07R004	1420	408	4990	2610	10 UA	38900 JT	07R004	1390	390	4950	2600
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	46	30	65	17 J	7330 J	DM-I	573	145	1570	3130	14 U	7330 J	DM-I	413	130	1280	601
RM 08-09	100																	
Grain Size																		
Fines	percent	17	17	100	5.21 T	86.7 T	PSY45	56.3	61.9	23.3	82.5	5.21 T	86.7 T	PSY45	56.3	61.9	23.3	82.5
Conventionals	percent			100	0.21 1	00.7	101.0	20.2	01.5	20.0	02.0	0.21 1	00.7 1	151.5	20.2	01.7	20.0	02.0
Total organic carbon	percent	18	18	100	0.24	2.45	PSY45	1.69	1.78	0.552	2.31	0.24	2.45	PSY45	1.69	1.78	0.552	2.31
Metals	percent	10	10	100	0.24	2.43	15143	1.07	1.70	0.332	2.31	0.24	2.43	15143	1.07	1.70	0.332	2.31
Arsenic	mg/kg	17	15	88	1.67	5	PSY47	3.61	3.56	0.77	4.46	1.67	5	PSY47; SD138	3.71	3.86	0.798	5
Chromium		17	17		14.8	48.6	S0601	32.9		7.52		14.8	48.6	S0601	32.9		7.52	
	mg/kg																	
Copper	mg/kg	17	17		24.2 J	75.6 J	G419		40.1	14.4		24.2 J	75.6 J	G419			14.4	
Zinc	mg/kg	17	17	100	76.6	131	G420	107	112	15	124	76.6	131	G420	107	112	15	124
Butyltins		-	_	100	4.4	150	G120	40.5	20		105		150	G120	40.7	20		10.5
Tributyltin ion	μg/kg	5	5	100	14	150	C420	48.7	30	57.1	126	14	150	C420	48.7	30	57.1	126
PCBs ^c																		
Total PCBs	μg/kg	15	11	73	9.05 JT	45.6 T	BT0271	27	29	12.2	44.3	9.05 JT	45.6 T	BT0271	24.3	25.2	13	43.7
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	4	4	100	123 JT	317 T	BT0272	215	211	79.4	301	123 JT	317 T	BT0272	215	211	79.4	301
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	4	4	100	0.254 JT	0.926 JT	BT0272	0.533	0.476	0.282	0.861	0.254 JT	0.926 JT	BT0272	0.533	0.476	0.282	0.861
Pesticides	100																	
Aldrin	μg/kg	14	3	21	0.0394 JT	0.444 NJ	G412	0.175	0.0411	0.233	0.404	0.0274 UJ	2 U	PSY49	0.408	0.0516	0.637	1.71
Dieldrin	μg/kg	14	6		0.056 J	0.438 NJ	G438			0.159		0.056 J	2 U	PSY49			0.673	
Total chlordanes	μg/kg	14	10		0.214 NJT	1.22 NJT	G438			0.323		0.214 NJT	3.59 UT	S0601	1.02		0.868	
DDx	μg/kg	14	13		1.19 NJT	31.5 NJT	G424	6.44	3.9	8.17	21.2	1.19 NJT	31.5 NJT	G424	6.24	3.75	7.88	
PAHs	μ6/11/5		13	,,,	1.17 1431	31.3 1101	0121	0.11	5.7	0.17	21.2	1.17 1431	31.3 101	3121	0.21	5.75	7.00	20.1
Total PAHs	μg/kg	17	17	100	69.7 JT	711 T	G438	318	296	188	662	69.7 JT	711 T	G438	318	296	188	662
Phthalates	μg/kg	17	17	100	07.7 31	/11 1	0436	310	270	100	002	07.7 31	/11 1	0438	310	270	100	002
Bis(2-ethylhexyl) phthalate	μg/kg	17	11	65	80	460	PSY47	261	242	122	425	25 U	460	PSY47	189	140	140	404
Swan Island Lagoon	μg/kg	17	11	03	80	400	15147	201	242	122	423	25 0	400	1514/	107	140	140	404
o .																		
Grain Size		107	107	100	0.70 7	102 7	Davas	61.6	740	24.7	07.6	0.70 5	102 T	DGMAA	61.6	710	24.7	07.6
Fines	percent	107	107	100	0.78 T	103 T	PSY23	61.6	74.2	34.7	97.6	0.78 T	103 T	PSY23	61.6	74.2	34.7	97.6
Conventionals																		
Total organic carbon	percent	129	129	100	0.0423	4.51	PSY08	1.74	1.9	0.997	3.16	0.0423	4.51	PSY08	1.74	1.9	0.997	3.16
Metals																		
Arsenic	mg/kg	124			0.7	17	PSY12; PSY27	5.87	5.33	3.48		0.7	17	PSY12; PSY27			3.35	
Chromium	mg/kg	124			8.98 JT	148	PP01M104	35.4		19.8		8.98 JT	148	PP01M104			19.8	
Copper	mg/kg	124	124	100	12.8	1080	G390	122	89.3	141	359	12.8	1080	G390	122	89.3	141	359
Zinc	mg/kg	124	124	100	45.6	731	G390	227	196	140	476	45.6	731	G390	227	196	140	476
Butyltins																		
Tributyltin ion	μg/kg	36	36	100	0.45 J	46000	G421	2340	328	7740	6750	0.45 J	46000	G421	2340	328	7740	6750
PCBs ^c																		
Total PCBs	ua/ka	100	82	82	2.39 JT	12500 JT	G393	373	116	1400	872	2.39 JT	12500 JT	G393	309	91.8	1270	733
PCDD/Fs Homologs	μg/kg	100	82	62	4.39 J1	14500 J1	G393	313	110	1400	012	4.39 J1	12500 J1	U393	309	91.8	12/0	133
Total PCDD/Fs	20/0	10	10	100	115 T	27700 IT	C426	2020	647	7700	12600	115 T	27700 IT	C426	2020	617	7790	12600
TOTAL PUDD/PS	pg/g	12	12	100	115 T	27700 JT	G426	3030	04/	7790	13600	115 T	27700 JT	G426	3030	647	1190	13600

Table 5.2-3. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

Table 5.2-3. Sullillary Statistics by Riv		•		_			Detected Conce						Ι	Detected and Not Detected C	Concentratio	ons		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean		Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	1.	Standard Deviation (full DL)	Percentile
PCDD/Fs		Count	Count	Detected	*		· · · · · · · · · · · · · · · · · · ·					,		· · · · · · · · · · · · · · · · · · ·				
TCDD TEQ (ND=0)	pg/g	12	12	100	0.202 JT	40.4 JT	G426	4.9	1.7	11.2	20.1	0.202 JT	40.4 JT	G426	4.9	1.7	11.2	20.1
Pesticides	100				*****							0.202						
Aldrin	μg/kg	78	7	9	0.027 J	6	PSY01	1.03	0.112	2.2	4.35	0.027 J	11.2 UJ	M0303	1.05	0.317	1.84	6
Dieldrin	μg/kg	78	11	-	0.0378 J	22.3	M0201	4.35	0.34	6.8		0.03 U	22.3	M0201	1.57		3.29	
Total chlordanes		78	39		0.077 JT	25.4 NJT	G390	2.75		4.39		0.0437 UT	25.9 UJT	M0303	3.06		4.38	
DDx	μg/kg /l	78 78	51				PSY27					0.0437 UT 0.0692 UJT	153 A	PSY27			24.9	
	μg/kg	/8	31	63	0.149 JT	153 A	PS 127	15.7	6.22	29.9	83.8	0.0692 UJ1	133 A	PS 12/	12	4.99	24.9	35.1
PAHs		101	122	00	6 70 YM	10.5000 177	3.6020.4	2500	1410	10100	11500	6 70 YF	10.5000 777	1,000	2550		10100	11500
Total PAHs	μg/kg	124	123	99	6.73 JT	106000 JT	M0304	3580	1410	10100	11700	6.73 JT	106000 JT	M0304	3550	1400	10100	11600
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	121	110	91	45	440000 J	G367	6150	834	42100	10100	12 U	440000 J	G367	5610	760	40100	8600
RM 09-10																		
Grain Size																		
Fines	percent	33	33	100	0.37 T	80.2 T	WR-PG-43	38.6	35.9	25.6	71.7	0.37 T	80.2 T	WR-PG-43	38.6	35.9	25.6	71.7
Conventionals	P																	
Total organic carbon	percent	39	38	97	0.0431 JT	2.2	WR-PG-43	1.05	1.14	0.588	1.84	0.00433 U	2.2	WR-PG-43	1.03	1.11	0.604	1.83
6	percent	39	36	91	0.0431 31	2.2	W K-1 G-43	1.03	1.14	0.366	1.04	0.00433 0	2.2	WK-1 G-43	1.03	1.11	0.004	1.65
Metals		20	20	100	10 5	c 10	G 405	2.11	2.15		4.00	1.2 5	c 10	G 105		2.15		4.00
Arsenic	mg/kg	39	39		1.3 T	6.42	G487	3.11	3.17	1.04	4.98	1.3 T	6.42	G487	3.11		1.04	
Chromium	mg/kg	39	39		10.3 T	41.3	BT031	23	23	7.47	34.7	10.3 T	41.3	BT031	23		7.47	
Copper	mg/kg	39	39		16.6	116	G487	31.6		17.2		16.6	116	G487	31.6		17.2	
Zinc	mg/kg	39	39	100	60.2 T	334	G487	97.1	86.1	46.5	158	60.2 T	334	G487	97.1	86.1	46.5	158
Butyltins																		
Tributyltin ion	μg/kg	2	2	100	1.5	3.6	BT031	2.55	2.55	1.48	3.5	1.5	3.6	BT031	2.55	2.55	1.48	3.5
PCBs ^c	100																	
		33	29	0.0	7.6 T	141 T	C470	24.4	10.6	22.6	100	5 4 LTT	1.41 T	C472	21.2	17.0	22.6	100
Total PCBs	μg/kg	33	29	88	7.6 T	141 T	G472	34.4	19.6	33.6	106	5.4 UT	141 T	G472	31.2	17.9	32.6	106
PCDD/Fs Homologs		_	_				~~~	• • • •							• • • •			
Total PCDD/Fs	pg/g	3	3	100	51.1 JT	530 JT	GSP10E	281	262	240	503	51.1 JT	530 JT	GSP10E	281	262	240	503
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	3	3	100	0.166 JT	1.12 JT	GSP10E	0.63	0.604	0.478	1.07	0.166 JT	1.12 JT	GSP10E	0.63	0.604	0.478	1.07
Pesticides																		
Aldrin	μg/kg	39	2	5	0.0201 J	0.47	G741	0.245	0.245	0.318	0.448	0.0201 J	6 U	PSY70; PSY71	0.599	0.19	1.33	2.07
Dieldrin	μg/kg	39	2	5	0.043 J	0.261 J	G442	0.152	0.152	0.154	0.25	0.032 U	6 U	PSY70; PSY71	0.633	0.249	1.3	1.72
Total chlordanes	μg/kg	39	21		0.087 JT	1.05 NJT	G442	0.386	0.342	0.24	0.74	0.0497 UT	3.79 UJT	S0502	0.893		0.939	
DDx	μg/kg	39	26		0.635 NJT	7.79 NJT	WR-PG-45	2.92	1.89	2.17		0.39 UT	7.79 NJT	WR-PG-45	2.93		2.03	
PAHs	μg/kg	37	20	07	0.033 1431	7.77 1431	WK-1 G-43	2.72	1.67	2.17	7.02	0.57 01	7.77 1431	WK-1 G-43	2.73	2.17	2.03	1.37
		20	20	100	10.2 T	1100 T	WD DC 27	210	164	21.4	500	10.2 T	1100 T	WD DC 27	210	1.64	21.4	500
Total PAHs	μg/kg	39	39	100	10.3 T	1180 T	WR-PG-37	219	164	214	509	10.3 T	1180 T	WR-PG-37	219	164	214	509
Phthalates																_		
Bis(2-ethylhexyl) phthalate	μg/kg	39	35	90	17.8 JT	920 J	G470	138	71	175	402	17.8 JT	920 J	G470	130	67	168	387
RM 10-11																		
Grain Size																		
Fines	percent	15	15	100	0.92 T	84 T	BT033	45.9	50.7	24.9	81.1	0.92 T	84 T	BT033	45.9	50.7	24.9	81.1
Conventionals	•																	
Total organic carbon	percent	18	18	100	0.23	2.47	BT033	1.71	1.85	0.596	2.42	0.23	2.47	BT033	1.71	1.85	0.596	2.42
Metals	P																	
Arsenic	mg/kg	18	18	100	1.27 J	3.86	BT033	2.97	3.06	0.599	3.8	1.27 J	3.86	BT033	2.97	3.06	0.599	3.8
Chromium		18	18		10.1	40.5	G495	25.7	25.4	9.05		10.1	40.5	G495	25.7		9.05	
	mg/kg																	
Copper	mg/kg	18			16	45	SD03	31.5		6.66		16	45	SD03	31.5		6.66	
Zinc	mg/kg	18	18	100	47.6	203	G505	94.7	88.7	33.1	134	47.6	203	G505	94.7	88.7	33.1	134
Butyltins																		
Tributyltin ion	μg/kg	3	2	67	3	3	SD02; SD04	3	3	0	3	2.8 U	3	SD02; SD04	2.93	3	0.115	3
PCBs ^c																		
Total PCBs	ua/ka	18	18	100	5.49 T	550 T	SD04	59.3	18.4	129	244	5.49 T	550 T	SD04	59.3	18.4	129	244
	μg/kg	16	10	100	J.+7 1	<i>33</i> 0 1	3D04	37.3	10.4	129	Z 44	J. 4 7 1	<i>55</i> 0 1	3D04	37.3	10.4	129	244
PCDD/Fs Homologs	,			100	170 m	172 7	DECC	172	170		170	172 T	172 F	DE022	150	170		150
Total PCDD/Fs	pg/g	1	1	100	173 T	173 T	BT033	173	173		173	173 T	173 T	BT033	173	173		173
PCDD/Fs				100	0.497 JT	0.497 JT	BT033	0.497	0.497			0.497 JT	0.497 JT	BT033	0.497	0.497		0.497
TCDD TEQ (ND=0)	pg/g										0.497							

Table 5.2-3. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

							Detected Conce	entrations					Γ	Detected and Not Detected C	Concentratio	ons		
			Detected	_													Standard	95th
		Sample	Sample	Percent			Maximum			Standard	95th	Minimum	Maximum		Mean	Median	Deviation	Percentile
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Deviation	Percentile ^b	(full DL) ^a	$(full DL)^a$	Maximum Location(s)	(full DL)	(full DL) ^b	(full DL)	(full DL) ^b
Pesticides																		
Aldrin	μg/kg	15	1	7	0.083 J	0.083 J	BT033	0.083	0.083		0.083	0.0469 UJ	5.36 UJ	G505	0.565	0.147	1.34	2.06
Dieldrin	μg/kg	15	1	7	0.0936 J	0.0936 J	BT033	0.0936	0.0936		0.0936	0.032 U	5.36 U	G505	0.628	0.144	1.34	2.31
Total chlordanes	μg/kg	15	12	80	0.273 NJT	7.04 JT	G505	1.31	0.793	1.83	3.97	0.273 NJT	7.04 JT	G505	1.18	0.759	1.65	3.13
DDx	μg/kg	15	13	87	1.3 T	16.8 NJT	WR-PG-63	4.63	3.21	4.01	10.5	0.492 UJT	16.8 NJT	WR-PG-63	4.4	3.21	3.88	9.41
PAHs																		
Total PAHs	μg/kg	22	22	100	80.3 JT	46000 T	GA-PD02	4580	803	11400	30500	80.3 JT	46000 T	GA-PD02	4580	803	11400	30500
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	18	11	61	76 J	340 J	G500	137	110	78.1	270	25 UJ	1100 UJ	G505	166	100	244	454
RM 11-11.8	100																	
Grain Size																		
Fines	percent	20	20	100	1.67 T	56.8 T	G012	20.5	18.8	14.8	43.9	1.67 T	56.8 T	G012	20.5	18.8	14.8	43.9
Conventionals																		
Total organic carbon	percent	65	65	100	0.143	10.1	SL004	1.61	1.29	1.48	3.05	0.143	10.1	SL004	1.61	1.29	1.48	3.05
Metals	_																	
Arsenic	mg/kg	24	24	100	1.4	7.6	G029	3.35	2.84	1.39	5.25	1.4	7.6	G029	3.35	2.84	1.39	5.25
Chromium	mg/kg	24	24	100	13.5	193	G026	37.7	24.7	36.7	71.2	13.5	193	G026	37.7	24.7	36.7	71.2
Copper	mg/kg	24	24	100	21.1	2830	UG01	161	31.9	570	165	21.1	2830	UG01	161	31.9	570	165
Zinc	mg/kg	24	24	100	72.4	358	SL017	132	109	67.1	270	72.4	358	SL017	132	109	67.1	270
Butyltins																		
Tributyltin ion	μg/kg	21	14	67	0.96 J	87	G005	12.3	3.4	22.6	46.1	0.55 U	87	G005	8.45	2.2	19.1	24
PCBs ^c																		
Total PCBs	μg/kg	66	65	98	1.5 JT	6640 JT	GCA11E	495	69	1120	2640	1.5 JT	6640 JT	GCA11E	488	68.5	1120	2620
PCDD/Fs Homologs	m 8 m 8	00	00	, ,	1.5 01	00.001	00.11.12	.,,	0,	1120	20.0	1.0 01	00.001	96.1112	.00	00.5	1120	2020
Total PCDD/Fs	pg/g	20	20	100	58.7 JT	12700 JT	G039	1670	947	2760	4550	58.7 JT	12700 JT	G039	1670	947	2760	4550
PCDD/Fs	P5/5		20	100	20.7 01	12/00 01	000)	10,0	· · · ·	2,00		50.7 01	12,0001	3007	10,0	· · · ·	2,00	.550
TCDD TEQ (ND=0)	pg/g	20	20	100	0.111 JT	21.6 JT	G039	4.44	2.56	5.08	12.1	0.111 JT	21.6 JT	G039	4.44	2.56	5.08	12.1
Pesticides	P5 5	20	20	100	0.111 01	21.0 01	0007		2.50	2.00	12.1	0.111 01	21.0 01	3007		2.00	2.00	12.1
Aldrin	μg/kg	26	5	19	0.12 J	0.34 J	G051	0.232	0.24	0.101	0.336	0.046 U	4.1 U	SL004	0.453	0.18	0.848	1.73
Dieldrin	μg/kg	26	2		0.054 J	8.7	SL004	4.38		6.11	8.27	0.051 U	67 U	G036				7.65
Total chlordanes	μg/kg	26	15		0.061 JT	60 NJT	GCA11E	11.4		18.4	50.2	0.061 JT	97 UT	G026				58.5
DDx	μg/kg	26	26		0.16 T	430 JT	GCA11E	42		89.8	164	0.16 T	430 JT	GCA11E				164
PAHs	M 6 M 6	20	20	100	0.10 1	150 31	GCITTE	72	1.75	07.0	104	0.10 1	150 11	GENTIL	72	1.75	07.0	104
Total PAHs	μg/kg	25	25	100	169 JT	67200 JT	SL004	3640	872	13300	2670	169 JT	67200 JT	SL004	3640	872	13300	2670
Phthalates	ME/NE	23	23	100	107 31	07200 31	52004	5040	072	13300	2070	107 31	0/200 31	3L004	3040	372	13300	2070
Bis(2-ethylhexyl) phthalate	µg/kg	24	19	79	16 J	2100	G005	204	90	464	444	16 J	2100	G005	244	110	429	669

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT DL - detection limit

PCDD/F - dioxin/furan RM - river mile

ND - not detected

TCDD - tetrachlorodibenzo-p-dioxin

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

TEQ - toxic equivalent concentration TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.2-4. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

							Detected Concentr	rations					Dete	ected and Not Detected	l Concentra	ations		
			Detected								05th	3.61		37.		Modian	Standard	95th Percentile
Chemical	Units	Sample	Sample	Percent	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median b I	Standard	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean	Median (full DL) ^b	Deviation (full DI)	
	Cints	Count	Count	Detected	MIIIIIIIIII	Maximum	Location(s)	Mican	Miculaily 1	eviation i	CICCILIIC	(Iuli DL)	(Iuli DL)	Location(s)	(Iuli DL)	(Iuli DL)	(Iuli DL)	(Iuli DL)
Study Area																		
Grain Size		167	167	100	0.20 T	101 T	C200	40.7	52.0	21.4	01.2	0.20 T	101 T	C200	40.7	52.0	21.4	01.2
Fines	percent	467	467	100	0.39 T	101 T	C380	48.7	53.9	31.4	91.3	0.39 T	101 T	C380	48.7	53.9	31.4	91.3
Conventionals		746	710	0.5	0.02 *	0.25	6244			1.00	205	0.02 *	0.05	62.11		105	1.00	205
Total organic carbon	percent	746	712	95	0.02 J	8.36	C244	1.31	1.13	1.09	2.86	0.02 J	8.36	C244	1.25	1.05	1.09	2.85
Metals				0.5	0.0	~· ·	G500		2.22	4.10		0.0	~	65 00		2.25	4.00	7 04
Arsenic	mg/kg	657	634		0.8	51.4	C708	4.1	3.33	4.13	7.7	0.8	51.4	C708		3.37	4.08	
Chromium	mg/kg	652	652		6.41 J	249 T	C207-1	28	25.2	20.2	47.7	6.41 J	249 T	C207-1	28		20.2	
Copper	mg/kg	653	653		9.42 J	3290	C384	66.4	34.1	196	164	9.42 J	3290	C384	66.4	34.1	196	
Zinc	mg/kg	693	693	100	24	1930	C384	155	105	164	458	24	1930	C384	155	105	164	458
Butyltins																		
Tributyltin ion	μg/kg	211	122	58	0.32 J	90000	PSY30C	2450	55	9830	14900	0.068 U	90000	PSY30C	1410	2	7560	4200
PCBs ^c																		
Total PCBs	μg/kg	662	407	61	0.00138 JT	26000 T	C092	541	98.8	2030	1930	0.00138 JT	26000 T	C092	335	23.4	1610	1100
PCDD/Fs Homologs	100																	
Total PCDD/Fs	pg/g	106	105	99	0.403 T	87600 JT	C678	2020	341	8930	4060	0.403 T	87600 JT	C678	2000	325	8890	4030
PCDD/Fs	100				*****								0.000					
TCDD TEQ (ND=0)	pg/g	107	102	95	0.000478 JT	173 JT	C678	5.45	1.06	18.4	27	0.000478 JT	173 JT	C678	5.2	0.933	18	22.7
Pesticides	P5'5	107	102	75	0.00017031	173 31	2070	5.15	1.00	10.1	2,	0.000170 31	175 51	2070	3.2	0.755	10	22.7
Aldrin	ua/ka	354	40	11	0.119 J	3.81 NJ	C019-1	0.68	0.531	0.654	1.61	0.0269 UJ	20 UJ	C092	0.47	0.15	1.5	1.26
Dieldrin	μg/kg	372	21		0.119 J 0.038 NJ	100 J	C092	5.22	0.331	21.7	1.12	0.0209 UJ 0.03 U	100 J	C092			5.27	
	μg/kg /l-c																42.2	
Total chlordanes	μg/kg	374	202		0.046 JT	490 NJT	C092	12.6	1.99	56.9	21.7	0.0359 UT	490 NJT	C092		0.586		
DDx	μg/kg	536	396	74	0.069 JT	2100 NJT	C708	49.1	9.88	189	163	0.049 UJT	2100 NJT	C708	36.6	4.81	164	125
PAHs		c=0		0.4	0.15 75	61 6000 TT	aepo.	12100	1200	40000	55000	0.15 7	61 6000 F	aepo.	10500	1150	45.00	50100
Total PAHs	μg/kg	672	630	94	0.15 JT	616000 T	SED01	13400	1390	49000	65000	0.15 JT	616000 T	SED01	12500	1170	47600	60100
Phthalates	_																	
Bis(2-ethylhexyl) phthalate	μg/kg	654	255	39	3.1 J	6800	C384	337	90	778	1430	2 U	6800	C384	199	39.5	611	801
RM 01.9-03																		
Grain Size																		
Fines	percent	68	68	100	1.6 T	94.6 T	C022	50.8	57.6	32.5	91.3	1.6 T	94.6 T	C022	50.8	57.6	32.5	91.3
Conventionals																		
Total organic carbon	percent	73	73	100	0.04 J	2.84	021108WRPB-VC-06	1.36	1.36	0.814	2.43	0.04 J	2.84	021108WRPB-VC-	1.36	1.36	0.814	2.43
PCDD/Fs Homologs	_																	
Total PCDD/Fs	pg/g	17	16	94	16.2 JT	3690 JT	DC01-1	446	143	902	1670	0.623 UT	3690 JT	DC01-1	420	138	880	1540
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	18	17	94	0.029 JT	10.6 JT	DC01-1	1.45	0.452	2.63	5.82	0.013 UT	10.6 JT	DC01-1	1.37	0.447	2.58	5.53
Pesticides	P8 8	10	-,	7.	0.02, 01	10.0 01	20011	11.10	02	2.00	5.02	0.015 01	10.0 01	20011	1107	0,	2.00	0.00
Aldrin	μg/kg	67	7	10	0.17 NJ	3.81 NJ	C019-1	0.989	0.49	1.28	2.97	0.0281 UJ	3.81 NJ	C019-1	0.288	0.12	0.534	0.943
Dieldrin	μg/kg	67	5		0.25 J	1.1 NJ	C015	0.516	0.43	0.337	0.972	0.03 U	3.7 U	WR-VC-02	0.412	0.26	0.641	1.07
Total chlordanes	μg/kg μg/kg	67	39		0.23 J 0.046 JT	1.1 To	C020	2.26	1.6	2.85	6.8	0.0418 UJT	19 UA	WR-VC-02 WR-VC-02		0.20	3.71	6.82
DDx	μg/kg μg/kg	67	63		0.17 JT	110 JT	C609	14.4	9.1	18.4	50.4	0.17 JT	110 JT	C609	13.7	8.4	18.1	48.3
PAHs	μg/kg	07	03	74	0.17 31	110 11	C003	14.4	9.1	10.4	30.4	0.17 31	110 11	C009	13.7	0.4	10.1	46.3
		67	66	99	1 62 IT	14000 T	DC01_1	1940	729	2920	7260	0.88 UT	14000 T	DC01 1	1010	700	2910	7240
Total PAHs	μg/kg	07	00	99	1.63 JT	14000 T	DC01-1	1940	129	2920	7200	0.88 01	14000 1	DC01-1	1910	700	2910	7240
Phthalates																		
Metals			- 1		0.06 *	7 00 Y	D.CO.1.2	2.55	2.50		7 00	0.05 ¥	7 00 x	D C01 4	2.71	2.5		- 10
Arsenic	mg/kg	65	64		0.86 J	7.88 J	DC01-2	3.66	3.59	1.22	5.99	0.86 J	7.88 J	DC01-2			1.28	
Chromium	mg/kg	63	63		8.89	199 J	RB13	30.5	27.8	23.8	44.7	8.89	199 J	RB13			23.8	
Copper	mg/kg	64	64		11.8	53.6	C022	32.4	35.2	13	50.3	11.8	53.6	C022	32.4		13	
Zinc	mg/kg	64	64	100	44.5	479	C019-1	131	113	68.6	228	44.5	479	C019-1	131	113	68.6	228
Butyltins																		
Tributyltin ion	μg/kg	1	1	100	5.4	5.4	021108WRPB-VC-06	5.4	5.4		5.4	5.4	5.4	021108WRPB-VC-	5.4	5.4		5.4
														06				
PCBs ^c																		
Total PCBs	μg/kg	72	58	81	0.291 JT	7900 JT	C011-2	521	99.8	1220	1790	0.291 JT	7900 JT	C011-2	421	53	1110	1470
Bis(2-ethylhexyl) phthalate	μg/kg	68	43		6.9 J	290	C604	53.9	41	49.7	119	2.5 U	290	C604			47.6	
RM 03-04	r6 r6	30	13	03	J., J	270	2504	55.7	11	12.7	117	2.5 0	270	2004		55.5	17.0	11/
Grain Size																		
Fines		72	72	100	0.67 T	012 T	C103	36.8	38.5	29.8	86.1	0.67 T	01 2 Т	0102	36.8	38.5	29.8	06.1
	percent	12	12	100	0.07 1	91.3 T	C103	30.8	38.3	29.8	80.1	0.07 1	91.3 T	C103	30.8	38.3	29.8	86.1
Conventionals		70	7.0	0.7	0.02 1	5 4 C T	0000	1.16	0.005	1.00	2.77	0.02.11	5 46 T	0000	1.10	0.04	1.02	2.77
Total organic carbon	percent	78	76	97	0.03 J	5.46 T	C092	1.16	0.895	1.02	2.77	0.02 U	5.46 T	C092	1.13	0.84	1.03	2.77

Table 5.2-4. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

							Detected Concent	rations	_				Det	ected and Not Detected	d Concentra			0541
Chemical	Units	Sample	Detected Sample	Percent	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median b	Standard Deviation	95th	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median	Standard Deviation	95th Percentile (full DL) ^b
Metals	Cints	Count	Count	Detected	Millimin	Maximum	Location(s)	Mican	Miculano	Deviation	1 ci centile	(Iuli DL)	(Iuli DL)	Location(s)	(Iuli DL)	(Iuli DL)	(Iuli DL)	(Iun DL)
Arsenic	ma/lea	74	73	99	1.26	18.3	C092	3.61	3.33	2.43	5.35	1.26	18.3	C092	3.62	3.34	2.41	5.32
Chromium	mg/kg	74	73 74		13.6 T	63.3	C092	28.6	28.6	11.1	3.33 48	13.6 T	63.3	C092	28.6		11.1	3.32 48
	mg/kg	74	74		13.6 T 11.6 T	113	C092	35.6	31.1	20.8	75.3	13.6 T	113	C092	35.6		20.8	
Copper Zinc	mg/kg	82	82		44.8	672	C092	149	126	115	403	44.8	672	C092	149		115	
	mg/kg	62	02	100	44.0	072	C092	149	120	113	403	44.0	072	C092	149	120	113	403
Butyltins Tributalkin inn	/1	49	21	43	2.4	630	C083	93.5	40	156	450	0.069.11	630	C083	40.2	1.1	111	120
Tributyltin ion	μg/kg	49	21	43	2.4	630	C083	93.5	40	156	450	0.068 U	630	C083	40.3	1.1	111	128
PCBs ^c																		
Total PCBs	μg/kg	84	66	79	2.2 JT	26000 T	C092	1530	129	4350	11800	1.3 UT	26000 T	C092	1200	68.2	3900	5080
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	16	16	100	0.403 T	3350 JT	C092	638	135	1020	2710	0.403 T	3350 JT	C092	638	135	1020	2710
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	16	16	100	0.000478 JT	10.4 JT	C092	1.99	0.426	3.28	9.54	0.000478 JT	10.4 JT	C092	1.99	0.426	3.28	9.54
Pesticides																		
Aldrin	μg/kg	72	9	12	0.13 NJT	1.2 NJ	C103	0.667	0.64	0.291	1.08	0.0315 UJ	20 UJ	C092	0.721	0.145	2.46	
Dieldrin	μg/kg	72	2	3	0.95 NJ	100 J	C092	50.5	50.5	70	95	0.0516 U	100 J	C092	2.34	0.21	11.9	
Total chlordanes	μg/kg	72	36	50	0.13 JT	490 NJT	C092	31.2	2.1	110	171	0.042 UJT	490 NJT	C092	16	0.535	78.7	17.1
DDx	μg/kg	72	57	79	0.077 JT	1540 NJT	C092	87.1	12.5	245	511	0.0561 UJT	1540 NJT	C092	70.6	8.59	221	360
PAHs																		
Total PAHs	μg/kg	84	81	96	0.73 JT	616000 T	SED01	22000	1880	79300	91200	0.7 UT	616000 T	SED01	21200	1760	77900	87700
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	72	20	28	6.8 J	3600	C099	586	120	1010	2840	2 U	3600	C099	190	25.5	580	945
RM 04-05																		
Grain Size																		
Fines	percent	17	17	100	3	85.5 T	C111-1	56.7	67	28.5	83.7	3	85.5 T	C111-1	56.7	67	28.5	83.7
Conventionals	F				-	-			-			-				-		
Total organic carbon	percent	228	201	88	0.02 J	5.71	T4-VC23	1.28	1.23	1.03	2.78	0.02 J	5.71	T4-VC23	1.14	0.92	1.04	2.72
Metals	Percent	220	201	00	0.02 0	5.7.1	1	1.20	1.20	1.00	2.70	0.02 0	0.71	11.1020		0.52	1.0.	2.,2
Arsenic	mg/kg	188	187	99	0.9	23.3	T4-VC32	3.47	2.9	2.54	6.53	0.9	23.3	T4-VC32	3.47	2.9	2.53	6.49
Chromium	mg/kg	185	185		6.41 J	41.4	SD031	18.5	17.4	8.1	32.8	6.41 J	41.4	SD031	18.5		8.1	32.8
Copper	mg/kg	188	188		9.42 J	116	T4-B411-06	30.2	28.1	17.8	54.8	9.42 J	116	T4-B411-06		28.1	17.8	
Zinc	mg/kg	232	232		27.3 J	878 J	T4-S3-02	155	73.9	17.0	607	27.3 J	878 J	T4-S3-02			17.0	
Butyltins	1116/116	232	232	100	27.3 3	070 3	11 55 02	155	73.7	1,,,	007	27.5 3	0703	11 55 02	155	73.5	1//	007
Tributyltin ion	μg/kg	9	6	67	2.1	110	C112	45.3	36.7	48.8	104	0.23 U	110	C112	30.3	2.2	44.7	99.6
PCBs ^c	μ ₅ / κ ₅	,	O	07	2.1	110	CIIZ	43.3	30.7	40.0	104	0.23 0	110	CIIZ	30.3	2.2	77.7	77.0
		150		4.5	2.2 777	1000 5	m., 11020	105	5 0	101	2.57	1.0 177	1000 5	m., 11020	52 0		00.5	225
Total PCBs	μg/kg	173	77	45	3.3 JT	1000 T	T4-VC29	106	70	131	267	1.3 UT	1000 T	T4-VC29	52.9	11	99.6	225
PCDD/Fs Homologs	,	0		100	242 5	2000 177	G111.0	1210	1200	0.54	2.500	242 5	2000 17	G111.0	1210	1200	0.54	2.500
Total PCDD/Fs	pg/g	8	8	100	243 T	3080 JT	C111-2	1340	1280	964	2690	243 T	3080 JT	C111-2	1340	1280	964	2690
PCDD/Fs														~				
TCDD TEQ (ND=0)	pg/g	8	8	100	0.768 JT	8.87 JT	C111-2	3.52	3.04	2.74	7.53	0.768 JT	8.87 JT	C111-2	3.52	3.04	2.74	7.53
Pesticides	_																	
Aldrin	μg/kg	9	2		0.695 NJ	0.739 J	C112	0.717	0.717	0.0311	0.737	0.0425 UJ	0.739 J	C112			0.266	
Dieldrin	μg/kg	9	0	· ·								0.0696 U	0.37 U	C112			0.146	
Total chlordanes	μg/kg	9	8	89	1.15 NJT	12.7 NJT	C111-2	4.48	2.82	3.78	10.7	0.243 UJT	12.7 NJT	C111-2		2.48	3.81	10.4
DDx	μg/kg	173	92	53	0.07 JT	430 JT	T4-PI-09	21.7	11.5	48.9	46.3	0.07 JT	430 JT	T4-PI-09	11.8	0.5	37.1	43.2
PAHs																		
Total PAHs	μg/kg	240	224	93	0.15 JT	490000 T	T4-S3-01	23500	2010	64300	141000	0.15 JT	490000 T	T4-S3-01	21900	1840	62400	140000
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	239	64	27	22	3000	T4-VC20	196	85.5	404	699	4.9 U	4000 U	HC-S-07; HC-S-11;		36	611	497
RM 05-06														HC-S-42				
Grain Size																		
Fines	percent	33	33	100	0.39 T	83.8 T	C164	41.5	51.2	27.3	70.4	0.39 T	83.8 T	C164	41.5	51.2	27.3	70.4
	percent	33	33	100	0.37 1	03.0 1	C104	41.3	31.2	21.3	70.4	0.39 1	0.00 1	C104	41.3	31.2	21.3	70.4
Conventionals Total organic parken		22	22	100	0.05	0.16	0651	1.01	1 57	1.72	2.05	0.05	0.16	0.51	1.01	1 57	1.73	2.05
Total organic carbon	percent	33	33	100	0.05	8.16	C651	1.91	1.57	1.73	3.95	0.05	8.16	C651	1.91	1.57	1./3	3.95
Metals		2.4	21	01	1.40	24.6	0000	5 27	2.50		10.7	1.40	24.6	0000	£ 40	2.00	5.07	17.0
Arsenic	mg/kg	34	31		1.49	24.6	C206	5.37	3.59	5.5	18.7	1.49	24.6	C206			5.27	
Chromium	mg/kg	34	34		13.1 T	249 T	C207-1	56	39.1	51.8	158	13.1 T	249 T	C207-1	56		51.8	
Copper	mg/kg	33	33		12.7	188	C203	56.9	39.1	51.3	160	12.7	188	C203			51.3	
Zinc	mg/kg	33	33	100	46.2	515	C206	171	156	117	366	46.2	515	C206	171	156	117	366

Table 5.2-4. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

							Detected Concentr	rations					Dete	ected and Not Detected	d Concentra	ations	a: -	054
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	S Median b D	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	_	Standard Deviation (full DL)	
Butyltins	- Cinto	Count	Count	Detecteu	william	Maximum	200000000	1110411				(Iun DL)	(Iun DL)	Zocation(b)	(141122)	(run DL)	(Iun DE)	(1411 22)
Tributyltin ion	μg/kg	21	12	57	0.36 J	1000	SD053	196	46	320	819	0.2 U	1000	SD053	112	1.5	257	7 670
PCBs ^c	μg/kg	21	12	37	0.50 3	1000	3D033	170	40	320	017	0.2 0	1000	30033	112	1.3	231	070
		22	10	5.0	1.05 IT	2020 T	C202	260	220	620	002	1 4 117	2020 T	C202	200	27.2	500	5.00
Total PCBs	μg/kg	32	18	56	1.95 JT	2830 T	C203	369	220	639	992	1.4 UT	2830 T	C203	208	27.3	508	8 568
PCDD/Fs Homologs	,	1.1	1.1	100	1.71 5	10.40 TT	C207.1	5.61	00.0	721	17.60	1 71 T	1040 TT	C207.1	5.61	00.0	701	1 17.60
Total PCDD/Fs	pg/g	11	11	100	1.71 T	1940 JT	C207-1	561	98.9	731	1760	1.71 T	1940 JT	C207-1	561	98.9	731	1 1760
PCDD/Fs	,			0.2	0.0402 ***	5 00 YE	G207.1	2.21	1.50	2.45		0.016 177	5 00 YE	G207.1		0.225	2.00	
TCDD TEQ (ND=0)	pg/g	11	9	82	0.0482 JT	7.03 JT	C207-1	2.21	1.76	2.46	5.91	0.016 UT	7.03 JT	C207-1	1.81	0.337	2.38	8 5.63
Pesticides		•	_				~*											
Aldrin	μg/kg	20	5	25	0.119 J	1.6 J	C206	0.92	1.11	0.638	1.56	0.0295 UJ	1.6 J	C206			0.522	
Dieldrin	μg/kg	32	1	3	0.077 J	0.077 J	C651	0.077	0.077		0.077	0.0474 U	2 U	SD049			0.479	
Total chlordanes	μg/kg	33	9	27	0.23 NJT	11.2 NJT	C206	4.67	3.69	3.59	10.5	0.0386 UT	12 UT	C651	2.11		3.41	
DDx	μg/kg	32	26	81	0.09 JT	332 NJT	C197	56.2	10.7	85.6	221	0.0643 UJT	332 NJT	C197	45.7	3.49	80	0 196
PAHs																		
Total PAHs	μg/kg	33	33	100	21.9 JT	66600 T	C192	11600	5160	15900	43300	21.9 JT	66600 T	C192	11600	5160	15900	0 43300
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	33	8	24	36	620	C232	255	225	190	540	2.2 U	620	C232	91	31	137	7 342
RM 06-07																		
Grain Size																		
Fines	percent	55	55	100	1.55 T	94.1 T	NA-2B	52.4	63.5	34.5	91	1.55 T	94.1 T	NA-2B	52.4	63.5	34.5	5 91
Conventionals	Î																	
Total organic carbon	percent	55	55	100	0.03 J	8.36	C244	1.78	1.7	1.73	4.58	0.03 J	8.36	C244	1.78	1.7	1.73	3 4.58
Metals	•																	
Arsenic	mg/kg	64	62	97	0.8	11.4 J	C295	4.11	4.05	1.83	6.42	0.8	11.4 J	C295	4.13	4.07	1.81	1 6.41
Chromium	mg/kg	64	64	100	9.29	52.9	C295	29	31.1	10.1	43.1	9.29	52.9	C295			10.1	
Copper	mg/kg	64	64	100	13.2	801	C277	70	47.1	106	158	13.2	801	C277			106	
Zinc	mg/kg	64	64	100	34.2	374	C295	133	106	76.9	284	34.2	374	C295			76.9	
Butyltins	8		-		- · · -													
Tributyltin ion	μg/kg	17	8	47	0.68 J	360	SD071	90.5	67.5	120	283	0.23 U	360	SD071	42.7	0.33	91.7	7 184
PCBs ^c	rss	1,	· ·	• • •	0.00 2	500	52071	70.2	07.5	120	200	0.20	500	550,1	.2.,	0.00	,	10.
		5.1	26	£ 1	0.00052 IT	727 IT	C201	1.62	120	1.61	200	0.00252 IT	727 IT	C201	05	<i>c</i> 1	1.40	0 241
Total PCBs	μg/kg	51	26	51	0.00252 JT	737 JT	C291	163	130	161	388	0.00252 JT	737 JT	C291	85	6.4	140	0 341
PCDD/Fs Homologs	,			100	0.601 1	0.400 777	, m, , ca, a	1.550	202	25.00	7 500	0.601 F	0.400 777	1 WD 4010	1.550	202	25.00	
Total PCDD/Fs	pg/g	12	12	100	0.691 T	8480 JT	LWMC13	1650	293	2560	5690	0.691 T	8480 JT	LWMC13	1650	293	2560	0 5690
PCDD/Fs	,		10	0.0	0.011 777	21.5.77	, m, , ca, a			0.5	20.0	0.005.175	21.5.77	1 WD 4010	4.00	0.040	0.05	
TCDD TEQ (ND=0)	pg/g	12	10	83	0.011 JT	31.5 T	LWMC13	5.8	1.57	9.6	20.9	0.007 UT	31.5 T	LWMC13	4.83	0.943	8.97	7 18.5
Pesticides			_				~-~-											
Aldrin	μg/kg	52	3	6	0.31 J	1.02 NJ	C293-2	0.561	0.352	0.398	0.953	0.0269 UJ	3.3 U	C303	0.27		0.489	
Dieldrin	μg/kg	52	3		0.18 NJ	1.12 NJ	C293-1	0.569	0.406	0.491	1.05	0.044 UJ	2 UJ	LWMC13; SD074	0.321		0.425	
Total chlordanes	μg/kg	52	24	46	0.064 JT	53.2 NJT	C295	5.52	1.83	11.7	24.3	0.0359 UT	53.2 NJT	C295			8.25	
DDx	μg/kg	52	39	75	0.085 JT	1920 NJT	C295	103	16.6	311	273	0.049 UJT	1920 NJT	C295	77.2	9.45	272	2 230
PAHs																		
Total PAHs	μg/kg	54	52	96	0.54 JT	59300 T	C293-2	6560	2290	12800	39100	0.54 JT	59300 T	C293-2	6320	1870	12600	0 39000
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	53	11	21	3.1 J	610	C244	122	60	175	410	2.7 U	730 U	C267	110	48	152	2 370
RM 07-08																		
Grain Size																		
Fines	percent	28	28	100	0.46 T	89.2 T	C678	51.6	67.2	33.6	84	0.46 T	89.2 T	C678	51.6	67.2	33.6	6 84
Conventionals	•																	
Total organic carbon	percent	28	28	100	0.03 J	2.5	C678	1.36	1.66	0.874	2.35	0.03 J	2.5	C678	1.36	1.66	0.874	4 2.35
Metals	F																	
Arsenic	mg/kg	37	32	86	1.34	32	SED10	4.11	3.04	5.2	5.63	1 U	32	SED10	4.15	3.23	4.9	9 6.82
Chromium	mg/kg	37	37	100	7.86	44	SED10	28.3	31	8.97	39.4	7.86	44	SED10			8.97	
Copper	mg/kg	36				218	SED10	48.3	45.1	35.1	85.7	10.9	218	SED10			35.1	
Zinc		24				285	C347	124	128	60.3	211	40.8	285	C347				
Butyltins	mg/kg	24	24	100	40.0	403	C347	124	140	00.3	211	40.0	403	C347	124	128	00.3	, 211
	/1	26	22	00	0.32 J	24000	CED10	1250	20	4000	1200	0.22 11	24000	CED10	1110	25.5	4690	1200
Tributyltin ion	μg/kg	26	23	88	U.32 J	24000	SED10	1250	28	4980	1390	0.22 U	24000	SED10	1110	25.5	4090	0 1380
PCBs ^c																		
Total PCBs	μg/kg	23	18	78	0.00138 JT	254 JT	C347	82.5	45.9	87.5	234	0.00138 JT	254 JT	C347	65.1	24.4	84	4 229
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	6	6	100	131 T	87600 JT	C678	19500	544	35100	72600	131 T	87600 JT	C678	19500	544	35100	0 72600

Table 5.2-4. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

			_	-			Detected Concentr	rations					Detec	cted and Not Detected	d Concentra	tions	C4 1 1	95th
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	S Median b I	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)		Standard Deviation (full DL)	
PCDD/Fs		Count	Count	Detected	14111111111111	Mammum	Eccusion(b)	1120011				(Iun DL)	(Iun DL)	<u> </u>	(run DZ)	(Iun DE)	(Iun DE)	
TCDD TEQ (ND=0)	ng/g	6	6	100	0.28 JT	173 JT	C678	37.6	1.61	69	142	0.28 JT	173 JT	C678	37.6	1.61	69	142
Pesticides	pg/g	Ü	U	100	0.20 11	173 31	C076	37.0	1.01	0)	142	0.20 31	173 31	C076	37.0	1.01	0)	142
Aldrin	μg/kg	23	5	22	0.24 J	0.925 NJ	C347	0.519	0.51	0.274	0.864	0.0295 UJ	0.97 UJ	SD106	0.336	0.195	0.315	0.939
Dieldrin	μg/kg μg/kg	23	2	9	0.47	0.923 NJ 0.84 J	C678	0.519	0.655	0.274	0.804	0.0293 UJ 0.03 U	1.9 UJ	SD096; SD106		0.193	0.513	
Total chlordanes		23	13		0.15 JT	6.2 JT	C678	2.17	2	2.01	5.79	0.03 U 0.087 UT	6.2 JT	C678		0.13	1.83	
DDx	μg/kg	23	20		0.089 JT	502 NJT	C347	41.4	8.28	111	130	0.0826 UJT	502 NJT	C347	36.1	6.2	105	
	μg/kg	23	20	07	0.069 11	302 NJ I	C347	41.4	0.20	111	130	0.0820 UJ1	302 NJ I	C347	30.1	0.2	103	104
PAHs Total PAHs	/1	33	32	97	1.7 JT	30000 T	C679	2010	1070	6260	14500	0.75 UT	30000 T	C678	2920	1070	6180	14000
	μg/kg	33	32	97	1./ J1	30000 1	C678	3010	1070	0200	14300	0.75 01	30000 1	C078	2920	1070	0160	14000
Phthalates	/1	25	4	16	15 T	260	CD106	1.40	160	101	245	25 11	700 H	C347	126	70	162	200
Bis(2-ethylhexyl) phthalate	μg/kg	25	4	16	15 J	260	SD106	149	160	101	245	2.5 U	700 U	C347	126	70	162	398
RM 08-09																		
Grain Size																		
Fines	percent	6	6	100	8.95 T	77.2	SD138	52.9	59.5	23.8	74.2	8.95 T	77.2	SD138	52.9	59.5	23.8	74.2
Conventionals																		
Total organic carbon	percent	6	6	100	0.353 T	2.1	SD138	1.46	1.67	0.65	2.05	0.353 T	2.1	SD138	1.46	1.67	0.65	2.05
Metals																		
Arsenic	mg/kg	6	6	100	2.53	42.6	C420	11.5	4.4	15.6	35	2.53	42.6	C420	11.5	4.4	15.6	
Chromium	mg/kg	6	6	100	23.3 T	43.2	C420	33.6	35.1	8.11	42.5	23.3 T	43.2	C420	33.6	35.1	8.11	42.5
Copper	mg/kg	6	6	100	35.8	291	C420	128	109	94.2	259	35.8	291	C420	128	109	94.2	259
Zinc	mg/kg	6	6	100	127	764	C420	291	188	243	657	127	764	C420	291	188	243	
Butyltins																		
Tributyltin ion	μg/kg	2	2	100	380	27000	C420	13700	13700	18800	25700	380	27000	C420	13700	13700	18800	25700
PCBs ^c	P-00																	
	/1			100	25 IT	215 T	C420	1.61	1.42	112	204	25 17	215 T	C120	1.61	1.42	112	204
Total PCBs	μg/kg	6	6	100	35 JT	315 T	C420	161	143	113	304	35 JT	315 T	C420	161	143	113	304
PCDD/Fs Homologs	,	2		100	00.6 5	250 5	G 120	101	101		2.50	00.6	250 5	G 120	101	101		2.50
Total PCDD/Fs	pg/g	2	2	100	88.6 T	279 T	C420	184	184	135	269	88.6 T	279 T	C420	184	184	135	269
PCDD/Fs		_	_				~							~				
TCDD TEQ (ND=0)	pg/g	2	2	100	0.274 JT	0.571 JT	C420	0.423	0.423	0.21	0.556	0.274 JT	0.571 JT	C420	0.423	0.423	0.21	0.556
Pesticides																		
Aldrin	μg/kg	6	0	0								0.0448 U	0.96 UJ	SD138		0.24	0.337	
Dieldrin	μg/kg	6	2	33	0.39	0.87 J	C420	0.63	0.63	0.339	0.846	0.0733 U	1.9 UJ	SD138	0.677	0.525	0.669	
Total chlordanes	μg/kg	6	4	67	0.382 NJT	2.3 JT	C420	1.33	1.32	0.816	2.2	0.382 NJT	2.3 JT	C420	1.35	1.4	0.636	2.13
DDx	μg/kg	6	5	83	5.37 NJT	20.4 NJT	C420	10.3	8.93	6.08	18.5	2.7 UJA	20.4 NJT	C420	9.05	7.42	6.27	18.1
PAHs																		
Total PAHs	μg/kg	5	5	100	390 JT	1320 T	C420	930	928	397	1320	390 JT	1320 T	C420	930	928	397	1320
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	6	6	100	18	1100	C420	473	385	435	1030	18	1100	C420	473	385	435	1030
Swan Island Lagoon	100																	
Grain Size																		
Fines	percent	153	153	100	0.78 T	101 T	C380	54.7	56	31.2	95.9	0.78 T	101 T	C380	54.7	56	31.2	95.9
Conventionals	percent	100	100	100	0.70 1	101 1	2200	5	20	51.2	,,,,	0.70 1	101 1	2500	<i>5</i>	20	51.2	,,,,
Total organic carbon	percent	151	148	98	0.04 J	3.38	C364	1.25	0.945	0.902	2.8	0.04 J	3.38	C364	1.23	0.94	0.909	2.79
Metals	percent	131	140	76	0.04 3	5.50	C304	1.23	0.743	0.702	2.0	0.04 3	5.50	C304	1.23	0.74	0.707	2.17
Arsenic	ma/lea	156	146	94	1.3	51.4	C708	4.81	3.77	5.83	9.2	1.2	51.4	C708	4.71	3.73	5.67	9.03
	mg/kg				7							1.3 7						
Chromium	mg/kg	156	156	100		180	C708	31	28.2	19.6	46.8		180	C708		28.2	19.6	
Copper	mg/kg	155	155	100	10.5	3290	C384	145	47.8	384	594	10.5	3290	C384		47.8	384	
Zinc	mg/kg	155	155	100	24	1930	C384	181	111	232	373	24	1930	C384	181	111	232	373
Butyltins																		
Tributyltin ion	μg/kg	65	44	68	0.38 J	90000	PSY30C	5380	120	15100	28100	0.21 U	90000	PSY30C	3640	20	12700	16600
PCBs																		
PCBs ^c	μg/kg	125	84	67	0.0418 JT	10800 JT	C384	560	151	1590	2190	0.0418 JT	10800 JT	C384	380	46.8	1330	1170
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	12	12	100	13 JT	4150 JT	C430	981	541	1160	2870	13 JT	4150 JT	C430	981	541	1160	2870
PCDD/Fs	100			100	10 01	• • •	2.50	, , ,		-100	20.0	10 01		2130	,51	J.1	1100	20.0
TCDD TEQ (ND=0)	pg/g	12	12	100	0.0136 JT	5.29 JT	C430	1.94	1.22	1.77	4.92	0.0136 JT	5.29 JT	C430	1.94	1.22	1.77	4.92
Pesticides	P5/ 5	12	12	100	0.0130 31	J.27 J1	C-130	1.77	1.22	1.//	7.72	0.0130 31	J.27 J1	C+30	1.74	1.22	1.//	7.72
Aldrin	/!	74	8	1.1	0.188 J	0.591 NJ	C397	0.269	0.24	0.133	0.474	0.0299 UJ	6.7 U	C708	0.359	0.15	1.03	0.064
Aldrin Dieldrin	μg/kg		8	11 4	0.188 J 0.038 NJ		C702		0.24			0.0299 UJ 0.03 U	5.1 U		0.339			
	μg/kg	80		-		0.67 NJ		0.337		0.317	0.633			C421		0.0871	0.693	
Total chlordanes	μg/kg	81	48	59	0.092 NJT	310 NJT	C708	15.5	2.04	60.1	15.4	0.04 UT	310 NJT	C708	9.37	0.783	46.7	11

Table 5.2-4. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

						<u> </u>	Detected Concentr	rations					Detec	cted and Not Detected	d Concentr			054
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median b I	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median	Standard Deviation (full DL)	95th Percentile (full DL) ^b
DDx	μg/kg	80				2100 NJT	C708	65.1	6.94	295	76.2	0.0535 UJT	2100 NJT	C708	56.2	5.45	275	62
PAHs	100																	
Total PAHs Phthalates	μg/kg	123	104	85	0.48 JT	55000 T	C708	3400	916	8880	14200	0.48 JT	55000 T	C708	2870	740	8250	7670
Bis(2-ethylhexyl) phthalate <i>RM 09-10</i>	$\mu g/kg$	124	77	62	7.1 J	6800	C384	650	290	1180	2200	2.5 U	6800	C384	428	85	976	1740
Grain Size																		
Fines	percent	10	10	100	4.6 T	68.9 T	C743	36.1	31.4	25	67.6	4.6 T	68.9 T	C743	36.1	31.4	25	67.6
Conventionals	F																	
Total organic carbon	percent	10	10	100	0.37	3.54	C454	1.52	1.13	1.19	3.49	0.37	3.54	C454	1.52	1.13	1.19	3.49
Metals	•																	
Arsenic	mg/kg	9	9	100	1.61	3.89 JT	C454	2.47	2.45	0.786	3.61	1.61	3.89 JT	C454	2.47	2.45	0.786	3.61
Chromium	mg/kg	9	9	100	15.5 J	29.7 JT	C454	21.8	20	4.97	29.3	15.5 J	29.7 JT	C454	21.8	20	4.97	29.3
Copper	mg/kg	9	9	100	18.3 J	45.2 JT	C454	27.7	25.2	9.37	41.7	18.3 J	45.2 JT	C454	27.7	25.2	9.37	41.7
Zinc	mg/kg	9	9	100	62.7	164 T	C454	91.4	76.2	33.1	149	62.7	164 T	C454	91.4	76.2	33.1	149
PCBs ^c																		
Total PCBs	μg/kg	9	7	78	8.99 JT	94 JT	C742	41.1	22.1	32.4	86.8	1.9 UT	94 JT	C742	32.4	20.9	32.9	84.4
PCDD/Fs Homologs																		
Total PCDD/Fs PCDD/Fs	pg/g	4	4	100	47.2 JT	945 T	C454	412	328	407	879	47.2 JT	945 T	C454	412	328	407	879
TCDD TEQ (ND=0)	pg/g	4	4	100	0.147 JT	2.57 JT	C454	1.29	1.22	1.26	2.51	0.147 JT	2.57 JT	C454	1.29	1.22	1.26	2.51
Pesticides	100																	
Aldrin	μg/kg	9	0	0								0.0306 UJ	0.21 U	C742	0.0932	0.12	0.0604	0.174
Dieldrin	μg/kg	9	2	22	0.14 J	0.53 NJ	C742	0.335	0.335	0.276	0.511	0.0501 U	0.77 U	C743	0.229	0.14	0.253	0.674
Total chlordanes	μg/kg	9	5	56	0.125 NJT	0.581 NJT	C454	0.406	0.48	0.191	0.574	0.044 UT	2.2 UT	C743	0.57	0.48	0.652	1.6
DDx	μg/kg	9	9	100	0.18 T	13 NJT	C742; C743	4.83	2	5.31	13	0.18 T	13 NJT	C742; C743	4.83	2	5.31	13
PAHs																		
Total PAHs Phthalates	μg/kg	9	9	100	12 JT	2600 T	C743	814	495	775	2070	12 JT	2600 T	C743	814	495	775	2070
Bis(2-ethylhexyl) phthalate <i>RM 10-11</i>	μg/kg	10	4	40	14 J	130	C742	58	44	54.4	121	2.6 U	130	C742	40.6	16	43.6	114
Grain Size																		
Fines	percent	2	2	100	56.2 T	77.8 T	C749	67	67	15.3	76.7	56.2 T	77.8 T	C749	67	67	15.3	76.7
Conventionals	•																	
Total organic carbon Metals	percent	4	4	100	0.63	2.42	SD04	1.73	1.94	0.773	2.36	0.63	2.42	SD04	1.73	1.94	0.773	2.36
Arsenic	mg/kg	4	4	100	1.7	4.4	SD04	2.95	2.84	1.27	4.28	1.7	4.4	SD04	2.95	2.84	1.27	4.28
Chromium	mg/kg	4	4	100	19.7	23.6	C749	20.9	20.1	1.83	23.1	19.7	23.6	C749	20.9	20.1	1.83	23.1
Copper	mg/kg	4	4	100	28.1	36	C749	32.4	32.8	3.29	35.6	28.1	36	C749	32.4	32.8	3.29	35.6
Zinc	mg/kg	4	4	100	65.6	177	C749	108	95.5	49.9	167	65.6	177	C749	108	95.5	49.9	167
Butyltins																		
Tributyltin ion	μg/kg	2	2	100	4	13	SD04	8.5	8.5	6.36	12.6	4	13	SD04	8.5	8.5	6.36	12.6
PCBs ^c																		
Total PCBs	μg/kg	4	3	75	12 T	83 JT	C749	36.7	15	40.2	76.2	1.3 UT	83 JT	C749	27.8	13.5	37.3	72.8
Pesticides																		
Aldrin	μg/kg	2	0	0								0.12 U	0.12 U	C749			0	0.12
Dieldrin	μg/kg	2	-	50		0.14 J	C749	0.14	0.14		0.14	0.14 J	0.19 U	C749			0.0354	0.188
Total chlordanes	μg/kg	2	1	50		0.66 T	C749	0.66	0.66		0.66	0.087 UT	0.66 T	C749			0.405	
DDx	μg/kg	2	1	50	15 NJT	15 NJT	C749	15	15		15	0.18 UT	15 NJT	C749	7.59	7.59	10.5	14.3
PAHs				100	10 77	2200 5	07.40	050	5.10	024	1000	10.75	2200 5	CT.10	050	540	024	1000
Total PAHs Phthalates	μg/kg	4	4	100		2200 T	C749	879	649	934	1980	18 JT	2200 T	C749			934	1980
Bis(2-ethylhexyl) phthalate <i>RM 11-11.8</i>	μg/kg	4	3	75	49	200 Ј	SD04	116	100	76.8	190	7 U	200 Ј	SD04	89	74.5	83.2	185
Grain Size																		
Fines	percent	23	23	100	4.1 T	72.8 T	C032	34.6	33.8	21.4	63.2	4.1 T	72.8 T	C032	34.6	33.8	21.4	63.2
Conventionals																		
Total organic carbon Metals	percent	80	78	98	0.04 J	3.22	C048-R2	0.926	0.7	0.795	2.56	0.02 U	3.22	C048-R2	0.904	0.65	0.798	2.55
Arsenic	mg/kg	20	20	100	1.6 T	21.7 JT	C025	4.73	3.4	4.63	13.2	1.6 T	21.7 JT	C025	4.73	3.4	4.63	13.2

Table 5.2-4. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Eastern Nearshore.

							Detected Concents	rations					Dete	cted and Not Detected	Concentra	tions		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean 1		Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	
Chromium	mg/kg	20	20	100	12.6	61.5	C003	32.7	30.9	14.5	57.4	12.6	61.5	C003	32.7	30.9	14.5	57.4
Copper	mg/kg	20	20	100	19.2 J	268 JT	C025	59	47.2	54.4	104	19.2 J	268 JT	C025	59	47.2	54.4	104
Zinc	mg/kg	20	20	100	50.2 J	420 J	C003	159	151	108	376	50.2 J	420 J	C003	159	151	108	376
Butyltins																		
Tributyltin ion	μg/kg	19	3	16	0.93 J	31	C038	12.2	4.6	16.4	28.4	0.56 U	31	C038	2.5	0.66	6.96	7.24
PCBs ^c																		
Total PCBs	μg/kg	83	44	53	1.5 JT	6200 T	C019	464	75.9	1080	1750	1 UT	6200 T	C019	246	3	813	1180
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	18	18	100	6.96 JT	4880 T	C003	1510	602	1680	4650	6.96 JT	4880 T	C003	1510	602	1680	4650
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	18	18	100	0.02 JT	34.9 JT	C003	7.67	1.98	11.2	30.2	0.02 JT	34.9 JT	C003	7.67	1.98	11.2	30.2
Pesticides																		
Aldrin	μg/kg	20	1	5	1.8 J	1.8 J	C003	1.8	1.8		1.8	0.046 U	13 U	C047	1.61	0.165	3.34	8.44
Dieldrin	μg/kg	20	0	0 -								0.051 U	3.6 U	C047	0.714	0.43	0.959	2.37
Total chlordanes	μg/kg	20	15	75	0.22 JT	180 JT	C019	23.5	5.21	46.9	98.1	0.064 UT	180 JT	C019	17.6	3.28	41.6	68.9
DDx	μg/kg	20	15	75	0.069 JT	230 T	C019	45.4	13.7	64.4	167	0.069 JT	230 T	C019	34.1	5.47	58.8	145
PAHs																		
Total PAHs	μg/kg	20	20	100	1.3 JT	26800 T	C048-R1	2790	1490	5800	5770	1.3 JT	26800 T	C048-R1	2790	1490	5800	5770
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	20	15	75	7.7 J	510	C003	122	48	160	440	7 U	510	C003	97.7	39	145	415

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.2-5. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

Table 5.2-5. Summary Statistics by Rr						```	Detected Concer						I	Detected and Not Detected	Concentrat	tions		05:3
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean	Median (full DL) ^b	Standard Deviation (full DL)	Percentile
Study Area	Cinto	Count	Count	Detected	Minimum	Maximum	Eccution (B)	Menn	Health	Deviation	Tercentite	(Iuli DL)	(Iuli DL)	Waximum Education(b)	(run DL)	(run DL)	(run DL)	(Iun DL)
•																		
Grain Size		210	210	100	0.62 T	06.5	DM 22	57.1	<i>(5.2)</i>	20.1	00.7	0.62 T	06.5	DM 22	57.1	65.2	20.1	00.7
Fines	percent	319	319	100	0.62 T	96.5	DM-22	57.1	65.3	28.1	90.7	0.62 T	96.5	DM-22	57.1	65.3	28.1	90.7
Conventionals		2.52	2.52	100	0.05	0.20	G225		1.00	0.025	2.00	0.05	0.20	6225			0.00	• • • • •
Total organic carbon	percent	363	363	100	0.05	9.29	G225	1.66	1.69	0.935	2.89	0.05	9.29	G225	1.66	1.69	0.935	5 2.89
Metals	_						~											
Arsenic	mg/kg	334	322		0.7	7.99 J	G220	3.48	3.48			0.7	7.99 J	G220	3.55			
Chromium	mg/kg	329	327		8.37	57.7	UG03	27	27.6			8.37	57.7	UG03				
Copper	mg/kg	334	330		9.7	187 J	PSY36	35.9	35.7			9.7	187 J	PSY36				
Zinc	mg/kg	334	334	100	38.6	238	G349	97.5	97.7	30	150	38.6	238	G349	97.5	97.7	30	150
Butyltins																		
Tributyltin ion	μg/kg	44	40	91	0.64 J	1800 J	SD124	137	8.15	333	562	0.64 J	1800 J	SD124	125	6.3	319	525
PCBs ^c																		
Total PCBs	μg/kg	326	238	73	1.41 JT	5900 JT	UG02	61.7	14.2	388	157	1 UT	5900 JT	UG02	49	13	332	2 110
PCDD/Fs Homologs	100																	
Total PCDD/Fs	pg/g	39	39	100	15 JT	2260 T	G313	421	189	584	2030	15 JT	2260 T	G313	421	189	584	2030
PCDD/Fs	P & &	3,		100	10 01	2200 1	0010		10)	20.	2000	10 01	2200 1	3312		107		2000
TCDD TEQ (ND=0)	pg/g	39	39	100	0.0225 JT	6.27 JT	G307	1.42	0.605	1.85	5.37	0.0225 JT	6.27 JT	G307	1.42	0.605	1.85	5.37
Pesticides	P5/5	37	37	100	0.0223 31	0.27 31	3307	1.12	0.005	1.05	5.57	0.0223 31	0.27 31	3307	1.12	0.005	1.00	3.37
Aldrin	μg/kg	266	65	24	0.0833 J	9.33 J	G225	0.674	0.381	1.17	1.51	0.0305 UJ	20 U	WR-BC-21: WR-BC-22	0.762	0.298	2	2 2
Dieldrin	μg/kg μg/kg	275	74		0.064 J	6.38 J	G225	0.449	0.289			0.0303 UJ	45 U	UG02				
Total chlordanes		276	189		0.004 J 0.031 JT	7.2 T	G756	0.443	0.267			0.03 U	700 UT	G778	5.27		45.7	
DDx	μg/kg	276			0.051 JT 0.052 JT	274 JT	C312	11	4.3			0.051 JT 0.052 JT	274 JT	C312				
	μg/kg	270	207	91	0.032 11	2/4 J1	C312	11	4.3	20.3	29.3	0.032 11	2/4 J1	C312	11	4.3	23.5	31.2
PAHs Tetal DAII	/1	225	225	100	4.7 T	7260000 T	C225	12600	121	414000	26600	4.7 T	7260000 T	G225	12600	124	414000	26600
Total PAHs	μg/kg	335	335	100	4.7 T	7260000 T	G225	42600	434	414000	36600	4.7 T	7260000 T	G225	42600	434	414000	36600
Phthalates		217	210	60	7.2.1	2200 1	67.40	241	1.40	400	554	7 11	10000 11	CD 4 D 05	226	120		
Bis(2-ethylhexyl) phthalate	μg/kg	317	218	69	7.3 J	3300 J	G748	241	140	409	554	7 U	10000 U	GRAB-05	236	120	655	5 542
RM 01.9-03																		
Grain Size																		
Fines	percent	7	7	100	58.8 T	94.7 T	G005	77.3	81.8	14.7	93.8	58.8 T	94.7 T	G005	77.3	81.8	14.7	93.8
Conventionals																		
Total organic carbon	percent	10	10	100	1.15	3.23	G036	2.1	1.86	0.766	3.1	1.15	3.23	G036	2.1	1.86	0.766	5 3.1
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	1	1	100	0.0225 JT	0.0225 JT	DG02	0.0225	0.0225		0.0225	0.0225 JT	0.0225 JT	DG02	0.0225	0.0225		0.0225
Pesticides																		
Aldrin	μg/kg	9	8	89	0.23 NJ	1.51 NJ	G036	0.738	0.565	0.5	1.47	0.23 NJ	1.51 NJ	G036	0.686	0.4	0.493	3 1.47
Dieldrin	μg/kg	10	5	50	0.188 J	0.587 NJ	G005	0.376	0.4	0.154	0.556	0.033 U	2 U	WR-BC-09; WR-BC-10	0.843	0.477	0.814	1 2
Total chlordanes	μg/kg	10	7	70	0.24 NJT	1.79 JT	G018	0.775	0.627	0.579	1.65	0.24 NJT	10 UA	WR-BC-09; WR-BC-10	3.54	1.04	4.48	3 10
DDx	μg/kg	10	10	100	1.9 JT	9.45 NJT	G018	4.71	4.12	2.52	8.84	1.9 JT	9.45 NJT	G018	4.71	4.12	2.52	8.84
PAHs																		
Total PAHs	μg/kg	10	10	100	296 JT	2900 T	WR-BC-10	1030	794	772	2390	296 JT	2900 T	WR-BC-10	1030	794	772	2 2390
Phthalates	, , ,																	
Bis(2-ethylhexyl) phthalate	μg/kg	7	4	57	67	100	G002; G606	89	94.5	15.6	100	39 U	120 U	G018	83	89	27.3	3 114
RM 03-04																		
Metals																		
Arsenic	mg/kg	10	10	100	3.18	4.33	DG02	3.66	3.55	0.32	4.18	3.18	4.33	DG02	3.66	3.55	0.32	2 4.18
Chromium	mg/kg	10			26.1	40.2	G005	30.9	30.4			26.1	40.2	G005				
Copper	mg/kg	10			27.2	44.9	G036	36.5	35.6			27.2	44.9	G036				
Zinc	mg/kg	10				153	G601	117	114			92.5	153	G601	117			
	mg/kg	10	10	100	92.3	155	0001	117	114	17.9	140	92.3	133	0001	117	114	17.5	140
PCBs ^c																		
Total PCBs	μg/kg	10	9	90	4 T	51 T	G018	13.6	9	14.5	37.6	4 T	51 T	G018	12.8	8.3	14	1 36
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	1	1	100	15 JT	15 JT	DG02	15	15		15	15 JT	15 JT	DG02	15	15		- 15
Grain Size																		
Fines	percent	11	11	100	10.8 T	87.2 T	G110	59.9	67.9	23.9	83.6	10.8 T	87.2 T	G110	59.9	67.9	23.9	83.6
Conventionals																		
Total organic carbon	percent	13	13	100	0.37	2.41	G113	1.54	1.61	0.645	2.34	0.37	2.41	G113	1.54	1.61	0.645	2.34
Metals	=																	
Arsenic	mg/kg	13	13	100	2.54	3.86 T	G614	3.24	3.3	0.418	3.79	2.54	3.86 T	G614	3.24	3.3	0.418	3.79
Chromium	mg/kg	13				38.3	G081	28.1	28.9			18.5	38.3	G081	28.1			
	0 0																	

Table 5.2-5. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

							Detected Concen	trations					D	etected and Not Detected	Concentrat	ions		050
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	Percentile
Copper	mg/kg	13	13	100	16.2	44.3	G081	32.5	34.1	8.78	42.6	16.2	44.3	G081	32.5	34.1	8.78	42.6
Zinc	mg/kg	13			63.4	131	WR-BC-15	96.3	98.7		124	63.4	131	WR-BC-15	96.3	98.7	18.4	
Butyltins																		
Tributyltin ion	μg/kg	1	1	100	3.7	3.7	G102	3.7	3.7		3.7	3.7	3.7	G102	3.7	3.7		3.7
PCBs ^c	rb 115	-	-	100	2.,	5.7	3102	517	517		<i>5.7</i>	2.,	· · ·	0102	5.,	5.,		<i>5.,</i>
	/1	12	10	77	4 IT	200 IT	C614	20.9	1.1	60	110	2217	200 IT	C614	22.0	9	53.2	. 01
Total PCBs	μg/kg	13	10	77	4 JT	200 JT	G614	29.8	11	60	118	2.3 UT	200 JT	G614	23.9	9	33.2	91
PCDD/Fs Homologs		1	1	100	120 IT	120 IT	0611	120	120		120	120 IT	120 IT	0611	120	120		120
Total PCDD/Fs	pg/g	1	1	100	120 JT	120 JT	G611	120	120		120	120 JT	120 JT	G611	120	120		120
PCDD/Fs		1	1	100	0.20 IT	0.20 IT	0611	0.20	0.20		0.20	0.20 IT	0.20 17	0(11	0.20	0.20		0.20
TCDD TEQ (ND=0)	pg/g	1	1	100	0.38 JT	0.38 JT	G611	0.38	0.38		0.38	0.38 JT	0.38 JT	G611	0.38	0.38		0.38
Pesticides																		
Aldrin	μg/kg	12			0.11 J	0.75 J	G614	0.431	0.382			0.0441 U	2 UJ	WR-BC-15	0.433		0.545	
Dieldrin	μg/kg	13			0.158 NJ	0.48	G614	0.291	0.272		0.452	0.0939 U	2 U	C12/13/14; WR-BC-15	0.545		0.655	
Total chlordanes	μg/kg	13			0.31 NJT	1.24 NJT	G102	0.775	0.791	0.306		0.0587 UJT	11 UT	G614	2.87	0.831	4.27	
DDx	μg/kg	13	13	100	1.4 NJT	77.2 NJT	G113	12.2	5.45	20.6	46.5	1.4 NJT	77.2 NJT	G113	12.2	5.45	20.6	46.5
PAHs																		
Total PAHs	μg/kg	13	13	100	340 JT	10000 T	WR-BC-15	2700	1500	2750	7180	340 JT	10000 T	WR-BC-15	2700	1500	2750	7180
Phthalates	,																	
Bis(2-ethylhexyl) phthalate	μg/kg	11	7	64	30	180 J	G614	103	100	52.5	174	22 U	180 J	G614	80.6	68	52.2	170
RM 04-05	100																	
Grain Size																		
Fines	percent	35	35	100	9.13 T	92 T	G131	68.5	75.5	22.4	91.1	9.13 T	92 T	G131	68.5	75.5	22.4	91.1
Conventionals	percent	33	33	100	7.13 1	72 1	0131	00.5	13.3	22.4	71.1	7.13 1	72 1	6131	00.5	75.5	22.4	71.1
	novoont	38	38	100	0.19	2.83	G134	1.84	1.96	0.731	2.79	0.19	2.83	G134	1.84	1.96	0.731	2.79
Total organic carbon	percent	30	30	100	0.19	2.63	G134	1.04	1.90	0.731	2.19	0.19	2.63	G134	1.64	1.90	0.731	2.19
Metals		2.5	25	0.5	1.0	7.5 0	G110	2.52	2.5	0.040	4.50	1.0	5.50	G110	2.55	2.52	0.066	
Arsenic	mg/kg	36			1.8	7.53	G119	3.53	3.5			1.8	7.53	G119	3.57	3.53	0.966	
Chromium	mg/kg	36			15.7	39.3	SD019	27.5	29		36.7	15.7	39.3	SD019	27.5	29	6.7	
Copper	mg/kg	36			13.5	52.7 J	C522	34.9	37.6		46	13.5	52.7 J	C522	34.9	37.6	9.17	
Zinc	mg/kg	36	36	100	56.8	151	C522	100	99	23.2	146	56.8	151	C522	100	99	23.2	146
PCBs ^c																		
Total PCBs	μg/kg	30	26	87	3.6 JT	110 T	G629	16	11.1	21.4	45.3	2.4 UT	110 T	G629	14.6	10.2	20.3	39
PCDD/Fs Homologs	100																	
Total PCDD/Fs	pg/g	8	8	100	20.7 JT	656 JT	G630	224	146	212	545	20.7 JT	656 JT	G630	224	146	212	545
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	8	8	100	0.0226 JT	1.22 JT	G630	0.456	0.33	0.422	1.1	0.0226 JT	1.22 JT	G630	0.456	0.33	0.422	1.1
Pesticides	166	Ü	Ü	100	0.0220 01	1.22 01	3050	0.150	0.55	022		0.0220 01	1.22 01	3000	000	0.00	022	
Aldrin	μg/kg	30	9	30	0.216 J	0.9 J	G633	0.456	0.381	0.255	0.848	0.036 UJ	1.7 U	GRAB-01; GRAB-02	0.398	0.272	0.408	1.34
Dieldrin	μg/kg μg/kg	30			0.19 NJ	0.63 J	G632	0.368	0.284			0.030 U	2.3 U	GRAB-01; GRAB-02	0.43	0.24	0.627	
Total chlordanes		30			0.17 IV3 0.11 JT	2.3 JT	G629	0.308	0.635			0.032 U 0.0479 UT	10 UA	C16/17	1.07	0.635	1.77	
DDx	μg/kg α/ka	30				2.3 JT 19 NJT		7.23	6.27		15.9	1.3 NJT	10 UA 19 NJT		7.23		4.51	
	μg/kg	30	30	100	1.3 NJT	19 NJ1	G629	1.23	0.27	4.51	13.9	1.5 NJ 1	19 NJ1	G629	1.23	0.27	4.31	13.9
PAHs	п	27	27	100	210 IT	0000 75	0.000	2100	1.4.40	21.00	6000	210 IT	0000 75	0.620	2100	1.440	21.60	
Total PAHs	μg/kg	37	37	100	210 JT	9000 T	G630	2100	1440	2160	6980	210 JT	9000 T	G630	2100	1440	2160	6980
Phthalates	_																	
Bis(2-ethylhexyl) phthalate	μg/kg	35	25	71	21	400 J	GRAB-01	127	110	85.4	266	7 U	400 J	GRAB-01	114	98	82.2	245
RM 05-06																		
Grain Size																		
Fines	percent	42	42	100	0.62 T	86.3 T	G171	35.5	35.3	27.3	79.6	0.62 T	86.3 T	G171	35.5	35.3	27.3	79.6
Conventionals																		
Total organic carbon	percent	44	44	100	0.11	9.29	G225	1.43	1.34	1.44	2.49	0.11	9.29	G225	1.43	1.34	1.44	2.49
Metals																		
Arsenic	mg/kg	41	41	100	1.8	7.99 J	G220	3.23	3.15	1.13	4.72	1.8	7.99 J	G220	3.23	3.15	1.13	4.72
Chromium	mg/kg	41			8.72 T	35.7	G188	21	20.9			8.72 T	35.7	G188	21.3		7.81	
Copper	mg/kg	41			9.7	121 JT	G196	30.1	28.6			9.7	121 JT	G196		28.6	19.9	
Zinc		41			43.7 T	159 T	G196	86.5	88.3			43.7 T	121 J1 159 T	G196			29.9	
	mg/kg	41	41	100	45./ 1	139 1	G196	80.5	88.3	29.9	140	43./ 1	139 1	G196	80.5	88.3	29.9	140
Butyltins				100	20	220	G207	100		00.7	212	20	220	G207	100	75.5	00.5	212
Tributyltin ion	μg/kg	4	4	100	28	230	G205	102	75.5	92.5	212	28	230	G205	102	75.5	92.5	212
PCBs ^c																		
Total PCBs	μg/kg	39	26	67	1.41 JT	61 NJT	C196	16	16.5	12.9	33.4	1.3 UT	61 NJT	C196	12.4	8	12.1	28.4
PCDD/Fs Homologs	,																	
Total PCDD/Fs	pg/g	2	2	100	284 JT	593 T	C196	439	439	218	578	284 JT	593 T	C196	439	439	218	578
	100	-	_				0							2-70				

Table 5.2-5. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

				-			Detected Concer	trations					Ι	Detected and Not Detected	Concentrat			050
Chamical	Ilmita	Sample	Detected Sample	Percent	M::a	M a	Maximum Location(s)	Mean	Median ^b	Standard	95th Percentile ^b	Minimum	Maximum	Maximum Location(s)	Mean	Median	Standard Deviation (full DL)	Percentile
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median	Deviation	rercentile	(full DL) ^a	(full DL) ^a	Waxiiiuiii Location(s)	(Iuli DL)	(Iuli DL)	(Iuli DL)	(Iuli DL)
PCDD/Fs	,			100	1.20 7	2.25.15	GG L O SWY	1.00	1.00	0.500	2.22	1.20 7	2 25 YE	GG L OFWI	1.00	1.00	0.500	2.22
TCDD TEQ (ND=0)	pg/g	2	2	100	1.39 JT	2.37 JT	GCA05W	1.88	1.88	0.693	2.32	1.39 JT	2.37 JT	GCA05W	1.88	1.88	0.693	2.32
Pesticides	a	27	1.4	20	0.142.7	0.22 1	COOF	1 15	0.207	2.20	4.04	0.0205 111	20.11	WD DC 21	1.00	0.204	2.52	2.47
Aldrin	μg/kg	37	14	38	0.143 J	9.33 J	G225	1.15	0.387	2.39		0.0305 UJ	20 U	WR-BC-21	1.23		3.52	
Dieldrin	μg/kg	39	17	44	0.079 J	6.38 J	G225	0.711	0.3	1.48		0.03 U	6.38 J	G225	0.717	0.3	1.18	
Total chlordanes	μg/kg	39	24	62	0.054 JT	1.66 JT	G178	0.571	0.462	0.436		0.0405 UT	10 UA	,	1.41	0.44	2.8	
DDx	μg/kg	39	37	95	0.052 JT	148 JT	G225	12.6	7.8	23.7	22.4	0.052 JT	148 JT	G225	13.2	7.8	23.7	26
PAHs	_						~											
Total PAHs	μg/kg	41	41	100	88 JT	7260000 T	G225	275000	4530	1140000	801000	88 JT	7260000 T	G225	275000	4530	1140000	801000
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	38	26	68	7.3 J	2900	G183	203	86	555	273	7.3 J	2900	G183	197	96	474	416
RM 06-07																		
Grain Size																		
Fines	percent	44	44	100	1.03 T	86.4 T	G289	34.7	21.2	30.9	80	1.03 T	86.4 T	G289	34.7	21.2	30.9	80
Conventionals																		
Total organic carbon	percent	50	50	100	0.09	3 T	BT015	1.15	0.74	0.921	2.67	0.09	3 T	BT015	1.15	0.74	0.921	2.67
Metals																		
Arsenic	mg/kg	48	48	100	0.7	5.18	BT015	3	3.05	0.881	4.23	0.7	5.18	BT015	3	3.05	0.881	4.23
Chromium	mg/kg	48	48	100	8.37	40.2	G289	20.5	18.4	9.27	37.6	8.37	40.2	G289	20.5	18.4	9.27	37.6
Copper	mg/kg	48	48	100	9.71	53	G287	25.2	21.3	13.7	47.3	9.71	53	G287	25.2	21.3	13.7	47.3
Zinc	mg/kg	48	48	100	38.6	194	C312	87.7	70	43	180	38.6	194	C312	87.7	70	43	180
Butyltins																		
Tributyltin ion	μg/kg	1	1	100	13	13	BT015	13	13		13	13	13	BT015	13	13		13
PCBs ^c	100																	
Total PCBs		20	21	55	2 17	303 JT	C200.2	60.2	24.2	97.4	225	1217	202 IT	G200.2	42.2	10	71.7	100
	μg/kg	38	21	55	2 JT	303 J1	C300-2	68.2	24.2	87.4	235	1.3 UT	303 JT	C300-2	42.3	10	71.7	198
PCDD/Fs Homologs	1	1.1	1.1	100	17 0 IT	22 co T	G212	770	455	024	2100	17 0 IT	2260 11	G212	770	457	024	2100
Total PCDD/Fs	pg/g	11	11	100	17.2 JT	2260 T	G313	779	457	834	2180	17.2 JT	2260 T	G313	779	457	834	2180
PCDD/Fs							~											
TCDD TEQ (ND=0)	pg/g	11	11	100	0.0745 JT	6.27 JT	G307	3.13	3.96	2.41	5.82	0.0745 JT	6.27 JT	G307	3.13	3.96	2.41	5.82
Pesticides																		
Aldrin	μg/kg	31	5		0.0833 J	2.2	GRAB-04	0.806	0.37	0.911	2.01	0.0325 UJ	20 U	WR-BC-22	1.17	0.125	3.56	
Dieldrin	μg/kg	36	7	19	0.064 J	2.6 J	C299	0.494	0.15	0.931	1.9	0.03 U	2.6 J	C299	0.511	0.0985	0.813	2.3
Total chlordanes	μg/kg	37	20	54	0.031 JT	6.1 JT	C299	1.58	1.32	1.57	4.31	0.031 JT	10 UA	WR-BC-22; WR-BC-23	1.57	0.663	2.44	6.88
DDx	μg/kg	37	35	95	0.26 JT	274 JT	C312	29.1	7.82	56.7	117	0.054 UT	274 JT	C312	27.7	7.49	55.5	106
PAHs																		
Total PAHs	μg/kg	48	48	100	4.7 T	1420000 T	WR-BC-22	58600	3230	221000	190000	4.7 T	1420000 T	WR-BC-22	58600	3230	221000	190000
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	44	15	34	8.2 J	470 J	GRAB-04	87.8	50	131	358	7 U	10000 U	GRAB-05	308	47.5	1500	412
RM 07-08																		
Grain Size																		
Fines	percent	41	41	100	38.9 T	93.9 T	PSY37	76.8	79.3	14.3	91.5	38.9 T	93.9 T	PSY37	76.8	79.3	14.3	91.5
Conventionals	1																	
Total organic carbon	percent	45	45	100	0.17	4.35	AN-CTPD-05	2.03	2.01	0.781	3.14	0.17	4.35	AN-CTPD-05	2.03	2.01	0.781	3.14
Metals	Percent			100	0.17		111 0112 00	2.00	2.01	0.701	5.1.	0.17		111, 011 2 00	2.00	2.01	0.701	5.1.
Arsenic	mg/kg	44	38	86	1.4	5	PSY37; PSY38	3.89	4	0.785	4.92	1.4	6 U	SD120; SD122	4.09	4.19	0.901	5
Chromium	mg/kg	39	39	100	17.7	41	SD093	31.1	31.3	5.5		17.7	41	SD120, SD122 SD093	31.1	31.3	5.5	
		44		100		187 J	PSY36		40.3	30.3		16.4	187 J				30.3	
Copper Zinc	mg/kg	44	44 44	100	16.4	238	G349	49.3		33.3			238	PSY36 G349	49.3 114		33.3	
	mg/kg	44	44	100	51.5	238	G349	114	107	33.3	167	51.5	238	G349	114	107	33.3	187
Butyltins					2.5	1000 *	ap.121	252	1.50		1200	2 2 44	1000 *	ap 121	2.12		~ .o	1250
Tributyltin ion	μg/kg	12	11	92	2.6	1800 J	SD124	373	160	559	1390	2.3 U	1800 J	SD124	342	93	543	1350
PCBs ^c																		
Total PCBs	μg/kg	37	24	65	2.18 JT	140 T	AN-CTPD-04	37.4	19.2	38.8	104	2.18 JT	140 T	AN-CTPD-04	31.5	17.9	33	98.6
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	6	6	100	35.6 JT	507 JT	G681	239	177	174	477	35.6 JT	507 JT	G681	239	177	174	477
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	6	6	100	0.134 JT	1.71 JT	G681	0.701	0.515	0.56	1.52	0.134 JT	1.71 JT	G681	0.701	0.515	0.56	1.52
Pesticides	100	· ·	o o	100			3001	3.701	5.0.15	0.00	1.02		, - 0 1	3001	5.7.51	0.010	0.50	1.52
Aldrin	μg/kg	33	6	18	0.16 NJ	1.51 J	G344	0.596	0.26	0.599	1.43	0.0399 UJ	9.6 U	SD093	1.03	0.2	1.79	2.6
Dieldrin		33	8	24	0.16 NJ 0.252 J	1.22 NJ	G358	0.535	0.20	0.399		0.0399 UJ 0.0652 U	9.0 U 19 U	SD093 SD093	1.03		3.3	
Total chlordanes	μg/kg	33																
i otai cinordanes	μg/kg	55	20	61	0.17 JT	6.35 JT	G349	1.07	0.669	1.43	3.47	0.17 JT	10 UA	C26/27/28; WR-BC-29	2.32	0.948	3.11	10

Table 5.2-5. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

				_			Detected Concen	trations					D	etected and Not Detected	Concentra			050
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median	201144	95th Percentile (full DL) ^b
DDx	μg/kg	33	33		1.8 T	86 JA	SD093	11.5	7.4	15	24.3	1.8 T	86 JA	SD093	11.5	7.4	15	24.3
PAHs																		
Total PAHs Phthalates	μg/kg	44	44	100	37.7 T	1200 T	AN-CTPD-04	326	292	200	572	37.7 T	1200 T	AN-CTPD-04	326	5 292	200	572
Bis(2-ethylhexyl) phthalate <i>RM 08-09</i>	μg/kg	41	25	61	59	540	07R040	213	160	131	462	34 U	570 U	AN-CTPD-05	207	140	158	470
Grain Size																		
Fines	percent	50	50	100	27.3 T	96 T	WR-PG-88	73.8	77.6	16.7	93.2	27.3 T	96 T	WR-PG-88	73.8	77.6	16.7	93.2
Conventionals	percent	50		100	27.5	70 1		75.0	7710	1017	75.2	27.0 1	,,,,		75.0	, ,,,,	10.7	,,,,
Total organic carbon	percent	49	49	100	0.81	3.22	G387	2.12	2.16	0.571	2.98	0.81	3.22	G387	2.12	2.16	0.571	2.98
Metals	•																	
Arsenic	mg/kg	49	46	94	2.86	5.07	G725	3.87	3.98	0.617	4.98	2.86	6 U	SD144	3.96	3.99	0.704	5.01
Chromium	mg/kg	49	49	100	19.6	40.6 J	G435	30.6	29.2	4.95	39.7	19.6	40.6 J	G435	30.6	29.2	4.95	39.7
Copper	mg/kg	49	49	100	24.2	56.8 J	G406	38.7	39.1	5.86	47.4	24.2	56.8 J	G406	38.7	39.1	5.86	47.4
Zinc	mg/kg	49	49	100	73 J	137	G418	97.9	100	14.3	119	73 J	137	G418	97.9	100	14.3	119
Butyltins	2 2																	
Tributyltin ion	μg/kg	11	10	91	0.72 J	230	SD147	27.1	2.55	71.4	132	0.72 J	230	SD147	25.1	. 3	68.1	121
PCBs ^c	100																	
Total PCBs	ua/ka	45	33	73	5.3 JT	50.4 T	DM-G	18.2	15.1	10.2	40.6	4.4 UJT	50.4 T	DM-G	17.5	13.9	10.2	39.8
PCDD/Fs Homologs	μg/kg	43	33	13	3.3 11	30.4 1	DIVI-G	10.2	13.1	10.2	40.0	4.4 UJ1	30.4 1	DIVI-G	17.5	13.9	10.2	39.0
Total PCDD/Fs	ng/g	3	3	100	66 1 IT	232 JT	G725	145	136	83.1	222	66.4 JT	232 JT	G725	145	136	83.1	222
	pg/g	3	3	100	66.4 JT	232 J1	G723	143	130	83.1	222	00.4 J1	232 J1	G723	143	130	83.1	222
PCDD/Fs	,	2	2	100	0.0022 IT	0.660 IT	6725	0.450	0.610	0.217	0.662	0.0022 IT	0.660 170	CZZZ	0.450	0.612	0.217	0.662
TCDD TEQ (ND=0)	pg/g	3	3	100	0.0932 JT	0.668 JT	G725	0.458	0.613	0.317	0.663	0.0932 JT	0.668 JT	G725	0.458	0.613	0.317	0.663
Pesticides		2.4	_	1.5	0.172 1	0.0 1	C110	0.464	0.27	0.272	0.022	0.0422 11	0.0 1	C110	0.2	0.21	0.106	0.562
Aldrin	μg/kg	34	5		0.172 J	0.9 J	C449	0.464	0.37	0.272	0.822	0.0432 U	0.9 J	C449			0.196	0.562
Dieldrin	μg/kg	34	12		0.066 J	0.47	G725	0.268	0.291	0.11	0.422	0.034 U	1.1 U	WR-PG-78			0.298	1 20
Total chlordanes	μg/kg	34	32		0.137 JT	1.84 NJT	G410-2	0.639	0.457	0.406	1.42	0.137 JT	1.84 NJT	G410-2			0.403	1.39
DDx	μg/kg	34	34	100	0.66 JT	10.6 NJT	G414	3.76	3.46	2.03	7.02	0.66 JT	10.6 NJT	G414	3.76	3.46	2.03	7.02
PAHs																		
Total PAHs	μg/kg	49	49	100	57.8 JT	3480 JA	DM-H	297	185	500	502	57.8 JT	3480 JA	DM-H	297	185	500	502
Phthalates Bis(2-ethylhexyl) phthalate	μg/kg	49	39	80	48	751 J	DM-H	208	160	148	448	14 U	751 J	DM-H	187	150	141	432
Swan Island Lagoon																		
Grain Size		_	_	100	96 1 T	06.5	DM 22	01.6	01.4	1.2	06.2	96 1 T	06.5	DM 22	01.6	01.4	4.2	06.2
Fines	percent	5	5	100	86.1 T	96.5	DM-22	91.6	91.4	4.3	96.2	86.1 T	96.5	DM-22	91.6	91.4	4.3	96.2
Conventionals		-	_	100	1.5	2.40	DCM25	2.04	2.27	0.420	2.44	1.5	2.49	DCX/25	2.04	2.27	0.420	2.44
Total organic carbon	percent	5	5	100	1.5	2.48	PSY35	2.04	2.27	0.438	2.44	1.5	2.48	PSY35	2.04	2.27	0.438	2.44
Metals	7	-	4	00	2.46.7	~	DOMA A DOMAS	4.40	4.77	0.726	_	0.46.7	C 11	ap 125	4.70		0.022	5.0
Arsenic	mg/kg	5	4	00	3.46 J	5	PSY34; PSY35	4.49	4.75	0.726	5	3.46 J	6 U	SD125			0.923	5.8
Chromium	mg/kg	5	5		26	34.7	SD125	30	28.6	3.4	34.2	26	34.7	SD125			3.4	34.2
Copper	mg/kg	5	5		38.1	76.7	PSY34	62	65.7	14.6	75.1	38.1	76.7	PSY34			14.6	75.1
Zinc	mg/kg	5	5	100	71.3	122	PSY34	103	104	20.5	122	71.3	122	PSY34	103	3 104	20.5	122
Butyltins	_	_	_				~~							~~				
Tributyltin ion	μg/kg	2	2	100	92	540 J	SD125	316	316	317	518	92	540 J	SD125	316	316	317	518
PCBs ^c																		
Total PCBs	μg/kg	5	1	20	15.6 T	15.6 T	G700	15.6	15.6		15.6	10 UT	40 UT	DM-22	22.7	15.6	15.1	39.6
Pesticides																		
Aldrin	μg/kg	1	0	0								0.44 U	0.44 U	G700	0.44	0.44		0.44
Dieldrin	μg/kg	1	0	0								0.11 U	0.11 U	G700	0.11	0.11		0.11
Total chlordanes	μg/kg	1	1	100	0.39 T	0.39 T	G700	0.39	0.39		0.39	0.39 T	0.39 T	G700	0.39	0.39		0.39
DDx	μg/kg	1	1	100	5 NJT	5 NJT	G700	5	5		5	5 NJT	5 NJT	G700	5			5
PAHs																		
Total PAHs	μg/kg	5	5	100	230 JT	589 T	PSY34	370	343	138	551	230 JT	589 T	PSY34	370	343	138	551
Phthalates Pic(2 othydboyyd) phthalate		-	-	100	170	1020 1	DM 22	670	400	712	1650	170	1020 I	DM 00	670	100	712	1650
Bis(2-ethylhexyl) phthalate <i>RM 09-10</i>	μg/kg	5	5	100	170	1920 J	DM-22	679	480	713	1650	170	1920 Ј	DM-22	679	480	713	1650
Grain Size																		
Fines	percent	33	33	100	9.21 T	87.2 T	WR-PG-92	63.4	65.7	19.9	86.6	9.21 T	87.2 T	WR-PG-92	63.4	65.7	19.9	86.6
Conventionals																		
Total organic carbon	percent	34	34	100	0.37	3.16	WR-PG-94	2.11	2.09	0.683	3.05	0.37	3.16	WR-PG-94	2.11	2.09	0.683	3.05

Table 5.2-5. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

Table 5.2-5. Summary Statistics by Rr						. , ,	Detected Concen						D	etected and Not Detected	Concentrat	ions		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	Percentile
Metals		Count	Count	Detected	.,	1724111111111	(4)					(Iun DL)	(Iun DL)	(,)	,	, ,	,	
Arsenic	ma/ka	34	33	97	2 J	6	PSY77	3.73	3.77	0.91	5.09	2 Ј	6	PSY77	3.74	3.8	0.898	5.06
Chromium	mg/kg mg/kg	34	34		13.3	44.7	RC483-2	29.9	29.3			13.3	44.7	RC483-2	29.9	29.3	6.19	
		34																
Copper	mg/kg		32		15.5	71.6	RC483-2	35.4	35.4			15.5	71.6	RC483-2	34.6	35.3	9.17	
Zinc	mg/kg	34	34	100	60.6	188	SD150	95.8	96.6	23.6	129	60.6	188	SD150	95.8	96.6	23.6	5 129
Butyltins															• • •			
Tributyltin ion	μg/kg	9	8	89	0.64 J	7.7	DM-F	2.75	1.55	2.83	7.39	0.64 J	7.7	DM-F	3.08	1.9	2.83	7.34
PCBs ^c																		
Total PCBs	μg/kg	34	27	79	3.42 JT	156 T	SD150	27.1	13	39.5	127	3.42 JT	156 T	SD150	26.3	12.9	36	5 118
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	2	2	100	27.8 JT	543 JT	G739	285	285	364	517	27.8 JT	543 JT	G739	285	285	364	517
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	2	2	100	0.0294 JT	1.21 JT	G739	0.62	0.62	0.835	1.15	0.0294 JT	1.21 JT	G739	0.62	0.62	0.835	5 1.15
Pesticides	188	_	_		*****							*****				****		
Aldrin	μg/kg	28	4	14	0.43	1.3 NJ	G475-2	0.688	0.51	0.411	1.19	0.0324 U	2 U	GRAB-09; GRAB-10;	0.483	0.305	0.603	3 2
Alum	μg/kg	26	4	14	0.43	1.5 NJ	0473-2	0.066	0.51	0.411	1.19	0.0324 0	2 0	PSY77	0.463	0.303	0.00.	2
Dieldrin	a/lea	28	5	18	0.1 J	0.33 J	G734	0.252	0.28	0.0889	0.322	0.033 U	2 U	GRAB-09; GRAB-10;	0.474	0.179	0.649	2
Dieidilli	μg/kg	20	3	10	U.1 J	0.33 J	0/34	0.232	0.28	0.0009	0.322	0.033 0	2.0		0.474	0.179	0.045	2
m - 1 11 1	71	20	21	7.5	0.057 IT	1 1 777	07.45	0.500	0.55	0.215	1.01	0.057 III	2 774	PSY77	0.720	0.50	0.56	
Total chlordanes	μg/kg	28	21	75	0.057 JT	1.1 JT	G745	0.588	0.55	0.315	1.01	0.057 JT	2 UA	GRAB-09; GRAB-10;	0.728	0.58	0.566	5 2
														PSY77				
DDx	μg/kg	28	25	89	1.2 NJT	9.9 NJT	G739	3.25	2.92	1.72	5.61	1.2 NJT	9.9 NJT	G739	3.13	2.85	1.66	5.4
PAHs																		
Total PAHs	μg/kg	34	34	100	27 JT	2580 JA	DM-F	455	198	656	2020	27 JT	2580 JA	DM-F	455	198	656	5 2020
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	34	31	91	33	3260 J	DM-F	294	130	584	735	23 UJ	3260 J	DM-F	276	130	560	647
RM 10-11																		
Grain Size																		
Fines	percent	39	39	100	8.76 T	83.8 T	RC01-2	52	53.9	15.7	72.6	8.76 T	83.8 T	RC01-2	52	53.9	15.7	7 72.6
Conventionals	percent	37	37	100	0.70 1	03.0 1	RC01-2	32	33.7	13.7	72.0	0.70 1	03.0 1	Reo1-2	32	33.7	13.7	72.0
Total organic carbon	porcont	42	42	100	0.36	2.98	G760	1.76	1.63	0.536	2.62	0.36	2.98	G760	1.76	1.63	0.536	5 2.62
e	percent	42	42	100	0.30	2.90	0700	1.70	1.03	0.550	2.02	0.30	2.90	0700	1.70	1.03	0.550	2.02
Metals	/1	12	42	100	1.05	6 66 IT	DC01.2	2.44	2 11	1.00	5.40	1.05	6.66 JT	PC01 2	2.44	2 11	1.00	5 40
Arsenic	mg/kg	42	42		1.95	6.66 JT	RC01-2	3.44	3.11	1.08		1.95		RC01-2	3.44		1.08	
Chromium	mg/kg	42	42		17.6	42.3	DM-B	28.6	28.4			17.6	42.3	DM-B	28.6		6.2	
Copper	mg/kg	42			17.2	179	G506	39.7	34			17.2	179	G506	38.9			
Zinc	mg/kg	42	42	100	63.2 J	195	G504	100	96.4	24.7	136	63.2 J	195	G504	100	96.4	24.7	136
Butyltins																		
Tributyltin ion	μg/kg	1	0	0 -								5.8 U	5.8 U	DM-A	5.8	5.8	-	- 5.8
PCBs ^c																		
Total PCBs	μg/kg	42	31	74	4.8 T	167 JT	G504	32.7	16.6	36.3	97.7	3.07 UT	167 JT	G504	30.4	16.8	33	90.3
PCDD/Fs Homologs	r-88																	
Total PCDD/Fs	pg/g	2	2	100	61.2 JT	127 JT	RC01-2	93.8	93.8	46.2	123	61.2 JT	127 JT	RC01-2	93.8	93.8	46.2	2 123
PCDD/Fs	P5/5	_	_	100	01.2 31	127 31	Reof 2	75.0	75.0	10.2	123	01.2 31	127 31	Reof 2	75.0	75.0	10.2	123
TCDD TEQ (ND=0)	ng/g	2	2	100	0.129 JT	0.387 JT	RC01-2	0.258	0.258	0.182	0.374	0.129 JT	0.387 JT	RC01-2	0.258	0.258	0.182	2 0.374
~ , , ,	pg/g	2	2	100	0.129 J1	0.367 31	KC01-2	0.236	0.236	0.162	0.574	0.129 J1	0.367 31	KC01-2	0.236	0.238	0.162	0.374
Pesticides		20	7	10	0.2	0.40	0747	0.227	0.20	0.114	0.477	0.0226 111	C 11	DCVZ2	0.966	0.27	1.26	. 24
Aldrin	μg/kg	39		18	0.2	0.48	G747	0.327	0.29			0.0326 UJ	6 U	PSY72	0.866		1.35	
Dieldrin	μg/kg	39			0.15 J	0.82 J	G770	0.413	0.345			0.03 U	6 U	PSY72	0.856			
Total chlordanes	μg/kg	39	26	67	0.3 T	7.2 T	G756	1.05	0.6	1.42	2.88	0.3 T	10 UA	T1S-01; T1S-03; T1S-	2.15	0.84	2.98	3 10
														05; WR-BC-36				
DDx	μg/kg	39	37	95	1.3 T	12 NJT	G771	4.06	3.5	2.26	7.73	1.3 T	12 NJT	G771	4.06	3.5	2.24	7.69
PAHs																		
Total PAHs	μg/kg	42	42	100	44 T	8770 JA	DM-B	595	255	1370	1200	44 T	8770 JA	DM-B	595	255	1370	1200
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	41	33	80	87 J	3300 J	G748	446	260	589	1120	27 UJ	3300 J	G748	405	220	548	3 1000
RM 11-11.8	r 0 0							_							, ,			
Grain Size																		
Fines	percent	12	12	100	1.68 T	39.5 T	G774	14.7	5.39	14.4	36.1	1.68 T	39.5 T	G774	14.7	5.39	14.4	36.1
	percent	12	12	100	1.00 1	ا ل.J.J 1	07/4	14./	5.39	14.4	30.1	1.00 1	37.3 1	07/4	14./	5.39	14.4	30.1
Conventionals		22	22	100	0.05	1.76	T10.00	0.651	0.4	0.504	1 55	0.05	1.76	T10 00	0.651	0.4	0.50	1 155
Total organic carbon	percent	33	33	100	0.05	1.76	T1S-09	0.651	0.4	0.504	1.55	0.05	1.76	T1S-09	0.651	0.4	0.504	1.55
Metals				400	1.02		m10.6=	2	2	0.055	2.0	1.02		m.c. :=	2	2	0.0==	,
Arsenic	mg/kg	12	12	100	1.02	4.4	T1S-07	2.57	2.69	0.977	3.8	1.02	4.4	T1S-07	2.57	2.69	0.977	3.8

Table 5.2-5. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

							Detected Concer	trations					D	Detected and Not Detected (Concentrat	ions		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	_	Standard Deviation (full DL)	95th Percentile (full DL) ^b
Chromium	mg/kg	12	12	100	10	57.7	UG03	23.7	23.7	13.3	43	10	57.7	UG03	23.7	23.7	13.3	43
Copper	mg/kg	12	12	100	11.6	35.3 N	T1S-07	23	23.7	7.8	32.4	11.6	35.3 N	T1S-07	23	23.7	7.8	32.4
Zinc	mg/kg	12	12	100	44	202 T	G028	83.3	80.4	43.5	155	44	202 T	G028	83.3	80.4	43.5	155
Butyltins																		
Tributyltin ion	μg/kg	3	3	100	0.74 J	16	G028	5.84	0.77	8.8	14.5	0.74 J	16	G028	5.84	0.77	8.8	14.5
PCBs ^c																		
Total PCBs	μg/kg	33	30	91	2.2 JT	5900 JT	UG02	292	15.5	1080	678	1 UT	5900 JT	UG02	266	14	1030	650
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	3	3	100	104 JT	2020 JT	G028	810	307	1050	1850	104 JT	2020 JT	G028	810	307	1050	1850
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	3	3	100	0.218 JT	4.9 JT	G028	1.95	0.728	2.57	4.48	0.218 JT	4.9 JT	G028	1.95	0.728	2.57	4.48
Pesticides																		
Aldrin	μg/kg	12	1	8	0.12 J	0.12 J	G024	0.12	0.12		0.12	0.046 U	1.9 U	UG02	0.471	0.19	0.56	1.41
Dieldrin	μg/kg	12	0	0 -	-							0.03 U	45 U	UG02	4.67	0.51	12.8	22.5
Total chlordanes	μg/kg	12	6	50	0.24 JT	5.7 JT	G028	1.42	0.385	2.15	4.65	0.17 UT	700 UT	G778	86.2	3.3	211	480
DDx	μg/kg	12	12	100	0.26 T	140 T	G778	25.2	5	43.3	110	0.26 T	140 T	G778	25.2	5	43.3	110
PAHs																		
Total PAHs	μg/kg	12	12	100	20 T	950 JA	UG03	327	162	335	870	20 T	950 JA	UG03	327	162	335	870
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	12	8	67	9 J	270	T1S-09	130	125	85.2	242	9 J	270	T1S-09	98.9	90	83.1	226

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - non-detect

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

N - Presumptive evidence of presence of material; identification of the compound is not definitive.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

A - Total value based on limited number of analytes.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.2-6. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

Table 5.2-6. Summary Statistics by Riv				<u> </u>		,y	Detected Cor		ıs					Detected and Not De	tected Conc	entrations		0.5%
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	95th Percentile (full DL) ^b
Study Area	- Cinto	Count	Count	Detected	171111111111111	Maximum	Zotation(s)	1/10411	111001111	20,1000	101000000	(Iuli DL)	(Iun DL)	Zotation(b)	(run DE)	(Iun DE)	(Iun DL)	(run DD)
Grain Size																		
Fines	percent	341	341	100	0.12 T	94.5 T	WR-VC-10	49.1	58.4	32.1	90.5	0.12 T	94.5 T	WR-VC-10	49.1	58.4	32.1	90.5
Conventionals	percent	341	341	100	0.12 1	74.5 1	WK-VC-10	47.1	36.4	32.1	70.5	0.12 1	74.5 1	WK-VC-10	47.1	36.4	32.1	70.5
Total organic carbon	percent	411	401	98	0.02 J	9.74 J	GS-C7	1.45	1.67	1.13	3.08	0.02 J	9.74 J	GS-C7	1.42	1.64	1.13	3.05
Metals	percent	411	401	76	0.02 3)./ + J	05-07	1.43	1.07	1.13	3.00	0.02 3).14 J	G5-C7	1.42	1.04	1.13	3.03
Arsenic	mg/kg	359	343	96	0.5 J	21	PSY36C	3.45	3.39	1.94	6.05	0.5 J	21	PSY36C	3.38	3.32	1.96	6.01
Chromium	mg/kg	341			7.62	175	C299	25		13	39.9	7.62	175	C299			13	39.8
	mg/kg	359			10.3	579	PSY36C	38.9		49	65.5	10.3	579	PSY36C			49	65.5
Copper Zinc	0 0	359			26.6 J	891	C299	105		76	200	26.6 J	891	C299			76	200
	mg/kg	339	339	100	20.0 J	091	C299	103	91.2	70	200	20.0 J	091	C299	103	91.2	70	200
Butyltins Tributyltin inn	/1	22	20	00	0.50 1	4100	CD125	490	12.1	1000	2220	0.21 11	4100	CD125	420	0.55	1020	2060
Tributyltin ion	μg/kg	32	28	88	0.58 J	4100	SD125	490	12.1	1090	3220	0.21 U	4100	SD125	429	9.55	1030	3060
PCBs ^c																		
Total PCBs	μg/kg	390	253	65	0.00232 JT	2400 T	WR-VC-108	91	40.9	215	262	0.00232 JT	2400 T	WR-VC-108	65.1	20.9	183	219
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	53	53	100	0.0578 JT	4080 JT	RC01-2	348	99.3	726	1260	0.0578 JT	4080 JT	RC01-2	348	99.3	726	1260
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	54	51	94	0.000262 JT	33.3 JT	C314	1.84	0.341	4.95	6.18	0.000262 JT	33.3 JT	C314	1.74	0.335	4.83	6.06
Pesticides																		
Aldrin	μg/kg	329	31	9	0.23 NJ	44 J	C299	2.57	0.62	8.04	9.02	0.0284 UJ	44 J	C299	1.03	0.26	3.24	2
Dieldrin	μg/kg	334	30	9	0.08 J	13	WR-CD-40	1.11	0.285	2.46	3.62	0.03 U	13	WR-CD-40	0.958	0.3	1.8	3.5
Total chlordanes	μg/kg	334	177	53	0.051 NJT	51.1 NJT	C314	2.63	0.87	6.77	9.5	0.0379 UT	51.1 NJT	C314	3.55	0.99	6.47	17
DDx	μg/kg	334	294	88	0.058 JT	3200 JT	C314	53.9	7.81	252	178	0.0506 UJT	3200 JT	C314	47.6	6.4	237	136
PAHs																		
Total PAHs	μg/kg	422	403	95	0.37 JT	12000000 JT	GS-C7	118000	449	843000	257000	0.37 JT	12000000 JT	GS-C7	112000	400	824000	167000
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	379	200	53	2.6 J	18000	WR-VC-110	303	76.5	1700	404	2.1 U	18000	WR-VC-110	196	68	1250	330
RM 01.9-03																		
Grain Size																		
Fines	percent	7	7	100	39.3 T	84.3 T	WR-VC-03	67	70.3	14	81.2	39.3 T	84.3 T	WR-VC-03	67	70.3	14	81.2
Conventionals	F																	
Total organic carbon	percent	13	13	100	1.22	2.78	021108WRPB-VC-01	1.86	1.91	0.454	2.51	1.22	2.78	021108WRPB-VC-01	1.86	1.91	0.454	2.51
Pesticides	P																	
Aldrin	μg/kg	14	1	7	0.65 J	0.65 J	021108WRPB-VC-01	0.65	0.65		0.65	0.12 U	2 U	WR-GC-11	0.492	0.17	0.63	1.81
Dieldrin	μg/kg μg/kg	14		14	0.62 NJ	0.8 NJ	C606	0.71		0.127	0.791	0.16 U	3.6 U	021108WRPB-VC-03			1.17	3.47
Total chlordanes	μg/kg μg/kg	14			0.18 JT	1.8 JA	021108WRPB-VC-01	0.815		0.626	1.63	0.18 JT	17 UA	WR-VC-01			4.72	12.5
DDx	μg/kg μg/kg	14			4 A	47 NJT	C6011	12.8		11.4	30.2	3.4 UA	47 NJT				11.3	28.8
PAHs	μ ₀ /1.6	1.	13	,,,	1 21	17 1131	20011	12.0	0.7	11.1	30.2	5.1 671	17 1131	20011	12.1	0.03	11.5	20.0
Total PAHs	ua/ka	14	14	100	676 T	7130 T	WR-GC-11	2710	1850	2240	6460	676 T	7130 T	WR-GC-11	2710	1850	2240	6460
Phthalates	μg/kg	14	14	100	070 1	/130 1	WK-GC-11	2/10	1650	2240	0400	070 1	7130 1	WK-GC-11	2710	1650	2240	0400
Bis(2-ethylhexyl) phthalate	ua/ka	13	11	85	17 J	99	C606	48.7	47	26.8	90	17 J	99	C606	49.2	47	24.7	88.2
RM 03-04	μg/kg	13	11	63	1 / J	77	C000	40.7	47	20.6	90	1 / J	77	C000	47.2	47	24.7	66.2
Grain Size		10	10	100	471 T	045 T	WD VC 10	716	90.7	25.0	02.6	471 T	04.5.T	WD VC 10	716	90.7	25.0	02.6
Fines	percent	10	10	100	4.71 T	94.5 T	WR-VC-10	74.6	80.7	25.8	93.6	4.71 T	94.5 T	WR-VC-10	74.6	80.7	25.8	93.6
Metals	м			100	2.20	4.2	02110037000 172.00	2.15	2.1	0.50=	2.00	2.20	4.2	001100337888 330 00		2.1	0.505	2.00
Arsenic	mg/kg	13			2.29	4.2	021108WRPB-VC-03	3.13		0.537	3.98	2.29	4.2	021108WRPB-VC-03			0.537	3.98
Chromium	mg/kg	13			19	28.1	WR-GC-11	23.3		2.33	26.2	19	28.1	WR-GC-11			2.33	26.2
Copper	mg/kg	13			28.1	42.9	C606	34.6		4.13	41.2	28.1	42.9	C606			4.13	41.2
Zinc	mg/kg	13	13	100	68.9	226	021108WRPB-VC-03	118	90.6	48.9	196	68.9	226	021108WRPB-VC-03	118	90.6	48.9	196
Butyltins																		
Tributyltin ion	μg/kg	2	1	50	8.1	8.1	021108WRPB-VC-01	8.1	8.1		8.1	0.54 U	8.1	021108WRPB-VC-01	4.32	4.32	5.35	7.72
PCBs																		
Total PCBs	μg/kg	14	10	71	9.22 JT	150 T	021108WRPB-VC-03	65.4	47.5	50	142	7.4 UT	150 T	021108WRPB-VC-03	51.4	31.1	47.9	138
Conventionals																		
Total organic carbon	percent	10	10	100	0.09	2.23	WR-VC-10	1.71	1.84	0.611	2.21	0.09	2.23	WR-VC-10	1.71	1.84	0.611	2.21
Metals																		
Arsenic	mg/kg	10	10	100	1.86	3.96	C614	3.44	3.65	0.619	3.93	1.86	3.96	C614	3.44	3.65	0.619	3.93
Chromium	mg/kg	10	10	100	11.7	30.6	C614	24	24	5.33	29.7	11.7	30.6	C614	24	24	5.33	29.7
Copper	mg/kg	10			15.5	53.4	C614	37.6		10.6	50.7	15.5	53.4	C614			10.6	50.7
Zinc	mg/kg	10			51.2	162	C614; C617	107		35	162	51.2	162	C614; C617			35	162
		10	10	100		102	201., 2017	107	, , , ,	33	192			201., 2017	107	, , , ,	33	10

Table 5.2-6. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

				_			Detected Cor	centrations	S					Detected and Not De	tected Conc	entrations		
	***	Sample	Detected Sample	Percent	3 9	3	Maximum	3.6	ar v b	Standard	95th	Minimum	Maximum	Maximum	Mean	Median	Standard Deviation	95th Percentile
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Deviation	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(Tull DL)	(full DL) ^b	(full DL)	(full DL) ^b
PCBs ^c																		
Total PCBs	μg/kg	10	10	100	3.6 JT	120 NJT	C614	66.5	69.5	34.5	109	3.6 JT	120 NJT	C614	66.5	69.5	34.5	109
Pesticides																		
Aldrin	μg/kg	10	0	0 -								0.12 U	0.21 U	WR-VC-06	0.16	0.155	0.0424	0.206
Dieldrin	μg/kg	10	2	20	0.3	1.2 NJ	C614	0.75	0.75	0.636	1.16	0.088 U	1.2 NJ	C614	0.399	0.26	0.395	1.11
Total chlordanes	μg/kg	10	6	60	0.14 JT	1.1 NJT	WR-VC-07	0.47	0.345	0.384	1.01	0.14 JT	2.4 UT	C614	0.974	0.835	0.799	2.22
DDx	μg/kg	10	10	100	3 T	35 NJT	C614	18.1	15.6	10	34	3 T	35 NJT	C614	18.1	15.6	10	34
PAHs																		
Total PAHs	μg/kg	10	10	100	1200 T	5310 T	WR-VC-10	3040	3250	1460	5040	1200 T	5310 T	WR-VC-10	3040	3250	1460	5040
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	10	7	70	78	160	WR-VC-07	112	100	29.4	154	7 U	160	WR-VC-07	96.8	94.5	40.9	151
RM 04-05	100																	
Grain Size																		
Fines	percent	32	32	100	0.92 T	93 T	WR-VC-22	67.3	82.6	29	92.6	0.92 T	93 T	WR-VC-22	67.3	82.6	29	92.6
Conventionals	percent	32	32	100	0.52 1	<i>)</i> 3 1	WK-7C-22	07.5	02.0	2)	72.0	0.52 1	<i>)</i> 3 1	WIC-VC-22	07.3	02.0	2)	72.0
	paraant	36	35	97	0.06	2.2	WP VC 22	1.63	1.00	0.898	2.45	0.06	2.2	WP VC 22	1.50	1.09	0.923	2.45
Total organic carbon	percent	36	35	97	0.06	3.2	WR-VC-22	1.63	1.99	0.898	2.45	0.06	3.2	WR-VC-22	1.59	1.98	0.923	2.45
Metals		22	22	100		5.40	WD 1/0 20	2.41	2.51	1.12	4.0.5	1	5.40	WD MC 20	2 44	2.51	1 10	400
Arsenic	mg/kg	33	33		1	5.43	WR-VC-30	3.41	3.51	1.12	4.86	1	5.43	WR-VC-30		3.51	1.12	4.86
Chromium	mg/kg	33	33		9.54	37.4	C152	23	20.8	7.54	36.5	9.54	37.4	C152			7.54	36.5
Copper	mg/kg	33	33		13.1	57.8	C630	33.8	32.9	11.1	48.8	13.1	57.8	C630			11.1	48.8
Zinc	mg/kg	33	33	100	41.1	186	C167	101	89	35.4	166	41.1	186	C167	101	89	35.4	166
PCBs ^c																		
Total PCBs	μg/kg	30	26	87	11 T	153 T	C167	56	46.1	38.8	129	1.3 UT	153 T	C167	50	34.5	39.4	126
PCDD/Fs Homologs	r6 - 6	20	20	0,		100 1	0107		.0.1	50.0	127	1.0 01	100 1	0107	20	5	57	120
Total PCDD/Fs	ng/g	2	2	100	99.8 T	474 T	C144	287	287	265	455	99.8 T	474 T	C144	287	287	265	455
PCDD/Fs	pg/g	2	2	100	99.6 1	4/4 1	C144	207	267	203	433	99.0 I	4/4 1	C144	207	267	203	433
	/ .	2	2	100	2.52 IT	2.06 17	C144	2.70	2.70	0.202	2.02	2.52 IT	2.06 IT	C144	2.70	2.70	0.202	2.02
TCDD TEQ (ND=0)	pg/g	2	2	100	2.52 JT	3.06 JT	C144	2.79	2.79	0.382	3.03	2.52 JT	3.06 JT	C144	2.79	2.79	0.382	3.03
Pesticides		•					~							*****				
Aldrin	μg/kg	30	1	3	0.4 NJ	0.4 NJ	C144	0.4	0.4		0.4	0.12 U	2 U	WR-GC-18			0.559	1.7
Dieldrin	μg/kg	30	0	Ü								0.03 U	2.3 U	B401-C1; B401-C2		0.16	0.652	2.17
Total chlordanes	μg/kg	30	18		0.17 JT	1.63 NJT	WR-VC-30	0.85	0.78	0.442	1.54	0.092 UT	10 UA	WR-GC-18		0.885	1.76	2.21
DDx	μg/kg	30	30	100	0.27 JT	1230 JT	WR-VC-28	73.9	17.9	234	286	0.27 JT	1230 JT	WR-VC-28	73.9	17.9	234	286
PAHs																		
Total PAHs	μg/kg	36	36	100	5.5 JT	51000 T	C621	5240	3090	8590	14000	5.5 JT	51000 T	C621	5240	3090	8590	14000
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	32	11	34	7.6 J	210	C630	100	95	58.9	185	5.9 U	210	C630	72	61	55.4	178
RM 05-06	100																	
Grain Size																		
Fines	percent	35	35	100	0.45 T	90 T	WR-VC-34	31.9	6.8	35.4	83.5	0.45 T	90 T	WR-VC-34	31.9	6.8	35.4	83.5
Conventionals	percent	33	33	100	0.43 1	<i>7</i> 0 1	WK-VC-34	31.7	0.6	33.4	05.5	0.45 1	<i>7</i> 0 1	WK-VC-34	31.7	0.6	33.4	65.5
		25	30	0.0	0.02 1	2.65	WD MC 24	0.000	0.21	0.052	2.22	0.02 1	2.65	WD VC 24	0.752	0.2	0.022	2.21
Total organic carbon	percent	35	30	86	0.02 J	2.65	WR-VC-34	0.866	0.31	0.952	2.32	0.02 J	2.65	WR-VC-34	0.753	0.2	0.923	2.31
Metals		2.4	2.4	100		5 O F	WD WG 42	200	2.52	1.20	4.50		5 O F	W.D. V.G. 40	205	2.52	1.00	4.50
Arsenic	mg/kg	34			1.4 J	6.95	WR-VC-42			1.29	4.73	1.4 J	6.95	WR-VC-42			1.29	
Chromium	mg/kg	34	34		8.81	37	C169	17.1	14.5	7.86	34.2	8.81	37	C169		14.5	7.86	34.2
Copper	mg/kg	34	34	100	12.4	47.4	C171	23.6	15.7	12.7	46.6	12.4	47.4	C171	23.6		12.7	46.6
Zinc	mg/kg	34	34	100	39.6	157	C169	68.8	53.6	34	142	39.6	157	C169	68.8	53.6	34	142
Butyltins																		
Tributyltin ion	μg/kg	2	1	50	0.58 J	0.58 J	C196	0.58	0.58		0.58	0.21 U	0.58 J	C196	0.395	0.395	0.262	0.562
PCBs ^c																		
	11 a /lea	34	17	50	0.00222 IT	112 JT	C169	39.3	22	38.7	106	0.00222 IT	112 JT	C169	20.7	2.50	32.9	100
Total PCBs	μg/kg	34	1 /	50	0.00232 JT	112 J1	C109	39.3	22	30.7	100	0.00232 JT	114 J1	C109	20.7	2.58	34.9	100
PCDD/Fs Homologs	,	_	_	400	0.0550 ***	10.5 7	~1~-	22 -	0.00			0.0550 ***	100 7	a	22 -	0.00		
Total PCDD/Fs	pg/g	8	8	100	0.0578 JT	186 T	C196	32.5	9.03	63.3	133	0.0578 JT	186 T	C196	32.5	9.03	63.3	133
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	8	5	62	0.000262 JT	0.499 JT	C196	0.218	0.0747	0.255	0.498	0.000262 JT	0.499 JT	C196	0.138	0.0148	0.222	0.497
Pesticides																		
Aldrin	μg/kg	31	3	10	0.44 J	0.748 J	C171	0.556	0.48	0.167	0.721	0.0354 UJ	2 U	WR-GC-19		0.13	0.38	0.729
Dieldrin	μg/kg	34	2	6	0.08 J	0.095 NJ	C645	0.0875	0.0875	0.0106	0.0943	0.03 U	2 U	WR-GC-19	0.26	0.11	0.41	1
Total chlordanes	μg/kg	34	15	44	0.12 JT	1.79 NJT	C171	0.871	0.96	0.517	1.55	0.0471 UJT	10 UA	WR-GC-19			1.71	1.57
DDx	μg/kg	34	25		0.058 JT	261 NJT	C171	19.2	6.99	51	26	0.058 JT	261 NJT	C171	14.3		44.3	24.6

				_			Detected Cor	ncentration	S					Detected and Not Det	tected Conc	entrations		0.5.5
		Sample	Detected Sample	Percent			Maximum			Standard	95th	Minimum	Maximum	Maximum	Mean	Median	Standard Deviation	95th Percentile
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Deviation	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(full DL)	(full DL) ^b	(full DL)	(full DL) ^b
PAHs																		
Total PAHs	μg/kg	35	33	94	0.39 JT	117000 T	C221	8450	2770	21400	35600	0.39 JT	117000 T	C221	7970	2670	20900	34900
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	34	9	26	31 J	130	WR-VC-15	80.4	75	34.2	122	4.4 UJ	130	WR-VC-15	39.5	26	39	110
RM 06-07																		
Grain Size																		
Fines	percent	63	63	100	0.29 T	87.1 T	C300-2	25.7	9.84	27.9	75.5	0.29 T	87.1 T	C300-2	25.7	9.84	27.9	75.5
Conventionals																		
Total organic carbon	percent	64	64	100	0.02 J	9.74 J	GS-C7	1.4	0.68	1.64	3.46	0.02 J	9.74 J	GS-C7	1.4	0.68	1.64	3.46
Metals																		
Arsenic	mg/kg	66		100	1.04	5.09 J	C326	2.63		1.07	4.84	1.04	5.09 J	C326			1.07	4.84
Chromium	mg/kg	66		100	8.66	175	C299	22.9		20.8	37	8.66	175	C299			20.8	37
Copper	mg/kg	66		100	10.4	53.5	C664	23.8		12.3	46.3	10.4	53.5	C664			12.3	46.3
Zinc	mg/kg	66	66	100	37 J	891	C299	102	63.4	114	202	37 J	891	C299	102	63.4	114	202
PCBs ^c																		
Total PCBs	μg/kg	44	23	52	1.84 JT	542 T	C521	120	98.6	127	294	1 UT	720 UT	WR-VC-56	95.9	16	163	505
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	9	9	100	4.62 T	1750 T	C314	375	190	540	1220	4.62 T	1750 T	C314	375	190	540	1220
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	9	9	100	0.00449 JT	33.3 JT	C314	5.91	1.58	10.8	24.4	0.00449 JT	33.3 JT	C314	5.91	1.58	10.8	24.4
Pesticides																		
Aldrin	μg/kg	43	5	12	0.96 J	44 J	C299	12.9	5.04	18	37.8	0.0294 UJ	44 J	C299	3.27	0.6	7.96	12.7
Dieldrin	μg/kg	45	1	2	3 J	3 J	C252	3	3		3	0.03 U	10 U	WR-VC-52; WR-VC-	1.2	0.422	2.14	3.48
														54				
Total chlordanes	μg/kg	45	22	49	0.089 NJT	51.1 NJT	C314	6.59	2.03	12.2	30.6	0.0385 UT	51.1 NJT	C314			9.55	23
DDx	μg/kg	45	41	91	0.067 JT	3200 JT	C314	229	30	613	1580	0.0649 UJT	3200 JT	C314	209	18.9	588	1340
PAHs																		
Total PAHs	μg/kg	110	103	94	0.71 JT	12000000 JT	GS-C7	453000	2290	1630000	3020000	0.71 JT	12000000 JT	GS-C7	424000	1870	1580000	2750000
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	87	12	14	14 J	850 J	C299	124	60	231	447	2.1 U	1700 U	C521	124	87.2	220	324
RM 07-08																		
Grain Size																		
Fines	percent	34	34	100	0.54	93.2 T	WR-VC-72	65.8	79.7	30.6	91.9	0.54	93.2 T	WR-VC-72	65.8	79.7	30.6	91.9
Conventionals																		
Total organic carbon	percent	36	35	97	0.05	3.88	C349	1.82	2.06	0.828	2.75	0.05	3.88	C349	1.77	2.06	0.868	2.73
Metals	_																	
Arsenic	mg/kg	36		89	1.1	21	PSY36C	4.18		3.2	5.45	1.1	21	PSY36C	4.1		3.06	5.25
Chromium	mg/kg	34		100	10	40.8	SD120	29.4	31.7	8.2	39.8	10	40.8	SD120			8.2	39.8
Copper	mg/kg	36		100	13 J	579	PSY36C	68.7	45.3	103	166	13 J	579	PSY36C	68.7		103	166
Zinc	mg/kg	36	36	100	35	579 J	PSY36C	125	106	87.7	182	35	579 J	PSY36C	125	106	87.7	182
Butyltins		_	_	100		2500	07116	1000		1.450	2200		2500	an.i.c	1200	7.5	1.1.50	2200
Tributyltin ion	μg/kg	6	6	100	1.7	3500	SD116	1300	765	1460	3300	1.7	3500	SD116	1300	765	1460	3300
PCBs ^c																		
Total PCBs	μg/kg	29	21	72	7.96 JT	605 T	PSY36C	86.6	59	126	165	1.6 UT	605 T	PSY36C	66.8	40.8	112	153
Pesticides																		
Aldrin	μg/kg	30	3	10	0.397 J	0.845 J	C341	0.621	0.62	0.224	0.823	0.0284 UJ	11 UJ	WB-12; WB-15; WB-	1.97	0.364	3.65	11
														20				
Dieldrin	μg/kg	30	0	0 -								0.0465 U	11 UJ	WB-12; WB-15; WB-	2.01	0.304	3.65	11
														20				
Total chlordanes	μg/kg	30	16	53	0.08 JT	5 NJT	C349	1.94	1.72	1.37	3.94	0.0379 UT	11 UJA	WB-12; WB-15; WB-		1.65	3.41	11
														20				
DDx	μg/kg	30	26	87	4.5 JA	395 JA	WB-15	67.1	42.6	86.4	207	0.0506 UJT	395 JA	WB-15	58.2	22	83.5	196
PAHs																		
Total PAHs	μg/kg	35	32	91	1.39 JT	19600 T	PSY36C	1350	387	3640	6160	1.39 JT	19600 T	PSY36C	1230	315	3490	5910
Phthalates	_			_		4 -0.5 -												
Bis(2-ethylhexyl) phthalate	μg/kg	36	24	67	11 J	16000 J	PSY36C	910	77.5	3270	2640	2.2 U	16000 J	PSY36C	625	69	2680	1060
RM 08-09																		
Grain Size Fines		26	26			92.9 T	C458-2		69.8	17.7	92.8	8.23			69.5	69.8	17.7	92.8
	percent			100	8.23			69.5					92.9 T	C458-2				

Table 5.2-6. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

Table 5.2-6. Summary Statistics by Ri			,				Detected Cor		ıs					Detected and Not De	tected Conc	entrations		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	95th Percentile (full DL) ^b
Conventionals		Count	Count	Detected			· · · · · · · · · · · · · · · · · · ·					(====)	()					
Total organic carbon	percent	23	23	100	1.46	2.72	C458-1	2.16	2.12	0.363	2.65	1.46	2.72	C458-1	2.16	2.12	0.363	2.65
Metals	percent	23	23	100	1.40	2.12	C436-1	2.10	2.12	0.303	2.03	1.40	2.72	C450-1	2.10	2.12	0.303	2.03
Arsenic	mg/kg	21	21	100	3	4.69	C449	3.66	3.55	0.463	4.46	3	4.69	C449	3.66	3.55	0.463	4.46
Chromium	mg/kg	14	14			43.6	C449				40.2	25	43.6	C449			5.11	40.2
		21	21	100		55.9	C449	41.5		6.93	55.3	31.2 J	55.9	C449			6.93	55.3
Copper Zinc	mg/kg	21	21	100		148	C449 C449			17.9	134	75.4 J	148	C449			17.9	134
	mg/kg	21	21	100	73.4 J	140	C449	103	100	17.9	134	73.4 J	140	C449	103	100	17.9	154
Butyltins Tributyltin ion	μg/kg	9	9	100	2.1	550	C400	69.5	12	180	340	2.1	550	C400	69.5	12	180	340
PCBs ^c																		
Total PCBs PCDD/Fs	µg/kg	29	22	76	5.1 JT	93 T	C400	38.1	25.6	28.3	91.3	5.1 JT	93 T	C400	37.1	33.5	24.6	86.6
TCDD TEQ (ND=0)	pg/g	1	1	100	5.73 JT	5.73 JT	WR-VC-05	5.73	5.73		5.73	5.73 JT	5.73 JT	WR-VC-05	5.73	5.73		5.73
Pesticides	100																	
Aldrin	μg/kg	26	1	4	0.28 J	0.28 J	C449	0.28	0.28		0.28	0.0467 U	2 U	WR-VC-05	0.775	0.48	0.717	1.78
Dieldrin	μg/kg	26	6	23		0.56	C720	0.338		0.164	0.548	0.0764 U	3.9 U	WR-VC-05			1.55	3.5
Total chlordanes	μg/kg	26	15			1.73 JT	C458-2	0.772		0.45	1.56	0.246 JT	20 UA	WR-VC-05			7.97	17.8
DDx	μg/kg	26	21		2.52 JA	8.9 NJT	C720			1.76	7.8	2.52 JA	8.9 NJT	C720			1.72	7.71
PAHs																		
Total PAHs	μg/kg	29	29	100	8.9 T	958 T	PSY50C	206	159	174	377	8.9 T	958 T	PSY50C	206	159	174	377
Phthalates		•		.=											-0			
Bis(2-ethylhexyl) phthalate	μg/kg	30	26	87	11 J	272 Ј	PSY50C	72.7	59	58.2	179	11 J	272 J	PSY50C	68	52.8	55.8	177
Swan Island Lagoon																		
Grain Size																		
Fines	percent	7	7	100	71.1	94.2 T	DMMU2	87.3	89.3	7.69	93.6	71.1	94.2 T	DMMU2	87.3	89.3	7.69	93.6
Conventionals																		
Total organic carbon	percent	8	8	100	1.69	2.49	DMMU2	2.13	2.11	0.259	2.46	1.69	2.49	DMMU2	2.13	2.11	0.259	2.46
Metals																		
Arsenic	mg/kg	8	7	88	3	4.6 J	C04-06	3.85	4	0.585	4.56	3	5 U	SD125	3.99	4	0.677	4.86
Chromium	mg/kg	7	7	100	22	43.6	SD125	27.3	24.7	7.56	38.9	22	43.6	SD125	27.3	24.7	7.56	38.9
Copper	mg/kg	8	8	100	42	141	SD125	88.2	79.4	31.9	132	42	141	SD125	88.2	79.4	31.9	132
Zinc	mg/kg	8	8	100	89.6	196	SD125	128	127	35.2	181	89.6	196	SD125	128	127	35.2	181
Butyltins																		
Tributyltin ion PCBs^c	μg/kg	4	4	100	48	4100	SD125	1310	555	1890	3620	48	4100	SD125	1310	555	1890	3620
Total PCBs	μg/kg	8	7	88	8.9 JT	231 T	PSY34C	69.6	32	85	203	6.7 UT	231 T	PSY34C	61.7	21	81.7	199
Pesticides	μg/kg	0	,	00	0.7 11	231 1	131340	07.0	32	63	203	0.7 01	231 1	151540	01.7	21	01.7	177
Aldrin	μg/kg	4	0	0								0.16 U	0.51 U	C04-06	0.255	0.175	0.171	0.462
Dieldrin	μg/kg μg/kg	4	1	25		0.43 J	C04-06				0.43	0.15 U	0.43 J	C04-06			0.13	0.396
Total chlordanes	μg/kg μg/kg	4	3			0.78 JA	DMMU2	0.633		0.15	0.766	0.13 U 0.11 UA	0.78 JA	DMMU2			0.289	0.759
DDx	μg/kg μg/kg	4	4	100	1.8 A	6.4 A	C04-06	4.63		1.99	6.27	1.8 A	6.4 A	C04-06			1.99	6.27
PAHs	μg/kg	-	4	100	1.0 A	0.4 A	C04-00	4.03	3.13	1.77	0.27	1.0 A	0.4 A	C04-00	4.03	3.13	1.77	0.27
Total PAHs	μg/kg	8	8	100	170 JT	2250 T	SD125	927	788	730	1960	170 JT	2250 T	SD125	927	788	730	1960
Phthalates	μg/kg	0	0	100	170 31	2230 1	3D123	941	766	730	1900	170 31	2230 1	3D123	921	788	730	1900
Bis(2-ethylhexyl) phthalate	a/lea	8	8	100	49	680	SD125	298	253	230	638	49	680	SD125	298	253	230	638
RM 09-10	μg/kg	0	0	100	49	000	3D123	290	233	230	036	49	080	3D123	298	233	230	038
Grain Size		22	22	100	16 1 T	0.6.2 T	C474	CC 1	70.2	14.2	04.5	16.1 T	0.C 2 T	0474	66.4	70.2	14.2	04.5
Fines	percent	33	33	100	16.1 T	86.3 T	C474	66.4	70.2	14.2	84.5	16.1 T	86.3 T	C474	66.4	70.2	14.2	84.5
Conventionals							~							a				
Total organic carbon	percent	37	37	100	1.1	4.29	C45-47	2.36	2.03	0.844	4.2	1.1	4.29	C45-47	2.36	2.03	0.844	4.2
Metals											- 40	• • •						
Arsenic	mg/kg	35				6.62 J	RC483-2				6.38	2.04	6.62 J	RC483-2			1.2	6.37
Chromium	mg/kg	27				41.7	RC483-2				40.4	10.9 J	41.7	RC483-2			7.88	40.4
Copper	mg/kg	35				59.5	RC483-2			7.47	46.1	16.2	59.5	RC483-2			7.47	46.1
Zinc	mg/kg	35	35	100	47 J	207	C739	94.9	90.5	28.4	140	47 J	207	C739	94.9	90.5	28.4	140
Butyltins																		
Tributyltin ion PCBs ^c	µg/kg	7	7	100	0.59 J	32	SD150	7.28	2.1	11.5	25.7	0.59 J	32	SD150	7.28	2.1	11.5	25.7
Total PCBs	μg/kg	39	30	77	5.8 JT	580 T	C739	51.6	23.5	104	98.9	4 UT	580 T	C739	42.7	15	92.4	86.8
	100																	

Table 5.2-6. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

Table 5.2-6. Summary Statistics by Riv	ver wine for indicate	or Contaminants,	, I creent I me	<u>s, and 100 m</u>	Subsurface Sedin	nent, Study 7 trea (Re	Detected Cor		ıs					Detected and Not De	tected Conc	entrations		
Chemical	Units	Sample	Detected Sample	Percent	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	95th Percentile (full DL) ^b
	Cints	Count	Count	Detected	Millimum	Maximum	Location(s)	Mican	Miculan	Deviation	Teremine	(Iuli DL)	(Iuli DL)	Location(s)	(Iuli DL)	(Iuli DL)	(Iun DL)	(Iuli DL)
PCDD/Fs Homologs Total PCDD/Fs	pg/g	15	15	100	12.6 JT	3110 JT	C739	445	99.3	799	1590	12.6 JT	3110 JT	C739	445	99.3	799	1590
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	15	15	100	0.0161 JT	6.57 JT	C739	1.02	0.282	1.75	3.71	0.0161 JT	6.57 JT	C739	1.02	0.282	1.75	3.71
Pesticides																		
Aldrin	μg/kg	34			0.32 J	0.52 J	RC483-2	0.406	0.4	0.0786	0.504	0.0441 UJ	2.1 U	WR-VC-03	0.461		0.462	1.6
Dieldrin	μg/kg	34		21	0.17 J	0.31 J	C42-44	0.216	0.21	0.0458	0.286	0.0722 U	4.3 U	WR-VC-03	0.701	0.28	0.993	3.2
Total chlordanes	μg/kg	34	17	50	0.29 JT	5.6 NJT	C739	1.09	0.72	1.3	3.36	0.29 JT	21 UA	WR-VC-03	2.53	0.96	4.92	16
DDx	μg/kg	34	32	94	2.2 JT	110 NJT	C739	8.87	4.42	18.9	17.5	2.2 JT	110 NJT	C739	8.57	4.35	18.3	17
PAHs																		
Total PAHs	μg/kg	38	38	100	30.3 T	5300 T	C739	386	205	839	788	30.3 T	5300 T	C739	386	205	839	788
Phthalates	100																	
Bis(2-ethylhexyl) phthalate	μg/kg	39	31	79	22 J	510	C39-41	87.1	60	92.9	225	22 J	510	C39-41	83.4	63	84.7	181
RM 10-11	rb 115	2,	01		22 0	510	007 .1	07.12	00	,2.,		22 0	210	007.11	00	0.5	0	101
Grain Size																		
Fines	noroont	63	63	100	0.61 T	81.8 T	C746	49.9	56.2	22.6	79.5	0.61 T	81.8 T	C746	49.9	56.2	22.6	79.5
	percent	03	03	100	0.01 1	01.0 1	C/40	49.9	30.2	22.0	19.3	0.01 1	01.0 1	C/40	49.9	30.2	22.0	19.3
Conventionals				100	0.04 *	4.4.6	D CO. 1 2	1.50	1.50	0.000	205	0.04 *		D CO. 1 2	1.50	1.50	0.000	2.05
Total organic carbon	percent	68	68	100	0.04 J	4.16	RC01-2	1.68	1.68	0.822	3.06	0.04 J	4.16	RC01-2	1.68	1.68	0.822	3.06
Metals			_															
Arsenic	mg/kg	68		99	0.5 J	12.6	WR-VC-110	4.02	3.55	2.01	7.65	0.5 J	12.6	WR-VC-110			2.04	7.63
Chromium	mg/kg	68		91	7.88	54.1 J	WR-VC-110	28.4	27.5	9.03	42	7.69 UT	54.1 J	WR-VC-110			9.23	41.7
Copper	mg/kg	68		100	10.4	523 J	WR-VC-110	51.4	34.3	73	140	10.4	523 J	WR-VC-110			73	140
Zinc	mg/kg	68	68	100	42.4 T	651	C752	127	98.8	93.2	327	42.4 T	651	C752	127	98.8	93.2	327
PCBs ^c																		
Total PCBs	μg/kg	68	57	84	3.8 JT	2400 T	WR-VC-108	156	42	361	608	0.73 UT	2400 T	WR-VC-108	132	28.4	334	521
PCDD/Fs Homologs	μд∕ Кд	00	37	04	5.0 31	2400 1	WK-VC-100	130	72	301	000	0.75 01	2400 1	WK-7C-100	132	20.4	334	321
Total PCDD/Fs	na/a	17	17	100	32.9 JT	4080 JT	RC01-2	443	167	960	1390	32.9 JT	4080 JT	RC01-2	443	167	960	1390
	pg/g	17	17	100	32.9 J1	4000 J1	KC01-2	443	107	900	1390	32.9 11	4000 J1	KC01-2	443	107	900	1390
PCDD/Fs		17	17	100	0.0502 IT	5 70 IT	DC01.2	0.770	0.22	1.20	2.64	0.0502 IT	5 70 IT	DC01.2	0.770	0.22	1 20	2.64
TCDD TEQ (ND=0)	pg/g	17	17	100	0.0502 JT	5.78 JT	RC01-2	0.778	0.33	1.38	2.64	0.0502 JT	5.78 JT	RC01-2	0.778	0.33	1.38	2.64
Pesticides																		
Aldrin	μg/kg	68	11	16	0.23 NJ	1.5 NJ	C7641	0.664	0.7	0.353	1.17	0.12 U	2 UJ	WR-GC-32; WR-GC- 33; WR-GC-34; WR- GC-35	0.48	0.26	0.504	1.86
Dieldrin	ua/ka	68	5	7	0.11 J	0.4	WR-GC-35	0.224	0.23	0.116	0.37	0.03 U	8.6 U	WR-VC-108		0.425	1.16	2
Total chlordanes	μg/kg	68			0.051 NJT	28 T	C747	2.83	0.23	5.8	13.7	0.051 NJT	28 T	C747	3.34		5.59	13.7
	μg/kg	68		99				14.6		36.5	40.3				14.4			
DDx	μg/kg	08	67	99	0.076 JT	293 JT	WR-VC-108	14.0	6.1	30.3	40.3	0.076 JT	293 JT	WR-VC-108	14.4	6.05	36.2	40.2
PAHs		60	60	100	0.27 17	7000 IT	WD VC 110	61.4	265	1270	1070	0.27 17	7000 IT	WD MC 110	c1.4	265	1070	1070
Total PAHs	μg/kg	68	68	100	0.37 JT	7990 JT	WR-VC-110	614	265	1270	1870	0.37 JT	7990 JT	WR-VC-110	614	265	1270	1870
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	64	52	81	9.9 J	18000	WR-VC-110	502	120	2480	718	7 U	18000	WR-VC-110	414	99.5	2240	646
RM 11-11.8																		
Grain Size																		
Fines	percent	31	31	100	0.12 T	72.4 T	UC03	21.1	3.66	25.7	67.3	0.12 T	72.4 T	UC03	21.1	3.66	25.7	67.3
Conventionals																		
Total organic carbon	percent	81	78	96	0.02 J	2.74	WR-CD-41	0.449	0.105	0.651	1.91	0.02 J	2.74	WR-CD-41	0.434	0.1	0.643	1.9
Metals																		
Arsenic	mg/kg	35	26	74	0.5	19.7	WR-CD-43	3.03	2.1	3.73	6.07	0.5	19.7	WR-CD-43	2.38	1.25	3.39	5.67
Chromium	mg/kg	35			7.62	98 JT	UC03	21.5	17.3		38.9	7.62	98 JT	UC03			16.1	38.9
Copper	mg/kg	35			10.3	70.1	WR-CD-43	23.2	18		44	10.3	70.1	WR-CD-43		18	13.3	44
Zinc	mg/kg	35			26.6 J	243 J	WR-VC-132	88.3	76			26.6 J	243 J	WR-VC-132			55.2	182
Butyltins		22	33	100	20.0 0	2.50		00.5	, 0	55.2	102	20.00	2.50		00.5	, 0	20.2	102
Tributyltin ion	ua/ka	2	0	0								0.48 U	0.54 U	C024	0.51	0.51	0.0424	0.537
•	μg/kg	2	U	0								0.46 0	0.54 0	C024	0.51	0.51	0.0424	0.557
PCBs ^c																		
Total PCBs	μg/kg	85	30	35	0.0051 T	1700 JT	UC03	107	26	309	254	0.0051 T	1700 JT	UC03	40.6	1	188	148
PCDD/Fs Homologs																		
Total PCDD/Fs PCDD/Fs	pg/g	2	2	100	5.68 JT	10.5 JT	C024	8.09	8.09	3.41	10.3	5.68 JT	10.5 JT	C024	8.09	8.09	3.41	10.3
TCDD TEQ (ND=0)	pg/g	2	2	100	0.013 JT	0.0144 JT	C024	0.0137	0.0137	0.00099	0.0143	0.013 JT	0.0144 JT	C024	0.0137	0.0137	0.00099	0.0143

Table 5.2-6. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Navigation Channel.

				_			Detected Cor	centration	ns					Detected and Not De	tected Conc	entrations		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	95th Percentile (full DL) ^b
Pesticides																		
Aldrin	μg/kg	39	1	3	1 J	1 J	WR-CD-40	1	1		1	0.046 U	2 UJ	WR-CD-41; WR-CD- 42; WR-CD-43; WR- GC-37; WR-GC-38; WR-GC-39		0.24	0.851	2
Dieldrin	μg/kg	39	. 4	10	2	13	WR-CD-40	5.55	3.6	5.03	11.6	0.03 U	13	WR-CD-40		1	2.19	3.44
Total chlordanes	μg/kg	39	11	28	0.055 JT	47 A	WR-CD-40	7.82	1.1	15.5	38	0.055 JT	47 A	WR-CD-40	6.85	1.9	9.3	17.3
DDx PAHs	μg/kg	39	25	64	0.3 A	100 NJT	UC03	10.8	5.3	19.9	28.1	0.1 UT	100 NJT	UC03	7.14	2	16.6	23.6
Total PAHs	μg/kg	39	32	2 82	0.77 JT	2320 T	WR-CD-43	594	364	667	2300	0.75 UT	2320 T	WR-CD-43	487	275	645	2300
Phthalates Bis(2-ethylhexyl) phthalate	μg/kg	26	; g	35	2.6 J	290	UC03	116	98	97.6	258	2.6 J	290	UC03	60.9	28.5	76.3	208

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.2-7. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

							Detected Conce	entrations						Detected and Not Detected	ed Concen	ntrations		
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	95th Percentile (full DL) ^b
Study Area		Count	Count	Dettettu	17222222							(Iun DE)	(1411 2 2)		,	, ,	,	
Grain Size																		
Fines	percent	533	533	100	0.11	98.9 T	WR-PG-68	57.2	64.3	26.9	89.5	0.11	98.9 T	WR-PG-68	57.2	2 64.3	26.9	89.5
Conventionals	percent	333	333	100	0.11	70.7 1	WK1G-00	37.2	04.3	20.7	07.5	0.11	70.7 1	WK10-00	37.2	2 04.3	20.7	07.5
Total organic carbon	percent	621	621	100	0.0438	24.9	C138	1.98	1.88	1.69	3.69	0.0438	24.9	C138	1.98	8 1.88	1.69	3.69
Metals	percent	021	021	100	0.0150	21.5	C150	1.70	1.00	1.07	3.07	0.0150	21.5	C130	1.70	1.00	1.0)	5.07
Arsenic	mg/kg	567	504	89	0.97	79.6	A2GS10	5.45	3.8	7.15	12.5	0.97	79.6	A2GS10	5.47	7 3.92	6.76	11.2
Chromium	mg/kg	569	568		4.07 J	774	19A01	34.7			55	4.07 J	774	19A01	34.7			54.9
Copper	mg/kg	580	580		6.19 J	1370	HA-43	61.8		105	195	6.19 J	1370	HA-43	61.8		105	195
Zinc	mg/kg	580	580		17.3 J	4220	HA-43	159			397	17.3 J	4220	HA-43	159			397
Butyltins																		
Tributyltin ion	μg/kg	131	122	93	0.49 J	1830	A2GS12	39.6	8.55	181	80.6	0.086 U	1830	A2GS12	37.	1 7.7	175	77
PCBs ^c	F-68				****													
Total PCBs	a/lsa	420	317	75	0.851 JT	35400 T	G453	209	26.9	2000	497	0.851 JT	35400 T	G453	198	8 24.4	1760	525
	μg/kg	420	317	13	0.831 J1	33400 1	G433	209	20.9	2000	497	0.831 J1	33400 1	G433	196	8 24.4	1760	323
PCDD/Fs Homologs Total PCDD/Fs	20/0	05	95	100	2.48 T	264000 T	07R006	4000	467	27000	5650	2.48 T	264000 T	07R006	4000	0 467	27000	5650
PCDD/Fs	pg/g	95	93	100	2.40 1	204000 1	07R000	4000	407	27000	3030	2.46 1	204000 1	07K000	4000	0 407	27000	3030
TCDD TEQ (ND=0)	na/a	95	95	100	0.00803 JT	14100 JT	07R006	164	1.88	1450	87	0.00803 JT	14100 JT	07R006	164	4 1.88	1450	87
	pg/g	93	93	100	0.00803 31	14100 J1	U/K000	104	1.00	1430	07	0.00803 J1	14100 J1	07K000	102	+ 1.00	1430	07
Pesticides Aldrin	a/lsa	438	108	25	0.047 J	691 J	G355	11.2	1	67.5	25.5	0.0264 U	691 J	G355	5.88	8 0.375	35.6	25.9
Dieldrin	μg/kg α/lsα	456	95		0.047 J 0.057 J	356 J	G453	5.45			11.1	0.0204 U	356 J	G453	6.85			19.3
	μg/kg																	
Total chlordanes	μg/kg	457	282		0.036 JT	669 NJT		10.9			32.2	0.0351 UT	669 NJT		10.0			48
DDx	μg/kg	461	438	95	0.102 JT	84900 A	OSS002	671	15.9	4690	1460	0.0651 UT	84900 A	OSS002	639	9 14.8	4570	1420
PAHs		(10	602	0.0	2.2 IT	2450000 T	CCOAADCO	20000	1000	202000	1.4.4000	2.2 IT	2450000 T	CCOAADCA	2020	0 1060	200000	120000
Total PAHs	μg/kg	612	602	98	3.3 JT	2450000 T	GS04APG2	39800	1900	202000	144000	3.3 JT	2450000 T	GS04APG2	39200	0 1860	200000	138000
Phthalates		5.12	206	52	12 IT	6700	ANI CERRO 02	220	120	720	1200	2.11	40000 II	A2CC12, IIA, 42	600	2 101	2000	2000
Bis(2-ethylhexyl) phthalate	μg/kg	543	286	53	13 JT	6700	AN-CTPD-02	338	120	738	1300	2 U	40000 U	A2GS12; HA-43	623	3 101	2980	2000
RM 01.9-03																		
Grain Size		1.5		100	5 0 5 T	00 6 77	G002		70. 4	27.1	00.0	5.05 m	00.5 7	2002			27.1	00.2
Fines	percent	16	16	100	5.35 T	89.6 T	G003	57.2	58.4	27.1	88.2	5.35 T	89.6 T	G003	57.2	2 58.4	27.1	88.2
Conventionals		1.5		100	0.15	2.1 5	7.1			0.74	2.00	0.15	2.1 7	P. 1				2.00
Total organic carbon	percent	16	16	100	0.16	2.1 T	D1-1	1.21	1.26	0.74	2.09	0.16	2.1 T	D1-1	1.2	1 1.26	0.74	2.09
PCDD/Fs Homologs		_	_				~~	-0.0					***		-0.			
Total PCDD/Fs	pg/g	7	7	100	9.56 T	310 JT	GCA02W	68.9	25.4	107	232	9.56 T	310 JT	GCA02W	68.9	9 25.4	107	232
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	7	7	100	0.0297 JT	2.17 JT	GCA02W	0.368	0.0672	0.795	1.55	0.0297 JT	2.17 JT	GCA02W	0.368	8 0.0672	0.795	1.55
Pesticides	_																	
Aldrin	μg/kg	10	1	10	0.36 JT	0.36 JT	GCA02W	0.36			0.36	0.0301 UJ	0.36 JT	GCA02W	0.094			0.315
Dieldrin	μg/kg	16	6		0.15 JT	0.306 NJ	G029	0.207			0.297	0.0492 U	1 U	WR-PG-04	0.176			0.48
Total chlordanes	μg/kg	16	11		0.053 JT	1.12 NJT	G037	0.484			1.12	0.04 UT	1.12 NJT		0.413			1.11
DDx	μg/kg	16	16	100	0.478 NJT	29.4 NJT	G029	7	4.4	7.54	20.7	0.478 NJT	29.4 NJT	G029		7 4.4	7.54	20.7
PAHs																		
Total PAHs	μg/kg	16	16	100	84.5 JT	7540 T	G041	1790	496	2500	7020	84.5 JT	7540 T	G041	1790	0 496	2500	7020
Phthalates																		
Metals																		
Arsenic	mg/kg	16	16		2.25	4.91 J	G029				4.48	2.25	4.91 J	G029	3.43			4.48
Chromium	mg/kg	16	15		15.3	33.8 T	D1-1	27.1			33.5	15.3	33.8 T	D1-1	27.4			33.5
Copper	mg/kg	16			14.3	41 T	D1-1	28.5			40.4	14.3	41 T	D1-1	28.5			40.4
Zinc	mg/kg	16	16	100	64.9	164	G029	99.7	90.8	30.7	156	64.9	164	G029	99.7	7 90.8	30.7	156
Butyltins																		
Tributyltin ion	μg/kg	1	1	100	2.1 JT	2.1 JT	GCA02W	2.1	2.1		2.1	2.1 JT	2.1 JT	GCA02W	2.1	1 2.1		2.1
PCBs ^c																		
Total PCBs	μg/kg	16	10	62	1.5 JT	40 JT	WR-PG-04	11.3	9.67	10.7	27.4	1.5 JT	40 JT	WR-PG-04	8.0	1 4.38	9.4	19
Bis(2-ethylhexyl) phthalate	μg/kg	16			13 JT	68	G012				66.5	8.2 U	90 U	G041	35.4			73.5
V 7/k · · · · · · · · · · · · · · · · · · ·	r 6 6		_						-					- *				

Table 5.2-7. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

Table 5.2-7. Summary Statistics by Ri	ver wine for indicato	1 Contaminants.	, i cicciii i iiic	s, and TOC III	Surface Sediffien	it, Study Area (Ki	Detected Conce							Detected and Not Detect	ted Concen	trations		-
			Detected	•													Standard	95th
		Sample	Sample	Percent						Standard	95th	Minimum	Maximum		Mean		Deviation	Percentile
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Medianb	Deviation	Percentile ^b	(full DL) ^a	(full DL) ^a	Maximum Location(s)	(full DL)	(full DL) ^b	(full DL)	(full DL) ^b
RM 03-04																		
Grain Size																		
Fines	percent	31	31	100	4.14 T	91.1 T	G077	48.8	54.4	25	83.1	4.14 T	91.1 T	G077	48.8	54.4	25	83.1
Conventionals	_																	
Total organic carbon	percent	31	31	100	0.19	5.97	G105	1.65	1.64	1.06	2.64	0.19	5.97	G105	1.65	1.64	1.06	2.64
Metals																		
Arsenic	mg/kg	31	30	97	2.41 J	16.9 J	G105	4.86	4	3.29	11.7	2.41 J	16.9 J	G105	4.86	4	3.23	11.3
Chromium	mg/kg	31	31	100	15 J	36.5	G063	28.8	30	5.65	35.5	15 J	36.5	G063	28.8	30	5.65	35.5
Copper	mg/kg	31	31	100	13.4 T	41.9	03R002	32.1	34.6	8.32	40.7	13.4 T	41.9	03R002	32.1	34.6	8.32	40.7
Zinc	mg/kg	31	31	100	62	122	G101	97.5	101	14.5	118	62	122	G101	97.5	101	14.5	118
Butyltins																		
Tributyltin ion	μg/kg	3	3	100	2.6	81	SD011	33.9	18	41.5	74.7	2.6	81	SD011	33.9	18	41.5	74.7
PCBs ^c																		
Total PCBs	μg/kg	28	20	71	5.7 T	29 T	G105	15.1	15.7	7.05	27.1	2.3 UT	40 UT	SD011	15.6	14.2	10.1	35.5
PCDD/Fs Homologs	r 8 · · 8	20	20	, -	J., 1	-, -	0100	10.1	1017	7.00	27.11	2.5 01	.0 01	52011	10.0	12	10.1	55.5
Total PCDD/Fs	pg/g	7	7	100	73.3 JT	467 T	G105	172	130	133	377	73.3 JT	467 T	G105	172	130	133	377
PCDD/Fs	188	·																
TCDD TEQ (ND=0)	pg/g	7	7	100	0.138 JT	1.62 JT	GCA03W	0.66	0.333	0.652	1.61	0.138 JT	1.62 JT	GCA03W	0.66	0.333	0.652	1.61
Pesticides	188																	
Aldrin	μg/kg	26	10	38	0.151 J	1.13 J	G077	0.552	0.516	0.322	1.11	0.0331 U	2 U	03R040	0.45	0.29	0.458	1.12
Dieldrin	μg/kg μg/kg	28			0.086 NJ	1.32 NJ	G064	0.294	0.183		0.838	0.03 U	3.9 U	03R040				2
Total chlordanes	μg/kg μg/kg	28			0.11 JT	2.69 JT	G105	0.91	0.684	0.699	2.55	0.0415 UT	3.9 UT	03R040			0.859	2.63
DDx	μg/kg μg/kg	28			1.3 JT	247 JT	03R002	26.6		50.8	92.7	0.39 UT	247 JT	03R002				88.1
PAHs	μg/kg	26	20)3	1.5 31	247 31	03K002	20.0	0.42	30.8	72.1	0.37 01	247 31	03K002	24.7	7.63	47.3	00.1
Total PAHs	μg/kg	31	31	100	44.6 T	50000 T	G619	4740	1890	9080	12700	44.6 T	50000 T	G619	4740	1890	9080	12700
Phthalates	µ Б/ КБ	31	31	100	44.0 1	30000 1	0017	7/70	1070	7000	12700	77.0 1	30000 1	0017	4740	1070	7000	12700
Bis(2-ethylhexyl) phthalate	μg/kg	31	13	42	23	150	03R040	67.8	67	34.8	126	3.9 U	170 UJ	SD011	67.2	59	40.7	140
RM 04-05	μg/kg	31	13	72	23	130	031040	07.0	07	34.0	120	3.7 0	170 03	30011	07.2	. 37	40.7	140
Grain Size																		
Fines	noroont	77	77	100	0.36 T	95.1 T	WR-PG-14	56.5	70.2	28.8	87.7	0.36 T	95.1 T	WR-PG-14	56.5	70.2	28.8	87.7
Conventionals	percent	//	//	100	0.30 1	93.1 1	WK-FU-14	30.3	70.2	20.0	07.7	0.30 1	95.1 1	WK-FG-14	30.3	70.2	20.0	67.7
Total organic carbon	noroont	98	98	100	0.08	24.9	C138	2.29	1.89	2.87	6.72	0.08	24.9	C138	2.29	1.89	2.87	6.72
Metals	percent	90	90	100	0.08	24.9	C136	2.29	1.09	2.07	0.72	0.08	24.9	C136	2.29	1.09	2.67	0.72
Arsenic	ma/lea	98	88	90	1.54 J	12.5 J	G166	4.1	3.66	1.74	6.96	1.54 J	12.5 J	G166	4.2	3.73	1.68	6.91
	mg/kg	95			4.07 J	49.3 J	SS-37	27.9		10.2	44.2	4.07 J	49.3 J	SS-37				44.2
Chromium	mg/kg																	
Copper Zinc	mg/kg	98 98			6.19 J 33 J	194 292	04B024 R2AR02PG	39.8 104	37.6 100	24 33.2	63.7 150	6.19 J 33 J	194 292	04B024 R2AR02PG				63.7 150
	mg/kg	90	90	100	33 J	292	KZAKU2FG	104	100	33.2	130	33 J	292	K2AK02FG	104	100	33.2	130
Butyltins Tributyltin i an	/1	6	6	100	111	1.4	CD025	7.02	7 15	1 25	12.6	111	1.4	CD025	7.03	7.45	1.25	12.6
Tributyltin ion	μg/kg	6	6	100	1.1 J	14	SD035	7.03	7.45	4.35	12.6	1.1 J	14	SD035	7.03	7.45	4.35	12.6
PCBs ^c																		
Total PCBs	μg/kg	52	36	69	3.4 JT	160 JT	GSP04W	30.1	17.1	37.7	131	1.7 UT	274 UT	S3	36	15.1	53.9	144
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	9	9	100	2.48 T	3080 T	GSP04W	726	506	923	2170	2.48 T	3080 T	GSP04W	726	506	923	2170
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	9	9	100	0.00803 JT	6.81 JT	GSP04W	2.46	1.74	2.37	6.38	0.00803 JT	6.81 JT	GSP04W	2.46	1.74	2.37	6.38
Pesticides																		
Aldrin	μg/kg	55			0.0969 J	1.4 J	G116	0.595			1.38	0.0284 U	41 U	S3				6.7
Dieldrin	μg/kg	55			0.0653 J	0.64 J	C162	0.221	0.159		0.491	0.034 U	41 U	S3				6.7
Total chlordanes	μg/kg	55	32	58	0.042 JT	5.9 JT	04B024	1.16	0.914	1.04	2.14	0.0378 UT	41 UA	S3	2.48	0.91	6.47	6.7
DDx	μg/kg	55	50	91	0.102 JT	189 JT	2403	23.4	10.2	36.4	91.3	0.0765 UJT	189 JT	2403	22.7	10.1	35.1	80.9
PAHs																		
Total PAHs	μg/kg	100	98	98	9.75 A	114000 T	ARC03B	7940	2630	16800	40600	9.75 A	114000 T	ARC03B	7790	2510	16600	40400
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	77	22	29	42 J	230	R2AR02PG	84.6	66.5	48.2	196	2 U	20400 U	S3	746	62	3140	2400

Table 5.2-7. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

							Detected Conce	entrations						Detected and Not Detected	ed Concen	trations		
	¥724	Sample	Detected Sample	Percent	35	3 a	Marinana Landina (a)	Mara	Median ^b	Standard Deviation	95th Percentile ^b	Minimum	Maximum	Maximum Location(s)	Mean	_	Standard Deviation (full DL)	95th Percentile (full DL) ^b
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median	Deviation	Percentile	(full DL) ^a	(full DL) ^a	Maximum Location(s)	(Iuli DL)	(Iuli DL)	(Iuli DL)	(Iuli DL)
RM 05-06																		
Grain Size																		
Fines	percent	76	76	100	3.17 T	95.2 T	WR-PG-34	53	58.3	24.3	84	3.17 T	95.2 T	WR-PG-34	53	58.3	24.3	84
Conventionals					0.40							0.40		~*				
Total organic carbon	percent	82	82	100	0.18	3.92	G210	1.8	1.8	0.751	2.87	0.18	3.92	G210	1.8	3 1.8	0.751	2.87
Metals														~				
Arsenic	mg/kg	67	56		2.19 J	12.5 J	G227	4.12	3.52	1.94	7.3	2.19 J	12.5 J	G227	4.31		1.93	8.22
Chromium	mg/kg	67	67			44.9	05R020	28.7	28.1	7.7	39.1	12.2	44.9	05R020	28.7		7.7	39.1
Copper	mg/kg	67	67			562 J	G245	50.7	37.2	75.7	95.4	13	562 J	G245	50.7		75.7	95.4
Zinc	mg/kg	67	67	100	56.3	273	SD03	106	101	31.4	146	56.3	273	SD03	106	5 101	31.4	146
Butyltins																		
Tributyltin ion	μg/kg	30	29	97	0.49 J	130	SD03	22.8	12	30.6	81.4	0.49 J	130	SD03	22.3	9.6	30.3	80.2
PCBs ^c																		
Total PCBs	μg/kg	55	39	71	2.02 JT	96.5 T	C187	18.4	12	19.2	64.4	2.02 JT	96.5 T	C187	17.6	5 12	18.3	46.6
PCDD/Fs Homologs	100																	
Total PCDD/Fs	pg/g	6	6	100	192 JT	2800 T	G185	830	437	996	2320	192 JT	2800 T	G185	830) 437	996	2320
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	6	6	100	0.801 JT	5.32 JT	G185	2.03	1.32	1.69	4.57	0.801 JT	5.32 JT	G185	2.03	3 1.32	1.69	4.57
Pesticides	188	-	~		******							******						
Aldrin	μg/kg	44	12	27	0.0554 J	4.65 J	G241	1.01	0.347	1.34	3.14	0.0316 UJ	4.65 J	G241	0.513	0.222	0.801	1.83
Dieldrin	μg/kg μg/kg	49	14			1.45 J	G228	0.427	0.267	0.456	1.39	0.0503 U	2 U	CS005; G654; SD055	0.51			1.96
Total chlordanes	μg/kg μg/kg	50				14 JT	G241	1.75	0.735	2.71	5.12	0.0409 UT	14 JT	G241	1.47		2.3	3.5
DDx	μg/kg μg/kg	50				343 JT	G241 G242	36.3	13.3	63.5	154	0.0407 UT	343 JT	G241 G242	35.6		63	153
PAHs	μg/kg	30	49	90	0.001 1131	343 J1	0242	30.3	13.3	03.3	134	0.0031 01	343 J1	0242	33.0) 13.2	03	133
Total PAHs		82	82	100	76.8 JT	345000 T	G210	17300	3090	49300	96000	76.8 JT	345000 T	G210	17300	3090	49300	96000
Phthalates	μg/kg	62	62	100	70.6 11	343000 I	0210	17300	3090	49300	90000	70.6 31	343000 I	0210	17300	3090	49300	30000
Bis(2-ethylhexyl) phthalate	ua/ka	67	36	54	29	300 J	SD03	105	89	60.7	220	9.9 U	12000 U	SD05	273	90	1460	207
RM 06-07	μg/kg	07	30	34	29	300 J	3003	103	0,9	00.7	220	9.9 0	12000 0	3D03	213	, 30	1400	207
Grain Size		102	102	100	0.67 T	02 C T	C260	50.0	57.1	26.2	05.0	0.67 T	02.6 T	G260	50.0	57.1	26.2	95.0
Fines	percent	102	102	100	0.67 T	93.6 T	C269	50.8	57.1	26.2	85.9	0.67 T	93.6 T	C269	50.8	57.1	26.2	85.9
Conventionals		110	112	100	0.077	10.5	GGGAARGA	2.26	2	2.21	6.04	0.077	10.5	GGGAADGG	2.24		2.21	6.04
Total organic carbon	percent	113	113	100	0.077	18.5	GS04APG2	2.36	2	2.31	6.04	0.077	18.5	GS04APG2	2.36	5 2	2.31	6.04
Metals		100	0.5	0.7		50 5	22.50.4	7 00	2.50	0.05	20.5			22504	- 1 -			20.2
Arsenic	mg/kg	109			1.7	53.7	22C04	5.99	3.69	8.06	20.6	1.7	53.7	22C04	6.16		7.56	20.2
Chromium	mg/kg	109	109			332	SDDC25SS	38.8	32	38.6	94.7	7.84	332	SDDC25SS	38.8			94.7
Copper	mg/kg	109	109			271 J	22B03	46.9	40	36.8	114	11	271 J	22B03	46.9		36.8	114
Zinc	mg/kg	109	109	100	48	689 J	22B04	150	121	104	337	48	689 J	22B04	150) 121	104	337
Butyltins	_																	
Tributyltin ion	μg/kg	29	29	100	0.73 J	830	SDDC25SS	45.9	7.3	155	130	0.73 J	830	SDDC25SS	45.9	7.3	155	130
PCBs ^c																		
Total PCBs	μg/kg	79	50	63	2.27 JT	480 T	G332	66.1	34	93.5	248	2.27 JT	2000 UT	SD081	86.3	3 29	245	273
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	25	25	100	55.4 T	12700 T	G332	1730	732	3010	8530	55.4 T	12700 T	G332	1730	732	3010	8530
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	25	25	100	0.206 JT	223 JT	G332	20	6.06	44.7	52.1	0.206 JT	223 JT	G332	20	6.06	44.7	52.1
Pesticides																		
Aldrin	μg/kg	87	24	28	0.047 J	25.9 NJ	G330	3.41	1.11	5.54	10.2	0.0298 UJ	50 U	SD081	3.55	0.59	9.45	17.8
Dieldrin	μg/kg	92				11.2 NJ	G294-1	1.83	0.6	2.84	6.81	0.0513 U	99 U	SD081	4.65			9.66
Total chlordanes	μg/kg	92				246 NJT		12.5	2.81	35.7	45.4	0.0417 UT	246 NJT		9.83			48
DDx	μg/kg	92				1720 JT	G311-1	190		273	620	1.5 T	1720 JT	G311-1	190			619
PAHs	r-00	/-													-70			/
Total PAHs	μg/kg	109	109	100	136 JT	2450000 T	GS04APG2	192000	17200	442000	1210000	136 JT	2450000 T	GS04APG2	192000	17200	442000	1210000
Phthalates	r-00			- 30				. =								50		
Bis(2-ethylhexyl) phthalate	μg/kg	105	44	42	20	3200	WR-PG-52	256	120	513	734	12 U	3200	WR-PG-52	206	5 96	368	732
	r-00	- 30					5 02	== 0	-=0					502		, ,		

Table 5.2-7. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

							Detected Conce	ntrations						Detected and Not Detected	d Concer	ntrations		
		Sample	Detected Sample	Percent					h	Standard	95th	Minimum	Maximum		Mean	Median	Standard Deviation	95th Percentile
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum	Maximum Location(s)	Mean	Median	Deviation	Percentile ^D	(full DL) ^a	(full DL) ^a	Maximum Location(s)	(full DL)	(full DL)	(full DL)	(full DL) ^b
RM 07-08																		
Grain Size																		
Fines	percent	114	114	100	0.11	98.9 T	WR-PG-68	65.9	75.5	27.4	92.8	0.11	98.9 T	WR-PG-68	65.9	9 75.5	5 27.4	92.8
Conventionals																		
Total organic carbon	percent	150	150	100	0.0438	5.53	22031	1.77	1.9	0.883	2.82	0.0438	5.53	22031	1.77	7 1.9	0.883	2.82
Metals																		
Arsenic	mg/kg	108	90		1.22	8.37	G355	3.87	3.8	1.33	6.12	1.22	8.37	G355	4.05			6.03
Chromium	mg/kg	100	100		10.7	270 J	CP09APG	34.8	33		50.7	10.7	270 J	CP09APG	34.8			50.7
Copper	mg/kg	108	108		11.3	276	CP07APG	41.4	37.3	30.8	87.9	11.3	276	CP07APG	41.4			87.9
Zinc	mg/kg	108	108	100	17.3 J	244	G394	104	103	34	158	17.3 J	244	G394	104	4 103	34	158
Butyltins																		
Tributyltin ion	μg/kg	18	16	89	1.8	83 T	AN-CTPD-06	25.7	13	25.8	75.5	0.086 U	83 T	AN-CTPD-06	23.2	2 10.4	25.3	74.5
PCBs ^c																		
Total PCBs	μg/kg	80	57	71	0.851 JT	972 T	G355	85.8	34	176	505	0.851 JT	4000 UT	SD090	212	2 34	616	1020
PCDD/Fs Homologs	100																	
Total PCDD/Fs	pg/g	19	19	100	28.8 JT	264000 T	07R006	15200	469	60300	31900	28.8 JT	264000 T	07R006	15200	0 469	60300	31900
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	19	19	100	0.0844 JT	14100 JT	07R006	785	3.47	3230	1630	0.0844 JT	14100 JT	07R006	785	5 3.47	3230	1630
Pesticides	100																	
Aldrin	μg/kg	104	20	19	0.047 J	691 J	G355	40.4	1.95	153	59.2	0.0281 UJ	691 J	G355	17.1	1 2.2	2 70.1	65.9
Dieldrin	μg/kg μg/kg	104	11		0.107 J	13 J	AP04CPG2	2.85	0.49	4.64	12	0.03 U	270 U	07R006	19.7			181
Total chlordanes	μg/kg μg/kg	104	39		0.036 JT	669 NJT		24.9	2.3	106	30.8	0.036 JT	669 NJT	G355	22.1			98.7
DDx	μg/kg μg/kg	108	98		0.75 NJT	84900 A	OSS002	2720	133	9660	12800	0.75 NJT	84900 A	OSS002	2470			12400
PAHs	μg/kg	100	76	71	0.75 1431	04700 A	033002	2720	133	7000	12000	0.75 1131	04700 A	033002	2470	0 0.))240	12400
Total PAHs	ua/ka	133	127	95	3.3 JT	149000 JT	G355	3490	940	14800	9680	3.3 JT	149000 JT	G355	3350	0 870	14500	9390
Phthalates	μg/kg	133	127	93	5.5 11	149000 J1	G333	3490	940	14800	9000	5.5 11	149000 J1	G333	3330	0 870	14300	9390
Bis(2-ethylhexyl) phthalate	ua/ka	115	67	58	26.5 T	6700	AN-CTPD-02	347	190	830	747	6.7 U	6700	AN-CTPD-02	452	2 170	881	2000
RM 08-09	μg/kg	113	07	36	20.5 1	0700	AN-CIPD-02	347	190	830	747	0.7 U	0700	AN-CIFD-02	432	2 170	001	2000
Grain Size		50	50	100	0.70.7	040.75	C.450.2	60.7	60.4	267	00	0.70.7	040 75	6450.2	60.1	7 60	067	00
Fines	percent	52	52	100	0.79 T	94.8 T	G450-2	60.7	68.4	26.7	90	0.79 T	94.8 T	G450-2	60.7	7 68.4	1 26.7	90
Conventionals				100	0.10	- 1.c	0.450				2.51	0.12	·	6450	1.0			2.51
Total organic carbon	percent	66	66	100	0.12	7.45	G453	1.85	1.76	1.16	3.61	0.12	7.45	G453	1.85	5 1.76	5 1.16	3.61
Metals			-0															
Arsenic	mg/kg	67	60		0.97	79.6	A2GS10		4.44	13.2	29.1	0.97	79.6	A2GS10	8.75			28.7
Chromium	mg/kg	67	67		8.7	774	19A01	46.9	33.9	91.9	60.1	8.7	774	19A01	46.9			60.1
Copper	mg/kg	67	67	100	13.2	772 J	19A01	102	48.4	143	388	13.2	772 J	19A01	102			388
Zinc	mg/kg	67	67	100	40.9	1360	G445	290	186	301	1100	40.9	1360	G445	290	0 186	5 301	1100
Butyltins																		
Tributyltin ion	μg/kg	31	26	84	2.1 J	1830	A2GS12	83.8	10	356	48.8	0.58 U	1830	A2GS12	70.8	8 8.4	1 327	42.5
PCBs ^c																		
Total PCBs	μg/kg	47	45	96	4.28 JT	35400 T	G453	978	94	5260	764	4.28 JT	35400 T	G453	940	0 94	5140	748
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	11	11	100	9.9 JT	8300 JT	BT028	1500	395	2430	5360	9.9 JT	8300 JT	BT028	1500	0 395	5 2430	5360
PCDD/Fs	100																	
TCDD TEQ (ND=0)	pg/g	11	11	100	0.0109 JT	18.2 JT	BT028	3.55	1.55	5.31	12.1	0.0109 JT	18.2 JT	BT028	3.55	5 1.55	5.31	12.1
Pesticides	100																	
Aldrin	μg/kg	49	21	43	0.0593 J	132 J	G453	13.5	5.03	28.7	30	0.0264 U	132 J	G453	6.18	8 0.71	19.6	26.8
Dieldrin	μg/kg	49	15		0.0762 J	356 J	G453		1.72		126	0.0432 U	356 J	G453	9.13			16.6
Total chlordanes	μg/kg μg/kg	49	42		0.215 NJT	660 NJT		28.9	3.59	102	64.1	0.0351 UT	660 NJT		25			62.5
DDx	μg/kg μg/kg	49	48			3930 NJT			13.6		194	0.954 NJT	3930 NJT		120			192
PAHs	μg/kg	47	40	76	0.734 1131	5750 INJ I	0433	143	13.0	304	1/4	0.737 NJ I	3/30 1431	0433	120	. 13	, 556	1/2
Total PAHs	μg/kg	66	66	100	71.1 T	26400 T	A2GS12	2280	715	4280	9900	71.1 T	26400 T	A2GS12	2280	0 715	4280	9900
Phthalates	μg/kg	00	30	100	/1.1 1	20400 1	A20312	2200	113	7200	<i>)</i> , , , , , , , , , , , , , , , , , , ,	/1.1 1	20700 1	A20312	2200	. /1.	7200	7700
Bis(2-ethylhexyl) phthalate	u a/ka	64	49	77	13 J	4500	G453	745	300	1150	3160	7 U	40000 U	A2GS12	1850	0 305	5 5730	9170
Dis(2-curymexyr) pinnarate	μg/kg	04	49	11	1.J J	-1 300	0433	143	500	1150	3100	7 0	+0000 U	A2U312	103(0 30.	, 5150	91/0

Table 5.2-7. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

Table 5.2-7. Summary Statistics by Riv		,		=			Detected Conce							Detected and Not Detecte	d Concer	ntrations		
Chamical	Units	Sample	Detected Sample	Percent	M:a	M	Maximum Location(s)	Maon	Median ^b	Standard Deviation	95th Percentile ^b	Minimum	Maximum	Maximum Location(s)	Mean	Median	Standard Deviation (full DL)	95th Percentile (full DL) ^b
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median	Deviation	rercentile	(full DL) ^a	(full DL) ^a	Maximum Location(s)	(Iuli DL)	(Iuli DL)	(Iuli DL)	(Iuli DL)
RM 09-10																		
Grain Size		22	22	100	4.70 IT	02.5 T	0461	c0.2	co.7	26.2	00.0	4.72 IT	02.5 T	0161	c 0	2 (0.1	7 262	00.0
Fines	percent	33	33	100	4.72 JT	92.5 T	C461	60.3	69.7	26.2	88.9	4.72 JT	92.5 T	C461	60.3	3 69.	7 26.2	88.9
Conventionals Total organic parken	naraant	33	33	100	0.13 T	4.12	G497	2.07	2.08	0.894	3.35	0.13 T	4.12	G497	2.07	7 2.08	0.894	3.35
Total organic carbon	percent	33	33	100	0.13 1	4.12	G497	2.07	2.08	0.694	3.33	0.13 1	4.12	G497	2.0	7 2.00	0.094	3.33
Metals Arsenic	ma/ka	36	34	94	2 Ј	43.2	HA-38	5.79	3.76	7.64	14.9	2 Ј	43.2	HA-38	5.77	7 3.8	7.42	13.5
Chromium	mg/kg	36	36		11.5 T	194	HA-43	39.1	31.2		97.1	11.5 T	194	HA-38 HA-43	39.1			97.1
Copper	mg/kg	36	36		14.6 T	1370	HA-43	110	37.8		386	14.6 T	1370	HA-43	11(386
Zinc	mg/kg mg/kg	36			71.9 J	4220	HA-43	394	142		1430	71.9 J	4220	HA-43	394			1430
Butyltins	mg/kg	30	30	100	/1.9 J	4220	11A-43	374	142	734	1430	/1.9 J	4220	11A-43	37-	+ 1+	2 /34	1430
Tributyltin ion	ua/ka	10	9	90	0.97 J	31	G473	10.9	7	10.3	28.2	0.97 J	31	G473	9.97	7 6.85	5 10.1	27.9
-	μg/kg	10	,	90	0.97 J	31	0473	10.9	,	10.5	26.2	0.97 J	31	0473	7.7	7 0.6.	10.1	21.9
PCBs ^c		21	2.1	100	10.4 5	2510 5	0.450	244	110		1500	10.4 5	2510 7	G 150	2.4			1.500
Total PCBs	μg/kg	31	31	100	10.4 T	2510 T	G473	341	110	570	1580	10.4 T	2510 T	G473	341	1 110	570	1580
PCDD/Fs Homologs	,	0	0	100	270 F	5.4.40 NUT	000000	1650	601	10.00	47.60	270 5	7.4.40 NITT	000000	1.65	0 (0)	1060	47.60
Total PCDD/Fs	pg/g	8	8	100	378 T	5440 NJT	09R002	1650	691	1860	4760	378 T	5440 NJT	09R002	1650	0 69	1860	4760
PCDD/Fs		0	0	100	0.010 IT	16 5 NUT	000000	4.50	1.50	5 52	12.6	0.010 IT	16 5 NUT	000000	4.5	0 1.50	5.52	12.6
TCDD TEQ (ND=0)	pg/g	8	8	100	0.918 JT	16.5 NJT	09R002	4.59	1.58	5.53	13.6	0.918 JT	16.5 NJT	09R002	4.59	9 1.58	5.53	13.6
Pesticides		21	_	10	0.102 T	2.70 1	C407	0.000	0.700	1.02	2.44	0.0202 LIT	0.7 LT	CD151	0.07	7 0.21	1 107	2.20
Aldrin Dieldrin	μg/kg α/ka	31	6 7		0.103 J	2.78 J	G497	0.999	0.789 0.415		2.44	0.0282 UT	9.7 UT 19 UT	SD151	0.877			3.29
	μg/kg	31			0.15 J	4.85 J	G497	1.04			3.58	0.032 U		SD151				3.28 8.9
Total chlordanes	μg/kg	31	26 29		0.19 JT	12.4 NJT	G473	2.5 13.7	1.63 5.6		8.02	0.0375 UT	12.4 NJT	G473 G473	2.58			
DDx DAH	μg/kg	31	29	94	0.695 NJT	75.5 NJT	G473	13.7	3.0	19.2	60.3	0.695 NJT	75.5 NJT	G473	13.7	1 3.5	9 18.6	59.6
PAHs Total PAHs	a/lsa	36	36	100	49.6 JT	25100 JT	G467	2510	817	4840	8380	49.6 JT	25100 JT	G467	2510	0 81	7 4840	8380
Phthalates	μg/kg	30	30	100	49.0 J1	23100 31	0407	2310	617	4040	6360	49.0 J1	23100 31	0407	2310	0 61	4040	6560
Bis(2-ethylhexyl) phthalate	ua/ka	36	25	69	23 Ј	3900	G497	531	170	887	2220	7 UT	40000 U	HA-43	1700	0 158	6680	4430
RM 10-11	μg/kg	30	23	0)	23 3	3700	0477	331	170	887	2220	7 01	40000 0	117-43	1700	0 130	5 0000	4430
Grain Size																		
Fines	novoont	23	23	100	0.94 T	96.9 T	WR-PG-120	58.3	66.2	27.1	85.5	0.94 T	96.9 T	WR-PG-120	58.3	3 66.2	2 27.1	85.5
Conventionals	percent	23	23	100	0.54 1	90.9 1	WK-1 O-120	30.3	00.2	27.1	63.3	0.54 1	90.9 1	WK-FG-120	30	3 00.2	2 27.1	65.5
Total organic carbon	percent	23	23	100	0.35	3.63	WR-PG-120	2.03	2.15	0.76	3	0.35	3.63	WR-PG-120	2.03	3 2.15	0.76	3
Metals	percent	23	23	100	0.55	3.03	WK-1 G-120	2.03	2.13	0.70	3	0.55	3.03	WK-1 G-120	2.0.	2.1.	0.70	3
Arsenic	mg/kg	26	26	100	3.12 T	55	SED-12	9.96	4.22	13.4	40.4	3.12 T	55	SED-12	9.96	6 4.22	2 13.4	40.4
Chromium	mg/kg	39	39		13.5	76.1	SED-12 SED-3	34.7	31.9		62.7	13.5	76.1	SED-12 SED-3	34.7			62.7
Copper	mg/kg	39	39		27.3	846	SED-5	164	53.6		438	27.3	846	SED-5	164			438
Zinc	mg/kg	39	39		68.3 J	904	SED-8	212	150		529	68.3 J	904	SED-8	212			529
Butyltins	mg kg	37	37	100	00.5	701	SED 0	212	150	103	32)	00.5	701	SED 0	212	2 13	, 105	32)
Tributyltin ion	μg/kg	3	3	100	1.3 J	3.4	GCA10W	2.43	2.6	1.06	3.32	1.3 J	3.4	GCA10W	2.43	3 2.0	5 1.06	3.32
PCBs ^c	μ _B / κ _B	5	3	100	1.5 5	5.1	Germon	2.13	2.0	1.00	3.32	1.5 5	5.1	Germon	2.1.	2.0	1.00	3.32
Total PCBs	/1	23	21	91	8.65 T	338 T	G503	50.7	26.0	72.2	146	9.65 T	338 T	G503	40	0 244	70.6	1.41
PCDD/Fs Homologs	μg/kg	23	21	91	8.03 1	338 1	G303	52.7	26.8	73.3	146	8.65 T	338 1	G303	49.9	9 24.5	70.0	141
Total PCDD/Fs	na/a	2	2	100	405 JT	2940 JT	GSP10W	1690	1720	1270	2820	405 JT	2940 JT	GSP10W	1690	0 1720	1270	2820
PCDD/Fs	pg/g	3	3	100	403 J1	2940 J1	GSF10W	1090	1/20	1270	2820	403 J1	2940 J1	GSF10W	1090	0 1/20	1270	2820
TCDD TEQ (ND=0)	na/a	3	3	100	0.815 JT	9.83 JT	GCR10W	5.1	4.64	4.52	9.31	0.815 JT	9.83 JT	GCR10W	5.1	1 4.64	4.52	9.31
Pesticides	pg/g	3	3	100	0.613 11	9.65 J1	GCKIUW	3.1	4.04	4.32	9.31	0.813 11	9.65 J1	GCK10W	5.	1 4.02	+ 4.32	9.31
Aldrin	a/lsa	23	2	9	0.504 NJ	0.93 J	G763	0.717	0.717	0.301	0.909	0.0592 UJ	4.99 UJ	G508	0.634	4 0.3	3 1.02	1.26
Dieldrin	μg/kg μg/kg	23				0.93 J	G/03 		0.717		0.909	0.0392 UJ 0.032 U	4.99 U	G508	0.63			1.26
Total chlordanes	μg/kg μg/kg	23			0.075 JT	8.07 JT	G503	1.57	0.952		5.12	0.032 U 0.075 JT		T1S-02; T1S-04; T1S-	2.81			10
Total Chlordalles	μg/ k g	23	10	70	0.073 31	0.U/ JI	0303	1.57	0.532	1.74	3.12	0.0/J J1	10 UA	113-02, 113-04, 113-	2.01	1.10	, 3.4	10
DDx	μg/kg	23	22	96	1.82 NJT	20.7 NJT	G503	7.21	5.64	4.33	13.7	1.82 NJT	20.7 NJT	G503	7.11	1 5.48	3 4.25	13.7
PAHs	μ6/116	23	22	70	1.02 1131	20.7 131	G303	7.21	5.04	7.55	13.7	1.02 1131	20.7 1131	3303	/.11	. 5.40	7.23	13.7
Total PAHs	μg/kg	30	28	93	70.2 JT	6050 T	G508	1130	551	1550	4750	20 UT	6050 T	G508	1060	0 523	3 1520	4680
Phthalates	MB/ NB	50	20	,,,	. 5.2 51	0000 1	3300	1130	331	1330	1750	20 01	2320 1	3300	1000	. 52.	1520	1000
Bis(2-ethylhexyl) phthalate	μg/kg	23	15	65	57	590 J	G510	174	140	129	366	28 UJ	590 J	G510	157	7 130) 111	266
	r-oo		10				2010		- 10	/				2310				==0

Table 5.2-7. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

							Detected Concer	ntrations						Detected and Not Detected	l Concent	rations		
	Units	Sample	Detected Sample	Percent	3.4. · . a	. a	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum	Maximum	Maximum Lagation(c)	Mean	Median (full DL) ^b	Standard Deviation (full DL)	95th Percentile (full DL) ^b
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median	Deviation	rercentile	(full DL) ^a	(full DL) ^a	Maximum Location(s) ((Tull DL)	(Iuli DL)	(Iuli DL)	(Iuli DL)
RM 11-11.8																		
Grain Size																		
Fines	percent	9	9	9 100	34.6 T	79.3 T	WR-PG-122	56.2	62.4	15.7	75.5	34.6 T	79.3 T	WR-PG-122	56.2	62.4	15.7	75.5
Conventionals																		
Total organic carbon	percent	9) Ģ	9 100	1.1	2.54	WR-PG-122; WR-PG- 132	2.01	2.08	0.485	2.54	1.1	2.54	WR-PG-122; WR-PG- 132	2.01	2.08	0.485	2.54
Metals																		
Arsenic	mg/kg	9	9	9 100	2.94	4.7	T1S-08	3.5	3.42	0.547	4.41	2.94	4.7	T1S-08	3.5	3.42	0.547	4.41
Chromium	mg/kg	9) 9	9 100	22.3	32.2	G772	26.9	26.6	3.12	31.3	22.3	32.2	G772	26.9	26.6	3.12	31.3
Copper	mg/kg	9) 9	9 100	25.9 J	48.4 J	WR-PG-130	33.6	31.9	6.96	44.2	25.9 J	48.4 J	WR-PG-130	33.6	31.9	6.96	44.2
Zinc	mg/kg	9) 9	9 100	65.6 J	105	G772	80.2	75.6	12.4	98.8	65.6 J	105	G772	80.2	75.6	12.4	98.8
PCBs ^c																		
Total PCBs	μg/kg	9		8 89	12.8 JT	33 JT	WR-PG-122; WR-PG- 130	20.4	17.5	8.04	33	12.8 JT	33 JT	WR-PG-122; WR-PG- 130	20.3	17.9	7.52	33
Pesticides																		
Aldrin	μg/kg	9) (0 0								0.19 U	1 U	T1S-08	0.417	0.27	0.322	0.98
Dieldrin	μg/kg	9)	1 11	2.5 NJ	2.5 NJ	WR-PG-130	2.5	2.5		2.5	0.24 U	2.5 NJ	WR-PG-130	0.788	0.68	0.712	1.9
Total chlordanes	μg/kg	9	, ,	8 89	0.27 JT	1.4 NJT	WR-PG-130	0.596	0.395	0.418	1.3	0.27 JT	10 UA	T1S-08	1.64	0.4	3.16	6.56
DDx	μg/kg	9		9 100	2 NJT	7.9 JT	WR-PG-122	3.47	2.8	1.86	6.66	2 NJT	7.9 JT	WR-PG-122	3.47		1.86	6.66
PAHs	100																	
Total PAHs	μg/kg	9		9 100	53 T	6250 T	WR-PG-130	940	205	2000	4060	53 T	6250 T	WR-PG-130	940	205	2000	4060
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	9	, ,	9 100	58	1100	G772	338	130	398	1040	58	1100	G772	338	130	398	1040

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.2-8. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Western Nearshore

							Detected Con	centrations	5					Detected and Not Det	ected Conc	entrations		
			Detected	•							054						Standard	95th
Chamical	Unita	Sample	Sample	Percent	M:a	Мо b	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum	Maximum	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Deviation (full DL)	Percentile (full DL) ^b
Chemical Study Area	Units	Count	Count	Detected	Minimum ^a	Maximum ^b	MAXIMUM LOCATION(S)	iviean	ivieuian	Deviauon	r er cenule	(full DL) ^a	(full DL) ^a	махинин досаноп(s)	(ւսու ՄԼ)	(IUII DL)	(Iuli DL)	(Iuli DL)
Grain Size																		
Fines	naraant	780	780	100	0.24	99.2 T	DRB-3	55.7	63.9	28.2	91	0.24	99.2 T	DRB-3	55.7	63.9	28.2	91
Conventionals	percent	780	780	100	0.24	99.2 1	DKB-3	33.7	03.9	20.2	91	0.24	99.2 1	DKD-3	33.1	03.9	20.2	91
Total organic carbon	percent	879	810	92	0.02 J	35.5	C302	1.81	1.62	2.59	4.57	0.02 J	35.5	C302	1.68	1.37	2.53	4.24
Metals	регеси	017	010	72	0.02 3	33.3	C302	1.01	1.02	2.37	1.57	0.02 3	33.3	C302	1.00	1.57	2.33	1.21
Arsenic	mg/kg	537	512	95	0.7	43.3	HA-38	4.47	3.88	3.7	8.42	0.7	43.3	HA-38	4.56	3.95	3.67	9
Chromium	mg/kg	537	537		7.06 J	464	HA-42	32.2	30.1	25.7	50.3	7.06 J	464	HA-42		30.1	25.7	50.3
Copper	mg/kg	529	529	100	10.9	1990	HA-42	52.4	39.6	123	85.2	10.9	1990	HA-42	52.4	39.6	123	85.2
Zinc	mg/kg	529	529	100	42.8	9000	HA-42	164	123	451	278	42.8	9000	HA-42	164	123	451	278
Butyltins																		
Tributyltin ion	μg/kg	190	73	38	0.39 J	670	C457	45.5	16	98	152	0 U	670	C457	21.3	2.4	66.5	70.5
PCBs ^c																		
Total PCBs	μg/kg	492	280	57	0.0604 JT	36800 T	C455	309	77.5	2230	696	0.0604 JT	150000 UT	SD092	597	36.1	7040	840
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	168	167	99	0.141 T	425000 JT	WB-36	16200	425	59300	108000	0.141 T	425000 JT	WB-36	16100	422	59200	107000
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	170	160	94	0.00053 JT	24400 JT	WB-36	844	3.04	3360	6700	0.00053 JT	24400 JT	WB-36	794	2.41	3260	6050
Pesticides					_		_											
Aldrin	μg/kg	489	64		0.11 J	1340 J	C356	47.5		185	141	0.028 UJ	14000 U	WB-36			742	
Dieldrin	μg/kg	502	26		0.04 J	51 J	C453	5.14		10.4	15.4	0.03 U	12000 U	WB-36			689	93.9
Total chlordanes	μg/kg	506	269		0.038 JT	2330 JT	C455	35.8		178	115	0.0373 UJT	10000 UA	WB-36			549	264
DDx	μg/kg	808	703	87	0.08 JT	3640000 A	WB-24	22200	43	202000	26500	0.0498 UJT	3640000 A	WB-24	19300	28	189000	19000
PAHs Total PAHs	μg/kg	621	610	98	0.46 JT	53300000 T	C302	571000	2290	3760000	1270000	0.46 JT	53300000 T	C302	561000	2260	3730000	1260000
Phthalates	µg/kg	021	010	96	0.40 11	33300000 1	C302	371000	2290	3700000	1270000	0.40 31	33300000 I	C302	301000	2200	3730000	1200000
Bis(2-ethylhexyl) phthalate	μg/kg	558	180	32	2.4 J	10000	C240	405	125	1130	1310	2.3 U	40000 U	HA-43	535	80.5	2380	2020
RM 03-04	µg/kg	330	100	32	2.T J	10000	C210	403	123	1130	1310	2.3 0	40000 0	111 43	333	00.5	2300	2020
Grain Size																		
Fines	percent	13	13	100	32.1 T	92.8 T	C066	64.7	68.3	17.2	87.5	32.1 T	92.8 T	C066	64.7	68.3	17.2	87.5
Conventionals	F												7-10-1					
Total organic carbon	percent	13	13	100	0.86	4.19	C060	1.97	1.85	0.993	3.53	0.86	4.19	C060	1.97	1.85	0.993	3.53
PCDD/Fs Homologs	•																	
Total PCDD/Fs	pg/g	10	10	100	0.446 T	2230 JT	C066	416	16.1	708	1590	0.446 T	2230 JT	C066	416	16.1	708	1590
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	10	7	70	0.00171 JT	5.74 JT	C060	1.52	1.19	2.01	4.57	0.00171 JT	5.74 JT	C060	1.07	0.134	1.8	3.99
Pesticides																		
Aldrin	μg/kg	13	0	-								0.0367 UJ	0.96 UJ	SD001			0.248	
Dieldrin	μg/kg	13	0	-								0.06 UJ	1.9 UJ	SD001			0.492	
Total chlordanes	μg/kg	13	4		0.157 NJT			2.66		2.92	5.74	0.0503 UJT	6.01 NJT				1.87	4.93
DDx	μg/kg	13	10	77	0.205 NJT	131 NJT	C060	39.4	14.2	50.2	120	0.0692 UJT	131 NJT	C060	30.4	0.857	46.7	117
PAHs Total BAHa		12	12	100	4 14 IT	96300 T	SD001	19000	3280	32600	85100	4 14 IT	96300 T	SD001	19000	3280	32600	85100
Total PAHs Phthalates	μg/kg	12	12	100	4.14 JT	90300 1	3D001	19000	3280	32000	65100	4.14 JT	90300 1	3D001	19000	3280	32000	65100
Metals																		
Arsenic	mg/kg	12	11	92	1.99	29.9	C077	6.07	3.05	8.03	18.2	1.99	29.9	C077	5.99	3.55	7.66	17
Chromium	mg/kg	12	12		21.7	37.7	SD001	28.3		5.04	36.1	21.7	37.7	SD001			5.04	
Copper	mg/kg	12	12		22.3	56.3	C077	34.2		11.7	52	22.3	56.3	C077			11.7	52
Zinc	mg/kg	12	12		52.8	152	SD001	92		38.8	150	52.8	152	SD001			38.8	
Butyltins							~- ***								-			
Tributyltin ion	μg/kg	1	0	0								11 U	11 U	SD001	11	11		11
PCBs ^c	1.0.0																	
Total PCBs	μg/kg	12	5	42	3.8 T	118 JT	C060	50.9	46.8	41.7	104	2.65 UT	118 JT	C060	25.9	3.46	34.9	80.2
Bis(2-ethylhexyl) phthalate	μg/kg μg/kg	12	3		13 J	110	C615	61.3		48.5	105	3.2 U	110	C615			34.2	
RM 04-05	рд/кд	12	3	23	13 3	110	6013	01.5	01	40.5	103	3.2 0	110	C013	27.1	13	34.2	07.7
Grain Size																		
Fines	percent	72	72	100	0.65 T	92.5 T	C138	63.1	69.2	21.8	86.2	0.65 T	92.5 T	C138	63.1	69.2	21.8	86.2
Conventionals	Percent	,,		130	00 -	/2.0 1	2100	05.1	0,.2	21.0	00.2			3100	00.1	07.2	21.0	00.2
Total organic carbon	percent	78	78	100	0.05	14.9	C139	2.27	2.16	2.12	5.46	0.05	14.9	C139	2.27	2.16	2.12	5.46
Metals	1,	, 0	.0	- 30			-107	,	0		20			3107	,			2.10
Arsenic	mg/kg	82	80	98	1.64	15.2	SGP-14	4.04	3.94	1.71	6.3	1.64	15.2	SGP-14	4.06	3.95	1.7	6.28
Chromium	mg/kg	82	82		9.5	40.8	C133	28.7		7.7	38.9	9.5	40.8	C133			7.7	
Copper	mg/kg	82	82		10.9	677 T	SGP-16	48		74	60.2	10.9	677 T	SGP-16			74	
Zinc	mg/kg	82	82		44.3	292	C133	126		48.2	205	44.3	292	C133			48.2	
Butyltins																		
Tributyltin ion	μg/kg	4	0	0								0.31 U	19 U	SD035	5.04	0.415	9.31	16.2

Page 1 of 4

Table 5.2-8. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

				-			Detected Con	centrations	+					Detected and Not Det	ected Conce	entrations		0541.
Chemical	Units	Sample Count	Detected Sample Count	Percent Detected	Minimum ^a	Maximum ^b	Maximum Location(s)	Mean	Median ^b	Standard Deviation	95th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (full DL)	Median (full DL) ^b	Standard Deviation (full DL)	95th Percentile (full DL) ^b
		Count	Count	Detecteu	Millimum	Maximum	Transmiss Education (b)	1,10411		20,144,011	1010011110	(Iuli DL)	(Iun DL)	Transmittin Evention(b)	(run DD)	(Iun DL)	(Iun D L)	(1411 212)
PCBs ^c						***	G10c		-0				***					
Total PCBs	μg/kg	61	41	67	6.33 JT	218 T	C136	76.7	60	56.8	194	1.4 UT	288 UT	S2	60.6	44	65.1	194
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	12	12	100	0.441 T	3240 JT	C136	624	255	1050	2750	0.441 T	3240 JT	C136	624	255	1050	2750
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	12	11	92	0.0014 JT	31.6 JT	C136	5.27	0.934	10.5	25.8	0.0014 JT	31.6 JT	C136	4.83	0.848	10.1	25.
Pesticides																		
Aldrin	μg/kg	59	8	14	0.281 NJ	1.49 NJ	C142	0.851	0.853	0.4	1.39	0.0289 UJT	43.3 U	S2			6.66	9.1
Dieldrin	μg/kg	61	0	0 -								0.0473 UJT	43.3 U	S2			6.52	6.
Total chlordanes	μg/kg	61	33		0.3 JT	36.6 NJT		5.79		9.59	33	0.0385 UJT	43.3 UA	S2			9.44	3
DDx	μg/kg	61	46	75	0.093 JT	793 JT	C147	77	32.6	129	217	0.0514 UJT	793 JT	C147	59.3	20	116	17
PAHs																		
Total PAHs	μg/kg	75	73	97	2.21 JT	254000 T	C147	24700	6560	50900	111000	2.21 JT	254000 T	C147	24100	5800	50400	10700
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	67	10	15	5.9 JT	170	C139	66.2	52	57.7	157	2.4 U	21500 U	S2	764	39	3120	340
RM 05-06																		
Grain Size																		
Fines	percent	56	56	100	3.59 T	93.4 T	C172	53.5	55.6	22.2	80.4	3.59 T	93.4 T	C172	53.5	55.6	22.2	80.
Conventionals	÷																	
Total organic carbon	percent	60	60	100	0.03 J	4.37	SD05	1.63	1.83	1.04	3.07	0.03 J	4.37	SD05	1.63	1.83	1.04	3.0
Metals	- 2200111	30	30	100			2200	1.00	1.05	1.01	5.07			2200	1.00	1.05	2.51	5.0
Arsenic	mg/kg	54	50	93	1.68	12.9	C172	4.25	3.82	1.89	8.1	1.68	12.9	C172	4.4	3.98	1.99	8.5
Chromium	mg/kg	54	54		11	45.2	C227	26.5		7.15	36.6	11	45.2	C227			7.15	36.0
Copper	mg/kg	54	54		14.5 J	74.5 J	C227	33.9		12.7	54.9	14.5 J	74.5 J	C227			12.7	54.9
Zinc		54	54		48.9	229	C184	110		45	193	48.9	229	C184			45	193
	mg/kg	34	34	100	46.9	229	C164	110	100	43	193	46.9	229	C164	110	100	43	19.
Butyltins		27	1.1	41	0.20 1	0.2	G240	26.5	0	20	75.0	0.2.11	02	C240		0.6	22.7	52.6
Tributyltin ion	μg/kg	27	11	41	0.39 J	93	C240	26.5	9	30	75.3	0.2 U	93	C240	11.3	0.6	22.7	53.8
PCBs ^c																		
Total PCBs	μg/kg	53	28	53	3.72 JT	358 JT	C531	88.2	69.8	83.1	209	1.5 UT	358 JT	C531	56.5	21.9	83.5	208
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	8	8	100	0.141 T	1060 T	C185	315	1.48	477	1060	0.141 T	1060 T	C185	315	1.48	477	1060
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	8	8	100	0.00053 JT	9.97 JT	C245	2.46	0.00965	4.27	9.53	0.00053 JT	9.97 JT	C245	2.46	0.00965	4.27	9.53
Pesticides																		
Aldrin	μg/kg	41	4	10	1.34 J	3	C531	1.9	1.63	0.776	2.83	0.0327 UJ	8.7 U	SD055C	1.11	0.22	1.82	3.7
Dieldrin	μg/kg	50	0	0 -								0.0514 U	17 U	SD055C			2.42	2.22
Total chlordanes	μg/kg	50	26		0.039 JT	335 NJT	C531	17.2		65.6	41.9	0.039 JT	335 NJT	C531	9.55		47.6	9.64
DDx	μg/kg	50	45		0.08 JT	780 JT	C531	78.4		141	302	0.0559 UJT	780 JT	C531	70.6		135	297
PAHs	r6 16	50		, ,	0.00 01	700 01	0001	70	21.5	• • • •	502	0.0000	700 01	0001	, 0.0	10.0	100	
Total PAHs	μg/kg	59	59	100	0.47 JT	585000 JT	SD05	45400	9380	90100	163000	0.47 JT	585000 JT	SD05	45400	9380	90100	163000
Phthalates	µg/kg	39	39	100	0.47 31	363000 J1	3D03	45400	9360	90100	103000	0.47 31	363000 31	3003	43400	9300	90100	103000
Bis(2-ethylhexyl) phthalate	ua/ka	57	8	14	20 J	10000	C240	1400	105	3480	6700	2211	10000	C240	309	49	1370	620
	μg/kg	31	o	14	20 J	10000	C240	1400	103	3460	0700	2.3 U	10000	C240	309	47	1370	020
RM 06-07																		
Grain Size		101	101	100	0.01	02 5 T	9500	44.0	10.5	27.2	0.4.7	0.01	00.5 T	G520	44.0	10.5	27.2	0.4.4
Fines	percent	194	194	100	0.81	92.5 T	C529	44.8	49.6	27.3	84.7	0.81	92.5 T	C529	44.8	49.6	27.3	84.7
Conventionals							~~~							~~~				
Total organic carbon	percent	204	187	92	0.02 J	35.5	C302	2.81	1.58	4.7	9.07	0.02 J	35.5	C302	2.58	1.22	4.56	8.63
Metals																		
Arsenic	mg/kg	155	149		0.7	16.5 J	C324	3.61		1.9	6.22	0.7	16.5 J	C324		3.33	2.05	8
Chromium	mg/kg	155	155	100	7.06 J	125	SDDC25SB	30.3	28.9	15.3	50.4	7.06 J	125	SDDC25SB		28.9	15.3	50.4
Copper	mg/kg	152	152		11.4	183	SDDC25SB	39.4	33.9	24.9	78.4	11.4	183	SDDC25SB	39.4	33.9	24.9	78.4
Zinc	mg/kg	152	152	100	44.3	873	C324	126	108	86.1	230	44.3	873	C324	126	108	86.1	230
Butyltins																		
Tributyltin ion	μg/kg	53	20	38	1.8 J	390	SDDC25SB	63.3	16	110	333	0 U	390	SDDC25SB	24.8	1.7	73.2	140
PCBs ^c																		
Total PCBs	μg/kg	121	53	44	11.9 NJT	322 JT	C316	110	81	78.5	251	1.4 UT	1300 UT	SDDC23SB	80.8	31	159	250
	µg/kg	121	33	44	11.9 191	322 31	C310	110	01	76.5	231	1.4 01	1300 01	3DDC233D	80.8	31	139	230
PCDD/Fs Homologs Total PCDD/Fs	20/0	37	37	100	0.20 T	65700 T	C302	2650	524	10700	4500	0.29 T	65700 T	C302	2650	524	10700	4500
	pg/g	31	37	100	0.29 T	03/00 1	C302	2000	324	10700	4500	0.29 1	03/00 1	C302	2030	324	10700	450
PCDD/Fs	,		2 -	o-	0.0052 ***	150 5		20 :	2.0	20 -	100	0.0052 ***	150 5	~~··	40.0	2.25	20.0	
TCDD TEQ (ND=0)	pg/g	38	36	95	0.0052 JT	178 T	C334	20.4	3.9	39.6	108	0.0052 JT	178 T	C334	19.3	3.37	38.8	10-
Pesticides	ē					* 0 -						0.000	-0.5					=
Aldrin	μg/kg	122	16		0.11 J	200	C527	28.9		52.5	119	0.028 UJ	200	C527			21.4	21.9
Dieldrin	μg/kg	124	9	7	0.04 J	15.6 NJ	C264	4.52		6.44	15.3	0.04 J	99 U	LWMC11	3.6		11.2	15.9
Total chlordanes DDx	μg/kg	127	74		0.047 JT	220 JT	SDDC24SB	18.9		36.1	74.1	0.0373 UJT	610 UA	LWMTCLP11B			76.6	93.8
	μg/kg	124	104	84	0.1 JT	6650 NJT	C316	322	67	780	1330	0.0498 UJT	6650 NJT	C316	271	44	723	1200

Table 5.2-8. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

				=			Detected Con	centrations						Detected and Not Dete	ected Conce	entrations		
		g .	Detected	D :						Standard	95th	Minimum	Maximum		Mean	Median	Standard Deviation	95th Percentile
Chemical	Units	Sample Count	Sample Count	Percent Detected	Minimum ^a	Maximum ^b	Maximum Location(s)	Mean	Median ^b	Standard Deviation	Percentile ^b	(full DL) ^a	(full DL) ^a	Maximum Location(s)		(full DL) ^b	(full DL)	(full DL) ^b
PAHs		Count	Count	Detecteu	17111111111111	mannum	(-)					(run DL)	(run DL)		()	()	(2422 2 2)	()
Total PAHs	μg/kg	216	213	99	0.46 JT	53300000 T	C302	1610000	23900	6250000	7450000	0.46 JT	53300000 T	C302	1580000	23900	6210000	74300
Phthalates	µg/kg	210	213	22	0.40 11	33300000 I	C302	1010000	23900	0230000	7430000	0.40 11	33300000 I	C302	1380000	23900	0210000	74300
Bis(2-ethylhexyl) phthalate	μg/kg	161	35	22	7.7 J	5600 J	C301	338	87	949	824	2.3 U	16000 U	RAA-17	430	88	1500	17
RM 07-08	μg/kg	101	33	22	7.7 3	3000 3	C301	330	07	747	024	2.5 0	10000 C	K111-17	430	00	1300	17
Grain Size																		
Fines	naraant	337	337	100	0.24	99.2 T	DRB-3	57.2	65.3	30	93	0.24	99.2 T	DRB-3	57.2	65.3	30	
Conventionals	percent	337	331	100	0.24	99.2 1	DKB-3	31.2	05.5	30	93	0.24	99.2 1	DKB-3	31.2	03.3	30	
Total organic carbon	naraant	416	365	88	0.04 J	5.9	WB-66	1.24	0.93	1.08	2.86	0.04 J	5.9	WB-66	1.09	0.615	1.08	2
	percent	410	303	00	0.04 J	3.9	₩В-00	1.24	0.93	1.06	2.80	0.04 J	3.9	WB-00	1.09	0.013	1.06	4
Metals Arsenic	ma/ka	125	118	94	2.17	10.6 JT	C366-2	4.34	4.06	1.25	6	2.17	10.6 JT	C366-2	4.42	4.12	1.31	6.
Chromium	mg/kg	125	125		11.5	95.8 T	C366-1	32.3	30.6	13.9	51.9	11.5	95.8 T	C366-1	32.3		13.9	5.
	mg/kg																	
Copper	mg/kg	123	123		11.5	237 J	DMMU-2-A+B+C	42.6	41.6	23.5	72.6	11.5	237 J	DMMU-2-A+B+C	42.6		23.5	72
Zinc	mg/kg	123	123	100	47.7 JT	592 J	DMMU-2-A+B+C	131	125	63.8	221	47.7 JT	592 J	DMMU-2-A+B+C	131	125	63.8	2
Butyltins				10		50 Y	222	252	40.2	10.0			70 Y	200	122	10		
Tributyltin ion	μg/kg	55	10	18	4 J	58 J	DRB-2	36.2	40.3	19.8	57.6	1.5 UJ	58 J	DRB-2	13.2	13	14.7	52
PCBs ^c																		
Total PCBs	μg/kg	146	70	48	0.906 T	1180 NJT	C356	177	63.6	263	858	0.906 T	150000 UT	SD092	1470	38.1	12500	16
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	86	85	99	0.443 T	425000 JT	WB-36	27300	381	78100	151000	0.443 T	425000 JT	WB-36	27000	347	77700	15100
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	87	85	98	0.00072 JT	24400 JT	WB-36	1570	3.85	4490	8960	0.00072 JT	24400 JT	WB-36	1540	3.82	4450	87
Pesticides																		
Aldrin	μg/kg	167	26	16	0.27	1340 J	C356	72.5	5.95	261	137	0.0315 UJ	14000 U	WB-36	261	2.45	1250	12
Dieldrin	μg/kg	167	10	6	0.34 J	10 J	DMMU1	3.95	3.65	3.48	9.1	0.0515 U	12000 U	WB-36	238	2.12	1180	6
Total chlordanes	μg/kg	165	69		0.19 JT	1000 A	WB-35	68.5	1.89	203	354	0.0419 UT	10000 UA	WB-36		4.11	928	99
DDx	μg/kg	473	421	89	0.087 JT	3640000 A	WB-24	36900	98.4	260000	51000	0.0659 UJT	3640000 A	WB-24	32800		246000	3800
PAHs	82.64	.,,	.21	0,	0.007 11	20.0000 11		20,00	, , , ,	200000	51000	0.0027 011	201000011		22000	.5.2	2.0000	2000
Total PAHs	μg/kg	154	149	97	0.53 JT	135000 T	OSS004	3560	1480	12000	10400	0.53 JT	135000 T	OSS004	3450	1460	11800	1020
Phthalates	MB/ NB	154	147	,,	0.55 31	133000 1	OBBOOT	3300	1400	12000	10400	0.55 31	155000 1	OBBOOT	3130	1400	11000	1020
Bis(2-ethylhexyl) phthalate	μg/kg	152	67	44	20 J	4200	OSS006	277	150	536	683	2.5 U	7440 U	DMMU-2-A	445	150	1260	119
2M 08-09	µg/kg	132	07	77	20 3	4200	CBBCCC	211	150	330	003	2.5 0	7440 0	Divinio 2 II	443	130	1200	11,
Grain Size																		
Fines	naraant	82	82	100	0.89 T	93.1 T	C457	66.8	77.4	25.7	89.3	0.89 T	93.1 T	C457	66.8	77.4	25.7	89
Conventionals	percent	62	62	100	0.69 1	93.1 1	C437	00.8	77.4	23.1	69.3	0.69 1	93.1 1	C437	00.8	77.4	23.1	09
		92	0.1	00	0.02 1	7.21	6455	1.02	1.00	1.20	2.44	0.02.11	7.01	C155	1.0	1.07	1.20	2
Total organic carbon	percent	82	81	99	0.03 J	7.21	C455	1.82	1.99	1.28	3.44	0.02 U	7.21	C455	1.8	1.97	1.29	3.4
Metals	4	77	7.5	07	1.04	22.2.1	0445	5.67	4.10	1.61	1.5	1.04	22.2.1	0445	5.60	4.22	4.50	
Arsenic	mg/kg	77	75		1.84	32.3 J	C445	5.67	4.19	4.64	15	1.84	32.3 J	C445		4.22	4.59	_ :
Chromium	mg/kg	77	77		12.3	157	SD143	35.2	32.8	21.5	56.5	12.3	157	SD143			21.5	56
Copper	mg/kg	76	76		13.9	397	C457	59.8	45.9	61	126	13.9	397	C457	59.8		61	12
Zinc	mg/kg	76	76	100	48.6	700	C445	190	146	139	505	48.6	700	C445	190	146	139	50
Butyltins																		
Tributyltin ion	μg/kg	43	25	58	0.49 J	670	C457	44.9	5.8	133	94.4	0.22 U	670	C457	32.5	1.7	109	96
PCBs ^c																		
Total PCBs	μg/kg	73	58	79	0.0604 JT	36800 T	C455	931	110	4860	1270	0.0604 JT	36800 T	C455	740	70.5	4340	90
PCDD/Fs Homologs	r.a. a																	
Total PCDD/Fs	pg/g	13	13	100	0.227 T	218000 T	C455	19400	1540	59800	92400	0.227 T	218000 T	C455	19400	1540	59800	9240
PCDD/Fs	PBB	10	10	100	0.227	210000 1	2.00	17.00	10.0	2,000	72.00	0.227	210000 1		17.00	10.0	2,000	,2.0
TCDD TEQ (ND=0)	pg/g	13	11	85	0.217 JT	332 T	C455	36.7	4.19	98.2	175	0.014 UT	332 T	C455	31.1	3.02	90.7	14
Pesticides	PE/ 5	13	11	03	0.217 31	332 1	C+33	30.7	4.17	70.2	173	0.014 01	332 1	C+33	31.1	3.02	70.7	1-
Aldrin		63	10	16	0.5 NJ	637 J	C455	67.9	1.6	200	364	0.032 UJ	637 J	C455	10.9	0.204	80.2	2.4
Dieldrin	μg/kg	63	3		0.42 J	51 J	C453	17.3	0.43	29.2	45.9	0.032 UJ	51 J	C453			6.44	0.72
	μg/kg																	
Total chlordanes	μg/kg	64	46		0.038 JT	2330 JT	C455	61.4	1.82	343	102	0.038 JT	2330 JT	C455			291	81
DDx	μg/kg	63	56	89	0.087 JT	5840 NJT	C455	153	15.7	781	380	0.0579 UJT	5840 NJT	C455	136	13.7	737	33
PAHs		-		100	1.05 100	17000 T	0.155	1500	7.00	2642	2050	1.05 75	17000 E	0.155	1500	7.60	2640	201
Total PAHs	μg/kg	76	76	100	1.05 JT	17200 T	C455	1500	763	2640	3850	1.05 JT	17200 T	C455	1500	763	2640	385
Phthalates							0:					A	a	~				٠.٠
Bis(2-ethylhexyl) phthalate	μg/kg	78	38	49	2.4 J	7400	C455	628	100	1470	2620	2.4 J	7400	C455	418	48	1290	212
RM 09-10																		
Grain Size																		
Fines	percent	20	20	100	0.94 T	94.1 T	C468	62.6	72	27.2	90.9	0.94 T	94.1 T	C468	62.6	72	27.2	90
Conventionals																		
Total organic carbon	percent	20	20	100	0.04 J	2.58	C468	1.7	1.94	0.671	2.3	0.04 J	2.58	C468	1.7	1.94	0.671	2.3

Table 5.2-8. Summary Statistics by River Mile for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Study Area (RM 1.9-11.8) Western Nearshore.

				_			Detected Con	centrations	S					Detected and Not Det	tected Conce	ntrations		
			Detected	_													Standard	95th
		Sample	Sample	Percent						Standard	95th	Minimum	Maximum		Mean	Median	Deviation	Percentile
Chemical	Units	Count	Count	Detected	Minimum ^a	Maximum ^b	Maximum Location(s)	Mean	Median ^b	Deviation	Percentile ^b	$(full DL)^a$	$(full DL)^a$	Maximum Location(s)	(full DL)	(full DL) ^b	(full DL)	(full DL) ^b
Metals																		
Arsenic	mg/kg	26	23	88	1.48	43.3	HA-38	8.11	3.86	11.8	39.3	1.48	43.3	HA-38	8.06	4.04	11.1	37.3
Chromium	mg/kg	26	26		10.2	464	HA-42	60.5	34.4	94.8	214	10.2	464	HA-42	60.5	34.4	94.8	214
Copper	mg/kg	24	24	100	13.6	1990	HA-42	229	45.7	524	1590	13.6	1990	HA-42	229	45.7	524	1590
Zinc	mg/kg	24	24	100	42.8	9000	HA-42	792	155	2020	4450	42.8	9000	HA-42	792	155	2020	4450
Butyltins																		
Tributyltin ion	μg/kg	7	7	100	9.2	140	C468	40.3	29	45	108	9.2	140	C468	40.3	29	45	108
PCBs ^c																		
Total PCBs	μg/kg	20	19	95	2.17 JT	2370 JT	LWMC19	424	128	692	2210	1.4 UT	2370 JT	LWMC19	403	123	680	2200
PCDD/Fs Homologs																		
Total PCDD/Fs	pg/g	2	2	100	11200 JT	13300 JT	LWMC19	12200	12200	1470	13200	11200 JT	13300 JT	LWMC19	12200	12200	1470	13200
PCDD/Fs																		
TCDD TEQ (ND=0)	pg/g	2	2	100	32.3 JT	38 T	LWMC19	35.2	35.2	4.07	37.8	32.3 JT	38 T	LWMC19	35.2	35.2	4.07	37.8
Pesticides																		
Aldrin	μg/kg	18	0	0								0.0329 UJ	37 U	LWMC24	4.39	0.12	11.4	34.5
Dieldrin	μg/kg	18	2	11	0.3 NJ	0.828 NJ	C477	0.564	0.564	0.373	0.802	0.03 U	30 U	LWMC24	. 4	0.134	9.21	27.5
Total chlordanes	μg/kg	20	11	55	0.892 NJT	5.1 JT	C738	2.19	2	1.26	4.15	0.082 UT	100 UA	LWMTCLP19	17.4	2.26	31.8	90.5
DDx	μg/kg	18	15	83	0.31 JT	255 JT	LWMC24	44.8	9.3	80.9	236	0.22 UT	255 JT	LWMC24	38.3	8.73	75	232
PAHs																		
Total PAHs	μg/kg	23	22	96	64 JT	358000 T	HA-43	19200	1430	75800	13400	1.5 UT	358000 T	HA-43	18300	960	74100	13300
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	25	13	52	32	1400	C468	359	210	405	1060	4.9 U	40000 U	HA-43	2310	180	8100	8400
RM 11-11.8																		
Grain Size																		
Fines	percent	6	6	100	43.5 T	66.1 T	C7732	57.9	61.2	8.32	65.3	43.5 T	66.1 T	C7732	57.9	61.2	8.32	65.3
Conventionals																		
Total organic carbon	percent	6	6	100	1.13 T	1.99 T	C7732	1.7	1.78	0.336	1.98	1.13 T	1.99 T	C7732	1.7	1.78	0.336	1.98
Metals																		
Arsenic	mg/kg	6	6	100	3.29 T	3.96 T	C7732	3.72		0.278	3.96	3.29 T	3.96 T	C7732			0.278	3.96
Chromium	mg/kg	6	6	100	25.7	31.9 T	C7732	28.7		2.78	31.8	25.7	31.9 T	C7732			2.78	31.8
Copper	mg/kg	6	6	100	35.6 T	46.8 T	C7732	42.4		3.7	46	35.6 T	46.8 T	C7732			3.7	46
Zinc	mg/kg	6	6	100	101 T	278	C7731	159	145	62	248	101 T	278	C7731	159	145	62	248
PCBs ^c																		
Total PCBs	μg/kg	6	6	100	10 JT	148 JT	C7731	70.6	61.3	52.3	139	10 JT	148 JT	C7731	70.6	61.3	52.3	139
Pesticides																		
Aldrin	μg/kg	6	0	0								0.12 U	0.6 U	C7731	0.228	0.12	0.194	0.523
Dieldrin	μg/kg	6	2	33	0.15 JT	0.48 JT	C7732	0.315	0.315	0.233	0.464	0.15 JT	0.79 U	C7731	0.358	0.28	0.247	0.713
Total chlordanes	μg/kg	6	6	100	0.74 JT	6.2 JT	C7731	3.07	2.4	2.4	6.05	0.74 JT	6.2 JT	C7731	3.07	2.4	2.4	6.05
DDx	μg/kg	6	6	100	5.1 JT	33 NJT	C7731	18.1		11.7	32.5	5.1 JT	33 NJT	C7731		15	11.7	32.5
PAHs																		
Total PAHs	μg/kg	6	6	100	380 T	4100 T	C7731	1240	835	1420	3300	380 T	4100 T	C7731	1240	835	1420	3300
Phthalates																		
Bis(2-ethylhexyl) phthalate	μg/kg	6	6	100	160 T	530	C7731	317	330	133	488	160 T	530	C7731	317	330	133	488

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT PCDD/F - dioxin/furan

DL - detection limit RM - river mile

ND - not detected TCDD - tetrachlorodibenzo-p-dioxin

PAH - polycyclic aromatic hydrocarbon
PCB - polychlorinated biphenyl
TOC - total organic carbon
TOC - total organic carbon

PCB - polychlorinated biphenyl Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Page 4 of 4

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

C Total PCBs are total PCB congeners whenever available and total Arcolors if not.

Table 5.2-9. Number of Surface and Subsurface Sediment Samples (Detected Only) for Indicator Contaminants by Concentration Range, Study Area (RM 1.9 - 11.8).

		Surfac	e Sedimer	nt Concentra	ation Ranges			8-,	Subsurf	ace Sedim	ent Concent	tration Ranges			
Chemical	<1	1-10	10-100	100-1000	1000-10000	>10000	Surface Total	<1	1-10	10-100	100-1000	1000-10000	>10000	Subsurface Total	Grand Total
Metals															
Arsenic	3	1364	57	2			1426	11	1433	45				1489	2915
Chromium		25	1466	39			1530		58	1452	14			1524	3054
Copper		8	1392	144	4		1548		1	1456	78	6		1541	3089
Zinc		2	650	914	15		1581			741	834	6		1581	3162
Butyltins															
Tributyltin ion	15	108	125	71	12	2	333	16	62	88	35	14	8	223	556
PCBs															
Total PCBs	1	188	621	203	37	2	1052	20	88	467	319	40	6	940	1992
PCDD/Fs Homologs															
Total PCDD/Fs		3	31	133	63	7	237	20	31	74	103	71	26	325	562
PCDD/Fs															
TCDD TEQ (ND = 0)	98	107	28	4		1	238	143	99	42	12	14	3	313	551
Pesticides															
Aldrin	187	67	12	2			268	72	44	14	4	1		135	403
Dieldrin	212	33	6	1			252	57	15	5				77	329
Total chlordanes	442	270	46	3			761	245	316	67	19	1		648	1409
DDx	46	636	327	92	22	7	1130	145	425	489	200	83	51	1393	2523
PAHs															
Total PAHs		6	104	661	636	233	1640	37	87	137	484	563	335	1643	3283
Phthalates															
Bis(2-ethylhexyl) phthalate		7	336	501	79	9	932		27	317	257	32	2	635	1567

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

Table 5.2-10. Number of Surface and Subsurface Sediment Samples (Detected and Not Detected) for Indicator Contaminants by Concentration Range, Study Area (RM 1.9 - 11.8).

				ncentration Ra			of concentration				Concentration I	Ranges			_
Chemical	<1	1-10	10-100	100-1000 100	00-10000	>10000	Surface Total	<1	1-10	10-100	100-1000 100	00-10000	>10000	Subsurface Total	Grand Total
Metals															
Arsenic	3	1489	57	2			1551	21	1487	45				1553	3104
Chromium		25	1472	39			1536		59	1457	14			1530	3066
Copper		8	1396	144	4		1552		1	1456	78	6		1541	3093
Zinc		2	650	914	15		1581			741	834	6		1581	3162
Butyltins															
Tributyltin ion	26	122	125	71	12	2	358	138	126	111	36	14	8	433	791
PCBs															
Total PCBs	1	346	712	215	42	2	1318	26	555	564	340	50	9	1544	2862
PCDD/Fs Homologs															
Total PCDD/Fs		3	31	133	63	7	237	21	32	74	103	71	26	327	564
PCDD/Fs Homologs															
TCDD TEQ (ND = 0)	98	107	28	4		1	238	161	99	42	12	14	3	331	569
Pesticides															
Aldrin	847	256	41	2			1146	884	206	56	17	8	1	1172	2318
Dieldrin	905	246	31	8			1190	902	238	46	14	7	1	1208	2398
Total chlordanes	623	479	83	8			1193	558	487	122	38	9		1214	2407
DDx	66	721	340	93	22	7	1249	395	453	495	201	83	51	1678	2927
PAHs															
Total PAHs		9	115	668	636	233	1661	54	133	142	487	564	335	1715	3376
Phthalates															
Bis(2-ethylhexyl) phthalate		36	662	699	100	16	1513		233	839	451	63	5	1591	3104

Notes:

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

Table 5.2-11. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Upriver Reach (RM 15.3-28.4).

						·	Detected Concenti	ations				Detec	ted and Not Detected	Concentrati	ions	
				-			Maximum				Minimum	Maximum	Maximum	Mean	Median	95th
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Grainsize																_
Fines	percent	80	80	100	0.28	98.4 T	U6TOC-2	30.5	28.3	67.4	0.28	98.4 T	U6TOC-2	30.5	28.3	67.4
Conventionals	_															
Total organic carbon	percent	77	77	100	0.12	2.57	U6TOC-2	1.13	1.18	2.29	0.12	2.57	U6TOC-2	1.13	1.18	2.29
Metals																
Arsenic	mg/kg	77	73	94.8	1.9 J	5.29	U6TOC-2	2.94	2.84 T	4.05	1.9 J	5.29	U6TOC-2	2.85	2.78	4.04
Chromium	mg/kg	66	66	100	11.9 J	40.5	HC08	23.1	23.1 J	32.4	11.9 J	40.5	HC08	23.1	23.1 J	32.4
Copper	mg/kg	72	72	100	10.5 J	50.9	HC08	24.6	24.5	35.9 J	10.5 J	50.9	HC08	24.6	24.5	35.9 J
Zinc	mg/kg	72	72	100	41.1 J	165	U2C-2	75.2	74.5	100	41.1 J	165	U2C-2	75.2	74.5	100
Butyltins																
Tributyltin ion	μg/kg	8	4	50	0.72 J	2.3	G028	1.31	1.1 J	2.12 J	0.082 U	2.3	G028	0.675	0.388 J	1.88 J
PCBs ^c																
Total PCBs	μg/kg	81	42	51.9	0.29 JT	31 T	U2C-2	4.48	2.99 J	14.3 J	0.29 JT	42 UT	HC08	5.69	2.9 JT	19.5 UT
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g	39	38	97.4	2.39 T	733 T	G027	90.3	59.1 J	298 J	2.39 T	733 T	G027	88.1	57.1 JT	297 J
PCDD/Fs																
TCDD TEQ ($ND = 0$)	pg/g	49	48	98	0.00684 JT	2.99 T	WR04SD	0.31492	0.1135 J	1.1571	0.00684 JT	2.99 T	WR04SD	0.30903	0.111 A	1.1424
Pesticides																
Aldrin	μg/kg	77	7	9.1	0.17 J	0.55	UG03B	0.3341	0.32 J	0.508	0.0329 UJ	2.1 U	HC08	0.243	0.135 U	0.95 U
Dieldrin	μg/kg	77	10	13	0.092 NJ	0.4 T	G027	0.2089	0.162 J	0.3955	0.03 U	2.1 U	HC08	0.2515	0.092 NJ	0.95 U
Total chlordanes	μg/kg	77	38	49.4	0.057 JT	1.53 T	G027	0.3909	0.3445 J	0.806 J	0.0438 UT	2.1 UA	HC08	0.3825	0.24 UJT	1 U
DDx	μg/kg	81	56	69.1	0.087 JT	14.57 JA	HC10	2.011	1.715 J	5.375 J	0.087 JT	14.57 JA	HC10	1.707	1.2 T	3.35 UA
PAHs																
Total PAHs	μg/kg	78	63	80.8	0.91 JT	1510 T	G027	107.4	74.4 T	270.1 J	0.91 JT	1510 T	G027	88.39	55.75 J	195.8 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg	72	56	77.8	4.2 J	2100	U1C-3	94	40	210	3.2 UJ	2100	U1C-3	84	34 J	200

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

Table 5.2-12. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Upriver Reach (RM 15.3-28.4).

				_			Detected Concent	rations				Dete	cted and Not Detected	Concentrati	ions	
				_			Maximum			_	Minimum	Maximum	Maximum	Mean	Median	95th
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Grainsize																
Fines	percent	3	3	100	22.2 T	43.6 T	C016	30.6	25.9 T	41.8 V	22.2 T	43.6 T	C016	30.6	25.9 T	41.8 V
Conventionals	_															
Total organic carbon	percent	3	3	100	1.15	1.8 T	C016	1.47	1.47	1.77 V	1.15	1.8 T	C016	1.47	1.47	1.77 V
Metals																
Arsenic	mg/kg	3	3	100	2.37	2.45	C032	2.41	2.4	2.45 V	2.37	2.45	C032	2.41	2.4	2.45 V
Chromium	mg/kg	3	3	100	19.7	23.4	C032	21.2	20.5	23.1 V	19.7	23.4	C032	21.2	20.5	23.1 V
Copper	mg/kg	3	3	100	26	33	C016	28.6	26.8	32.4 V	26	33	C016	28.6	26.8	32.4 V
Zinc	mg/kg	3	3	100	65.8	119	C017	87.6	78.1	115 V	65.8	119	C017	87.6	78.1	115 V
Butyltins																
Tributyltin ion	μg/kg	3	0	0							0.085 U	0.094 U	C032	0.0453	0.0465 U	0.047 UV
PCBs ^c																
Total PCBs	μg/kg	3	0	0							2.8 UT	11 UT	C017	3.2	2.8 UT	5.2 UV
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g	3	3	100	359 T	1090 T	C016	816	1000 T	1080 V	359 T	1090 T	C016	816	1000 T	1080 V
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g	3	3	100	0.656 T	2.63 T	C016	1.55	1.37 T	2.5 V	0.656 T	2.63 T	C016	1.55	1.37 T	2.5 V
Pesticides																
Aldrin	μg/kg	3	0	0							0.055 U	0.2 U	C016	0.0517	0.0275 U	0.0928 UV
Dieldrin	μg/kg	3	0	0							0.036 U	0.036 U	C016; C017; C032	0.018	0.018 U	0.018 UV
Total chlordanes	μg/kg	3	3	100	0.187 T	2.93 T	C016	1.34	0.89 T	2.73 V	0.187 T	2.93 T	C016	1.34	0.89 T	2.73 V
DDx	μg/kg	3	3	100	0.99 T	9.74 T	C016	5.83	6.75 T	9.44 V	0.99 T	9.74 T	C016	5.83	6.75 T	9.44 V
PAHs																
Total PAHs	μg/kg	3	3	100	253 T	533 T	C016	384	366 T	516 V	253 T	533 T	C016	384	366 T	516 V
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg	3	3	100	20 J	3800	C032	1300	110	3400 V	20 J	3800	C032	1300	110	3400 V

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., from summing multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.2-13. Number of Surface and Subsurface Sediment Samples (Detected Only) for Indicator Contaminants by Concentration Range, Upriver Reach (RM 15.3 - 28.4).

		Surfac	e Sedimer	nt Concentra	ation Ranges			Subst	ırface Se	diment Co	oncentration Ranges		
Chemical	<1	1-10	10-100	100-1000	1000-10000	>10000	Surface Total	<1	1-10	10-100	100-1000 1000-10000	Subsurface Total	Grand Total
Metals													
Arsenic		73					73		3			3	76
Chromium			66				66			3		3	69
Copper			72				72			3		3	75
Zinc			68	4			72			2	1	3	75
Butyltins													
Tributyltin ion	1	3					4						4
PCBs													
Total PCBs	5	33	4				42						42
PCDD/Fs Homologs													
Total PCDD/Fs		9	17	12			38				2 1	3	41
PCDD/Fs													
TCDD TEQ (ND = 0)	45	3					48	1	2			3	51
Pesticides													
Aldrin	7						7						7
Dieldrin	10						10						10
Total chlordanes	36	2					38	2	1			3	41
DDx	14	41	1				56	1	2			3	59
PAHs													
Total PAHs	1	5	39	17	1		63				3	3	66
Phthalates													
Bis(2-ethylhexyl) phthalate		6	40	9	1		56			1	1 1	3	59

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

Table 5.2-14. Number of Surface and Subsurface Sediment Samples (Detected and Not Detected) for Indicator Contaminants by Concentration Range, Upriver Reach (RM 15.3 - 28.4).

Table 3.2-14. Number of Surface and Sur			•		tion Ranges					•	oncentratio	,		
Chemical	<1	1-10	10-100	100-1000	1000-10000	>10000	Surface Total	<1	1-10	10-100	100-1000	1000-10000	Subsurface Total	Grand Total
Metals														
Arsenic		77					77		3				3	80
Chromium			66				66			3			3	69
Copper			72				72			3			3	75
Zinc			68	4			72			2	1		3	75
Butyltins														
Tributyltin ion	5	3					8	3					3	11
PCBs														
Total PCBs	5	56	20				81		2	1			3	84
PCDD/Fs Homologs														
Total PCDD/Fs		10	17	12			39				2	1	3	42
PCDD/Fs														
TCDD REQ (ND = 0)	46	3					49	1	2				3	52
Pesticides														
Aldrin	65	12					77	3					3	80
Dieldrin	65	12					77	3					3	80
Total chlordanes	62	15					77	2	1				3	80
DDx	26	54	1				81	1	2				3	84
PAHs	38	302	243	38	2		623		2	12	10		24	647
Total PAHs	1	15	44	17	1		78				3		3	81
Phthalates														
Bis(2-ethylhexyl) phthalate		8	51	12	1		72			1	1	1	3	75

Notes:

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

Table 5.2-15. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Downtown Reach (RM 11.8-15.3).

				-			Detected Concent	rations				Dete	cted and Not Detected	l Concentrat	ions	
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
All Downtown Surface Sediment Data																
Grain Size																
Fines	percent	135	135	100	0.3 T	89.4 T	WRS38	21.9	14.4 T	67.2	0.3 T	89.4 T	WRS38	21.9	14.4 T	67.2
Conventionals	į															
Total organic carbon	percent	208	208	100	0.033	13.1	G045	1.066	0.8475	2.327	0.033	13.1	G045	1.066	0.8475	2.327
Metals																
Arsenic	mg/kg	233	201	86.3	1.07	126	G006	6.2	3.05	16.4	1.07	126	G006	5.54	2.79	14.4 J
Chromium	mg/kg	265	265	100	1.24 J	758 J	R50	34.564	20.8 JT	103.22	1.24 J	758 J	R50	34.564	20.8 JT	103.22
Copper	mg/kg	269	264	98.1	5.51	2150 J	R38	98.603	27 J	371.1 J	0.184 UJ	2150 J	R38	96.831	26.8	369.6 J
Zinc	mg/kg	269	269	100	3.27 J	6480 J	R50	293.9	90.5 T	1218 J	3.27 J	6480 J	R50	293.9	90.5 T	1218 J
Butyltins																
Tributyltin ion	μg/kg	174	62	35.6	0.4 J	1990	WRS20	74.61	4.1	174.6	0.0013 U	1990	WRS20	26.67	0.29 U	39.35
PCBs ^c																
Total PCBs	μg/kg	265	195	73.6	0.798 JT	19700 T		612	45 T	3060	0.24 UT	19700 T		456	28 T	1120
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g	67	62	92.5	9.45 JT	15400 JT	G030	1130	444 J	3590 J	9.45 JT	15400 JT	G030	1040	387 JT	3360 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g	67	63	94	0.0112 JT	19.2 JT	G030	2.606	1.43 JT	9.224 J	0.0112 JT	19.2 JT	G030	2.454	1.26 JT	9.132 J
Pesticides																
Aldrin	μg/kg	145	22	15.2	0.0735 JT	0.7 NJ	UG08	0.2624	0.215 J	0.615 J	0.012 UJ	2 U	PA03; PA04	0.1064	0.07 U	0.381 J
Dieldrin	μg/kg	145	14	9.7	0.042 J	1.1	G062	0.266	0.155 J	0.762 J	0.03 U	2.1 U	O33-S010	0.119	0.07 U	0.466
Total chlordanes	μg/kg	145	110	75.9	0.039 JT	23.2 JT	G054	1.29	0.55 J	3.97 J	0.039 JT	23.2 JT	G054	1.09	0.4 JT	3.76 J
DDx	μg/kg	149	130	87.2	0.047 JT	73.3 JT	G048	6.59	3.09 J	19.9 J	0.047 JT	73.3 JT	G048	5.85	2.34 T	19 J
PAHs	_															
Total PAHs	μg/kg	269	248	92.2	0.0734 T	62500 T	PGC-10	2174	337.5 J	7860	0.0734 T	62500 T	PGC-10	2004	283 JT	7512
Phthalates		0.5	70	01.0	·	10000	GGDGDIAE	440	77.5		5 **	10000	CODODIAL	240	50.5	505
Bis(2-ethylhexyl) phthalate	μg/kg	96	78	81.3	7.6 J	18000	GCRSP12E	418	75.5	623	7 U	18000	GCRSP12E	348	58.5	595
Excluding All Zidell Surface Sediment	Data															
Grain Size																
Tributyltin ion	μg/kg	94	36	38.3	0.4 J	1700 JT	G005	55	1.3 J	50	0.06 U	1700 JT	G005	21.1	0.29 U	29.8
PCBs ^c	100															
Total PCBs	μg/kg	154	114	74	0.798 JT	4200 JT		108	21.9 J	371 J	0.73 UT	4200 JT		80.6	11 J	297 Ј
PCDD/Fs Homologs	μg/kg	134	114	74	0.796 J1	4200 J1		108	21.9 J	3/1 J	0.75 01	4200 J1		80.0	11 J	291 J
Total PCDD/Fs	pg/g	67	62	92.5	9.45 JT	15400 JT	G030	1130	444 J	3590 J	9.45 JT	15400 JT	G030	1040	387 JT	3360 J
PCDD/Fs	P6/ 5	07	02	72.3). 4 3 31	13400 31	0030	1130	777 3	3370 3	7.43 31	15400 31	0030	1040	307 31	3300 3
TCDD TEO (ND = 0)	pg/g	67	63	94	0.0112 JT	19.2 JT	G030	2.606	1.43 JT	9.224 J	0.0112 JT	19.2 JT	G030	2.454	1.26 JT	9.132 J
Pesticides	188	0,	02	7.	0.0112 01	17.2 01	3030	2.000	1	,.22.0	0.0112 01	17.2 01	3050	2	1.20 01	, <u>.</u>
Aldrin	μg/kg	145	22	15.2	0.0735 JT	0.7 NJ	UG08	0.2624	0.215 J	0.615 J	0.012 UJ	2 U	PA03; PA04	0.1064	0.07 U	0.381 J
Dieldrin	μg/kg	145	14	9.7	0.042 J	1.1	G062	0.266	0.155 J	0.762 J	0.03 U	2.1 U	O33-S010	0.119	0.07 U	0.466
Total chlordanes	μg/kg	145	110	75.9	0.039 JT	23.2 JT	G054	1.29	0.55 J	3.97 J	0.039 JT	23.2 JT	G054	1.09	0.4 JT	3.76 J
DDx	μg/kg	149	130	87.2	0.047 JT	73.3 JT	G048	6.59	3.09 J	19.9 J	0.047 JT	73.3 JT	G048		2.34 T	19 J
Fines	percent	115	115	100	0.3 T	73.5 T	G015	19.8	14.3 T	60.9	0.3 T	73.5 T	G015		14.3 T	60.9
Conventionals		-	-						-							
Total organic carbon	percent	165	165	100	0.033	13.1	G045	1.069	0.81	2.292	0.033	13.1	G045	1.069	0.81	2.292
Metals																
Arsenic	mg/kg	159	155	97.5	1.07	126	G006	4.71	2.89 T	8.17 J	1.07	126	G006	4.62	2.79	7.94 J
Chromium	mg/kg	155	155	100	4.51	189	G115	19.4	17.2	36	4.51	189	G115	19.4	17.2	36
Copper	mg/kg	159	157	98.7	8.39	366	G094	32.6	23.9	71.4 J	8.39	366	G094	32.3	23.9	70.9 J
Zinc	mg/kg	159	159	100	22.8	1450	G094	113	77.7 J	293 J	22.8	1450	G094	113	77.7 J	293 J
Butyltins																
PAHs																
Total PAHs	μg/kg	157	150	95.5	0.57 JT	62500 T	PGC-10	1940	259 J	4910	0.57 JT	62500 T	PGC-10	1850	246 JT	4640
Phthalates					_		_									
Bis(2-ethylhexyl) phthalate	μg/kg	96	78	81.3	7.6 J	18000	GCRSP12E	418	75.5	623	7 U	18000	GCRSP12E	348	58.5	595

Table 5.2-15. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Surface Sediment, Downtown Reach (RM 11.8-15.3).

				_					Detected Concentr	ations							Detecto	ed and Not Detected	l Concentrati	ions		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum	a	Maximun	ıª	Maximum Location(s)	Mean	Median	n ^b	95th ^b	Minimur (full DL)		Maximui (full DL)		Maximum Location(s)	Mean (half DL)	Mediai (half DI		95th (half DL) ^b
Zidell Surface Sediment Data Only																						
Grain Size																						
Fines	percent	20	20	100	0.5		89.4	T	WRS38	34.3	26.8		80.5	0.5		89.4	T	WRS38	34.3	26.8		80.5
Conventionals																						
Total organic carbon	percent	43	43	100	0.229		2.59		WRS-96	1.053	0.932		2.504	0.229		2.59		WRS-96	1.053	0.932		2.504
Metals																						
Arsenic	mg/kg	74	46	62.2	1.29		78	J	R47	11.2	4.98	J	55.5 J	1.29		78	J	R47	7.51	2.87	J	34.7 J
Chromium	mg/kg	110	110	100	1.24	J	758	J	R50	55.958	26.6		167.55 J	1.24	J	758	J	R50	55.958	26.6		167.55 J
Copper	mg/kg	110	107	97.3	5.51		2150	J	R38	195.48	42.9		1125 J	0.184	UJ	2150	J	R38	190.17	41		1117.5 J
Zinc	mg/kg	110	110	100	3.27	J	6480	J	R50	555.1	147.5	J	2536 J	3.27	J	6480	J	R50	555.1	147.5	J	2536 J
Butyltins																						
Tributyltin ion	μg/kg	80	26	32.5	1.9		1990		WRS20	101.8	8		187.5	0.0013	U	1990		WRS20	33.19	0.2825	U	40.35
PCBs ^c																						
Total PCBs	μg/kg	111	81	73	1.27	T	19700	T		1320	133	T	7780 T	0.24	UT	19700	T		977	80	UT	6220
PAHs																						
Total PAHs	μg/kg	112	98	87.5	0.0734	T	32000	A	R20	2538	589		9835	0.0734	T	32000	A	R20	2221	419.5		8495

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.2-16. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Downtown Reach (RM 11.8-15.3).

				-			Detected Concentr	rations				Dete	cted and Not Detected	Concentrati	ons	
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
All Downtown Subsurface Sediment Data											· · · · · · · · · · · · · · · · · · ·				-	
Grain Size		120	120	100	0.21 T	89 T	WD C27	22.00	22.9 T	71.26	0.21 T	90 T	WD C27	22.09	22.9 T	71.26
Fines Conventionals	percent	129	129	100	0.31 T	89 1	WRS37	33.08	32.8 T	71.36	0.31 T	89 T	WRS37	33.08	32.8 T	71.36
Total organic carbon	novoont	150	156	98.1	0.034 J	22.4 J	C024	1.81	0.939	7.53	0.02 UJ	22.4 J	C024	1.78	0.02 I	7.44
Metals	percent	159	130	96.1	0.034 J	22.4 J	C024	1.01	0.939	1.55	0.02 UJ	22.4 J	C024	1.76	0.92 J	7.44
Arsenic	mg/kg	178	168	94.4	0.57	7.5	WRS46	2.96	2.85	5.05	0.57	7.5	WRS46	2.86	2.8	5.01
Chromium	mg/kg	178	174	97.8	4.56	143	WRS06	22.2	19.9	41.7	4.56	143	WRS06	2.80	19.6 J	41.3
Copper	mg/kg	178	178	100	9.48	1050	WRS07	46.3	30.9	101 J	9.48	1050	WRS07	46.3	30.9	101 J
Zinc	mg/kg	178	178	100	21.4	11100 J	PGC-06	379	99.4 J	1410 J	21.4	11100 J	PGC-06	379	99.4 J	1410 J
Butyltins	mg/Kg	170	170	100	21.4	11100 3	1 00 00	317)). + 3	1410 3	21.4	11100 3	1 00 00	317)). , ,	1410 3
Tributyltin ion	μg/kg	65	21	32.3	0.55 JT	14000	WRS06	1052	6	7300	0.0015 U	14000	WRS06	340.1	0.24 U	72.2
PCBs ^c	μ ₀ , κ ₀	05	21	32.3	0.55 51	11000	WILDOO	1032	Ü	7500	0.0013 C	11000	WROOO	310.1	0.21	, 2.2
Total PCBs	u a/Ira	110	59	53.6	1.4 JT	610 T	C022	92.1	41 T	521 J	0.73 UT	610 T	C022	55.6	11	217 Ј
PCDD/Fs Homologs	μg/kg	110	39	33.0	1.4 J1	010 1	C022	92.1	41 1	321 J	0.73 01	010 1	C022	33.0	11	21 / J
Total PCDD/Fs	na/a	44	39	88.6	4.74 T	4590 T	C007	1090	541 JA	3030	2.88 UT	4590 T	C007	970	440	2920 Ј
PCDD/Fs	pg/g	44	39	00.0	4.74 1	4390 1	C007	1090	341 JA	3030	2.88 U I	4390 1	C007	970	440	2920 J
TCDD/FS $TCDD TEQ (ND = 0)$	na/a	44	41	93.2	0.00226 JT	12.8 T	C007	2.6527	1.67 T	6.02 T	0.00226 JT	12.8 T	C007	2.4736	1.37 J	5.9945
Pesticides	pg/g	44	41	93.2	0.00220 J1	12.6 1	C007	2.0327	1.07 1	0.02 1	0.00220 J1	12.6 1	C007	2.4730	1.5/ J	3.9943
Aldrin	ua/ka	94	8	8.5	0.079 J	1.7	C002	0.414	0.21 J	1.3 J	0.046 UJ	1.7	C002	0.114	0.08 U	0.324 UJ
Dieldrin	μg/kg μg/kg	94	4	4.3	0.29 J	1.7 16 J	C002	7.06	5.98 J	1.3 J 14.7 J	0.040 UJ	1.7 16 J	C002 C031	0.114	0.08 U 0.07 U	2.55 U
Total chlordanes		94	51	54.3	0.29 J 0.094 JT	54 JT	O33-C005	3.16	1.3 T	8.2 J	0.054 UT	54 JT	O33-C005	1.81	0.33 J	6.61 J
DDx	μg/kg μg/kg	94	64	68.1	0.052 T	301 T	C031	16.3	5.71 J	67 J	0.054 CT 0.052 T	301 T	C031	11.2	2.04 J	43.6 J
PAHs	μg/kg	24	04	06.1	0.032 1	301 1	C031	10.5	3./1 J	07 3	0.032 1	301 1	C031	11.2	2.04 J	43.0 J
Total PAHs	μg/kg	161	157	97.5	0.25 JT	4850000 T	PGC-06	219700	680 T	2146000	0.25 JT	4850000 T	PGC-06	214200	640 JT	2140000 T
Phthalates	μg/kg	101	137	71.5	0.23 31	4030000 1	1 00-00	217700	000 1	2140000	0.23 31	4030000 1	1 00-00	214200	040 31	2140000 1
Bis(2-ethylhexyl) phthalate	μg/kg	64	36	56.3	2.5 J	815 T	C031	103	37.5 J	535	2.3 U	815 T	C031	68.8	17.8 J	324
	<u> </u>	01	30	20.3	2.3 0	013 1	0031	103	37.3	333	2.5 C	013 1	2031	00.0	17.0 3	321
Excluding All Zidell Subsurface Sediment Data																
Grain Size		110	110	100	0.21 T	75.6 T	PGG 04	22.72	22 6 T	71.02	0.21 T	75.6 T	DCC 04	22.72	22.6 T	71.02
Fines	percent	119	119	100	0.31 T	75.6 T	PGC-04	32.72	33.6 T	71.03	0.31 T	75.6 T	PGC-04	32.72	33.6 T	71.03
PCBs ^c																
Total PCBs	μg/kg	98	57	58.2	1.4 JT	610 T	C022	89.6	41 T	522 J	0.73 UT	610 T	C022	52.5	7.2	242
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g	44	39	88.6	4.74 T	4590 T	C007	1090	541 JA	3030	2.88 UT	4590 T	C007	970	440	2920 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g	44	41	93.2	0.00226 JT	12.8 T	C007	2.6527	1.67 T	6.02 T	0.00226 JT	12.8 T	C007	2.4736	1.37 J	5.9945
Pesticides	_		_													
Aldrin	μg/kg	94	8	8.5	0.079 J	1.7	C002	0.414	0.21 J	1.3 J	0.046 UJ	1.7	C002	0.114	0.08 U	0.324 UJ
Dieldrin	μg/kg	94	4	4.3	0.29 J	16 J	C031	7.06	5.98 J	14.7 J	0.03 U	16 J	C031	0.514	0.07 U	2.55 U
Total chlordanes	μg/kg	94	51	54.3	0.094 JT	54 JT	O33-C005	3.16	1.3 T	8.2 J	0.054 UT	54 JT	O33-C005	1.81	0.33 J	6.61 J
DDx	μg/kg	94	64	68.1	0.052 T	301 T	C031	16.3	5.71 J	67 J	0.052 T	301 T	C031	11.2	2.04 J	43.6 J
PAHs																
Conventionals		4.50					900							. =0		
Total organic carbon	percent	159	156	98.1	0.034 J	22.4 J	C024	1.81	0.939	7.53	0.02 UJ	22.4 J	C024	1.78	0.92 J	7.44
Metals		1.40	1.40	100	0.55	5 10	GOLL	2.00	2.72		0.55	5 .10	G011	2.00	2.72	. o.a
Arsenic	mg/kg	148	148	100	0.57	7.18	C011	2.89	2.73	5.03	0.57	7.18	C011	2.89	2.73	5.03
Chromium	mg/kg	148	144	97.3	4.56	71.7 T	PGC-05	19.4	18.9	30.5 J	4.56	71.7 T	PGC-05	19.1	18.5	30.4 J
Copper	mg/kg	148	148	100	9.48	457	PGC-05	39	30.7 J	94.7	9.48	457	PGC-05	39	30.7 J	94.7
Zinc	mg/kg	148	148	100	21.4	11100 Ј	PGC-06	414	95.7 J	2070 Ј	21.4	11100 J	PGC-06	414	95.7 J	2070 Ј
Butyltins	а	40	0	10	0.55 15	22	202 (4.40	1.05 1	17.5	0.027.11	22	G 00.	0.005	0.0525 11	1.20 1
Tributyltin ion	μg/kg	42	8	19	0.55 JT	23	C004	4.48	1.05 J	17.5	0.067 U	23	C004	0.935	0.0525 U	1.39 J
Total PAHs	μg/kg	149	147	98.7	0.25 JT	4850000 T	PGC-06	235000	770 T	2160000	0.25 JT	4850000 T	PGC-06	231000	740 JT	2160000
Phthalates	а	~ 4	26	563	251	015 70	G021	100	27.5.1	525	2211	015 7	0021	60.0	17.0.1	22.4
Bis(2-ethylhexyl) phthalate	μg/kg	64	36	56.3	2.5 J	815 T	C031	103	37.5 J	535	2.3 U	815 T	C031	68.8	17.8 J	324

Table 5.2-16. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Downtown Reach (RM 11.8-15.3).

				_				Detected Concentr	ations						Det	ected and Not Detected	l Concentrat	ions		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximun	ı ^a	Maximum Location(s)	Mean	Median	ı ^b	95th ^b	Minimum (full DL) ^a	Maxin (full D		Maximum Location(s)	Mean (half DL)	Median (half DL) ^h)	95th (half DL) ^b
Zidell Subsurface Sediment Data Only																				
Grain Size																				
Fines	percent	10	10	100	3.1	89	T	WRS37	37.4	25.1		87.7	3.1	89	r	WRS37	37.4	25.1		87.7
Metals																				
Arsenic	mg/kg	30	20	66.7	2	7.5		WRS46	3.5	3		5.1	2	7.5	i	WRS46	2.7	3		4.6
Chromium	mg/kg	30	30	100	14	143		WRS06	36	29.5		75.4	14	143	;	WRS06	36	29.5		75.4
Copper	mg/kg	30	30	100	14	1050		WRS07	82.1	40.5		169	14	1050)	WRS07	82.1	40.5		169
Zinc	mg/kg	30	30	100	41	2270	J	WRS07	207	120	J	344 J	41	2270)]	WRS07	207	120	J	344 J
Butyltins																				
Tributyltin ion	μg/kg	23	13	56.5	1	14000		WRS06	1697	11		9980	0.0015	U 14000)	WRS06	959.5	3		6625
PCBs ^c																				
Total PCBs	μg/kg	12	2	16.7	140 T	190	T	WRS28	170	170		190	110 U	T 190	T (WRS28	81	65	U	160
PAHs																				
Total PAHs	μg/kg	12	10	83.3	4.8 T	451	T	WRS46	136.3	97.8	J	416.8	3.9 L	T 45	Т	WRS46	113.9	54.4		409.2

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., for parameters reported by multiple methods) for the Round 2 data.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results is "J" qualified.

Table 5.2-17. Number of Surface and Subsurface Sediment Samples (Detected Only) for Indicator Contaminants by Concentration Range, Downtown Reach (RM 11.8 - 15.3).

		Surfac	_	•	ation Ranges							ration Ranges			
Chemical	<1	1-10	10-100	100-1000	1000-10000	>10000	Surface Total	<1	1-10	10-100	100-1000	1000-10000	>10000	Subsurface Total	Grand Total
Metals															
Arsenic		183	17	1			201	3	165					168	369
Chromium		33	218	14			265		12	161	1			174	439
Copper		6	222	29	7		264		2	167	8	1		178	442
Zinc		1	151	102	15		269			91	77	9	1	178	447
Butyltins															
Tributyltin ion	14	32	12	2	2		62	4	9	5	1	1	1	21	83
PCBs															
Total PCBs	1	47	81	51	12	3	195		13	31	15			59	254
PCDD/Fs Homologs															
Total PCDD/Fs		2	16	26	17	1	62		3	8	11	17		39	101
PCDD/Fs															
TCDD TEQ (ND = 0)	26	35	2				63	16	24	1				41	104
Pesticides															
Aldrin	22						22	7	1					8	30
Dieldrin	13	1					14	1	1	1				3	17
Total chlordanes	73	35	2				110	23	26	2				51	161
DDx	29	76	25				130	11	32	19	1			63	193
PAHs															
Total PAHs	3	17	41	121	55	11	248	7	6	23	52	39	30	157	405
Phthalates															
Bis(2-ethylhexyl) phthalate		5	39	32	1	1	78		5	23	8			36	114

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

Table 5.2-18. Number of Surface and Subsurface Sediment Samples (Detected and Not Detected) for Indicator Contaminants by Concentration Range, Downtown Reach (RM 11.8 - 15.3).

		Surfac	ce Sedime	nt Concentra	ation Ranges							tration Ranges			
Chemical	<1	1-10	10-100	100-1000	1000-10000	>10000	Surface Total	<1	1-10	10-100	100-1000	1000-10000	>10000	Subsurface Total	Grand Total
Metals															
Arsenic		215	17	1			233	3	175					178	411
Chromium		33	218	14			265		12	165	1			178	443
Copper	1	8	224	29	7		269		2	167	8	1		178	447
Zinc		1	151	102	15		269			91	77	9	1	178	447
Butyltins															
Tributyltin ion	123	35	12	2	2		174	46	11	5	1	1	1	65	239
PCBs															
Total PCBs	4	90	92	64	12	3	265	4	50	31	25			110	375
PCDD/Fs Homologs															
Total PCDD/Fs		2	21	26	17	1	67		5	11	11	17		44	111
PCDD/Fs															
TCDD TEQ (ND = 0)	30	35	2				67	19	24	1				44	111
Pesticides															
Aldrin	143	2					145	90	3					93	238
Dieldrin	141	4					145	86	6	1				93	238
Total chlordanes	99	43	3				145	64	27	2				93	238
DDx	44	80	25				149	40	33	19	1			93	242
PAHs															
Total PAHs	4	33	45	121	55	11	269	7	10	23	52	39	30	161	430
Phthalates															
Bis(2-ethylhexyl) phthalate		13	44	37	1	1	96		24	29	11			64	160

Notes:

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

Table 5.2-19. Summary Statistics for Contaminant Chemicals, Percent Fines, and TOC in Surface Sediment, Downstream Reach (RM 0-1.9).

		·		_		,	Detected Concentr	ations				Dete	cted and Not Detected	Concentrati	ons	
				_			Maximum			_	Minimum	Maximum	Maximum	Mean	Median	95th
Analyte	Units	# Analyzed #	# Detected %	Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Grain Size																
Fines	percent	21	21	100	2.13 T	95.4 T	DG03	53.3	59.9 T	94.5 T	2.13 T	95.4 T	DG03	53.3	59.9 T	94.5 T
Conventionals	-															
Total organic carbon	percent	25	25	100	0.13	2.63	DG07	1.16	1.15 T	2.44	0.13	2.63	DG07	1.16	1.15 T	2.44
Metals																
Arsenic	mg/kg	25	25	100	0.6 J	6.36	DG15	3.7	4.12	5.38	0.6 J	6.36	DG15	3.7	4.12	5.38
Chromium	mg/kg	25	25	100	10.4 J	42.2	DG07	24.7	27	36.7	10.4 J	42.2	DG07	24.7	27	36.7
Copper	mg/kg	25	25	100	8	45.7	DG07	25.5	27 T	41.4	8	45.7	DG07	25.5	27 T	41.4
Zinc	mg/kg	25	25	100	47.6	188	DG15	98.2	99.5 T	160	47.6	188	DG15	98.2	99.5 T	160
Butyltins																
Tributyltin ion	μg/kg	4	4	100	0.37 J	1.2 J	GSP01E	0.85	0.92 J	1.2 J	0.37 J	1.2 J	GSP01E	0.85	0.92 J	1.2 J
PCBs ^c																
Total PCBs	μg/kg	25	16	64	1.03 JT	410 T	DG15	33.7	6.8 J	127	1.03 JT	410 T	DG15	22.5	5 UT	29.2 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g	21	21	100	1.563 JT	1780 JT	GCRSP01W	231.6	77.41 JT	957.6 JT	1.563 JT	1780 JT	GCRSP01W	231.6	77.41 JT	957.6 JT
PCDD/Fs																
TCDD TEQ $(ND = 0)$	pg/g	21	21	100	0.0051 JT	2.62 JT	GCRSP01W	0.4013	0.164 JT	1.74 JT	0.0051 JT	2.62 JT	GCRSP01W	0.4013	0.164 JT	1.74 JT
Pesticides																
Aldrin							WR-BC-07;									
	μg/kg	25	3	12	0.37 J	0.4 J	WR-BC-08	0.39	0.4 J	0.4 J	0.12 U	5.6 U	DG05	0.36	0.15 U	1 UJ
Dieldrin	μg/kg	25	1	4	0.069 J	0.069 J	GCA01E	0.069	0.069 J	0.069 J	0.03 U	5 U	DG05	0.475	0.265 U	1.08 U
Total chlordanes													WR-BC-01;			
	μg/kg	25	15	60	0.067 NJT	4.5 JT	DG15	0.812	0.29 JT	3.1 J	0.067 NJT	10 UA	WR-BC-07; WR-BC-08		0.44 JT	5 U
DDx	μg/kg	25	22	88	0.2 A	30 JT	DG05	5.2	3.1 J	15 J	0.2 A	30 JT	DG05		3 A	14 J
PAHs	μ ₅ /κ ₅	23	22	00	0.2 11	30 31	DG03	5.2	3.1 3	13 3	0.2 11	30 31	DG03	7.7	3 71	14 3
Total PAHs	μg/kg	25	25	100	1.4 JT	18000 JT	DG05	1120	273 Т	1870	1.4 JT	18000 JT	DG05	1120	273 T	1870
Phthalates	ME/NE	23	23	100	1.7 31	10000 31	2003	1120	2/3 1	1070	1.7 31	10000 31	D003	1120	2/3 1	1070
Bis(2-ethylhexyl) phthalate	μg/kg	21	10	47.6	7.1 J	170	DG07	64	57	140	7.1 J	170	DG07	38	19 J	110

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT PCDD/F - dioxin/furan DL - detection limit RM - river mile

ND - not detected TCDD - tetrachlorodibenzo-p-dioxin
PAH - polycyclic aromatic hydrocarbon TEQ - toxic equivalent concentration
PCB - polychlorinated biphenyl TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

C Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.2-20. Summary Statistics for Indicator Contaminants, Percent Fines, and TOC in Subsurface Sediment, Downstream Reach (RM 0-1.9).

					Detected Concentrations				_	Detected and Not Detected Concentrations						
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
Grain Size																
Fines	percent	17	17	100	2.47 T	96.4 T	DC03	69.6	79.9 T	91.8	2.47 T	96.4 T	DC03	69.6	79.9 T	91.8
Conventionals	•															
Total organic carbon	percent	26	26	100	0.05	2.78	DC03	1	0.97	2.13	0.05	2.78	DC03	1	0.97	2.13
Metals	•															
Arsenic	mg/kg	26	26	100	0.6 J	13.3	DC02	4.06	3.75	8.67	0.6 J	13.3	DC02	4.06	3.75	8.67
Chromium	mg/kg	26	26	100	6.6	33.8	DC03	23.2	24.8	32	6.6	33.8	DC03	23.2	24.8	32
Copper	mg/kg	26	26	100	8.9	43.6	DC03	25.7	26.5	38.8	8.9	43.6	DC03	25.7	26.5	38.8
Zinc	mg/kg	26	26	100	10.8	242	DC02	118	125	209	10.8	242	DC02	118	125	209
PCBs ^c																
Total PCBs	μg/kg	26	13	50	5 T	250 T	DC03	67	46 JT	180 J	2.1 UT	250 T	DC03	35	5 U	130 J
PCDD/Fs Homologs	, , ,															
Total PCDD/Fs	pg/g	17	17	100	0.093 T	967.3 T	DC06	145	59.31 JT	487.7	0.093 T	967.3 T	DC06	145	59.31 JT	487.7
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g	17	16	94.1	0.00252 T	1.53 JT	DC06	0.2595	0.1135 J	0.86175 J	0.00252 T	1.53 JT	DC06	0.24447	0.108 JT	0.8172 J
Pesticides																
Aldrin	μg/kg	26	3	11.5	0.2 J	2.8 NJ	DC03	1.2	0.49 J	2.6 J	0.19 U	2.8 NJ	DC03	0.51	0.13 U	1 UJ
Dieldrin	μg/kg	26	0	0							0.36 U	5 U	WR-BC-03	0.55	0.24 U	1 U
Total chlordanes	μg/kg	26	5	19.2	0.75 NJT	2.2 NJT	DC03	1.5	1.6 JT	2.1 J	0.45 UT	10 UA	WR-BC-03; WR-	2.3	1.3 J	5 U
													GC-02; WR-GC-			
													04; WR-GC-05;			
													WR-GC-06			
DDx	μg/kg	26	17	65.4	0.28 NJT	80 NJT	DC03	19	12 A	67 J	0.28 NJT	80 NJT	DC03	13	2.3 J	57 J
PAHs																
Total PAHs	μg/kg	26	26	100	0.49 JT	23000 T	DC03	1339	310 J	2202	0.49 JT	23000 T	DC03	1339	310 J	2202
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg	17	16	94.1	3.1 J	39	DC04	11	8.2 J	23 J	2.5 U	39	DC04	10	8.1 J	22 J

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT PCDD/F - dioxin/furan DL - detection limit RM - river mile

ND - not detectedTCDD - tetrachlorodibenzo-p-dioxinPAH - polycyclic aromatic hydrocarbonTEQ - toxic equivalent concentrationPCB - polychlorinated biphenylTOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.2-21. Number of Surface and Subsurface Samples (Detected Only) for Indicator Contaminants by Concentration Range, Downstream Reach (RM 0-1.9).

THE COLUMN TO THE COLUMN THE COLU				•	ation Ranges	•				•	· ·	tration Ranges			
Chemical	<1	1-10	10-100	100-1000	1000-10000	>10000	Surface Total	<1	1-10	10-100	100-1000	1000-10000	>10000	Subsurface Total	Grand Total
Metals															
Arsenic	1	24					25	1	24	1				26	51
Chromium			25				25		1	25				26	51
Copper		2	23				25		2	24				26	51
Zinc			13	12			25			12	14			26	51
Butyltins															
Tributyltin ion	2	2					4								4
PCBs															
Total PCBs		11	4	1			16		2	8	3			13	29
PCDD/Fs Homologs															
Total PCDD/Fs		1	11	8	1		21	3	2	7	5			17	38
PCDD/Fs															
TCDD TEQ (ND = 0)	19	2					21	15	1					16	37
Pesticides															
Aldrin	3						3	2	1					3	6
Dieldrin	1						1								1
Total chlordanes	12	3					15	1	4					5	20
DDx	5	14	3				22	2	4	11				17	39
PAHs															
Total PAHs		1	6	16	1	1	25	2	2	7	10	4	1	26	51
Phthalates															
Bis(2-ethylhexyl) phthalate		1	7	2			10		11	5				16	26

Notes:

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

Table 5.2-22. Number of Surface and Subsurface Samples (Detected and Not Detected) for Indicator Contaminants by Concentration Range, Downstream Reach (RM 0-1.9).

		Surfac	e Sedimer	nt Concentra	ation Ranges			Subsurface Sediment Concentration Ranges							
Chemical	<1	1-10	10-100	100-1000	1000-10000	>10000	Surface Total	<1	1-10	10-100	100-1000	1000-10000	>10000	Subsurface Total	Grand Total
Metals															
Arsenic	1	24					25	1	24	1				26	51
Chromium			25				25		1	25				26	51
Copper		2	23				25		2	24				26	51
Zinc			13	12			25			12	14			26	51
Butyltins															
Tributyltin ion	2	2					4								4
PCBs															
Total PCBs		20	4	1			25		15	8	3			26	51
PCDD/Fs Homologs															
Total PCDD/Fs		1	11	8	1		21	3	2	7	5			17	38
PCDD/Fs															
TCDD TEQ (ND = 0)	19	2					21	16	1					17	38
Pesticides															
Aldrin	21	4					25	17	9					26	51
Dieldrin	19	6					25	17	9					26	51
Total chlordanes	17	8					25	8	18					26	51
DDx	5	17	3				25	6	9	11				26	51
PAHs															
Total PAHs		1	6	16	1	1	25	2	2	7	10	4	1	26	51
Phthalates															
Bis(2-ethylhexyl) phthalate		1	18	2			21		12	5				17	38

Notes:

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - non-detect

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

TCDD - tetrachlorodibenzo-p-dioxin

Table 5.3-1. Average Heights of Sediment Collected in Sediment Traps Deployed in Willamette River (2007 & 2009).

	Average Heights of Sean	Initial	•	1 3	,	,				
	River Mile ^a	Deployment	_	Average Sediment	_	-	_	-	_	-
Location	(East or West Side)	Date	Q1	Height (cm)	Q2	Height (cm)	Q3	Height (cm)	Q4	Height (cm)
LWG Sedim	ent Traps									
ST001	1.9E	10/31/2006	1/30/2007	7	5/1/2007	$2.4^{\rm b}$	8/16/2007	1.5 ^b	11/14/2007	6.1
ST002	1.8W	10/31/2006	1/30/2007	14.6	5/1/2007	5.1	8/16/2007	5.3	11/14/2007	6
ST003	2.9 (Multnomah	10/31/2006	2/1/2007	17.1	5/1/2007	4.6	8/16/2007	<1 ^b	11/14/2007	1.4
	Channel)							``		
ST004	6.0E	11/1/2006	1/30/2007	11.6	4/30/2007	4.2	8/8/2007	6.6	11/13/2007	5.8
ST005	6.0W	10/31/2006	1/30/2007	27.7	4/30/2007	10.2	8/8/2007	2.3	11/13/2007	7.9
ST006	9.0	11/1/2006	sampler not		5/1/2007	< 1 ^b	8/16/2007	4	11/13/2007	2
	(Swan Island		found							
	Lagoon)									
ST007	11.3E	11/2/2006	1/31/2007	37.4	4/30/2007	10	8/17/2007	7.1	11/13/2007	7.9
ST008	11.5W	11/1/2006	1/31/2007	69.1	4/30/2007	16	8/17/2007	2.9^{b}	11/13/2007	12.5
ST009	15.7E	11/2/2006	2/2/2007	6.3	4/30/2007	10.7	8/17/2007	4.9	11/13/2007	1.7
ST010	15.6W	11/2/2006	2/2/2007	52.3	4/30/2007	9.7	8/17/2007	1.4 ^b	11/13/2007	6
ST011	3.5E	10/31/2006	2/1/2007	8.8	5/2/2007	3.4	8/16/2007	2	11/14/2007	5.9
ST012	4.5W	10/31/2006	2/1/2007	23.9	5/2/2007	6.8	8/16/2007	10	11/14/2007	6.2
ST013	6.7E	11/1/2006	2/1/2007	8.2	4/30/2007	1.6 ^b	8/16/2007	1.1	11/13/2007	3.3
ST014	7.5W	10/30/2006	sampler not found		sampler not found		8/16/2007	12	11/13/2007	21
ST015	9.7W	10/30/2006	1/31/2007	20	5/1/2007	3.9	8/17/2007	16.7	11/13/2007	9.2
ST016	9.9E	11/1/2006	sampler not		5/1/2007	7	8/17/2007	3 ^b	11/13/2007	4
			found							
City of Port	land RM 11E Sediment	Traps								
ST001	11 E	6/25/2009					9/21/2009	10.0	1/13/2010	21.6
ST002	11.2 E	6/25/2009					9/21/2009	6.8	1/13/2010	18.5
ST003	11.3 E	6/25/2009					9/21/2009	6.6	1/13/2010	22.5
ST004	11.5 E	6/25/2009					9/21/2009	8.4	1/14/2010	23.6
ST005	11.7 E	6/25/2009					9/21/2009	7.9	1/14/2010	18.0
ST006	11.8 E	6/25/2009					9/22/2009	4.7	1/13/2010	24.1
ST007	12.1 E	6/25/2009					9/22/2009	3.5	1/14/2010	sampler not
										recovered

^a Based on site characterization and risk assessment (SCRA) data.

^b Samples not collected; re-deployed with existing sediment.

Table 5.3-2. Sediment Trap Sediment Chemistry Results for Indicator Contaminants, Percent Fines, and TOC, First Quarter (Winter 2007).

		LW3-ST001	LW3-ST002	LW3-ST003	LW3-ST004	LW3-ST005	LW3-ST007	LW3-ST008	LW3-ST009	LW3-ST010	LW3-ST011	LW3-ST012	LW3-ST013	LW3-ST015
		1/30/2007	1/30/2007	2/1/2007	1/30/2007	1/30/2007	1/31/2007	1/31/2007	2/2/2007	2/2/2007	2/1/2007	2/1/2007	2/1/2007	1/31/2007
Analyte	Units	LW3-ST1001	LW3-ST1002	LW3-ST1003	LW3-ST1004	LW3-ST1005-1	LW3-ST1007	LW3-ST1008	LW3-ST1009	LW3-ST1010	LW3-ST1011	LW3-ST1012	LW3-ST1013	LW3-ST1015
Grain Size														
Fines	percent	94.99 T	82.18 T	85.02 T	81.07 T	84.4 T	67.13 T	28.3 T	21.66 T	40.41 T	92.62 T	92.9 T	95.37 T	83.82 T
Conventionals														
Total organic carbon	percent	2.52	2.3	2.7	2.53	3.02 T	2.4	1.41	1.11	1.89	2.54	2.97	2.64	2.47
Metals														
Arsenic	mg/kg	4.38	3.89	3.87	3.75	4.15 T	3.78 T	3.09	2.82	3.45	4.26	4.25	4.22	3.61
Chromium	mg/kg	38.6	40.4	37.3	35.2	40.4 T	38.1 T	34	31.2	36.1	40.2	41.3	47.1	37.4
Copper	mg/kg	46.6	46	43.7	46.5	48.5 T	41.8 T	32.3	26.4	36.2	48.2	48.5	52.5	43.5
Zinc	mg/kg	105	110	100	100	111 T	100 T	87.7	78	90	110	110	114	109
Butyltins														
Tributyltin ion	μg/kg	3.2	2.9	2.6 J	4.6	0.17 UT	0.83 U	0.12 U	1.9	0.6 U	3.3 J	1.8 J	3.7	4.2
PCBs														
Total PCBs ^a	μg/kg	12.8 JT	7.71 T	7.9 T	24.2 JT	10.6 JT	28.7 JT	9.53 JT	5.9 JT	5.46 JT	16.7 JT	11.5 T	23.7 T	17.9 T
PCDD/Fs Homologs														
Total PCDD/Fs	pg/g	563 T	157 JT	90.1 JT	253 T	363 T	252 T	165 T	141 T	72.2 JT	535 T	79.3 JT	209 T	268 T
PCDD/Fs														
TCDD TEQ (ND=0)	pg/g	1.65 JT	0.327 JT	0.225 JT	0.461 JT	1.07 JT	0.436 JT	0.515 JT	0.426 JT	0.192 JT	1.11 JT	0.149 JT	0.514 JT	0.499 JT
Pesticides														
Aldrin	μg/kg	0.83 J	0.61 U	0.63 J	0.41 U	1.1 NJT	1 U	1.6 U	1 U	1 U	0.43 U	0.9 J	0.43 U	0.4 U
Dieldrin	μg/kg	0.9 U	0.79 U	0.77 U	0.8 U	0.84 UT	0.67 U	3 U	0.52 U	0.66 U	0.82 U	0.84 U	0.83 U	0.78 U
Total chlordanes	μg/kg	1 NJT	1.1 JT	0.51 NJT	0.49 NJT	1.6 NJT	1 UT	3.7 NJT	0.24 JT	0.4 JT	0.39 JT	0.9 JT	2 JT	1.5 JT
DDx	μg/kg	4.3 JT	1.4 NJT	5.8 NJT	4.4 JT	6.5 JT	7.4 NJT	2.5 UT	0.98 JT	6.4 JT	3.5 NJT	7.8 JT	3.4 JT	2.1 NJT
Polycyclic Aromatic Hydrocarbons														
Total PAHs	μg/kg	190 JT	410 JT	930 T	1000 T	4000 T	120 JT	120 JT	100 JT	1300 JT	250 JT	760 T	200 JT	180 JT
Phthalates														
Bis(2-ethylhexyl) phthalate	μg/kg	88	100	120	220	130 T	110	96	35	76	110	190	230	130

^a Total PCBs are total PCB congeners whenever available and total Aroclors if not.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.3-3. Sediment Trap Sediment Chemistry Results for Indicator Contaminants, Percent Fines, and TOC, Second Quarter (Spring 2007).

		LW3-ST002	LW3-ST003	LW3-ST004	LW3-ST005	LW3-ST007	LW3-ST008	LW3-ST009	LW3-ST010	LW3-ST011	LW3-ST012	LW3-ST015	LW3-ST016
		5/1/2007	5/1/2007	4/30/2007	4/30/2007	4/30/2007	4/30/2007	4/30/2007	4/30/2007	5/2/2007	5/2/2007	5/1/2007	5/1/2007
Analyte	Units	LW3-ST-2002	LW3-ST-2003	LW3-ST-2004	LW3-ST-2005	LW3-ST-2007	LW3-ST-2008	LW3-ST-2009	LW3-ST-2010	LW3-ST-2011	LW3-ST-2012	LW3-ST-2015	LW3-ST-2016
Grain Size													
Fines	percent	98.29 T	82.97 T	91.74 T	94.44 T	75.56 T	82.14 T	71.34 T	80.94 T	95.66 T	95.97 T	88.82 T	89.43 T
Conventionals													
Total organic carbon	percent	2.46	2.69	2.7	3.06	2.62	3.14	3.11	2.99	2.8	3.05 T	2.73	2.61
Metals													
Arsenic	mg/kg	5.6	4.5	5.2	4.7	4.45 T	4.5	4.5	4.5	4.9	5.6	5.3	4.9
Chromium	mg/kg	36.2 J	28.7 J	31.8 J	31.3 J	31.4 JT	30.4 J	30.5 J	29.3 J	30 J	38.9 J	33.9 J	33.4 J
Copper	mg/kg	52.4	40.9	56	43	40.9 T	43.5	39.7	41.4	48.3	55.6	45.7	44.8
Zinc	mg/kg	135	125	132	127	113 T	116	93.5	109	115	135	143	127
Butyltins													
Tributyltin ion	μg/kg	1.7 J	1.6 J	4.9	1.5 J	1.4 J	0.48 J	0.42 U	0.65 U	3.4	1.5 J	0.74 J	0.59 J
PCBs													
Total PCBs ^a	μg/kg	7.69 JT	7.07 JT	11.7 T	11.3 T	840 T	6.42 JT	4.07 JT	4.82 JT	16.9 T	9.04 T	30.7 T	17 T
PCDD/Fs Homologs	100												
Total PCDD/Fs	pg/g	81.1 JT	5.16 JT	304 JT	230 JT	60.4 JT	249 JT	272 JT	32.2 JT	258 JT	114 JT	221 JT	183 JT
PCDD/Fs	100												
TCDD TEQ (ND=0)	pg/g	0.098 JT	0.0974 JT	0.461 JT	1.42 JT	0.0775 JT	0.236 JT	0.586 JT	0.0529 JT	0.354 JT	0.526 JT	0.393 JT	0.167 JT
Pesticides	100												
Aldrin	μg/kg	0.48 U	0.44 U	0.46 U	0.45 U	0.78 U	0.42 U	0.38 U	0.41 U	0.49 U	0.48 U	0.44 U	0.41 U
Dieldrin	μg/kg	0.92 U	0.84 U	0.88 U	0.86 U	0.72 U	0.81 U	0.73 U	0.79 U	0.95 U	0.92 U	0.84 U	0.79 U
Total chlordanes	μg/kg	1.2 UT	1.1 UT	0.49 JT	0.83 JT	0.84 JT	0.34 JT	0.93 UT	0.45 JT	1.3 UT	0.22 NJT	0.34 JT	1 UT
DDx	μg/kg	5.5 JT	6.2 JT	5.3 NJT	8.9 JT	7.3 NJT	5.9 JT	2.8 JT	6.3 NJT	4.1 JT	4.8 JT	9 NJT	6.4 NJT
Polycyclic Aromatic Hydrocarbons													
Total PAHs	μg/kg	290 JT	760 T	250 JT	4100 T	160 JT	170 JT	77 JT	79 JT	300 JT	470 JT	200 JT	120 JT
Phthalates													
Bis(2-ethylhexyl) phthalate	μg/kg	130	98	130	140	290	150	140	85	160	150	140	160

^a Total PCBs are total PCB congeners whenever available and total Aroclors if not.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.3-4. Sediment Trap Sediment Chemistry Results for Indicator Contaminants, Percent Fines, and TOC, Third Quarter (Summer 2007).

		LW3-ST002	LW3-ST004	LW3-ST005	LW3-ST006	LW3-ST007	LW3-ST009	LW3-ST011	LW3-ST012	LW3-ST013	LW3-ST014	LW3-ST015
		8/16/2007	8/8/2007	8/8/2007	8/16/2007	8/17/2007	8/17/2007	8/16/2007	8/16/2007	8/16/2007	8/16/2007	8/17/2007
Analyte	Units	LW3-ST3002	LW3-ST3004	LW3-ST3005	LW3-ST3006	LW3-ST3007	LW3-ST3009	LW3-ST3011	LW3-ST3012	LW3-ST3013	LW3-ST3014	LW3-ST3015-1
Grain Size												
Fines	percent	93.21 T	99.14 T			74.75 T			96.28 T		86.95 T	90.38 T
Conventionals	-											
Total organic carbon	percent	1.98	2.67		3.24	2.66	2.74	2.99	2.72	2.63	2.66	2.68 T
Metals	_											
Arsenic	mg/kg	3.22	3.94		5.65 T	3.04	5.5	5.4	3.6		3.18	3.4 JT
Chromium	mg/kg	21.7	32.1		42.6 T	34.3	59.5	39	32.4		29.2	28.7 T
Copper	mg/kg	32.2	42.4		93.6 T	37.8	75.1	53.2	37.6		34.4	37 JT
Zinc	mg/kg	115	117		319 T	117	184	181	111		108	122 T
Butyltins												
Tributyltin ion	μg/kg	7.1	7.9		64	4.9	0.24 U		3.7 J		13	2.3 JT
PCBs												
Total PCBs ^a	μg/kg	13.8 T	29.9 JT	20.7 JT	87.5 JT	4830 JT	3.14 JT	44.8 JT	12.2 JT	67.8 JT	16 JT	44.7 JT
PCDD/Fs Homologs												
Total PCDD/Fs	pg/g	1250 JT	120 JT			1820 JT	131 JT		191 JT		251 JT	188 JT
PCDD/Fs												
TCDD TEQ (ND=0)	pg/g	2.94 JT	0.157 JT			4.73 JT	0.257 JT		0.631 JT		0.723 JT	0.296 JT
Pesticides												
Aldrin	μg/kg	0.61 U	0.73 U		0.35 U	0.92 U	0.25 U	0.27 U	0.49 U		0.41 U	0.39 UT
Dieldrin	μg/kg	0.89 U	1.1 U		4.9	13 U	3.3 J	1.4 J	0.94 U		0.78 U	0.75 UT
Total chlordanes	μg/kg	0.71 UT	0.92 UT		3.1 NJT	98 UT	1 NJT	1.1 JT	0.8 UT		1.3 NJT	1.7 JT
DDx	μg/kg	2.4 JT	7.4 JT		25 NJT	24 T	5.9 JT	15 NJT	8 NJT		24 NJT	4.7 JT
Polycyclic Aromatic Hydrocarbons												
Total PAHs	μg/kg	420 JT	440 JT		2300 T	640 T	200 JT	1600 JT	950 T		1100 T	290 JT
Phthalates												
Bis(2-ethylhexyl) phthalate	μg/kg	110	81		1600	460	210	200	150		250	220 T

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

^a Total PCBs are total PCB congeners whenever available and total Aroclors if not.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.3-5. Sediment Trap Sediment Chemistry Results for Indicator Contaminants, Percent Fines, and TOC, Fourth Quarter (Fall 2007).

		LW3-ST001	LW3-ST002	LW3-ST003	LW3-ST004	LW3-ST005	LW3-ST006	LW3-ST007	LW3-ST008	LW3-ST009
		11/14/2007	11/14/2007	11/14/2007	11/13/2007	11/13/2007	11/13/2007	11/13/2007	11/13/2007	11/13/2007
Analyte	Units	LW3-ST4-001	LW3-ST4-002	LW3-ST4-003	LW3-ST4-004	LW3-ST4-005	LW3-ST4-006	LW3-ST4-007	LW3-ST4-008-1	LW3-ST4-009
Grain Size										
Fines	percent	96.07 T	90.97 T		86 T	90.24 T		42.59 T	73.29 T	
Conventionals										
Total organic carbon	percent	2.26	2	2.05	2.86 T	2.72	2.07	2.09	2.58 T	3.47
Metals	-									
Arsenic	mg/kg	6.22 T	6.24	2.85	6.69	5.41	5.33	4.61	4.75 T	1.48 J
Chromium	mg/kg	37.4 T	32.2	16.8 J	39.3	34	28.8	38.5	33.8 T	10.8
Copper	mg/kg	51.3 T	49.1	25.1	63	51	60.4	51.9	45.3 T	15.2
Zinc	mg/kg	155 T	160	101	178	166	254	149	127 T	71.6
Butyltins										
Tributyltin ion	μg/kg	3.8	4 J	4.3	3.9	13	81	5.8	0.6 JT	
PCBs	100									
Total PCBs ^a	μg/kg	24.2 JT	11.3 JT	13.7 JT	39.1 JT	25.3 JT	117 JT	11100 JT	13 JT	10.6 JT
PCDD/Fs Homologs										
Total PCDD/Fs	pg/g	142 JT	59 JT	364 JT	110 JT	155 JT	6100 JT	745 JT	64.1 JT	355 JT
PCDD/Fs	166									
TCDD TEQ (ND=0)	pg/g	0.213 JT	0.0728 JT	0.613 JT	0.172 JT	0.775 JT	16.3 JT	1.56 JT	0.476 JT	0.589 JT
Pesticides	100									
Aldrin	μg/kg	0.2 U	0.19 U	0.25 U	0.23 U	0.21 U	1.2 U	0.16 U	0.18 UT	0.67 U
Dieldrin	μg/kg	0.59 U	0.047 U	0.15 NJ	0.59 U	0.64 U	0.58 U	0.28 U	0.045 UT	0.34 NJ
Total chlordanes	μg/kg	0.58 JT	0.41 NJT	0.8 UT	0.62 JT	1.9 UT	1.5 UT	460 UT	1.5 NJT	0.63 UT
DDx	μg/kg	8.3 NJT	4.6 NJT	7.9 NJT	13 NJT	33 NJT	31 NJT	150 T	4.6 NJT	3 JT
Polycyclic Aromatic Hydrocarbons										
Total PAHs	μg/kg	370 JT	280 JT	2700 JT	790 T	11000 T	900 JT	450 T	190 JT	
Phthalates										
Bis(2-ethylhexyl) phthalate	μg/kg	100	84	110	110	150 J	710	280	190 T	

Table 5.3-5. Sediment Trap Sediment Chemistry Results for Indicator Contaminants, Percent Fines, and TOC, Fourth Quarter (Fall 2007).

		LW3-ST010	LW3-ST011	LW3-ST012	LW3-ST013	LW3-ST014	LW3-ST015	LW3-ST016
		11/13/2007	11/14/2007	11/14/2007	11/13/2007	11/13/2007	11/13/2007	11/13/2007
Analyte	Units	LW3-ST4-010	LW3-ST4-011	LW3-ST4-012	LW3-ST4-013	LW3-ST4-014	LW3-ST4-015	LW3-ST4-016
Grain Size								
Fines	percent	92.42 T	105.6 T	85.01 T	96.71 T	78.12 T	79.71 T	77.66 T
Conventionals	•							
Total organic carbon	percent	3.18	2.51	2.57	2.7	2.4	2.56	2.59
Metals	•							
Arsenic	mg/kg	4.63	7.01	5.29	6.07	4.42	4.33	5.03
Chromium	mg/kg	35.3	38.8	34.4	35.3	29.7	30	33.3
Copper	mg/kg	43	57.9	51.5	58.2	47	47.1	47.2
Zinc	mg/kg	125	163	156	173	136	171	145
Butyltins								
Tributyltin ion	μg/kg	0.24 U	6.5	4.8	4.5	9.1	0.87 U	0.33 U
PCBs								
Total PCBs ^a	μg/kg	7.56 JT	32.3 T	18 JT	106 JT	20.9 T	73.7 JT	24.3 JT
PCDD/Fs Homologs								
Total PCDD/Fs	pg/g	37.4 JT	129 JT	107 JT	87.3 JT	1060 JT	114 JT	69.2 JT
PCDD/Fs	100							
TCDD TEQ (ND=0)	pg/g	0.0678 JT	0.192 JT	0.209 JT	0.0952 JT	1.82 JT	0.185 JT	0.136 JT
Pesticides	100							
Aldrin	μg/kg	0.27 U	0.22 U	0.21 U	0.25 U	0.61 NJ	0.18 U	0.21 U
Dieldrin	μg/kg	0.47 U	0.36 U	0.35 U	0.5 U	0.26 U	0.19 U	0.35 U
Total chlordanes	μg/kg	0.83 JT	3.4 NJT	0.78 NJT	0.74 JT	0.91 NJT	1.1 NJT	1.8 JT
DDx	μg/kg	2.6 T	6 T	13 T	8.1 NJT	17 JT	12 NJT	5.5 JT
Polycyclic Aromatic Hydrocarbons								
Total PAHs	μg/kg	290 JT	980 T	1200 T	430 JT	580 T	590 T	240 JT
Phthalates								
Bis(2-ethylhexyl) phthalate	μg/kg	480 J	250 J	110	220	68	310	150

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

^a Total PCBs are total PCB congeners whenever available and total Aroclors if not.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.3-6. Sediment Trap Sediment Chemistry Results for Indicator Contaminants, Percent Fines, and TOC, Third Quarter (Summer 2009).

		RM11E_STST001	RM11E_STST002	RM11E_STST003	RM11E_STST004	RM11E_STST005	RM11E_STST006	RM11E_STST007
		9/21/2009	9/21/2009	9/21/2009	9/21/2009	9/21/2009	9/22/2009	9/22/2009
Analyte	Units	RM11E_STST001-Q3	RM11E_STST002-Q3	RM11E_STST003-Q3	RM11E_STST004-Q3	RM11E_STST005-Q3	RM11E_STST006-Q3	RM11E_STST007-Q3
Grain Size								
Fines	percent	81.4 T						
Conventionals								
Total organic carbon	percent	2.78	3.23	2.17	2.82		3.62	2.36
Metals								
Arsenic	mg/kg	3.55 T	4.05	2.75	3.14		3.72 T	3.18
Chromium	mg/kg	26.7 T	27	30.8	24		27.9 T	21.5
Copper	mg/kg	37.8 JT	40.9 J	37.7 J	35.3 J		42.7 T	34.9
Zinc	mg/kg	106 T	101	108	105		135 T	110
Butyltins								
Tributyltin ion	μg/kg	54	2 J	3.5	2.9 J		2.1 J	1.3 U
PCBs								
Total PCBs ^a	μg/kg	119 JT	119 JT	549 JT	78.6 JT	22.5 JT	22.1 JT	22.6 JT
PCDD/Fs Homologs								
Total PCDD/Fs	pg/g	1641.632 JT	293.81 JT	1121.68 JT	1282.45 JT		900.8 JT	516.805 JT
PCDD/Fs								
TCDD TEQ (ND=0)	pg/g	3.1 JT	0.553 JT	3.01 JT	3.3 JT		2.61 JT	1.15 JT
Pesticides								
Aldrin	μg/kg	0.071 U	0.37 U	0.28 U	0.31 U	0.41 U	0.085 U	0.065 U
Dieldrin	μg/kg	0.52 U	0.094 U	0.41 U	0.71 U	0.12 U	0.13 U	0.073 U
Total chlordanes	μg/kg	3.2 UT	0.36 JT	4.3 UT	0.31 UT	0.95 UT	0.37 UT	0.21 JT
DDx	μg/kg	1.56 JT	1.44 JT	14 T	2.8 JT	0.71 UT	1.1 JT	1.98 JT
Polycyclic Aromatic Hydrocarbons								
Total PAHs	μg/kg	709 JT	475 JT	1160 T	510 T	309 JT	478 JT	876 T
Phthalates								
Bis(2-ethylhexyl) phthalate	μg/kg	190	300	180 J	180 J		920	600 J

^a Total PCBs are total PCB congeners whenever available and total Aroclors if not.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.3-7. Sediment Trap Sediment Chemistry Results for Indicator Contaminants, Percent Fines, and TOC, Fourth Quarter (Fall 2009).

		RM11E_STST001	RM11E_STST002	RM11E_STST003	RM11E_STST004	RM11E_STST005	RM11E_STST006
		1/13/2010	1/13/2010	1/13/2010	1/14/2010	1/14/2010	1/13/2010
Analyte	Units	RM11E_STST001-Q4	RM11E_STST002-Q4	RM11E_STST003-Q4	RM11E_STST004-Q4	RM11E_STST005-Q4	RM11E_STST006-Q4
Grain Size							
Fines	percent	82.9 T	91.04 T	68.51 T	44.7 T	73.65 T	56.34 T
Conventionals	_						
Total organic carbon	percent	4.06 T	3.3	2.66	2.62 T	3.17	13.6
Metals	_						
Arsenic	mg/kg	3.4	3.59	2.82	2.77 T	3.22	2.69
Chromium	mg/kg	23.1	24.2	24.8	17.5 T	21.7	16.9
Copper	mg/kg	34.2	35.4	30.7	28 T	31.3	25.4
Zinc	mg/kg	82.1	81.3	74.9	71.5 T	76.2	63.4
Butyltins							
Tributyltin ion	μg/kg	1.4 U	2.8 J	1.8 J	2.7 JT	1.3 U	1.3 U
PCBs							
Total PCBs ^a	μg/kg	53.5 JT	11.1 JT	71.9 JT	13.8 JT	7.98 JT	0.925 JT
PCDD/Fs Homologs							
Total PCDD/Fs	pg/g	409.41 JT	241.21 T	226.44 T	434.61 T	878.88 T	156.01 T
PCDD/Fs	100						
TCDD TEQ (ND=0)	pg/g	0.615 JT	0.837 JT	0.482 JT	1.44 JT	2.3 JT	0.339 JT
Pesticides							
Aldrin	μg/kg	0.27 U	0.22 J	0.28 U	0.1115 JT	0.095 U	0.3 U
Dieldrin	μg/kg	0.32 U	0.14 U	0.071 U	0.16 JT	0.082 U	0.17 U
Total chlordanes	μg/kg	1.3 UT	0.47 UT	86 UT	0.3 UT	0.31 UT	0.76 UT
DDx	μg/kg	14.6 T	0.94 JT	20.4 JT	4.66 JT	0.69 T	2.1 JT
Polycyclic Aromatic Hydrocarbons							
Total PAHs	μg/kg	1220 T	393 JT	278 JT	918 JT	436 JT	255 JT
Phthalates							
Bis(2-ethylhexyl) phthalate	μg/kg	650	340	340	240 JT	590	370

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.4-1	Surfa	e Wate	r Sampling	Event a	and Station	Summary.

Table 5.4-1 Surface Water Sampling Event and Station Summary.											D	. 1.24				
			Round 2A Nov-04 Mar-05 Jul-05						Round 3A Jan-06 Sep-06 Nov-06 Jan-Mar 2007							
			Low Flow		Low Flow		Low Flow		High Flow		Low Flow		Stormwater- Influenced Flow		High Flow	
Transect Stations	River Mile	Sampling Method	Peristaltic	XAD	Peristaltic	XAD	Peristaltic	XAD	Peristaltic	XAD	Peristaltic	XAD	Peristaltic	XAD	Peristaltic	XAD
W005	3.9	EDI-VI	X	X	X	X	X	X	X a	X a						
		EDI-NS/NB									X	X	X	X	X	X
W011	6.3	EDI-VI	X	X	X	X	X	X								
		EDI-NS/NB									X	X	X	X	X	X
W023	11	EDI-VI	X	X	X	X	X	X	$X^{a,b}$	X^{a}						
	11	VI(E,M,W)	21	21	71	21	71	21	Λ	Λ	X	X	X	X	X^d	X^{d}
W024	16	EDI-NS/NB							** a.c	** a.c	X	X	X	X	X X	X X
									X a,c	X a,c						
W025	2	VI(E,M,W)									X	X	X	X	X d	X d
W027	MC	EDI-NS/NB									X	X	X	X	X	X
C' - 1 D ' - Co - C'																
Single-Point Stations	2.05	NID	v		v		v									
W001 W002	2.0E	NB	X X		X XR		X XR									
W002 W003	2.2W 3.0W	NB NB	X		X		X									
W003 W004	3.7E (International Slip)	NB NB	X		XR		X									
W004 W006	4.0W	NB NB	X		X		X									
W007	4.4E (T4/Slip 1)	NB	X		X		X									
W008	4.6E (T4/Slip 3)	NB	X		X		X									
W009	5.6W	NB	X		X		X									
W010	5.7E	VI	X e		X		X									
W012	6.3W	NB	X		X		X									
W013	6.9E	NB	XR	XR	XR	XR	XR	XR								
W014	6.9E	VI	X		X		X									
W015	6.9W	NB	X	X	X	X	X	X								
W016	7.2W	NB	XR	X	XR	X	XR	X								
W017	7.5W	NB	X		X		X									
W018	8.3 (Swan Island Lagoon)	NB	X	X	X	X	X	X								
W019	8.6W	NB	X		X		X									
W020	9.1 (Swan Island Lagoon)	VI	X		X		X									
W021	8.7 (Swan Island Lagoon)	NB	X		X		X									
W022	9.7W	NB	X		X		X									
W026	2.1E	NS/NB											X	X	X	X
W028 W029	3.6E	NS/NB											X	X	X	X
W029 W030	4.4W	NS/NB											X	X	X	X
W030 W031	5.5E 6.1W	NS/NB NS/NB											X X	X X	X X	X X
W031 W032	6.1 W 6.9E	NS/NB NS/NB											X	X	X	X
W032 W033	7.0W	NS/NB											XR	XR	XR	X
W034	7.5W	NS/NB											X	X	X	X
W035	8.5 (Swan Island Lagoon)	NS/NB											X	X	X	X
W036	8.6W	NS/NB											XR	X	X	X
W037	9.6W	NS/NB											X	X	X	X
W038	9.9E	NS/NB											X	X	X	X

E - East

^a Due to extreme high flow conditions, samples were collected at a single point mid-channel. Sample depth was held constant near the mid-point of the water column.

EDI - Equal discharge increment ^b Field replicate for peristaltic pump samples only.

M - Mid-channel ^c No field replicates collected.

^d Mid-channel station re-sampled in March. Shown as a field replicate in the SCRA.

^e Sampled as NB in the Nov 2004 event. Sampled as VI for all other events.

NB - Near bottom NS - Near surface

MC - Multnomah Channel

T4 - Terminal 4

VI - Vertically integrated W - West

X - indicates sample was collected

XR - indicates that a sample and a replicate sample were collected XAD - hydrophobic crosslinked polystyrene copolymer resin

Table 5.4-2 Number of Surface Water Stations by Sampling Event for Each Sample Collection Method.

		Low	Flow		Storm Water Influenced	High	Flow
	Nov-04	Mar-05	Jul-05	Sep-06	Nov-06	Jan-06	Jan-07
Peristaltic	23	23	23	6	18	3	18 ^a
Peristaltic Replicates	2	4	3	0	2	1	1 ^b
XAD	7	7	7	6	18	3	18 ^a
XAD Replicates	1	1	1	0	1	0	О в
Total # Stations ^c	33	35	34	12	39	7	37

XAD - hydrophobic crosslinked polystyrene copolymer resin

^a This count does include the second High Flow sampling conducted in March at W023-M2 and W025-M2. Those samples are shown as field reps in the SCRA.

^b This count does not include the second High Flow sampling conducted in March at W023-M2 and W025-M2. Those samples are shown as field reps in the SCRA.

^c Note that E, M, W transect samples were counted as a single transect station in this table.

Table 5.4-3 Number of Surface Water Samples by Sampling Event for Each Sample Collection Method.

		Low	Flow		Storm Water Influenced Flow	High	Flow
	Nov-04	Mar-05	Jul-05	Sep-06	Nov-06	Jan-06	Jan-07
Peristaltic	23	23	23	14	38	3	40
Peristaltic Replicates	2	4	3	0	4	1	2
XAD	7	7	7	14	38	3	40
XAD Replicates	1	1	1	0	2	0	0
Total # Samples	33	35	34	28	82	7	82

XAD - hydrophobic crosslinked polystyrene copolymer resin

Table 5.4-4 Number of Surface Water Samples by Sampling Event and Sample Collection Method for Each Sample Type.

				Peri	staltic						X	AD		
		Low I	Flow		Storm Water Influenced Flow	High	Flow		Low	Flow		Storm Water Influenced Flow	High	Flow
	Nov-04	Mar-05	Jul-05	Sep-06	Nov-06	Jan-06	Jan-07	Nov-04	Mar-05	Jul-05	Sep-06	Nov-06	Jan-06	Jan-07
SP-NS					14		13					13		12
SP-NB	20	21	20		14		13	5	5	5 ^a		13		12
SP-VI	2 ^b	3	3											
T-Stationary ^c						4							3	
T-EDI-VI	3	3	3					3	3	3				
T-E-VI				2	2		2				2	2		2
T-M-VI				2	2		4^{d}				2	2		4 ^d
T-W-VI				2	2		2				2	2		2
T-EDI-NS				4	4		4				4	4		4
T-EDI-NB				4	4		4				4	4		4
Total # Samples	25	27	26	14	42	4	42	8	8	8	14	40	3	40

d Stations W023-M and W025-M were first sampled in Jan 2007, then re-occupied in March 2007 (W023-M2, W025-M2) due to changing flow conditions.

SP-NS	Single-point, near-surface
SP-NB	Single-point, near bottom
SP-VI	Single-point, vertically-integrated
T-Stationary	Stationary samples collected at transect locations (mid-channel and mid-depth)
T-EDI-VI	Transect, equal-discharge-increment, vertically-integrated
T-EDI-NS	Transect, equal-discharge-increment, near-surface
T-EDI-NB	Transect, equal-discharge-increment, near-bottom
T-E-VI	Transect, East-channel, vertically integrated
T-M-VI	Transect, Mid-channel, vertically integrated
T-W-VI	Transect, West-channel, vertically integrated

XAD - hydrophobic crosslinked polystyrene copolymer resin

^a Five samples including field replicate at W013-2, which was contaminated at the lab and not analyzed.

^b Sample collected at W010 in November 2004 should have been vertically integrated (VI), but was collected as near-bottom (NB).

^c The Jan 2006 High Flow samples were collected mid-channel at a single fixed depth for each of the 3 transect stations sampled. No vertical integration was performed.

Table 5.4-5. Summary of Surface Water Sampling Event Flow Conditions.

Sample Event	·	•		Number of Days	Start Date	End Date	Average Flow ^{a,b} During Sample	Maximum Flow ^a During Sample	Minimum Flow ^a During Sample
Round	Event	Flow Conditions	Sampling Event Period	Sampled	Flow ^a (cfs)	Flow ^a (cfs)	Event (cfs)	Event (cfs)	Event (cfs)
2A	Nov 2004	Low Flow	11/8 - 12/2	15	24,700	18,300	19,400	24,700	14,900
2A	Mar 2005	Low Flow	3/1 - 3/17	13	11,900	8,640	9,970	11,900	8,390
2A	Jul 2005	Low Flow	7/5 - 7/20	12	10,800	8,910	10,100	10,800	8,910
3A	Jan 2006	High Flow	1/19 - 1/21	3	169,000	167,000	168,000	169,000	167,000
3A	Sep 2006	Low Flow	9/4 - 9/13	7	8,450	9,080	8,810	9,240	8,320
3A	Nov 2006	Stormwater- Influenced	11/2 - 11/5	4	18,700	30,100	23,000	30,100	18,700
3A	Jan 2007 ^c	High Flow	1/15 - 1/18, 2/21 - 3/10	18	60,100	49,900	59,800	72,600	46,400
Siltronic	May 2005	Low Flow	5/16 - 5/19, 5/23 - 5/27, 5/31 - 6/1	11	29,500	20,800	31,918	43,400	20,800
NW Natural	October 2007	Low Flow	10/1 - 10/9	9	14,100	10,700	13,722	15,000	10,700
City of Portland	Monthly, 1992 - 2006 ^d		Monthly, 2/5/1992 - 3/15/2006	439	32,900	33,700	34,558	420,000	5,240

cfs - cubic feet per second.

^a This velocity-discharge rating is considered unknown at discharges below 20,000 cfs.

^b Average of daily flows reported for USGS gauging station Willamette River at Morrison Bridge (station ID 14211720).

^c The January 2007 high flow event was cancelled after two days of sampling due to an unexpected change in flow conditions. Sampling resumed on February 21, 2007.

^d The City of Portland sampling occurred on a monthly basis from February 2, 1992 through March 15, 2006. Flow data presented are the range of mean daily discharge data for this time period.

Table 5.4-6. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (Transect Locations).

								Detected Conce	ntrations				D	etected and Not Detect	ted Concentrations		
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	20	20	100	0.184	0.281 J	W027	0.219	0.21	0.274 J	0.184	0.281 J	W027	0.219	0.21	0.274 J
Arsenic	Peristaltic - particulate	μg/L	20	20	100	0.05	0.33	W005; W023	0.128	0.0905	0.33	0.05	0.33	W005; W023	0.128	0.0905	0.33
Arsenic	Peristaltic - total	μg/L	20	20	100	0.254 T	0.54	W005; W023	0.347	0.321 J	0.54	0.254 T	0.54	W005; W023	0.347	0.321 J	0.54
Chromium	Peristaltic - dissolved	μg/L	20	10	50	0.46 J	0.83	W024	0.612	0.57 J	0.817	0.17 U	0.83	W024	0.37	0.318 J	0.802
Chromium	Peristaltic - particulate ^d	μg/L	20	20	100	0	1.68	W024	0.799	0.74	1.62	0	1.68	W024	0.799	0.74	1.62
Chromium	Peristaltic - total	μg/L	20	20	100	0.58	1.73	W027	1.11	0.995	1.68	0.58	1.73	W027	1.11	0.995	1.68
Copper	Peristaltic - dissolved	μg/L	20	20	100	0.43	2.39 J	W023	0.844	0.665 J	1.32 J	0.43	2.39 J	W023	0.844	0.665 J	1.32 J
Copper	Peristaltic - particulate	μg/L	20	20	100	0.57	2.89 J	W024	1.21	0.935	2.78 J	0.57	2.89 J	W024	1.21	0.935	2.78 J
Copper	Peristaltic - total	μg/L	20	20	100	1.1	3.68 J	W023	2.05	1.83	3.58 J	1.1	3.68 J	W023	2.05	1.83	3.58 J
Zinc	Peristaltic - dissolved	μg/L	20	1	5	2.5	2.5	W005	2.5	2.5	2.5	0.6 U	2.9 U	W011	0.85	0.775 U	1.5
Zinc	Peristaltic - particulate	μg/L	20	20	100	1.85	6.38	W023; W024	3.95	4	6.38	1.85	6.38	W023; W024	3.95	4	6.38
Zinc	Peristaltic - total	μg/L	20	20	100	1.85 T	6.38	W023; W024	4.07	4.1	6.38	1.85 T	6.38	W023; W024	4.07	4.1	6.38
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	20	0	0							0.0006 U	0.014 U	W023	0.00157	0.0003 U	0.00653 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	19	19	100	0.0000346 JT	0.0000996 JT	W027	0.0000653	0.0000674 JT	0.0000995 J	0.0000346 JT	0.0000996 JT	W027	0.0000653	0.0000674 JT	0.0000995 J
Total PCBs	XAD Filter - particulate	μg/L	19	19	100	0.00000733 JT	0.000313 JT	W005	0.0000908	0.000076 JT	0.00019 J	0.00000733 JT	0.000313 JT	W005	0.0000908	0.000076 JT	0.00019 J
Total PCBs	XAD Column+Filter - total	μg/L	19	19	100	0.0000419 J	0.000391 J	W005	0.000156	0.000137 J	0.000287 J	0.0000419 J	0.000391 J	W005	0.000156	0.000137 J	0.000287 J
PCDD/Fs Homologs																	
Total PCDD/Fs	XAD Column - dissolved	μg/L	19	19	100	0.00000141 JT	0.00000443 JT	W024	0.00000297	0.00000331 JT	0.00000416 J	0.00000141 JT	0.00000443 JT	W024	0.00000297	0.00000331 JT	0.00000416 J
Total PCDD/Fs	XAD Filter - particulate	μg/L	19	19	100	0.0000032 JT	0.0000402 T	W005	0.0000182	0.0000181 T	0.0000306	0.0000032 JT	0.0000402 T	W005	0.0000182	0.0000181 T	0.0000306
Total PCDD/Fs	XAD Column+Filter - total	μg/L	19	19	100	0.00000536 J	0.000044	W005	0.0000212	0.0000216 J	0.0000338 J	0.00000536 J	0.000044	W005	0.0000212	0.0000216 J	0.0000338 J
PCDD/Fs																	
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	19	19	100	0.00000000288 T	0.0000000182 JT	W024	0.00000000865	0.00000000836 JT	0.0000000153 J	0.00000000288 T	0.0000000182 JT	W024	0.00000000865	0.00000000836 JT	0.0000000153 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L	19	19	100	0.00000000497 JT	0.0000000763 JT	W023	0.0000000386	0.000000039 JT	0.0000000717 J	0.00000000497 JT	0.0000000763 JT	W023	0.0000000386	0.000000039 JT	0.0000000717 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	19	19	100	0.0000000113 J	0.0000000912 J	W023	0.0000000472	0.0000000474 J	0.0000000867 J	0.0000000113 J	0.0000000912 J	W023	0.0000000472	0.0000000474 J	0.0000000867 J
Pesticides																	
Aldrin	XAD Column - dissolved	μg/L	19	19	100	0.00000124 J	0.00000467 J	W025M	0.00000232	0.00000206 J	0.00000329 J	0.00000124 J	0.00000467 J	W025M	0.00000232	0.00000206 J	0.00000329 J
Aldrin	XAD Filter - particulate	μg/L	19	17	89	0.000000415 J	0.00000197 J	W023	0.0000011	0.000000943 J	0.00000192 J	0.000000415 J	0.00000197 J	W023	0.00000101	0.000000917 J	0.00000192 J
Aldrin	XAD Column+Filter - total	μg/L	19	19	100	0.00000124 J	0.00000599 J	W025M	0.00000331	0.00000333 J	0.00000487 J	0.00000124 J	0.00000599 J	W025M	0.00000331	0.00000333 J	0.00000487 J
Dieldrin	XAD Column - dissolved	μg/L	19	19	100	0.0000632	0.00033	W005	0.000142	0.000126	0.000305	0.0000632	0.00033	W005	0.000142	0.000126	0.000305
Dieldrin	XAD Filter - particulate	μg/L	19	18	95	0.00000612 J	0.0000537	W005	0.0000205	0.0000176 J	0.0000514	0.00000612 J	0.0000537	W005	0.0000196	0.0000175 J	0.0000513
Dieldrin	XAD Column+Filter - total	μg/L	19	19	100	0.0000705 J	0.000384	W005	0.000162	0.000144 J	0.000356	0.0000705 J	0.000384	W005	0.000162	0.000144 J	0.000356
Total chlordanes	XAD Column - dissolved	μg/L	19	19	100	0.0000265 JT	0.0000557 JT	W005	0.0000391	0.0000378 JT	0.000054 J	0.0000265 JT	0.0000557 JT	W005	0.0000391	0.0000378 JT	0.000054 J
Total chlordanes	XAD Filter - particulate	μg/L	19	19	100	0.00000291 JT	0.0000434 JT	W023E	0.0000225	0.0000253 JT	0.0000408 J	0.00000291 JT	0.0000434 JT	W023E	0.0000225	0.0000253 JT	0.0000408 J
Total chlordanes	XAD Column+Filter - total	μg/L	19	19	100	0.0000336 J	0.0000943 J	W005	0.0000616	0.0000663 J	0.0000914 J	0.0000336 J	0.0000943 J	W005	0.0000616	0.0000663 J	0.0000914 J
DDx	XAD Column - dissolved	μg/L	19	19	100 100	0.0000959 JT	0.00021 JT	W024 W023E	0.000152 0.000274	0.000154 JT	0.000201 J	0.0000959 JT	0.00021 JT	W024 W023E	0.000152 0.000274	0.000154 JT 0.000323 JT	0.000201 J 0.00043 J
DDx DDx	XAD Filter - particulate XAD Column+Filter - total	μg/L μg/L	19 19	19 19	100	0.0000296 JT 0.000162 J	0.000436 JT 0.000618 J	W023E W023E	0.000274	0.000323 JT 0.000471 J	0.00043 J 0.000601 J	0.0000296 JT 0.000162 J	0.000436 JT 0.000618 J	W023E W023E	0.000274	0.000323 J1 0.000471 J	0.00043 J 0.000601 J
	AAD Column+Filter - total	μg/L	19	19	100	0.000162 J	0.000618 J	WUZSE	0.000420	0.0004/1 J	0.000001 J	0.000162 J	0.000018 J	WUZ3E	0.000426	0.0004/1 J	0.000001 J
PAHs Total DAIIa	VAD Column dissolved	/I	19	19	100	0.00554 JT	0.0483 JT	W005	0.0125	0.00809 JT	0.0286 J	0.00554 JT	0.0483 JT	W005	0.0125	0.00809 JT	0.0286 J
Total PAHs Total PAHs	XAD Column - dissolved XAD Filter - particulate	μg/L	19 19	19 19	100	0.00554 JT 0.000144 JT	0.0483 J1 0.0111 JT	W005 W005	0.0125	0.00809 JT 0.00372 JT	0.0286 J 0.00723 J	0.00554 JT 0.000144 JT	0.0483 J1 0.0111 JT	W005 W005	0.0125	0.00809 JT 0.00372 JT	0.0286 J 0.00723 J
Total PAHs	Peristaltic - total	μg/L	20	8	40	0.000144 JT 0.0026 JT	0.0111 JT 0.0362 JT	W005 W005	0.00383	0.00372 J1 0.0175 J	0.00723 J 0.0305 J	0.000144 JT 0.0026 JT	0.0111 JT 0.0362 JT	W005 W005	0.00383	0.00372 J1 0.0065 U	0.00723 J 0.0208 J
Total PAHs	XAD Column+Filter - total	μg/L μg/L	19	8 19	100	0.0026 J1 0.00568 J	0.0594 J	W005	0.0162	0.0175 J 0.0115 J	0.0356 J	0.0026 J1 0.00568 J	0.0594 J	W005	0.0163	0.0065 U 0.0115 J	0.0208 J 0.0356 J
Phthalates	AAD Column+Filter - total	μg/L	19	17	100	0.00308 J	U.UJ74 J	VV 003	0.0103	0.0113 J	0.0550 J	0.00308 J	0.0374 J	W 003	0.0103	0.0113 J	0.0550 J
Bis(2-ethylhexyl) phthalate	Peristaltic - total	ug/L	20	6	30	1.1 J	2.2 Ј	W011	1.57	1.45 J	2.18 J	0.12 U	2.2 J	W011	0.647	0.355 UJ	2.11 J
Dis(2-enrymexyr) phinalate	i cristante - totai	μg/ L	20	- 0	30	1.1 J	2.2 J	***************************************	1.37	1.TJ J	2.10 J	0.12 0	4.4 J	***************************************	0.047	0.555 03	2.11 J

Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

-- data not available.

PCB - polychlorinated biphenyl PCDD/F - dioxin/furan

DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

TCDD - tetrachlorodibenzo-p-dioxin

ND - not detected PAH - polycyclic aromatic hydrocarbon

TEQ - toxicity equivalent XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-7a. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (Single-Point Locations).

	of indicator Contaminants in Surface	,	3	8				Detected Concer	trations				Det	ected and Not Detecte	d Concentrations		
								Maximum			95 th	Minimum	Maximum	Maximum	Mean	Median	95th Percentile
Analyte	Method	Units	# Analyzed # I	Detected % Dete	rted	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Metals			" IIIIII Juda " I	70 2000													
Arsenic	Peristaltic - dissolved	μg/L	26	26	100	0.185 J	0.341 J	W034	0.238	0.224 J	0.293 J	0.185 J	0.341 J	W034	0.238	0.224 J	0.293 J
Arsenic	Peristaltic - particulate	μg/L	26	26	100	0.04 J	0.286 J	W034	0.111	0.0945 J	0.207 J	0.04 J	0.286 J	W034	0.111	0.0945 J	0.207 J
Arsenic	Peristaltic - total	μg/L	26	26	100	0.3	0.627 J	W034	0.349	0.329 J	0.454 J	0.3	0.627 J	W034	0.349	0.329 J	0.454 J
Chromium	Peristaltic - dissolved	μg/L	26	4	15	0.43	0.64	W034	0.5	0.465	0.619	0.12 U	0.64	W034	0.201	0.143 U	0.483
Chromium	Peristaltic - particulate	μg/L	26	26	100	0.24	1.92	W031	0.947	0.88	1.68	0.24	1.92	W031	0.947	0.88	1.68
Chromium	Peristaltic - total	μg/L	26	26	100	0.7	1.92	W031	1.02	0.94	1.68	0.7	1.92	W031	1.02	0.94	1.68
Copper	Peristaltic - dissolved	μg/L	26	26	100	0.55	1.22	W035	0.749	0.65	1.17	0.55	1.22	W035	0.749	0.65	1.17
Copper	Peristaltic - particulate	μg/L	26	26	100	0.6	2.59	W031	1.21	1.15	2.06	0.6	2.59	W031	1.21	1.15	2.06
Copper	Peristaltic - total	μg/L	26	26	100	1.47	3.49	W031	1.96	1.81	2.72	1.47	3.49	W031	1.96	1.81	2.72
Zinc	Peristaltic - dissolved	μg/L	26	0	0							0.5 U	4 U	W038	0.944	0.95 U	1.75 U
Zinc	Peristaltic - particulate	μg/L	26	26	100	3	8.4	W031	4.35	4.08	6.28	3	8.4	W031	4.35	4.08	6.28
Zinc	Peristaltic - total	μg/L	26	26	100	3	8.4	W031	4.35	4.08	6.28	3	8.4	W031	4.35	4.08	6.28
Butyltins		r-8-				-											V
Tributyltin ion	Peristaltic - total	μg/L	26	2.	8	0.0021 J	0.0035 J	W035	0.0028	0.0028 J	0.00343 J	0.0006 U	0.0035 J	W035	0.000492	0.0003 U	0.00165 J
PCBs ^c	Teristance total	FB/ 2	20	-	Ü	0.0021 0	0.0055	., 035	0.0020	0.0020	0.000.00	0.0000	0.0055		0.000.72	0.0005	0.00105
	WAR CI E I I		24	2.4	100	0.0000602 III	0.000005 175	11/020	0.000124	0.00011.7	0.000240.1	0.0000.602 IT	0.000005 175	W028	0.000124	0.00011 1	0.000240.1
Total PCBs	XAD Column - dissolved	μg/L	24	24	100	0.0000602 JT	0.000285 JT	W028	0.000124	0.00011 J	0.000249 J	0.0000602 JT	0.000285 JT		0.000124	0.00011 J	0.000249 J
Total PCBs	XAD Filter - particulate	μg/L	24	24	100	0.0000337 JT	0.000496 JT	W035	0.000159	0.000109 J	0.00046 J	0.0000337 JT	0.000496 JT	W035	0.000159	0.000109 J	0.00046 J
Total PCBs	XAD Column+Filter - total	μg/L	24	24	100	0.000111 J	0.000749 J	W035	0.000283	0.000213 J	0.000667 J	0.000111 J	0.000749 J	W035	0.000283	0.000213 J	0.000667 J
PCDD/Fs Homologs		~	_	_				*******						******			
Total PCDD/Fs	XAD Column - dissolved	μg/L	6	6	100	0.00000179 T	0.00000533 T	W033	0.00000398	0.00000439	0.0000053	0.00000179 T	0.00000533 T	W033	0.00000398	0.00000439	0.0000053
Total PCDD/Fs	XAD Filter - particulate	μg/L	6	6	100	0.0000196 T	0.0000707 JT	W035	0.0000401	0.0000277	0.0000705 J	0.0000196 T	0.0000707 JT	W035	0.0000401	0.0000277	0.0000705 J
Total PCDD/Fs	XAD Column+Filter - total	μg/L	6	6	100	0.0000247	0.0000749	W035	0.000044	0.0000318	0.0000748 J	0.0000247	0.0000749	W035	0.000044	0.0000318	0.0000748 J
PCDD/Fs																	
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	6	6		0.00000000274 T	0.0000000143 JT	W033	0.00000000703	0.00000000659	0.0000000128 J	0.00000000274 T	0.0000000143 JT	W033	0.00000000703	0.00000000659	0.0000000128 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L	6	6	100	0.0000000437 JT	0.000000162 JT	W035	0.000000089	0.000000071 J	0.000000157 J	0.0000000437 JT	0.000000162 JT	W035	0.000000089	0.000000071 J	0.000000157 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	6	6	100	0.0000000491 J	0.000000168 J	W035	0.000000096	0.0000000795 J	0.000000163 J	0.0000000491 J	0.000000168 J	W035	0.000000096	0.0000000795 J	0.000000163 J
Pesticides																	
Aldrin	XAD Column - dissolved	μg/L	10	6	60	0.00000174 J	0.00000259 J	W033	0.00000213	0.00000207 J	0.00000257 J	0.00000174 J	0.00000283 U	W031	0.00000174	0.00000178 J	0.00000255 J
Aldrin	XAD Filter - particulate	μg/L	10	7	70	0.000000514 J	0.00000148 J	W033	0.000000938	0.00000101 J	0.0000014 J	0.000000514 J	0.00000148 J	W033	0.000000812	0.00000069 J	0.00000135 J
Aldrin	Peristaltic - total	μg/L	14	1	7	0.0052	0.0052	W030	0.0052	0.0052	0.0052	0.00048 U	0.0058 U	W030	0.000953	0.000385 U	0.00371
Aldrin	XAD Column+Filter - total	μg/L	10	8	80	0.000000514 J	0.00000407 J	W033	0.00000242	0.00000244 J	0.00000388 J	0.000000514 J	0.00000407 J	W033	0.00000217	0.0000023 J	0.00000382 J
Dieldrin	XAD Column - dissolved	μg/L	10	10	100	0.0000985	0.000158	W033	0.000117	0.000113	0.000155	0.0000985	0.000158	W033	0.000117	0.000113	0.000155
Dieldrin	XAD Filter - particulate	μg/L	10	10	100	0.00000867 J	0.0000324	W033	0.0000155	0.0000114 J	0.000031	0.00000867 J	0.0000324	W033	0.0000155	0.0000114 J	0.000031
Dieldrin	Peristaltic - total	μg/L	14	3	21	0.001 NJ	0.0012 J	W028; W036	0.00113	0.0012 J	0.0012 J	0.0004 UJ	0.0012 J	W028; W036	0.0004	0.0002 U	0.0012 J
Dieldrin	XAD Column+Filter - total	μg/L	10	10	100	0.000108 J	0.00019	W033	0.000133	0.000124 J	0.000186	0.000108 J	0.00019	W033	0.000133	0.000124 J	0.000186
Total chlordanes	XAD Column - dissolved	μg/L	10	10	100	0.0000332 JT	0.0000495 JT	W033	0.000039	0.0000365 J	0.0000477 J	0.0000332 JT	0.0000495 JT	W033	0.000039	0.0000365 J	0.0000477 J
Total chlordanes	XAD Filter - particulate	μg/L	10	10	100	0.0000115 JT	0.0000393 JT	W031	0.000022	0.0000176 J	0.000038 J	0.0000115 JT	0.0000393 JT	W031	0.000022	0.0000176 J	0.000038 J
Total chlordanes	Peristaltic - total	μg/L	14	3	21	0.00029 JT	0.0006 NJT	W030	0.000467	0.00051 T	0.000591 J	0.00029 JT	0.00073 UT	W026; W028;	0.000387	0.000365 U	0.000542 J
														W029; W036;			
														W037; W038			
Total chlordanes	XAD Column+Filter - total	μg/L	10	10	100	0.0000466 J	0.0000859 J	W033	0.000061	0.0000524 J	0.0000848 J	0.0000466 J	0.0000859 J	W033	0.000061	0.0000524 J	0.0000848 J
DDx	XAD Column - dissolved	μg/L	10	10	100	0.000105 JT	0.000287 JT	W031	0.000167	0.000132 J	0.000277 J	0.000105 JT	0.000287 JT	W031	0.000167	0.000132 J	0.000277 J
DDx	XAD Filter - particulate	μg/L	10	10	100	0.000153 JT	0.00057 JT	W031	0.000262	0.000193 J	0.000501 J	0.000153 JT	0.00057 JT	W031	0.000262	0.000193 J	0.000501 J
DDx	Peristaltic - total	μg/L	14	12	86	0.00017 JT	0.00205 NJT	W037	0.000573	0.000435 J	0.00145 J	0.00017 JT	0.00205 NJT	W037	0.000558	0.00047 U	0.00134 J
DDx	XAD Column+Filter - total	μg/L	10	10	100	0.000266 J	0.000857 J	W031	0.000429	0.000316 J	0.000752 J	0.000266 J	0.000857 J	W031	0.000429	0.000316 J	0.000752 J
PAHs																	
Total PAHs	XAD Column - dissolved	μg/L	6	6	100	0.00606 JT	0.0204 JT	W035	0.0103	0.00747 J	0.0189 J	0.00606 JT	0.0204 JT	W035	0.0103	0.00747 J	0.0189 J
Total PAHs	XAD Filter - particulate	μg/L	6	6	100	0.00316 JT	0.0863 JT	W035	0.0261	0.00601 J	0.0775 J	0.00316 JT	0.0863 JT	W035	0.0261	0.00601 J	0.0775 J
Total PAHs	Peristaltic - total	μg/L	26	9	35	0.0047 JT	7.4 T	W031	0.89	0.058 JT	4.55 J	0.0047 JT	7.4 T	W031	0.312	0.0065 U	0.23 J
Total PAHs	XAD Column+Filter - total	μg/L	6	6	100	0.0104 J	0.107 J	W035	0.0364	0.0123 J	0.0963 J	0.0104 J	0.107 J	W035	0.0364	0.0123 J	0.0963 J
Phthalates		1.0 -	ŕ	-		-											
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	26	5	19	0.98 J	3.5 J	W032	2.04	1.9 J	3.36 J	0.098 U	3.5 J	W032	0.601	0.308 U	2.58 J
		1.6		-													

-- data not available. DDx - 2,4' and 4,4'-DDD, -DDE, -DDT DL - detection limit

ND - not detected PAH - polycyclic aromatic hydrocarbon PCDD/F - dioxin/furan TCDD - tetrachlorodibenzo-p-dioxin XAD - hydrophobic crosslinked polystyrene copolymer resin

PCB - polychlorinated biphenyl

TEQ - toxicity equivalent

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking results. When the ascending list of all results ranking closest to 0.50 percentile in the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-7b. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (East Channel Single-Point Locations).

Table 5.4-76. Summary Statistics	for maleutor Contaminants in Su	indee water	, riigii riow L	vents (Lust	. Chamier Single	Tome Locations).		Detected Con	centrations				Г	Detected and Not Det	tected Concentrations		
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
RM 01.9<03			141mi, juva	Dettetta	70 2000000	*							7				
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.23 J	0.26 J	W026	0.245	0.245 J	0.259 J	0.23 J	0.26 J	W026	0.245	0.245 J	0.259 J
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.06 J	0.09 J	W026	0.075	0.075 J	0.0885 J	0.06 J	0.09 J	W026	0.075	0.075 J	0.0885 J
Arsenic	Peristaltic - total	μg/L	2	2	100	0.32 J	0.32 J	W026	0.32	0.32 J	0.32 J	0.32 J	0.32 J	W026	0.32	0.32 J	0.32 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.23 U	0.24 U	W026	0.118	0.118 U	0.12 U
Chromium	Peristaltic - particulate	μg/L	2	2	100	0.79	0.86	W026	0.825	0.825	0.857	0.79	0.86	W026	0.825	0.825	0.857
Chromium	Peristaltic - total	μg/L	2	2	100	0.79	0.86	W026	0.825	0.825	0.857	0.79	0.86	W026	0.825	0.825	0.857
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.57	0.65	W026	0.61	0.61	0.646	0.57	0.65	W026	0.61	0.61	0.646
Copper	Peristaltic - particulate	μg/L	2	2	100	0.9	0.99	W026	0.945	0.945	0.986	0.9	0.99	W026	0.945	0.945	0.986
Copper	Peristaltic - total	μg/L	2	2	100	1.47	1.64	W026	1.56	1.56	1.63	1.47	1.64	W026	1.56	1.56	1.63
Zinc	Peristaltic - dissolved	μg/L	2	0	0							1.1 U	1.3 U	W026	0.6	0.6 U	0.645 U
Zinc	Peristaltic - particulate	μg/L	2	2	100	3.4	3.6	W026	3.5	3.5	3.59	3.4	3.6	W026	3.5	3.5	3.59
Zinc	Peristaltic - total	μg/L	2	2	100	3.4	3.6	W026	3.5	3.5	3.59	3.4	3.6	W026	3.5	3.5	3.59
Butyltins		1.0															
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W026	0.0003	0.0003 U	0.0003 U
PCBs ^c		1.0															
Total PCBs	XAD Column - dissolved	ua/I	2	2	100	0.000127 JT	0.000154 JT	W026	0.000141	0.000141 J	0.000153 J	0.000127 JT	0.000154 JT	W026	0.000141	0.000141 J	0.000153 J
Total PCBs	XAD Column - dissolved XAD Filter - particulate	μg/L	2	2	100	0.000127 JT 0.000096 JT	0.000134 JT 0.000114 JT	W026	0.000141	0.000141 J 0.000105 J	0.000133 J	0.000127 JT 0.000096 JT	0.000134 JT 0.000114 JT	W026	0.000141	0.000141 J 0.000105 J	0.000133 J
Total PCBs	XAD Filter - particulate XAD Column+Filter - total	μg/L	2	2	100	0.000096 J1 0.000223 J	0.000114 J1 0.000268 J	W026 W026	0.000103	0.000103 J 0.000246 J	0.000113 J 0.000266 J	0.000096 J1 0.000223 J	0.000114 J1 0.000268 J	W026 W026	0.000103	0.000103 J 0.000246 J	0.000113 J 0.000266 J
	AAD Column+Filter - total	μg/L	2	2	100	0.000223 J	0.000208 J	W 020	0.000240	0.000240 J	0.000200 J	0.000223 J	0.000208 J	W 020	0.000240	0.000246 J	0.000266 J
Pesticides	Desistable total	/1	2	0	0							0.00064.11	0.0007.11	11/026	0.000225	0.000225 11	0.000240.11
Aldrin	Peristaltic - total	μg/L	2	0	0							0.00064 U	0.0007 U	W026	0.000335	0.000335 U	0.000349 U
Dieldrin	Peristaltic - total	μg/L	2	0	0							0.0004 U	0.0004 U	W026	0.0002	0.0002 U	0.0002 U
Total chlordanes	Peristaltic - total	μg/L	2	-	-	0.00022 IT	 0.00057_IT	W/026	0.000445	0.000445 I	0.000550 T	0.00073 UT	0.00073 UT	W026	0.000365	0.000365 U	0.000365 U
DDx	Peristaltic - total	μg/L	2	2	100	0.00032 JT	0.00057 JT	W026	0.000445	0.000445 J	0.000558 Ј	0.00032 JT	0.00057 JT	W026	0.000445	0.000445 J	0.000558 J
PAHs		~										0.012.17	0.010.177	******	0.0065	0.0055 **	0.0065 **
Total PAHs	Peristaltic - total	μg/L	2	0	0							0.013 UT	0.013 UT	W026	0.0065	0.0065 U	0.0065 U
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.23 U	0.63 U	W026	0.215	0.215 U	0.305 U
RM 03<04																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.202 J	0.213 J	W028	0.208	0.208 J	0.212 J	0.202 J	0.213 J	W028	0.208	0.208 J	0.212 J
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.104 J	0.12 J	W028	0.112	0.112 J	0.119 J	0.104 J	0.12 J	W028	0.112	0.112 J	0.119 J
Arsenic	Peristaltic - total	μg/L	2	2	100	0.306 J	0.333 J	W028	0.32	0.32 J	0.332 J	0.306 J	0.333 J	W028	0.32	0.32 J	0.332 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.14 U	0.15 U	W028	0.0725	0.0725 U	0.0748 U
Chromium	Peristaltic - particulate	μg/L	2	2	100	1.02	1.07	W028	1.05	1.05	1.07	1.02	1.07	W028	1.05	1.05	1.07
Chromium	Peristaltic - total	μg/L	2	2	100	1.02	1.07	W028	1.05	1.05	1.07	1.02	1.07	W028	1.05	1.05	1.07
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.61	0.62	W028	0.615	0.615	0.62	0.61	0.62	W028	0.615	0.615	0.62
Copper	Peristaltic - particulate	μg/L	2	2	100	1.34	1.36	W028	1.35	1.35	1.36	1.34	1.36	W028	1.35	1.35	1.36
Copper	Peristaltic - total	μg/L	2	2	100	1.95	1.98	W028	1.97	1.97	1.98	1.95	1.98	W028	1.97	1.97	1.98
Zinc	Peristaltic - dissolved	μg/L	2	0	0							1.1 U	1.3 U	W028	0.6	0.6 U	0.645 U
Zinc	Peristaltic - particulate	μg/L	2	2	100	3.6	4.3	W028	3.95	3.95	4.27	3.6	4.3	W028	3.95	3.95	4.27
Zinc	Peristaltic - total	μg/L	2	2	100	3.6	4.3	W028	3.95	3.95	4.27	3.6	4.3	W028	3.95	3.95	4.27
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W028	0.0003	0.0003 U	0.0003 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000102 JT	0.000285 JT	W028	0.000194	0.000194 J	0.000276 J	0.000102 JT	0.000285 JT	W028	0.000194	0.000194 J	0.000276 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.0000541 JT	0.000175 JT	W028	0.000115	0.000115 J	0.000169 J	0.0000541 JT	0.000175 JT	W028	0.000115	0.000115 J	0.000169 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000156 J	0.00046 J	W028	0.000308	0.000308 J	0.000445 J	0.000156 J	0.00046 J	W028	0.000308	0.000308 J	0.000445 J
Pesticides																	
Aldrin	Peristaltic - total	μg/L	2	0	0							0.00048 U	0.00069 U	W028	0.000293	0.000293 U	0.00034 U
Dieldrin	Peristaltic - total	μg/L	2	1	50	0.0012 J	0.0012 J	W028	0.0012	0.0012 J	0.0012 J	0.0004 U	0.0012 J	W028	0.0007	0.0007 J	0.00115 J
Total chlordanes	Peristaltic - total	μg/L	2	0	0							0.00073 UT	0.00073 UT	W028	0.000365	0.000365 U	0.000365 U
DDx	Peristaltic - total	μg/L	2	2	100	0.00017 JT	0.00018 NJT		0.000175	0.000175 J	0.00018 J	0.00017 JT	0.00018 NJT	W028	0.000175	0.000175 J	0.00018 J
PAHs		1.0															
Total PAHs	Peristaltic - total	μg/L	2	0	0							0.013 UT	0.013 UT	W028	0.0065	0.0065 U	0.0065 U
Phthalates		rs/ L	-	•	V			_				5.015 01	5.015 01	11020	0.0003	0.0005	0.0005 0
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.098 U	0.25 U	W028	0.087	0.087 U	0.121 U
RM 05<06	i cristanic - total	μg/L	2	U	U							0.090 0	0.23 0	VV 020	0.007	0.007	0.121 0
Metals																	
	Peristaltic - dissolved	пс/т	2	2	100	0.185 J	0.222 Ј	W030	0.204	0.204 J	0.22 J	0.185 J	0.222 J	W030	0.204	0.204 J	0.22 J
Arsenic		μg/L	2	2	100	0.185 J 0.095 J	0.222 J 0.143 J	W030 W030				0.185 J 0.095 J	0.222 J 0.143 J	W030 W030	0.204		0.22 J 0.141 J
Arsenic	Peristaltic - particulate	μg/L	2						0.119	0.119 J	0.141 J					0.119 J	
Arsenic	Peristaltic - total	μg/L	2	2	100	0.317 J	0.328 J	W030	0.323	0.323 J	0.327 J	0.317 J	0.328 J	W030	0.323	0.323 J	0.327 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0			W(020			0.000	0.2 U	0.23 U	W030	0.108	0.108 U	0.114 U
Chromium Chromium	Peristaltic - particulate Peristaltic - total	μg/L μg/L	2 2	2 2	100 100	0.95 0.95	0.99 0.99	W030 W030	0.97 0.97	0.97 0.97	0.988 0.988	0.95 0.95	0.99 0.99	W030	0.97	0.97 0.97	0.988 0.988
						0.05	0.00				7, 000	0.05	() ()()	W030	0.97	0.07	U UOO

Table 5.4-7b. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (East Channel Single-Point Locations).

				•		le-Point Locations).		Detected Co	oncentrations				D	etected and Not Det	ected Concentrations		
Analyte	Method	Units	# Analyzed	#	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.64	0.65	W030	0.645	0.645	0.65	0.64	0.65	W030	0.645	0.645	0.65
Copper	Peristaltic - particulate	μg/L	2	2	100	1.19	1.29	W030	1.24	1.24	1.29	1.19	1.29	W030	1.24	1.24	1.29
Copper	Peristaltic - total	μg/L	2	2	100	1.83	1.94	W030	1.89	1.89	1.93	1.83	1.94	W030	1.89	1.89	1.93
Zinc	Peristaltic - dissolved	μg/L	2	0	0							1.9 U	2 U	W030	0.975	0.975 U	0.998 U
Zinc	Peristaltic - particulate	μg/L	2	2	100	3.3	3.9	W030	3.6	3.6	3.87	3.3	3.9	W030	3.6	3.6	3.87
Zinc	Peristaltic - total	μg/L	2	2	100	3.3	3.9	W030	3.6	3.6	3.87	3.3	3.9	W030	3.6	3.6	3.87
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W030	0.0003	0.0003 U	0.0003 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000076 JT	0.0000768 JT	W030	0.0000764	0.0000764 J	0.0000768 J	0.000076 JT	0.0000768 JT	W030	0.0000764	0.0000764 J	0.0000768 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.0000337 JT	0.0000729 JT	W030	0.0000533	0.0000533 J	0.0000709 J	0.0000337 JT	0.0000729 JT	W030	0.0000533	0.0000533 J	0.0000709 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000111 J	0.000149 J	W030	0.00013	0.00013 J	0.000147 J	0.000111 J	0.000149 J	W030	0.00013	0.00013 J	0.000147 J
Pesticides																	
Aldrin	Peristaltic - total	μg/L	2	1	50	0.0052	0.0052	W030	0.0052	0.0052	0.0052	0.0052	0.0058 U	W030	0.00405	0.00405	0.00509
Dieldrin	Peristaltic - total	μg/L	2	0	0							0.0004 U	0.0004 U	W030	0.0002	0.0002 U	0.0002 U
Total chlordanes	Peristaltic - total	μg/L	2	2	100	0.00051 T	0.0006 NJT	W030	0.000555	0.000555 J	0.000596 J	0.00051 T	0.0006 NJT	W030	0.000555	0.000555 J	0.000596 J
DDx	Peristaltic - total	μg/L	2	1	50	0.00022 JT	0.00022 JT	W030	0.00022	0.00022 JT	0.00022 JT	0.00022 JT	0.00094 UT	W030	0.000345	0.000345 J	0.000458 J
PAHs Total PAHs	Peristaltic - total	/I	2	1	50	0.013 JT	0.013 JT	W030	0.013	0.013 JT	0.013 JT	0.013 UT	0.013 UT	W030	0.00975	0.00975 J	0.0127 J
Phthalates	Peristanic - total	μg/L	2	1	30	0.015 J1	0.015 J1	W 030	0.013	0.015 J1	0.015 J1	0.013 U1	0.015 01	W 030	0.00973	0.00973 J	0.0127 J
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.26 U	0.58 U	W030	0.21	0.21 U	0.282 U
RM 06<07	i cristance - total	μg/L	2	Ü	O							0.20 0	0.50 0	***030	0.21	0.21 0	0.202 0
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.22	0.22	W032	0.22	0.22	0.22	0.22	0.22	W032	0.22	0.22	0.22
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.085	0.1	W032	0.0925	0.0925	0.0993	0.085	0.1	W032	0.0925	0.0925	0.0993
Arsenic	Peristaltic - total	μg/L	2	2	100	0.305 T	0.32	W032	0.313	0.313	0.319	0.305 T	0.32	W032	0.313	0.313	0.319
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.23 U	0.24 U	W032	0.118	0.118 U	0.12 U
Chromium	Peristaltic - particulate	μg/L	2	2	100	0.7	0.725	W032	0.713	0.713	0.724	0.7	0.725	W032	0.713	0.713	0.724
Chromium	Peristaltic - total	μg/L	2	2	100	0.7	0.725 T	W032	0.713	0.713	0.724	0.7	0.725 T	W032	0.713	0.713	0.724
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.64	0.64	W032	0.64	0.64	0.64	0.64	0.64	W032	0.64	0.64	0.64
Copper	Peristaltic - particulate	μg/L	2	2	100	0.99	1.05	W032	1.02	1.02	1.05	0.99	1.05	W032	1.02	1.02	1.05
Copper	Peristaltic - total	μg/L	2	2	100	1.63	1.69 T	W032	1.66	1.66	1.69	1.63	1.69 T	W032	1.66	1.66	1.69
Zinc	Peristaltic - dissolved	μg/L	2	0	0							1 U	1.6 U	W032	0.65	0.65 U	0.785 U
Zinc	Peristaltic - particulate	μg/L	2	2	100	3.4	4.3	W032	3.85	3.85	4.26	3.4	4.3	W032	3.85	3.85	4.26
Zinc	Peristaltic - total	μg/L	2	2	100	3.4 T	4.3	W032	3.85	3.85	4.26	3.4 T	4.3	W032	3.85	3.85	4.26
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W032	0.0003	0.0003 U	0.0003 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000125 JT	0.00014 JT	W032	0.000133	0.000133 J	0.000139 J	0.000125 JT	0.00014 JT	W032	0.000133	0.000133 J	0.000139 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.000121 JT	0.000195 JT	W032	0.000158	0.000158 J	0.000191 J	0.000121 JT	0.000195 JT	W032	0.000158	0.000158 J	0.000191 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000261 J	0.00032 J	W032	0.000291	0.000291 J	0.000317 J	0.000261 J	0.00032 J	W032	0.000291	0.000291 J	0.000317 J
PCDD/Fs Homologs		_	_					****						****			
Total PCDD/Fs	XAD Column - dissolved	μg/L	2	2	100	0.00000278 T	0.00000506 T	W032	0.00000392	0.00000392	0.00000495	0.00000278 T	0.00000506 T	W032	0.00000392	0.00000392	0.00000495
Total PCDD/Fs	XAD Filter - particulate	μg/L	2	2	100	0.0000196 T	0.0000261 T	W032	0.0000229	0.0000229	0.0000258	0.0000196 T	0.0000261 T	W032	0.0000229	0.0000229	0.0000258
Total PCDD/Fs PCDD/Fs	XAD Column+Filter - total	μg/L	2	2	100	0.0000247	0.0000289	W032	0.0000268	0.0000268	0.0000287	0.0000247	0.0000289	W032	0.0000268	0.0000268	0.0000287
TCDD/FS TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	2	2.	100	0.00000000378 T	0.00000000719 T	W032	0.00000000549	0.00000000549	0.00000000702	0.00000000378 T	0.00000000719 T	W032	0.00000000549	0.00000000549	0.00000000702
TCDD TEQ (ND=0)	XAD Column - dissolved XAD Filter - particulate		2	2	100	0.0000000378 T 0.00000000437 JT	0.0000000719 T 0.00000000453 JT	W032	0.00000000349	0.00000000349 0.00000000445 J	0.00000000702 0.00000000452 J	0.00000000378 T 0.00000000437 JT	0.00000000719 T 0.00000000453 JT	W032 W032	0.0000000349	0.0000000349 0.00000000445 J	0.00000000702 0.00000000452 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L μg/L	2	2	100	0.0000000437 J1 0.00000000491 J	0.0000000433 J1	W032	0.0000000443	0.0000000445 J	0.0000000432 J 0.0000000508 J	0.0000000437 J1 0.00000000491 J	0.0000000433 J1 0.00000000509 J	W032 W032	0.0000000445	0.0000000445 J	0.0000000432 J
Pesticides	A D Column T neer - total	μg/L	2	2	100	0.0000000471 3	0.0000000000000000000000000000000000000	11 032	0.00000003	0.00000003	0.00000000000	0.0000000471 3	0.0000000000000000000000000000000000000	***************************************	0.00000003	0.00000003 3	0.0000000300 3
Aldrin	XAD Column - dissolved	μg/L	2	2	100	0.00000174 J	0.00000182 J	W032	0.00000178	0.00000178 J	0.00000182 J	0.00000174 J	0.00000182 J	W032	0.00000178	0.00000178 J	0.00000182 J
Aldrin	XAD Filter - particulate	μg/L	2	2	100	0.00000061 J	0.000000714 J	W032	0.000000662	0.000000662 J	0.000000709 J	0.00000061 J	0.000000714 J	W032	0.000000662	0.000000662 J	0.000000709 J
Aldrin	XAD Column+Filter - total	μg/L	2	2	100	0.00000243 J	0.00000245 J	W032	0.00000244	0.00000244 J	0.00000245 J	0.00000243 J	0.00000245 J	W032	0.00000244	0.00000244 J	0.00000245 J
Dieldrin	XAD Column - dissolved	μg/L	2	2	100	0.0000993	0.000109	W032	0.000104	0.000104	0.000109	0.0000993	0.000109	W032	0.000104	0.000104	0.000109
Dieldrin	XAD Filter - particulate	μg/L	2	2	100	0.000012 J	0.0000135 J	W032	0.0000128	0.0000128 J	0.0000134 J	0.000012 Ј	0.0000135 J	W032	0.0000128	0.0000128 J	0.0000134 J
Dieldrin	XAD Column+Filter - total	μg/L	2	2	100	0.000111 J	0.000123 J	W032	0.000117	0.000117 J	0.000122 J	0.000111 J	0.000123 J	W032	0.000117	0.000117 J	0.000122 J
Total chlordanes	XAD Column - dissolved	μg/L	2	2	100	0.0000332 JT	0.0000352 JT	W032	0.0000342	0.0000342 J	0.0000351 J	0.0000332 JT	0.0000352 JT	W032	0.0000342	0.0000342 J	0.0000351 J
Total chlordanes	XAD Filter - particulate	μg/L	2	2	100	0.0000145 JT	0.0000171 JT	W032	0.0000158	0.0000158 J	0.000017 J	0.0000145 JT	0.0000171 JT	W032	0.0000158	0.0000158 J	0.000017 J
Total chlordanes	XAD Column+Filter - total	μg/L	2	2	100	0.0000477 J	0.0000523 J	W032	0.00005	0.00005 J	0.0000521 J	0.0000477 J	0.0000523 J	W032	0.00005	0.00005 J	0.0000521 J
DDx	XAD Column - dissolved	μg/L	2	2	100	0.000113 JT	0.000126 JT	W032	0.00012	0.00012 J	0.000125 J	0.000113 JT	0.000126 JT	W032	0.00012	0.00012 J	0.000125 J
DDx	XAD Filter - particulate	μg/L	2	2	100	0.000153 JT	0.000212 JT	W032	0.000183	0.000183 J	0.000209 J	0.000153 JT	0.000212 JT	W032	0.000183	0.000183 J	0.000209 J
DDx	XAD Column+Filter - total	μg/L	2	2	100	0.000266 J	0.000338 J	W032	0.000302	0.000302 J	0.000334 J	0.000266 J	0.000338 J	W032	0.000302	0.000302 J	0.000334 J
PAHs		-															
Total PAHs	XAD Column - dissolved	μg/L	2	2	100	0.0061 JT	0.00883 JT	W032	0.00747	0.00747 J	0.00869 J	0.0061 JT	0.00883 JT	W032	0.00747	0.00747 J	0.00869 J
Total PAHs	XAD Filter - particulate	μg/L	2	2	100	0.00316 JT	0.00432 JT	W032	0.00374	0.00374 J	0.00426 J	0.00316 JT	0.00432 JT	W032	0.00374	0.00374 J	0.00426 J
Total PAHs	Peristaltic - total	μg/L	2	0	0							0.0065 UT	0.013 UT	W032	0.00488	0.00488 U	0.00634 U

Table 5.4-7b. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (East Channel Single-Point Locations).

					-			Detected Co	ncentrations				I	Detected and Not De	tected Concentrations		
Analyte	Method	Units	#	#	0/ D-44-I	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Total PAHs	XAD Column+Filter - total		Anaiyzed 2	Detected	% Detected 100	0.0104 J	0.012 J	W032	0.0112	0.0112 J	0.0119 J	0.0104 J	0.012 J	W032	0.0112	0.0112 J	0.0119 J
Phthalates	AAD Column+Filter - total	μg/L	2	2	100	0.0104 J	0.012 3	W 032	0.0112	0.0112 J	0.0119 J	0.0104 J	0.012 3	W 032	0.0112	0.0112 J	0.0119 3
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	1	50	3.5 J	3.5 J	W032	3.5	3.5 J	3.5 J	0.71 U	3.5 J	W032	1.93	1.93 J	3.34 J
RM 08<09																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.281 J	0.296 J	W035	0.289	0.289 J	0.295 J	0.281 J	0.296 J	W035	0.289	0.289 J	0.295 J
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.074 J	0.087 J	W035	0.0805	0.0805 J	0.0864 J	0.074 J	0.087 J	W035	0.0805	0.0805 J	0.0864 J
Arsenic	Peristaltic - total	μg/L	2	2	100	0.355 J	0.383 J	W035	0.369	0.369 J	0.382 J	0.355 J	0.383 J	W035	0.369	0.369 J	0.382 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0 100		0.88	 W/025	0.07	0.07	0.970	0.45 U	0.48 U	W035	0.233	0.233 U	0.239 U
Chromium Chromium	Peristaltic - particulate Peristaltic - total	μg/L	2 2	2	100	0.86 0.86	0.88	W035 W035	0.87 0.87	0.87 0.87	0.879 0.879	0.86 0.86	0.88 0.88	W035 W035	0.87 0.87	0.87 0.87	0.879 0.879
Copper	Peristaltic - dissolved	μg/L μg/L	2	2	100	1.22	1.22	W035	1.22	1.22	1.22	1.22	1.22	W035	1.22	1.22	1.22
Copper	Peristaltic - particulate	μg/L μg/L	2	2	100	0.85	0.99	W035	0.92	0.92	0.983	0.85	0.99	W035	0.92	0.92	0.983
Copper	Peristaltic - total	μg/L μg/L	2	2	100	2.07	2.21	W035	2.14	2.14	2.2	2.07	2.21	W035	2.14	2.14	2.2
Zinc	Peristaltic - dissolved	μg/L	2	0	0							3.2 U	3.6 U	W035	1.7	1.7 U	1.79 U
Zinc	Peristaltic - particulate	μg/L	2	2	100	5.6	6.5	W035	6.05	6.05	6.46	5.6	6.5	W035	6.05	6.05	6.46
Zinc	Peristaltic - total	μg/L	2	2	100	5.6	6.5	W035	6.05	6.05	6.46	5.6	6.5	W035	6.05	6.05	6.46
Butyltins																	
Tributyltin ion	Peristaltic - total	$\mu g/L$	2	2	100	0.0021 J	0.0035 J	W035	0.0028	0.0028 J	0.00343 J	0.0021 J	0.0035 J	W035	0.0028	0.0028 J	0.00343 J
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000223 JT	0.000253 JT	W035	0.000238	0.000238 J	0.000252 J	0.000223 JT	0.000253 JT	W035	0.000238	0.000238 J	0.000252 J
Total PCBs	XAD Filter - particulate	$\mu g/L$	2	2	100	0.00048 JT	0.000496 JT	W035	0.000488	0.000488 J	0.000495 J	0.00048 JT	0.000496 JT	W035	0.000488	0.000488 J	0.000495 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000703 J	0.000749 J	W035	0.000726	0.000726 J	0.000747 J	0.000703 J	0.000749 J	W035	0.000726	0.000726 J	0.000747 J
PCDD/Fs Homologs																	
Total PCDD/Fs	XAD Column - dissolved	μg/L	2	2	100	0.00000371 T	0.0000052 T	W035	0.00000446	0.00000446	0.00000513	0.00000371 T	0.0000052 T	W035	0.00000446	0.00000446	0.00000513
Total PCDD/Fs	XAD Filter - particulate	μg/L	2	2	100	0.0000697 T	0.0000707 JT	W035	0.0000702	0.0000702 J	0.0000707 J	0.0000697 T	0.0000707 JT	W035	0.0000702	0.0000702 J	0.0000707 J
Total PCDD/Fs	XAD Column+Filter - total	μg/L	2	2	100	0.0000744 J	0.0000749	W035	0.0000747	0.0000747 J	0.0000749 J	0.0000744 J	0.0000749	W035	0.0000747	0.0000747 J	0.0000749 J
PCDD/Fs TCDD TEQ (ND=0)	XAD Column - dissolved	~/T	2	2	100	0.00000000598 T	0.00000000817 T	W035	0.00000000708	0.00000000708	0.00000000806	0.00000000598 T	0.00000000817 T	W035	0.00000000708	0.00000000708	0.00000000806
TCDD TEQ (ND=0) TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L μg/L	2	2	100	0.00000000398 T 0.0000000141 JT	0.0000000017 T	W035	0.0000000708	0.0000000708 0.0000000152 J	0.00000000000 0.0000000161 J	0.0000000398 T 0.000000141 JT	0.00000000817 T	W035	0.0000000708	0.0000000708 0.0000000152 J	0.000000000000000000000000000000000000
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L μg/L	2	2	100	0.000000141 J1 0.000000149 J	0.000000162 J1 0.000000168 J	W035	0.000000152	0.000000152 J 0.000000159 J	0.000000161 J	0.000000141 J1 0.000000149 J	0.000000162 J1 0.000000168 J	W035	0.000000152	0.000000152 J	0.000000161 J
Pesticides	771D Column 1 neci - total	μg/L	2	2	100	0.000000147 3	0.000000100 3	11 033	0.000000137	0.000000137 3	0.000000107 3	0.000000147 3	0.000000100 3	***033	0.000000137	0.000000137 3	0.000000107 3
Aldrin	XAD Column - dissolved	μg/L	2	2	100	0.00000197 J	0.00000251 J	W035	0.00000224	0.00000224 J	0.00000248 J	0.00000197 J	0.00000251 J	W035	0.00000224	0.00000224 J	0.00000248 J
Aldrin	XAD Filter - particulate	μg/L	2	2	100	0.00000101 J	0.00000104 J	W035	0.00000103	0.00000103 J	0.00000104 J	0.00000101 J	0.00000104 J	W035	0.00000103	0.00000103 J	0.00000104 J
Aldrin	XAD Column+Filter - total	μg/L	2	2	100	0.00000301 J	0.00000352 J	W035	0.00000327	0.00000327 J	0.00000349 J	0.00000301 J	0.00000352 J	W035	0.00000327	0.00000327 J	0.00000349 J
Dieldrin	XAD Column - dissolved	$\mu g/L$	2	2	100	0.0000985	0.0000995	W035	0.000099	0.000099	0.0000995	0.0000985	0.0000995	W035	0.000099	0.000099	0.0000995
Dieldrin	XAD Filter - particulate	μg/L	2	2	100	0.00000997 J	0.0000101 J	W035	0.00001	0.00001 J	0.0000101 J	0.00000997 J	0.0000101 J	W035	0.00001	0.00001 J	0.0000101 J
Dieldrin	XAD Column+Filter - total	μg/L	2	2	100	0.000108 J	0.00011 J	W035	0.000109	0.000109 J	0.00011 J	0.000108 J	0.00011 J	W035	0.000109	0.000109 J	0.00011 J
Total chlordanes	XAD Column - dissolved	μg/L	2	2	100	0.0000332 JT	0.0000344 JT	W035	0.0000338	0.0000338 J	0.0000343 J	0.0000332 JT	0.0000344 JT	W035	0.0000338	0.0000338 J	0.0000343 J
Total chlordanes	XAD Filter - particulate	μg/L	2	2	100	0.0000178 JT	0.0000192 JT	W035	0.0000185	0.0000185 J	0.0000191 J	0.0000178 JT	0.0000192 JT	W035	0.0000185	0.0000185 J	0.0000191 J
Total chlordanes	XAD Column+Filter - total	μg/L	2	2	100	0.0000522 J	0.0000524 J	W035	0.0000523	0.0000523 J	0.0000524 J	0.0000522 J	0.0000524 J	W035	0.0000523	0.0000523 J	0.0000524 J
DDx DDx	XAD Column - dissolved	μg/L	2 2	2	100 100	0.000105 JT 0.000169 JT	0.000121 JT 0.000173 JT	W035 W035	0.000113 0.000171	0.000113 J 0.000171 J	0.00012 J 0.000173 J	0.000105 JT 0.000169 JT	0.000121 JT	W035 W035	0.000113 0.000171	0.000113 J 0.000171 J	0.00012 J 0.000173 J
DDx	XAD Filter - particulate XAD Column+Filter - total	μg/L μg/L	2	2	100	0.000169 J1 0.000278 J	0.000173 J1 0.00029 J	W035	0.000171	0.000171 J 0.000284 J	0.000173 J 0.000289 J	0.000169 J1 0.000278 J	0.000173 JT 0.00029 J	W035	0.000171	0.000171 J 0.000284 J	0.000173 J 0.000289 J
PAHs	AAD Column+1 ner - total	μg/L	2	2	100	0.000278 3	0.00029 3	***033	0.000264	0.000284 3	0.000289 3	0.000278 3	0.00029 J	***033	0.000284	0.000204 3	0.000289 3
Total PAHs	XAD Column - dissolved	μg/L	2	2	100	0.0142 JT	0.0204 JT	W035	0.0173	0.0173 J	0.0201 J	0.0142 JT	0.0204 JT	W035	0.0173	0.0173 J	0.0201 J
Total PAHs	XAD Filter - particulate	μg/L	2	2	100	0.051 JT	0.0863 JT	W035	0.0687	0.0687 J	0.0845 J	0.051 JT	0.0863 JT	W035	0.0687	0.0687 J	0.0845 J
Total PAHs	Peristaltic - total	μg/L	2	2	100	0.088 JT	0.11 JT	W035	0.099	0.099 J	0.109 J	0.088 JT	0.11 JT	W035	0.099	0.099 J	0.109 J
Total PAHs	XAD Column+Filter - total	μg/L	2	2	100	0.0652 J	0.107 J	W035	0.086	0.086 J	0.105 J	0.0652 J	0.107 J	W035	0.086	0.086 J	0.105 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	$\mu g/L$	2	0	0							0.31 U	0.36 U	W035	0.168	0.168 U	0.179 U
RM 09<10																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.21	0.21	W038	0.21	0.21	0.21	0.21	0.21	W038	0.21	0.21	0.21
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.09	0.1	W038	0.095	0.095	0.0995	0.09	0.1	W038	0.095	0.095	0.0995
Arsenic	Peristaltic - total	μg/L	2	2	100	0.3	0.31	W038	0.305	0.305	0.31	0.3	0.31	W038	0.305	0.305	0.31
Chromium	Peristaltic - dissolved	μg/L	2	0	0 100	0.82	0.85	W038	0.835	0.835	0.840	0.17 U 0.82	0.24 U	W038	0.103 0.835	0.103 U	0.118 U
Chromium Chromium	Peristaltic - particulate Peristaltic - total	μg/L μα/Ι	2	2	100	0.82	0.85	W038 W038	0.835	0.835	0.849 0.849	0.82	0.85 0.85	W038 W038	0.835	0.835 0.835	0.849 0.849
Copper	Peristaltic - total Peristaltic - dissolved	μg/L μg/L	2	2	100	0.57	0.83	W038	0.585	0.585	0.599	0.82	0.6	W038	0.585	0.585	0.599
Copper	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	2	2	100	1.12	1.18	W038 W038	1.15	1.15	1.18	1.12	1.18	W038	1.15	1.15	1.18
Copper	Peristaltic - total	μg/L μg/L	2	2	100	1.72	1.75	W038	1.74	1.74	1.75	1.72	1.75	W038	1.74	1.74	1.75
Zinc	Peristaltic - dissolved	μg/L	2	0	0							2.1 U	4 U	W038	1.53	1.53 U	1.95 U
				2	100		4.7	111020	4	4							4.63
Zinc	Peristaltic - particulate	μg/L	2	2	100	3.3	4.7	W038	4	4	4.63	3.3	4.7	W038	4	4	4.03

Table 5.4-7b. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (East Channel Single-Point Locations).

					_			Detected Conc	centrations				I	Detected and Not De	tected Concentrations		
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W038	0.0003	0.0003 U	0.0003 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.0000602 JT	0.000065 JT	W038	0.0000626	0.0000626 J	0.0000648 J	0.0000602 JT	0.000065 JT	W038	0.0000626	0.0000626 J	0.0000648 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.0000548 JT	0.000103 JT	W038	0.0000789	0.0000789 J	0.000101 J	0.0000548 JT	0.000103 JT	W038	0.0000789	0.0000789 J	0.000101 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000115 J	0.000168 J	W038	0.000142	0.000142 J	0.000165 J	0.000115 J	0.000168 J	W038	0.000142	0.000142 J	0.000165 J
Pesticides																	
Aldrin	Peristaltic - total	μg/L	2	0	0							0.00048 U	0.00048 U	W038	0.00024	0.00024 U	0.00024 U
Dieldrin	Peristaltic - total	μg/L	2	0	0							0.0004 UJ	0.0004 UJ	W038	0.0002	0.0002 UJ	0.0002 UJ
Total chlordanes	Peristaltic - total	μg/L	2	0	0							0.00073 UT	0.00073 UT	W038	0.000365	0.000365 U	0.000365 U
DDx	Peristaltic - total	μg/L	2	1	50	0.0004 JT	0.0004 JT	W038	0.0004	0.0004 JT	0.0004 JT	0.0004 JT	0.00094 UT	W038	0.000435	0.000435 J	0.000467 J
PAHs																	
Total PAHs	Peristaltic - total	μg/L	2	1	50	0.05 JT	0.05 JT	W038	0.05	0.05 JT	0.05 JT	0.013 UT	0.05 JT	W038	0.0283	0.0283 J	0.0478 J
Phthalates		. 0															
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	1	50	1 J	1 J	W038	1	1 J	1 J	0.82 U	1 J	W038	0.705	0.705 J	0.971 J

-- data not available.

DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan RM - River Mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalent

XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-7c. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (Mid-Channel Single-Point Locations).

			_			Detected Conc	entrations				D	Detected and Not Dete	cted Concentration	.1S	
															95th
						Maximum			95 th	Minimum	Maximum	Maximum	Mean	Median	Percentile
Analyte	Method	Units	# Analyzed # Detected % Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
No data for this table.															

Notes:

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

- -- data not available.
- DL detection limit

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-7d. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (West Channel Single-Point Locations).

		,		(_	,		Detected Concent	rations				Dete	cted and Not Detected	Concentrations		
Analyte	Method	Units	# Analyzed #	# Detected 9	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
RM 04<05			" Analyzed "	# Dettettu	70 Detected					111044411	10100000	(Iun D D)	(1111 22)	(,	, ,	(IIIII DZ)	(IIIII DE)
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.206 J	0.223 J	W029	0.215	0.215 J	0.222 J	0.206 J	0.223 J	W029	0.215	0.215 J	0.222 J
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.094 J	0.123 J	W029	0.109	0.109 J	0.122 J	0.094 J	0.123 J	W029	0.109	0.109 J	0.122 J
Arsenic	Peristaltic - total	μg/L	2	2	100	0.317 JT	0.329 J	W029	0.323	0.323 J	0.328 J	0.317 JT	0.329 J	W029	0.323	0.323 J	0.328 J
Chromium Chromium	Peristaltic - dissolved Peristaltic - particulate	μg/L	2 2	2	100	0.865	0.88	W029	0.873	0.873	0.879	0.12 U 0.865	0.13 U 0.88	W029 W029	0.0625 0.873	0.0625 U 0.873	0.0648 U 0.879
Chromium	Peristaltic - particulate Peristaltic - total	μg/L μg/L	2	2	100	0.865 T	0.88	W029 W029	0.873	0.873	0.879	0.865 T	0.88	W029 W029	0.873	0.873	0.879
Copper	Peristaltic - dissolved	μg/L μg/L	2	2	100	0.59	0.6	W029	0.595	0.595	0.6	0.59	0.6	W029	0.595	0.595	0.6
Copper	Peristaltic - particulate	μg/L	2	2	100	1.13	1.17	W029	1.15	1.15	1.17	1.13	1.17	W029	1.15	1.15	1.17
Copper	Peristaltic - total	μg/L	2	2	100	1.73	1.76 T	W029	1.75	1.75	1.76	1.73	1.76 T	W029	1.75	1.75	1.76
Zinc	Peristaltic - dissolved	μg/L	2	0	0							0.5 U	0.7 U	W029	0.3	0.3 U	0.345 U
Zinc	Peristaltic - particulate	μg/L	2	2	100	3	3.2	W029	3.1	3.1	3.19	3	3.2	W029	3.1	3.1	3.19
Zinc Butyltins	Peristaltic - total	μg/L	2	2	100	3	3.2 T	W029	3.1	3.1	3.19	3	3.2 T	W029	3.1	3.1	3.19
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W029	0.0003	0.0003 U	0.0003 U
PCBs ^c	i cristante - total	μg/L	2	O	O							0.0000 C	0.0000 C	1102)	0.0003	0.0003 C	0.0003 6
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.0000839 JT	0.0000844 JT	W029	0.0000842	0.0000842 J	0.0000844 J	0.0000839 JT	0.0000844 JT	W029	0.0000842	0.0000842 J	0.0000844 J
Total PCBs	XAD Filter - particulate	μg/L μg/L	2	2	100	0.0000837 JT 0.0000883 JT	0.0000934 JT	W029	0.0000909	0.0000942 J	0.0000931 J	0.0000833 JT	0.0000934 JT	W029	0.0000909	0.0000942 J	0.0000931 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000173 J	0.000177 J	W029	0.000175	0.000175 J	0.000177 J	0.000173 J	0.000177 J	W029	0.000175	0.000175 J	0.000177 J
Pesticides																	
Aldrin	Peristaltic - total	$\mu g/L$	2	0	0							0.0018 U	0.0018 U	W029	0.0009	0.0009 U	0.0009 U
Dieldrin	Peristaltic - total	μg/L	2	1	50	0.001 NJ	0.001 NJ	W029	0.001	0.001 NJ	0.001 NJ	0.0004 U	0.001 NJ	W029	0.0006	0.0006 J	0.00096 J
Total chlordanes	Peristaltic - total	μg/L	2	1	50	0.00029 JT	0.00029 JT	W029	0.00029	0.00029 JT	0.00029 JT	0.00029 JT	0.00073 UT	W029	0.000328	0.000328 J	0.000361 J
DDx PAHs	Peristaltic - total	μg/L	2	2	100	0.00047 NJT	0.00096 NJT	W029	0.000715	0.000715 J	0.000936 Ј	0.00047 NJT	0.00096 NJT	W029	0.000715	0.000715 J	0.000936 J
Total PAHs	Peristaltic - total	μg/L	2	0	0							0.013 UT	0.013 UT	W029	0.0065	0.0065 U	0.0065 U
Phthalates	i cristante - total	μg/L	2	O	O							0.013 01	0.013 01	1102)	0.0003	0.0003 C	0.0003 6
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	1	50	1.9 J	1.9 J	W029	1.9	1.9 J	1.9 J	0.75 U	1.9 J	W029	1.14	1.14 J	1.82 J
RM 06<07																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.26 J	0.261 J	W031	0.261	0.261 J	0.261 J	0.26 J	0.261 J	W031	0.261	0.261 J	0.261 J
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.064 J	0.217 J	W031	0.141	0.141 J	0.209 J	0.064 J	0.217 J	W031	0.141	0.141 J	0.209 J
Arsenic Chromium	Peristaltic - total Peristaltic - dissolved	μg/L	2 2	2	100	0.324 J	0.478 J 	W031	0.401	0.401 J	0.47 J	0.324 J 0.55 U	0.478 J 0.59 U	W031 W031	0.401 0.285	0.401 J 0.285 U	0.47 J 0.294 U
Chromium	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	2	2	100	1.01	1.92	W031	1.47	1.47	1.87	1.01	1.92	W031 W031	1.47	1.47	1.87
Chromium	Peristaltic - total	μg/L μg/L	2	2	100	1.01	1.92	W031	1.47	1.47	1.87	1.01	1.92	W031	1.47	1.47	1.87
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.9	0.93	W031	0.915	0.915	0.929	0.9	0.93	W031	0.915	0.915	0.929
Copper	Peristaltic - particulate	μg/L	2	2	100	0.75	2.59	W031	1.67	1.67	2.5	0.75	2.59	W031	1.67	1.67	2.5
Copper	Peristaltic - total	μg/L	2	2	100	1.68	3.49	W031	2.59	2.59	3.4	1.68	3.49	W031	2.59	2.59	3.4
Zinc	Peristaltic - dissolved	μg/L	2	0	0							1.9 U	2.2 U	W031	1.03	1.03 U	1.09 U
Zinc Zinc	Peristaltic - particulate	μg/L	2 2	2	100 100	3.5 3.5	8.4 8.4	W031 W031	5.95 5.95	5.95 5.95	8.16 8.16	3.5 3.5	8.4 8.4	W031 W031	5.95 5.95	5.95 5.95	8.16 8.16
Butyltins	Peristaltic - total	μg/L	2	2	100	3.3	0.4	W031	3.93	3.93	8.10	3.3	6.4	W031	3.93	3.93	8.10
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W031	0.0003	0.0003 U	0.0003 U
PCBs ^c		r-6-	_	-								*******	***************************************				
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.0000982 JT	0.000111 JT	W031	0.000105	0.000105 J	0.00011 J	0.0000982 JT	0.000111 JT	W031	0.000105	0.000105 J	0.00011 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.0000898 JT	0.000348 JT	W031	0.000219	0.000219 J	0.000335 J	0.0000898 JT	0.000348 JT	W031	0.000219	0.000219 J	0.000335 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000188 J	0.000459 J	W031	0.000324	0.000324 J	0.000445 J	0.000188 J	0.000459 J	W031	0.000324	0.000324 J	0.000445 J
Pesticides																	
Aldrin	XAD Column - dissolved	μg/L	2	0	0	 0.0000012 I	 0.0000012 I			 0.0000012 I	 0.0000012 X	0.00000215 U	0.00000283 U	W031	0.00000125	0.00000125 U	0.0000014 U
Aldrin Aldrin	XAD Filter - particulate	μg/L	2 2	1	50 50	0.0000012 J 0.0000012 J	0.0000012 J	W031 W031	0.0000012 0.0000012	0.0000012 J 0.0000012 J	0.0000012 J 0.0000012 J	0.000000882 U 0.0000012 J	0.0000012 J 0.00000215 U	W031 W031	0.000000821 0.00000114	0.000000821 J	0.00000116 J 0.00000119 J
Aldrin Dieldrin	XAD Column+Filter - total XAD Column - dissolved	μg/L μg/L	2	2	100	0.000012 J	0.0000012 J 0.000119	W031 W031	0.000012	0.000012 J	0.000012 J	0.00012 J	0.0000215 U	W031 W031	0.0000114	0.00000114 J 0.000118	0.0000119 J
Dieldrin	XAD Filter - particulate	μg/L μg/L	2	2	100	0.000117 0.0000108 J	0.000119 0.0000192 J	W031	0.000118	0.000118 0.000015 J	0.000119 0.0000188 J	0.000117 0.0000108 J	0.000119 0.0000192 J	W031	0.000118	0.000118 0.000015 J	0.000119 0.0000188 J
Dieldrin	XAD Column+Filter - total	μg/L μg/L	2	2	100	0.000133 J	0.000132 J	W031	0.00013	0.000133 J	0.000136 J	0.00013 J	0.000132 J	W031	0.00013	0.00013 J	0.000136 J
Total chlordanes	XAD Column - dissolved	μg/L	2	2	100	0.0000422 JT	0.0000441 JT	W031	0.0000432	0.0000432 J	0.000044 J	0.0000422 JT	0.0000441 JT	W031	0.0000432	0.0000432 J	0.000044 J
Total chlordanes	XAD Filter - particulate	μg/L	2	2	100	0.0000174 JT	0.0000393 JT	W031	0.0000284	0.0000284 J	0.0000382 J	0.0000174 JT	0.0000393 JT	W031	0.0000284	0.0000284 J	0.0000382 J
Total chlordanes	XAD Column+Filter - total	μg/L	2	2	100	0.0000596 J	0.0000834 J	W031	0.0000715	0.0000715 J	0.0000822 J	0.0000596 J	0.0000834 J	W031	0.0000715	0.0000715 J	0.0000822 J
DDx	XAD Column - dissolved	μg/L	2	2	100	0.000264 JT	0.000287 JT	W031	0.000276	0.000276 J	0.000286 J	0.000264 JT	0.000287 JT	W031	0.000276	0.000276 J	0.000286 J
DDx	XAD Filter - particulate	μg/L	2	2	100	0.00026 JT	0.00057 JT	W031	0.000415	0.000415 J	0.000555 J	0.00026 JT	0.00057 JT	W031	0.000415	0.000415 J	0.000555 J
DDx PAHs	XAD Column+Filter - total	μg/L	2	2	100	0.000524 J	0.000857 J	W031	0.000691	0.000691 J	0.00084 J	0.000524 J	0.000857 J	W031	0.000691	0.000691 J	0.00084 J
Total PAHs	Peristaltic - total	μg/L	2	2	100	0.058 JT	7.4 T	W031	3.73	3.73 J	7.03 J	0.058 JT	7.4 T	W031	3.73	3.73 J	7.03 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.35 U	0.73 U	W031	0.27	0.27 U	0.356 U

Table 5.4-7d. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (West Channel Single-Point Locations).

Table 5.4-7d. Sulfilliary Statistics to	i indicator Contaminants in Surf	acc water,	Ingii-1 low Event	is (West Chai	ilici Siligic-i o	int Locations).		Detected Conce	ntrations				Dete	cted and Not Detected	d Concentrations		
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
RM 07<08																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	6	6	100	0.23 J	0.341 J	W034	0.276	0.27 J	0.327 J	0.23 J	0.341 J	W034	0.276	0.27 J	0.327 J
Arsenic	Peristaltic - particulate	μg/L	6	6	100	0.04 J	0.286 J	W034	0.111	0.076 J	0.245 J	0.04 J	0.286 J	W034	0.111	0.076 J	0.245 J
Arsenic	Peristaltic - total	μg/L	6	6	100	0.32 J	0.627 J	W034	0.387	0.345 J	0.56 J	0.32 J	0.627 J	W034	0.387	0.345 J	0.56 J
Chromium	Peristaltic - dissolved	μg/L	6	4	67	0.43	0.64	W034	0.5	0.465	0.619	0.26 U	0.64	W034	0.392	0.43	0.605
Chromium	Peristaltic - particulate	μg/L	6	6	100	0.24	1.06	W033	0.644	0.573	1.04	0.24	1.06	W033	0.644	0.573	1.04
Chromium	Peristaltic - total	μg/L	6	6	100	0.88	1.08	W033	0.978	0.96	1.08	0.88	1.08	W033	0.978	0.96	1.08
Copper	Peristaltic - dissolved	μg/L	6	6	100	0.62	1.02	W034	0.87	0.88	1.01	0.62	1.02	W034	0.87	0.88	1.01
Copper	Peristaltic - particulate	μg/L	6	6	100	0.6	1.43	W033	0.963	0.84	1.39	0.6	1.43	W033	0.963	0.84	1.39
Copper	Peristaltic - total	μg/L	6	6 0	100	1.62	2.14	W033	1.83	1.75	2.12	1.62	2.14	W033	1.83	1.75	2.12
Zinc	Peristaltic - dissolved	μg/L	6	•	0	2.5				4.00	4.45	1.5 U	2.5 U	W034	0.992	0.975 U	1.21 U
Zinc	Peristaltic - particulate	μg/L	6	6	100	3.5	4.5	W033	4.04	4.08	4.45	3.5	4.5	W033	4.04	4.08	4.45
Zinc	Peristaltic - total	μg/L	6	6	100	3.5	4.5	W033	4.04	4.08	4.45	3.5	4.5	W033	4.04	4.08	4.45
Butyltins	Devietelaie testel	/1		0	0							0.0006 11	0.0006 11	W022, W024	0.0002	0.0002.11	0.0002.11
Tributyltin ion	Peristaltic - total	μg/L	6	U	U							0.0006 U	0.0006 U	W033; W034	0.0003	0.0003 U	0.0003 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	4	4	100	0.0000785 JT	0.000109 JT	W034	0.0000895	0.0000853 J	0.000106 J	0.0000785 JT	0.000109 JT	W034	0.0000895	0.0000853 J	0.000106 J
Total PCBs	XAD Filter - particulate	μg/L	4	4	100	0.0000906 JT	0.000122 JT	W033	0.000102	0.0000978 J	0.000119 J	0.0000906 JT	0.000122 JT	W033	0.000102	0.0000978 J	0.000119 J
Total PCBs	XAD Column+Filter - total	μg/L	4	4	100	0.000172 J	0.000204 J	W033	0.000192	0.000195 J	0.000203 J	0.000172 J	0.000204 J	W033	0.000192	0.000195 J	0.000203 J
PCDD/Fs Homologs																	
Total PCDD/Fs	XAD Column - dissolved	μg/L	2	2	100	0.00000179 T	0.00000533 T	W033	0.00000356	0.00000356	0.00000515	0.00000179 T	0.00000533 T	W033	0.00000356	0.00000356	0.00000515
Total PCDD/Fs	XAD Filter - particulate	μg/L	2	2	100	0.0000249 JT	0.0000293 T	W033	0.0000271	0.0000271 J	0.0000291 J	0.0000249 JT	0.0000293 T	W033	0.0000271	0.0000271 J	0.0000291 J
Total PCDD/Fs PCDD/Fs	XAD Column+Filter - total	μg/L	2	2	100	0.0000267 Ј	0.0000346	W033	0.0000307	0.0000307 J	0.0000342 J	0.0000267 Ј	0.0000346	W033	0.0000307	0.0000307 J	0.0000342 J
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	2	2	100	0.00000000274 T	0.0000000143 JT	W033	0.00000000852	0.00000000852 J	0.0000000137 J	0.00000000274 T	0.0000000143 JT	W033	0.00000000852	0.00000000852 J	0.0000000137 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L	2	2	100	0.0000000607 JT	0.0000000813 JT	W033	0.000000071	0.000000071 J	0.0000000803 J	0.0000000607 JT	0.0000000813 JT	W033	0.000000071	0.000000071 J	0.0000000803 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	2	2	100	0.000000075 J	0.000000084 J	W033	0.0000000795	0.0000000795 J	0.0000000836 J	0.000000075 J	0.000000084 J	W033	0.0000000795	0.0000000795 J	0.0000000836 J
Pesticides																	
Aldrin	XAD Column - dissolved	μg/L	4	2	50	0.00000216 J	0.00000259 J	W033	0.00000238	0.00000238 J	0.00000257 J	0.00000182 U	0.00000259 J	W033	0.00000172	0.0000017 J	0.00000253 J
Aldrin	XAD Filter - particulate	μg/L	4	2	50	0.000000514 J	0.00000148 J	W033	0.000000997	0.000000997 J	0.00000143 J	0.000000514 J	0.00000148 J	W033	0.000000776	0.00000059 J	0.00000136 J
Aldrin	XAD Column+Filter - total	μg/L	4	3	75	0.000000514 J	0.00000407 J	W033	0.00000225	0.00000216 J	0.00000388 J	0.000000514 J	0.00000407 J	W033	0.00000199	0.0000017 J	0.00000378 J
Dieldrin	XAD Column - dissolved	μg/L	4	4	100	0.000105	0.000158	W033	0.000133	0.000134	0.000157	0.000105	0.000158	W033	0.000133	0.000134	0.000157
Dieldrin	XAD Filter - particulate	μg/L	4	4	100	0.00000867 J	0.0000324	W033	0.00002	0.0000194 J	0.0000319	0.00000867 J	0.0000324	W033	0.00002	0.0000194 J	0.0000319
Dieldrin	XAD Column+Filter - total	μg/L	4	4	100	0.000115 J	0.00019	W033	0.000152	0.000152 J	0.000189	0.000115 J	0.00019	W033	0.000152	0.000152 J	0.000189
Total chlordanes	XAD Column - dissolved	μg/L	4	4	100	0.0000351 JT	0.0000495 JT	W033	0.000042	0.0000417 J	0.0000489 J	0.0000351 JT	0.0000495 JT	W033	0.000042	0.0000417 J	0.0000489 J
Total chlordanes	XAD Filter - particulate	μg/L	4	4	100	0.0000115 JT	0.0000364 JT	W033	0.0000236	0.0000233 J	0.0000359 J	0.0000115 JT	0.0000364 JT	W033	0.0000236	0.0000233 J	0.0000359 J
Total chlordanes	XAD Column+Filter - total	μg/L	4	4	100	0.0000466 J	0.0000859 J	W033	0.0000656	0.000065 J	0.0000848 J	0.0000466 J	0.0000859 J	W033	0.0000656	0.000065 J	0.0000848 J
DDx	XAD Column - dissolved	μg/L	4	4	100	0.000119 JT	0.000208 JT	W033	0.000162	0.000161 J	0.000204 J	0.000119 JT	0.000208 JT	W033	0.000162	0.000161 J	0.000204 J
DDx	XAD Filter - particulate	μg/L	4	4	100	0.000155 JT	0.000416 JT	W033	0.000272	0.000258 J	0.000406 J	0.000155 JT	0.000416 JT	W033	0.000272	0.000258 J	0.000406 J
DDx PAHs	XAD Column+Filter - total	μg/L	4	4	100	0.000289 Ј	0.000624 J	W033	0.000434	0.000412 J	0.00061 J	0.000289 Ј	0.000624 J	W033	0.000434	0.000412 J	0.00061 J
Total PAHs	XAD Column - dissolved	μg/L	2	2	100	0.00606 JT	0.00608 JT	W033	0.00607	0.00607 J	0.00608 J	0.00606 JT	0.00608 JT	W033	0.00607	0.00607 J	0.00608 J
Total PAHs	XAD Filter - particulate	μg/L	2	2	100	0.00542 JT	0.0066 JT	W033	0.00601	0.00601 J	0.00654 J	0.00542 JT	0.0066 JT	W033	0.00601	0.00601 J	0.00654 J
Total PAHs	Peristaltic - total	μg/L	6	1	17	0.0047 JT	0.0047 JT	W033	0.0047	0.0047 JT	0.0047 JT	0.0047 JT	0.013 UT	W033; W034	0.0062	0.0065 U	0.0065 U
Total PAHs	XAD Column+Filter - total	μg/L	2	2	100	0.0115 J	0.0127 J	W033	0.0121	0.0121 J	0.0126 J	0.0115 J	0.0127 J	W033	0.0121	0.0121 J	0.0126 J
Phthalates Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	6	1	17	0.98 J	0.98 Ј	W033	0.98	0.98 Ј	0.98 J	0.4 U	0.98 J	W033	0.419	0.323 U	0.848 J
RM 08<09 Metals																	
Arsenic	Peristaltic - dissolved	$\mu g/L$	2	2	100	0.201 J	0.208 J	W036	0.205	0.205 J	0.208 J	0.201 J	0.208 J	W036	0.205	0.205 J	0.208 J
Arsenic	Peristaltic - particulate	$\mu g/L$	2	2	100	0.158 J	0.176 J	W036	0.167	0.167 J	0.175 J	0.158 J	0.176 J	W036	0.167	0.167 J	0.175 J
Arsenic	Peristaltic - total	$\mu g/L$	2	2	100	0.366 JT	0.377 J	W036	0.372	0.372 J	0.376 J	0.366 JT	0.377 J	W036	0.372	0.372 J	0.376 J
Chromium	Peristaltic - dissolved	$\mu g/L$	2	0	0							0.31 U	0.39 U	W036	0.175	0.175 U	0.193 U
Chromium	Peristaltic - particulate	$\mu g/L$	2	2	100	1.62	1.7	W036	1.66	1.66	1.7	1.62	1.7	W036	1.66	1.66	1.7
Chromium	Peristaltic - total	$\mu g/L$	2	2	100	1.62	1.7 T	W036	1.66	1.66	1.7	1.62	1.7 T	W036	1.66	1.66	1.7
Copper	Peristaltic - dissolved	$\mu g/L$	2	2	100	0.65	0.68	W036	0.665	0.665	0.679	0.65	0.68	W036	0.665	0.665	0.679
Copper	Peristaltic - particulate	μg/L	2	2	100	2.04	2.06	W036	2.05	2.05	2.06	2.04	2.06	W036	2.05	2.05	2.06
Copper	Peristaltic - total	$\mu g/L$	2	2	100	2.71	2.72 T	W036	2.72	2.72	2.72	2.71	2.72 T	W036	2.72	2.72	2.72
Zinc	Peristaltic - dissolved	$\mu g/L$	2	0	0							1.5 U	1.9 U	W036	0.85	0.85 U	0.94 U
Zinc	Peristaltic - particulate	μg/L	2	2	100	5.5	5.55	W036	5.53	5.53	5.55	5.5	5.55	W036	5.53	5.53	5.55
Zinc	Peristaltic - total	$\mu g/L$	2	2	100	5.5	5.55 T	W036	5.53	5.53	5.55	5.5	5.55 T	W036	5.53	5.53	5.55
Butyltins Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W036	0.0003	0.0003 U	0.0003 U
i i i outy tuir 1011	i cristantic - total	μg/∟	∠	U	U							0.0000 0	0.0000	** 030	0.0003	0.0005 0	0.0005

Table 5.4-7d. Summary Statistics for Indicator Contaminants in Surface Water, High-Flow Events (West Channel Single-Point Locations).

								Detected Concen	trations				Dete	cted and Not Detected	Concentrations		
Analyte	Method	Units	# Analyzed	# Dotagted	% Dotastad	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
PCBs ^c			# Anaryzeu	# Detected	70 Detecteu		Mammin			Median	rerecinie	(Tuli DL)	(run DL)		()	(Hull DL)	(IRIN DE)
Total PCBs	XAD Column - dissolved	/1	2	2	100	0.000116 JT	0.000137 JT	W036	0.000127	0.000127 J	0.000136 J	0.000116 JT	0.000137 JT	W036	0.000127	0.000127 J	0.000136 J
Total PCBs Total PCBs		μg/L	2	2		0.000116 JT 0.000165 JT	0.000137 JT 0.000223 JT	W036 W036		0.000127 J 0.000194 J			0.000137 JT 0.000223 JT	W036 W036	0.000127		0.000136 J 0.00022 J
	XAD Filter - particulate	μg/L	2	2	100				0.000194		0.00022 J	0.000165 JT				0.000194 J	
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000302 J	0.000339 J	W036	0.000321	0.000321 J	0.000337 J	0.000302 J	0.000339 Ј	W036	0.000321	0.000321 J	0.000337 J
Pesticides	8	~	•	^								0.00004.**	0.00000 **	*******	0.000450	0.000450.**	0.000.404.44
Aldrin	Peristaltic - total	μg/L	2	0	0							0.00084 U	0.00099 U	W036	0.000458	0.000458 U	0.000491 U
Dieldrin	Peristaltic - total	μg/L	2	1	50	0.0012 NJ	0.0012 NJ	W036	0.0012	0.0012 NJ	0.0012 NJ	0.0004 U	0.0012 NJ	W036	0.0007	0.0007 J	0.00115 J
Total chlordanes	Peristaltic - total	μg/L	2	0	0							0.00073 UT	0.00073 UT	W036	0.000365	0.000365 U	0.000365 U
DDx	Peristaltic - total	μg/L	2	2	100	0.0003 JT	0.00049 JT	W036	0.000395	0.000395 J	0.000481 J	0.0003 JT	0.00049 JT	W036	0.000395	0.000395 J	0.000481 J
PAHs																	
Total PAHs	Peristaltic - total	$\mu g/L$	2	2	100	0.018 JT	0.27 JT	W036	0.144	0.144 J	0.257 J	0.018 JT	0.27 JT	W036	0.144	0.144 J	0.257 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	1	50	2.8 J	2.8 J	W036	2.8	2.8 J	2.8 J	0.56 U	2.8 J	W036	1.54	1.54 J	2.67 J
RM 09<10																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.211 J	0.224 J	W037	0.218	0.218 J	0.223 J	0.211 J	0.224 J	W037	0.218	0.218 J	0.223 J
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.094 J	0.145 J	W037	0.12	0.12 J	0.142 J	0.094 J	0.145 J	W037	0.12	0.12 J	0.142 J
Arsenic	Peristaltic - total	μg/L	2	2	100	0.318 J	0.356 J	W037	0.337	0.337 J	0.354 J	0.318 J	0.356 J	W037	0.337	0.337 J	0.354 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.32 U	0.36 U	W037	0.17	0.17 U	0.179 U
Chromium	Peristaltic - particulate	μg/L	2	2	100	1.08	1.17	W037	1.13	1.13	1.17	1.08	1.17	W037	1.13	1.13	1.17
Chromium	Peristaltic - total	μg/L	2	2	100	1.08	1.17	W037	1.13	1.13	1.17	1.08	1.17	W037	1.13	1.13	1.17
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.55	0.73	W037	0.64	0.64	0.721	0.55	0.73	W037	0.64	0.64	0.721
Copper	Peristaltic - particulate	μg/L	2	2	100	1.35	1.41	W037	1.38	1.38	1.41	1.35	1.41	W037	1.38	1.38	1.41
Copper	Peristaltic - total	μg/L	2	2	100	1.96	2.08	W037	2.02	2.02	2.07	1.96	2.08	W037	2.02	2.02	2.07
Zinc	Peristaltic - dissolved	μg/L	2	0	0							1.3 U	3 U	W037	1.08	1.08 U	1.46 U
Zinc	Peristaltic - particulate	μg/L	2	2	100	4.4	5.3	W037	4.85	4.85	5.26	4.4	5.3	W037	4.85	4.85	5.26
Zinc	Peristaltic - total	μg/L	2	2	100	4.4	5.3	W037	4.85	4.85	5.26	4.4	5.3	W037	4.85	4.85	5.26
Butyltins		1.0															
Tributyltin ion	Peristaltic - total	μg/L	2.	0	0							0.0006 U	0.0006 U	W037	0.0003	0.0003 U	0.0003 U
PCBs ^c	Torristante total	F6 2	-	· ·	Ü							0.0000 C	0.0000 0	11 057	0.0002	0.0005	0.0005
Total PCBs	VAD Coloure discolor d	/1	2	2	100	0.000146 JT	0.000154 JT	W037	0.00015	0.00015 J	0.000154 J	0.000146 JT	0.000154 JT	W037	0.00015	0.00015 J	0.000154 J
	XAD Column - dissolved	μg/L	2	2			0.000134 JT 0.000225 JT	W037 W037			0.000134 J 0.000223 J			W037 W037			0.000134 J 0.000223 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.000186 JT			0.000206	0.000206 J		0.000186 JT	0.000225 JT		0.000206	0.000206 J	
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.00034 Ј	0.000371 J	W037	0.000356	0.000356 J	0.000369 J	0.00034 J	0.000371 J	W037	0.000356	0.000356 J	0.000369 J
Pesticides	8	~	•	^								0.00050 **	0.00000 **	******	0.000000	0.000000 **	0.000.405.44
Aldrin	Peristaltic - total	μg/L	2	0	0							0.00069 U	0.00088 U	W037	0.000393	0.000393 U	0.000435 U
Dieldrin	Peristaltic - total	μg/L	2	0	0							0.0004 U	0.0004 U	W037	0.0002	0.0002 U	0.0002 U
Total chlordanes	Peristaltic - total	μg/L	2	0	0							0.00073 UT	0.00073 UT	W037	0.000365	0.000365 U	0.000365 U
DDx	Peristaltic - total	$\mu g/L$	2	2	100	0.00074 NJT	0.00205 NJT	W037	0.0014	0.0014 J	0.00198 J	0.00074 NJT	0.00205 NJT	W037	0.0014	0.0014 J	0.00198 J
PAHs																	
Total PAHs	Peristaltic - total	μg/L	2	0	0							0.013 UT	0.013 UT	W037	0.0065	0.0065 U	0.0065 U
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.41 U	0.78 U	W037	0.298	0.298 U	0.381 U

 $^{\rm c}$ Total PCBs are total PCB congeners whenever available and total Aroclors if not.

-- data not available.

DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan RM - River Mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalent

XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile. Such median or 95th percentile is the exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-8. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (Transect Locations).

					_			Detected Concent	trations				D	etected and Not Detecte	d Concentrations	s	
											95 th					37.11	95th
Analyte	Method	Units	# 41 3	# Detected '	0/ D-44J	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	Percentile (half DL) ^b
Metals	Method	Cinto	# Allalyzeu	# Detected	76 Detecteu	William	Maximum	Eccution (s)	171Cuii	Wieulan	1 er centine	(Iuii DL)	(Iuli DL)	Location(s)	(Hull DL)	(nan DL)	(Hall DL)
Arsenic	Peristaltic - dissolved	μg/L	23	20	87	0.19	0.6	W025M	0.419	0.43	0.581	0.19	0.6	W025M	0.39	0.402	0.574
Arsenic	Peristaltic - particulate	μg/L	23	23	100	0.01	0.51	W005	0.11	0.055	0.457	0.01	0.51	W005	0.11	0.055	0.457
Arsenic	Peristaltic - total	μg/L	23	23	100	0.349 T	0.64 T	W025E	0.474	0.46	0.605	0.349 T	0.64 T	W025E	0.474	0.46	0.605
Chromium	Peristaltic - dissolved	μg/L	23	8	35	0.12 J	0.29	W011	0.215	0.22 J	0.28	0.12 J	0.29	W011	0.15	0.125 U	0.26
Chromium	Peristaltic - particulate ^d	μg/L	23	22	96	0	1.09	W005	0.352	0.363	0.548	0	1.09	W005	0.343	0.355	0.546
Chromium	Peristaltic - total	μg/L μg/L	23	21	91	0.29	1.09	W005	0.436	0.38	0.61	0.29	1.09	W005	0.415	0.38	0.604
Copper	Peristaltic - dissolved	μg/L	23	23	100	0.45	0.83 J	W011	0.678	0.68	0.82	0.45	0.83 J	W011	0.678	0.68	0.82
Copper	Peristaltic - particulate	μg/L	23	23	100	0.14	0.78	W005	0.373	0.35	0.617 J	0.14	0.78	W005	0.373	0.35	0.617 J
Copper	Peristaltic - total	μg/L	23	23	100	0.68	1.55	W005	1.05	1.06	1.41 J	0.68	1.55	W005	1.05	1.06	1.41 J
Zinc	Peristaltic - dissolved	μg/L	23	9	39	1.4	2.2	W023	1.75	1.75	2.19	1.4	7.4 U	W025W	1.48	1.35 U	2.2
Zinc	Peristaltic - particulate	μg/L	23	23	100	0.14	6.1	W023W	2.38	2.6	4.47	0.14	6.1	W023W	2.38	2.6	4.47
Zinc	Peristaltic - total	μg/L	23	23	100	2.1	6.1	W023W	3.07	2.83	4.47	2.1	6.1	W023W	3.07	2.83	4.47
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	23	0	0							0.0006 UJ	0.0071 U	W005; W011; W023	0.000744	0.0003 U	0.00355 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	23	23	100	0.0000424 JT	0.000472 JT	W005	0.000283	0.00028 JT	0.000465 J	0.0000424 JT	0.000472 JT	W005	0.000283	0.00028 JT	0.000465 J
Total PCBs	XAD Filter - particulate	μg/L	23	23	100	0.0000135 JT	0.000663 JT	W023E	0.000205	0.000171 JT	0.000561 J	0.0000135 JT	0.000663 JT	W023E	0.000205	0.000171 JT	0.000561 J
Total PCBs	Peristaltic - total	μg/L	3	0	0							0.0025 UT	0.0026 UT	W005	0.00127	0.00125 UT	0.0013 U
Total PCBs	XAD Column+Filter - total	μg/L	23	23	100	0.000159 J	0.00095 J	W005	0.000488	0.000432 J	0.00095 J	0.000159 J	0.00095 J	W005	0.000488	0.000432 J	0.00095 J
PCDD/Fs Homologs																	
Total PCDD/Fs	XAD Column - dissolved	μg/L	23	23	100	0.00000049 T	0.00000583 JT	W023W	0.00000224	0.00000186 JT	0.00000403 J	0.00000049 T	0.00000583 JT	W023W	0.00000224	0.00000186 JT	0.00000403 J
Total PCDD/Fs	XAD Filter - particulate	μg/L	23	23	100	0.00000217 JT	0.0000507 T	W005	0.0000214	0.0000228 T	0.0000491	0.00000217 JT	0.0000507 T	W005	0.0000214	0.0000228 T	0.0000491
Total PCDD/Fs	XAD Column+Filter - total	μg/L	23	23	100	0.0000059 J	0.0000516 J	W005	0.0000236	0.0000239	0.0000513	0.0000059 J	0.0000516 J	W005	0.0000236	0.0000239	0.0000513
PCDD/Fs		~						*****						*****			
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	23	23	100	0.000000000558 T	0.0000000214 JT	W025M	0.00000000754	0.0000000051 JT	0.000000017 J	0.000000000558 T	0.0000000214 JT	W025M	0.00000000754	0.0000000051 JT	0.000000017 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L	23	23	100	0.00000000419 JT	0.000000317 JT	W005	0.0000000725	0.0000000589 JT	0.00000019 J	0.00000000419 JT	0.000000317 JT	W005	0.0000000725	0.0000000589 JT	0.00000019 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	23	23	100	0.0000000181 J	0.000000327 J	W005	0.00000008	0.0000000643 J	0.000000193 J	0.0000000181 J	0.000000327 J	W005	0.00000008	0.0000000643 J	0.000000193 J
Pesticides Aldrin	XAD Column - dissolved	~/T	23	20	87	0.000000646 J	0.00000446 J	W005	0.00000227	0.00000219 J	0.00000411 J	0.000000341 UJ	0.00000446 J	W005	0.00000203	0.00000198 J	0.00000401 J
Aldrin	XAD Filter - particulate	μg/L μg/L	23	16	70	0.00000040 J	0.00000440 J 0.00000224 J	W003	0.00000227	0.00000219 J 0.00000055 J	0.00000411 J	0.000000341 CJ 0.000000107 J	0.00000446 J 0.00000526 U	W003 W025E	0.00000203	0.00000198 J 0.000000451 J	0.00000401 J
Aldrin	XAD Column+Filter - total	μg/L μg/L	23	21	91	0.000000107 J	0.00000224 J	W005	0.00000033	0.00000033 J	0.00000218 J	0.000000107 J	0.00000520 C 0.00000662 J	W025E	0.000000757	0.000000431 J	0.00000223 J
Dieldrin	XAD Column - dissolved	μg/L μg/L	23	23	100	0.0000143	0.00000444	W011	0.0000375	0.0000392	0.0000442	0.0000143	0.0000444	W011	0.0000375	0.0000392	0.0000442
Dieldrin	XAD Filter - particulate	μg/L	23	13	57	0.00000113 0.000000989 J	0.00000526 J	W005	0.00000265	0.00000243 J	0.00000514 J	0.00000113 0.000000192 UJ	0.00000526 J	W005	0.00000193	0.00000187 U	0.00000112 0.0000049 J
Dieldrin	XAD Column+Filter - total	μg/L	23	23	100	0.0000167 J	0.0000487 J	W005	0.000039	0.0000405 J	0.0000469 J	0.0000167 J	0.0000487 J	W005	0.000039	0.0000405 J	0.0000469 J
Total chlordanes	XAD Column - dissolved	μg/L	23	23	100	0.00000787 JT	0.0000401 JT	W005	0.0000253	0.0000259 JT	0.0000335 J	0.00000787 JT	0.0000401 JT	W005	0.0000253	0.0000259 JT	0.0000335 J
Total chlordanes	XAD Filter - particulate	μg/L	23	20	87	0.000000101 JT	0.0000187 JT	W005	0.0000075	0.00000633 J	0.0000179 J	0.000000101 JT	0.0000187 JT	W005	0.00000715	0.00000568 JT	0.0000174 J
Total chlordanes	XAD Column+Filter - total	μg/L	23	23	100	0.0000134 J	0.0000588 J	W005	0.0000318	0.0000307 J	0.0000475 J	0.0000134 J	0.0000588 J	W005	0.0000318	0.0000307 J	0.0000475 J
DDx	XAD Column - dissolved	μg/L	23	23	100	0.0000124 JT	0.000311 JT	W027	0.000142	0.0000949 T	0.000308 J	0.0000124 JT	0.000311 JT	W027	0.000142	0.0000949 T	0.000308 J
DDx	XAD Filter - particulate	μg/L	23	23	100	0.0000104 JT	0.000274 JT	W005	0.0000758	0.0000388 JT	0.000256 J	0.0000104 JT	0.000274 JT	W005	0.0000758	0.0000388 JT	0.000256 J
DDx	XAD Column+Filter - total	μg/L	23	23	100	0.0000428 J	0.000546 J	W005	0.000218	0.000176 J	0.000496 J	0.0000428 J	0.000546 J	W005	0.000218	0.000176 J	0.000496 J
PAHs																	
Total PAHs	XAD Column - dissolved	μg/L	23	23	100	0.00346 JT	0.0655 JT	W023	0.0235	0.0274 JT	0.0482 J	0.00346 JT	0.0655 JT	W023	0.0235	0.0274 JT	0.0482 J
Total PAHs	XAD Filter - particulate	μg/L	23	23	100	0.000482 T	0.0359 JT	W005	0.00819	0.0045 JT	0.0303 J	0.000482 T	0.0359 JT	W005	0.00819	0.0045 JT	0.0303 J
Total PAHs	Peristaltic - total	μg/L	23	14 23	61	0.01 JT	0.046 JT	W027	0.024	0.021 J	0.0435 J	0.0074 UT	0.046 JT	W027	0.0173	0.015 JT	0.0416 J
Total PAHs Phthalates	XAD Column+Filter - total	μg/L	23	23	100	0.00397 J	0.0661 J	W005	0.0317	0.035 J	0.0654 J	0.00397 J	0.0661 J	W005	0.0317	0.035 J	0.0654 J
Bis(2-ethylhexyl) phthalate	XAD Column - dissolved	μg/L	9	3	33	0.00361 J	0.0171	W023	0.00901	0.00631 J	0.016 J	0.00312 U	0.0171	W023	0.00439	0.00247 U	0.0128 J
Bis(2-ethylhexyl) phthalate	XAD Filter - particulate		9	3	33	0.00361 J 0.00476 J	0.0171 0.00589 J	W023 W023	0.00538	0.00531 J 0.00548 J	0.00585 J	0.00312 U	0.0171 0.00647 U	W023 W023	0.00439	0.00247 U 0.0032 U	0.0128 J 0.00573 J
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L μg/L	23	4	33 17	0.00470 3	1.5	W025E	1.18	1.25	1.47	0.00331 U 0.12 U	1.5	W025 W025E	0.358	0.0032 U 0.17 U	1.29
Bis(2-ethylhexyl) phthalate	XAD Column+Filter - total	μg/L μg/L	9	3	33	0.00909 J	0.023 J	W023E	0.0144	0.0111 J	0.0218 J	0.00432 U	0.023 J	W023E	0.00671	0.0032 U	0.0182 J
230/2 etrijinenji) primutate	11.1D Column 1 mor - total	MEL				0.00707 3	0.023 J	11.023	0.0177	0.0111 J	0.0210 3	0.00432 0	0.023 3	11023	0.00071	0.0032 0	0.0102 3

-- data not available.

DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalent

PAH - polycyclic aromatic hydrocarbon XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-9a. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (Single-Point Locations).

					-			Detected Con	centrations					Detected and Not Detected Con	centrations		05/3
Analyte	Method	Units	# Analyzed #	Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	65	65	100	0.249	0.64	W001	0.384	0.372	0.505	0.249	0.64	W001	0.384	0.372	0.505
Arsenic	Peristaltic - particulate	μg/L	65	65	100	0.02	0.175	W022	0.0679	0.065	0.104	0.02	0.175	W022	0.0679	0.065	0.104
Arsenic	Peristaltic - total	μg/L	65	65	100	0.328 T	0.745 T	W001	0.451	0.435	0.624	0.328 T	0.745 T	W001	0.451	0.435	0.624
Chromium	Peristaltic - dissolved	μg/L	65	36	55	0.1 J	0.33	W004	0.171	0.16 J	0.283	0.1 J	0.33	W004	0.135	0.12 J	0.248
Chromium	Peristaltic - particulate ^d	μg/L	65	48	74	0 Ј	0.625	W001	0.243	0.195 J	0.57	0 1	0.625	W001	0.231	0.19 J	0.548
Chromium	Peristaltic - total	μg/L	65	45	69	0.2	0.91	W004	0.38	0.33	0.62	0.2	0.91	W004	0.323	0.3	0.598
Copper	Peristaltic - dissolved	μg/L	65	63	97	0.37	1.64 J	W022	0.711	0.66	1.1	0.37	1.64 J	W022	0.697	0.65	1.09
Copper	Peristaltic - particulate ^d	μg/L	65	65	100	0 J	1.14	W004	0.451	0.4	0.972	0 J	1.14	W004	0.451	0.4	0.972
Copper	Peristaltic - total	μg/L	65	65	100	0.685 T	2.09	W004	1.13	1.02	1.73 J	0.685 T	2.09	W004	1.13	1.02	1.73 J
Zinc	Peristaltic - dissolved	μg/L	65	58	89	0.9 J	41.9	W022	2.82	1.8	4.7 J	0.9 J	41.9	W022	2.6	1.8 J	4.62 J
Zinc	Peristaltic - particulate ^d	μg/L	65	65	100	0	16	W022	1.39	0.9	3.36 J	0	16	W022	1.39	0.9	3.36 J
Zinc	Peristaltic - total	μg/L	65	64	98	1.65 T	57.9	W022	3.84	2.65	5.93 J	1.65 T	57.9	W022	3.8	2.6	5.88 J
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	65	6	9	0.00095 J	0.0023 J	W004	0.00127	0.0011 J	0.00203 J	0.0006 U	0.0071 U	W001; W002; W003; W004; W006; W007; W008; W009; W010; W012; W013-1; W013- 2; W014; W015; W016-1; W016-2; W017; W018; W019; W020: W021: W022	0.00151	0.0003 U	0.00355 U
PCBs ^c	VAD Column dissolved	~/ī	15	15	100	0.000127 IT	0.00242 IT	W012 1	0.000000	0.000591 IT	0.00224 1	0.000127 IT	0.00242 IT	W012 1	0.000809	0.000591 IT	0.00224 J
Total PCBs	XAD Column - dissolved	μg/L	15		100	0.000137 JT	0.00242 JT	W013-1	0.000809	0.000581 JT 0.000908 J	0.00224 J	0.000137 JT	0.00242 JT	W013-1		0.000581 JT	
Total PCBs	XAD Filter - particulate Peristaltic - total	μg/L	14 50	14	100 12	0.000201 JT	0.00956 JT	W013-1 W014	0.00187		0.00719 J 0.015 J	0.000201 JT 0.0025 UJT	0.00956 JT 0.0154 T	W013-1 W014	0.00187 0.00225	0.000908 J	0.00719 J 0.00883 J
Total PCBs Total PCBs	XAD Column+Filter - total	μg/L	15	6 15	100	0.00467 JT 0.000375 J	0.0154 T 0.012 J	W014 W013-1	0.00946 0.00256	0.0086 J 0.00169 J	0.015 J 0.00918 J	0.0025 UJ1 0.000375 J	0.0154 I 0.012 J	W014-1	0.00225	0.00125 U 0.00169 J	0.00883 J 0.00918 J
PCDD/Fs Homologs	AAD Column+Filter - total	μg/L	13	13	100	0.000373 J	0.012 J	WU13-1	0.00236	0.00169 J	0.00918 J	0.000373 J	0.012 J	W013-1	0.00236	0.00169 J	0.00918 J
Total PCDD/Fs	XAD Column - dissolved	μg/L	9	Q	100	0.000000897 JT	0.0000125 JT	W013-2	0.00000401	0.00000296 T	0.0000101 J	0.000000897 JT	0.0000125 JT	W013-2	0.00000401	0.00000296 T	0.0000101 J
Total PCDD/Fs	XAD Filter - particulate	μg/L μg/L	9	9	100	0.0000037 T	0.000125 T	W013-2 W013-1	0.0000593	0.0000474 T	0.000101 3	0.0000037 T	0.000125 T	W013-1	0.0000593	0.0000474 T	0.0001013
Total PCDD/Fs	XAD Column+Filter - total	μg/L μg/L	9	9	100	0.0000307	0.000150 1	W013-1	0.0000633	0.0000504	0.000123	0.0000203 1	0.000162	W013-1	0.0000633	0.0000504	0.000123
PCDD/Fs		r-8-															
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	9	9	100	0.00000000106 T	0.0000000382 JT	W013-2	0.0000000163	0.0000000122 JT	0.0000000363 J	0.00000000106 T	0.0000000382 JT	W013-2	0.0000000163	0.0000000122 JT	0.0000000363 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L	9	9	100	0.000000109 JT	0.00000091 JT	W013-2	0.000000327	0.000000333 JT	0.000000734 J	0.000000109 JT	0.00000091 JT	W013-2	0.000000327	0.000000333 JT	0.000000734 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	9	9	100	0.00000011 J	0.000000917 J	W013-2	0.000000343	0.000000357 J	0.000000751 J	0.00000011 J	0.000000917 J	W013-2	0.000000343	0.000000357 J	0.000000751 J
Pesticides																	
Aldrin	XAD Column - dissolved	μg/L	15	12	80	0.000000537 J	0.00000327 J	W015	0.00000123	0.00000117 J	0.00000226 J	0.000000418 UJ	0.00000327 J	W015	0.0000011	0.000000972 J	0.00000199 J
Aldrin	XAD Filter - particulate	μg/L	15	14	93	0.000000122 J	0.000013	W015	0.00000147	0.000000518 J	0.00000537 J	0.000000122 J	0.000013	W015	0.00000138	0.000000406 J	0.00000478 J
Aldrin	Peristaltic - total	μg/L	52	0	0							0.000472 UJ	0.000538 UJ	W002	0.000248	0.000245 U	0.000263 UJ
Aldrin	XAD Column+Filter - total	μg/L	15	15	100	0.00000031 J	0.0000163 J	W015	0.00000236	0.0000014 J	0.00000657 J	0.00000031 J	0.0000163 J	W015	0.00000236	0.0000014 J	0.00000657 J
Dieldrin	XAD Column - dissolved	μg/L	15	15	100	0.0000227	0.0000468	W015	0.0000342	0.0000349	0.0000449	0.0000227	0.0000468	W015	0.0000342	0.0000349	0.0000449
Dieldrin	XAD Filter - particulate	μg/L	15	12	80	0.00000024 J	0.0000157	W015	0.00000406	0.00000286 J	0.0000108 J	0.00000024 J	0.0000157	W015	0.00000344	0.00000214 J	0.0000095 J
Dieldrin	Peristaltic - total	μg/L	52	0	0		0.0000625	 W015		 0.0000274.X	 0.0000544 T	0.000472 UJ	0.000538 UJ	W002	0.000248	0.000245 U	0.000263 UJ
Dieldrin	XAD Column+Filter - total	μg/L	15	15	100	0.0000227	0.0000625	W015	0.0000374	0.0000374 J	0.0000544 J	0.0000227	0.0000625	W015	0.0000374	0.0000374 J	0.0000544 J
Total chlordanes Total chlordanes	XAD Column - dissolved	μg/L	15	15 15	100 100	0.0000126 JT 0.000000936 JT	0.0000555 JT 0.000185 JT	W015	0.0000219	0.0000206 JT 0.00000707 JT	0.0000353 J 0.0000675 J	0.0000126 JT 0.000000936 JT	0.0000555 JT	W015 W015	0.0000219 0.00002	0.0000206 JT 0.00000707 JT	0.0000353 J 0.0000675 J
Total chlordanes	XAD Filter - particulate Peristaltic - total	μg/L	15 52	13	100	0.00000936 JT 0.00212 JT	0.000183 JT 0.00212 JT	W015 W002	0.00002 0.00212	0.00000707 JT 0.00212 JT	0.00212 JT	0.00000936 J1 0.000472 UJT	0.000185 JT 0.00212 JT	W002	0.00002	0.0000707 J1 0.000245 U	0.0000673 J 0.000263 UJ
Total chlordanes	XAD Column+Filter - total	μg/L μg/L	15	15	100	0.00212 J1 0.0000173 J	0.00212 J1 0.000241 J	W002 W015	0.000419	0.000212 J1 0.0000272 J	0.00212 J1 0.000102 J	0.000472 UJ1 0.0000173 J	0.00212 J1 0.000241 J	W002 W015	0.000284	0.000243 U 0.0000272 J	0.000203 CJ 0.000102 J
DDx	XAD Column - dissolved	μg/L μg/L	15	15	100	0.0000173 J 0.0000254 JT	0.000241 J 0.00346 T	W015	0.000819	0.0000272 J 0.0000778 JT	0.00312	0.0000173 J 0.0000254 JT	0.00346 T	W015	0.0000419	0.0000272 J 0.0000778 JT	0.00312
DDx	XAD Filter - particulate	μg/L μg/L	15	15	100	0.0000254 JT 0.00000763 JT	0.00679 T	W016-1	0.000819	0.0000778 JT 0.0000514 JT	0.00498	0.0000254 JT 0.00000763 JT	0.00540 T	W016-1	0.000319	0.0000778 JT 0.0000514 JT	0.00312
DDx	Peristaltic - total	μg/L μg/L	52	4	8	0.000693 JT	0.0187 NJT	W001	0.00535	0.000995	0.0161 J	0.000472 UJT	0.0187 NJT		0.00064	0.000249 UJ	0.000759 J
DDx	XAD Column+Filter - total	μg/L μg/L	15	15	100	0.0000492 J	0.00976	W016-1	0.00209	0.000103 J	0.0083	0.000472 C31	0.00976	W016-1	0.00209	0.000103 J	0.0083
PAHs	3	1.8-		-							*****						*****
Total PAHs	XAD Column - dissolved	μg/L	15	15	100	0.00748 JT	0.169 JT	W015	0.0395	0.0219 JT	0.0978 J	0.00748 JT	0.169 JT	W015	0.0395	0.0219 JT	0.0978 J
Total PAHs	XAD Filter - particulate	μg/L	15	15	100	0.000916 T	0.0619 T	W015	0.0157	0.00686 T	0.0452	0.000916 T	0.0619 T	W015	0.0157	0.00686 T	0.0452
Total PAHs	Peristaltic - total	μg/L	65	49	75	0.0026 JT	2.46 JT	W012	0.106	0.0177 JT	0.205 J	0.0026 JT	2.46 JT	W012	0.0812	0.0123 JT	0.0793 J
Total PAHs	XAD Column+Filter - total	μg/L	15	15	100	0.0125 J	0.231 J	W015	0.0552	0.0275 J	0.139 J	0.0125 J	0.231 J	W015	0.0552	0.0275 J	0.139 J

Table 5.4-9a. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (Single-Point Locations).

								Detected Conce	entrations					Detected and Not Detected Con	centrations		
																	95th
			#					Maximum			95 th	Minimum	Maximum		Mean	Median	Percentile
Analyte	Method	Units	Analyzed #	Detected 9	% Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Maximum Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Phthalates																	
Bis(2-ethylhexyl) phthalate	XAD Column - dissolved	μg/L	15	5	33	0.00351 J	0.0198	W013-1	0.00874	0.00435 J	0.0183	0.00338 U	0.0198	W013-1	0.00433	0.00272 U	0.0144
Bis(2-ethylhexyl) phthalate	XAD Filter - particulate	μg/L	15	5	33	0.00424 J	0.033	W015	0.0106	0.0052 J	0.0276 J	0.00257 U	0.033	W015	0.0057	0.00416 U	0.0141 J
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	64	0	0							0.27 U	4.1 U	W017	0.273	0.148 UJ	0.706 U
Bis(2-ethylhexyl) phthalate	XAD Column+Filter - total	μg/L	15	6	40	0.00775 J	0.033	W015	0.0161	0.011 J	0.031 J	0.00543 U	0.033	W015	0.00855	0.00428 U	0.0274 J

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

-- data not available.

DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/Fs - dioxins/furans

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalent

XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-9b. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (East Channel Single-Point Locations).

Part	Table 5.4-90. Summary Staustics to	i indicator Contaminants in Sur	iace water, E	ow-110w Events	s (East Chainle)	Single-1 onit L	ocations).		Detected Conc	entrations				Dete	ected and Not Detect	ted Concentrations		
Section Sect	Analyte	Method	Units	# Analyzed	# Detected		Minimum ^a	Maximum ^a		Mean	Median ^b							Percentile
Marche Persin Alberton 1967 1 1 10 10 10 10 10 10	RM 01.9<03			" TIME JECK	" Detected	70 2000000	*									<u> </u>		
Market M	Metals																	
Market M				3	5													
Channe Professor Profess		-		3	-													
Control Professor Profes				3														
Change Profession Profess				3														
Profess Prof		•		3	-													
Control Printice				3	-													
Control Princip Prin				3	-													
Profession		•		3	3													
Part		Peristaltic - dissolved		3	2	67	1.4	1.4	W001	1.4	1.4	1.4	1.21 UJ	1.4	W001	1.14	1.4	1.4
Part	Zinc	Peristaltic - particulate	μg/L	3	3	100	0.25	3.47 J	W001	1.54	0.9	3.21 J	0.25	3.47 J	W001	1.54	0.9	3.21 J
Tright Part		Peristaltic - total	μg/L	3	3	100	1.65 T	3.47 JT	W001	2.47	2.3 T	3.35 J	1.65 T	3.47 JT	W001	2.47	2.3 T	3.35 J
Part																		
Part	Tributyltin ion	Peristaltic - total	μg/L	3	0	0							0.0006 U	0.0071 U	W001	0.00172	0.0013 U	0.00333 U
Postage Post	PCBs ^c																	
Part		Peristaltic - total	μg/L	3	1	33	0.0063 JT	0.0063 JT	W001	0.0063	0.0063 JT	0.0063 JT	0.0025 UJT	0.0063 JT	W001	0.00293	0.00125 UT	0.0058 J
Teal class	Aldrin	Peristaltic - total	μg/L	3	0	0							0.000472 UJ	0.00049 U	W001	0.000241	0.000241 UJ	0.000245 UJ
Prof. Pro		Peristaltic - total	μg/L	3	0								0.000472 UJ	0.00049 U	W001	0.000241	0.000241 UJ	
Part					0													
Part		Peristaltic - total	μg/L	3	1	33	0.0187 NJT	0.0187 NJT	W001	0.0187	0.0187 NJT	0.0187 NJT	0.000472 UJT	0.0187 NJT	W001	0.00639	0.000241 UJT	0.0169 J
Profession Pro		Domintoltin total	/T	2	2	100	0.0101 IT	0.012 IT	W001	0.011	0.0100 IT	0.0110.1	0.0101 IT	0.012 IT	W/001	0.011	0.0100 IT	0.0110.1
Water Wate	Phthalates			3	3				W001									
Assenix Promotine - Informative - Informativ	RM 03<04	Peristaltic - total	μg/L	3	0	0							0.28 U	0.47 U	W001	0.175	0.15 U	0.227 U
Ansence Pristalle- renardine 9 pt 1		Designation discoluted	/1	2	2	100	0.215	0.41	W/004	0.277	0.406	0.41	0.215	0.41	W004	0.277	0.406	0.41
Assence Mestable-leaded pg				3	3													
Chemismic Pesistails - Associated Pesi		•		5	-													
Chemismic Periodic				3	-													
Chosmon				3														
Copper Persialic - entroline g-1 3 3 10 0.61 0.95 World 0.81 0.87 0.942 0.61 0.95 World 0.81 0.95 0.942 0.61 0.95 World 0.28 0.95 0.942 0.94 0.95 0.945				3	2	67												
Copper Perishilic - positival Perishilic				3	3	100		0.95	W004				0.61		W004	0.81		0.942
Part		Peristaltic - particulate	μg/L	3	3	100	0.51	1.14	W004	0.723	0.52	1.08	0.51	1.14	W004	0.723	0.52	1.08
Priside Pris	Copper	Peristaltic - total	μg/L	3	3	100	1.13	2.09	W004	1.53	1.38	2.02	1.13	2.09	W004	1.53	1.38	
Principle Prin	Zinc	Peristaltic - dissolved	μg/L	3	-								1.88 J					
Private Priv		•		-														
Truly filter Perish filter		Peristaltic - total	μg/L	3	3	100	3.28 J	8.8	W004	5.49	4.4	8.36	3.28 J	8.8	W004	5.49	4.4	8.36
Post of the Brief Brie	Tributyltin ion	Peristaltic - total	$\mu g/L$	3	1	33	0.0023 Ј	0.0023 J	W004	0.0023	0.0023 J	0.0023 Ј	0.0006 U	0.0071 U	W004	0.00205	0.0023 J	0.00343 J
Addrift		Peristaltic - total	μg/L	4	3	75	0.00589 JT	0.0136 JT	W004	0.0101	0.0109 T	0.0133 J	0.0025 UJT	0.0136 JT	W004	0.00791	0.0084 J	0.0132 J
Parisher																		
Pristalic - Incola			μg/L	4	0	0												
DDC				4		-												
Part				4		-												
Pristalite Pri		Peristaltic - total	μg/L	4	0	0							0.000485 UT	0.000526 UJT	W004	0.00025	0.000246 UJ	0.000261 UJ
Prisalic	Total PAHs	Peristaltic - total	$\mu g/L$	3	3	100	0.0055 JT	0.0797 JT	W004	0.0334	0.0149 JT	0.0732 Ј	0.0055 JT	0.0797 JT	W004	0.0334	0.0149 JT	0.0732 J
Metals Arsenic Peristaltic - dissolved peristaltic - particulate μg/L 6 6 100 0.315 0.43 W008 0.374 0.428 0.315 0.43 W008 0.374 0.428 Arsenic Peristaltic - particulate μg/L 6 6 100 0.042 0.0755 W007 0.0582 0.058 0.073 0.042 0.0755 W007 0.082 0.088 0.073 0.042 0.0755 W007 0.082 0.078 0.073 0.042 0.0755 W007 0.0582 0.088 0.073 0.48 0.081 0.073 0.042 0.0755 W007 0.0582 0.088 0.073 0.48 0.081 0.074 0.48 W007; W008 0.43 0.48 0.081 0.042 0.0755 W007 0.088 0.043 0.48 0.081 0.048 W007; W008 0.433 0.48 0.081 0.048 0.081 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.049 0.049	Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	3	0	0							0.28 U	0.69 U	W004	0.212	0.15 U	0.326 U
Arsenic Peristaltic - particulate μg/L 6 6 100 0.042 0.0755 W007 0.0582 0.058 0.073 Arsenic Peristaltic - total μg/L 6 6 100 0.381 T 0.48 W007; W008 0.433 0.433 0.48 0.081 T 0.48 W007; W008 0.433 0.433 0.48 Chromium Peristaltic - totalsolved μg/L 6 2 33 0.13 J 0.14 J W008 0.13 J 0.14 J 0.13 J 0.25 U W008 0.13 J 0.48 Chromium Peristaltic - particulate μg/L 6 2 33 0.07 J 0.165 J W008 0.118 J 0.118 J 0.10 J 0.07 J 0.37 U W007 0.144 0.15 U 0.18 J Chromium Peristaltic - total μg/L 6 2 33 0.2 JT 0.305 T W008 0.253 0.253 J 0.2 JT 0.37 U W007 0.144 U 0.15 U 0.17 U 0.279																		
Arsenic Peristaltic - total µg/L 6 6 100 0.381 T 0.48 W007; W008 0.433 0.433 0.433 0.435 0.48 0.381 T 0.48 W007; W008 0.433 0.433 0.48 Chromium Peristaltic - dissolved µg/L 6 2 33 0.13 J 0.14 J W008 0.135 0.135 J 0.14 J 0.14 J 0.13 J 0.25 U W008 0.113 0.113 U 0.138 J 0.138 J 0.139 Chromium Peristaltic - particulate µg/L 6 2 33 0.07 J 0.165 J W008 0.118 0.118 J 0.16 J 0.16 J 0.37 U W007 0.144 0.15 U 0.189 J 0.17 U 0.17				6														
Chromium Peristaltic - dissolved μg/L 6 2 33 0.13 J 0.14 J W008 0.13 J 0.25 U W008 0.113 U 0.138 J Chromium Peristaltic - particulate μg/L 6 2 33 0.07 J 0.165 J W008 0.118 J 0.16 J 0.07 J 0.37 U W007 0.144 D 0.18 J Chromium Peristaltic - total μg/L 6 2 33 0.2 JT 0.305 T W008 0.23 J 0.2 JT 0.37 U W007 0.18 J 0.18 J Copper Peristaltic - dissolved μg/L 6 2 33 0.2 JT 0.305 T W008 0.253 J 0.23 J 0.2 JT 0.37 U W007 0.18 J 0.2 JT 0.37 U W007 0.18 J 0.2 JT 0.2 JT 0.37 U W007 0.18 J 0.2 JT 0.37 U W007 0.18 J 0.2 JT 0.37 U W007 0.18 J 0.2 JT 0.3 J 0.2 JT 0.3 J 0.2 JT 0.3 J </td <td></td> <td></td> <td></td> <td>6</td> <td></td>				6														
Chromium Peristaltic - particulate µg/L 6 2 33 0.07 J 0.165 J W008 0.118 0.118 J 0.16 J 0.07 J 0.37 U W007 0.144 0.15 U 0.18 J Chromium Peristaltic - total µg/L 6 2 33 0.2 JT 0.305 T W008 0.253 0.253 J 0.3 J 0.2 JT 0.37 U W007 0.189 0.17 U 0.279 J 0.006				6														
Chromium Peristaltic - total µg/L 6 2 33 0.2 JT 0.305 T W008 0.253 0.253 J 0.3 J 0.2 JT 0.37 U W007 0.189 0.17 U 0.279 J Copper Peristaltic - dissolved µg/L 6 6 100 0.46 0.87 W007 0.663 0.65 0.863 0.46 0.87 W007 0.663 0.65 0.863 0.49 J W007 0.303 0.255 J 0.453 J 0.23 0.49 J W007 0.303 0.255 J 0.453 J 0.23 0.49 J W007 0.303 0.255 J 0.453 J 0.29 Copper Peristaltic - total µg/L 6 6 100 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W008 0.78 J 0.255 J 0.458 J 0.255 J				6														
Copper Peristaltic - dissolved µg/L 6 6 100 0.46 0.87 W007 0.663 0.65 0.863 0.46 0.87 W007 0.663 0.65 0.863 0.863 0.65 0.863 0				6														
Copper Peristaltic - particulate µg/L 6 6 100 0.23 0.49 J W007 0.303 0.255 J 0.453 J 0.23 0.49 J W007 0.303 0.255 J 0.453 J 0.29 Copper Peristaltic - total µg/L 6 6 100 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W007 0.967 0.				6														
Copper Peristaltic - total µg/L 6 6 100 0.77 T 1.36 J W007 0.967 0.89 1.29 J 0.77 T 1.36 J W007 0.967 0.89 1.29 J 2inc Peristaltic - dissolved µg/L 6 6 100 1.5 4.7 J W008 2.73 2.15 J 4.58 J 1.5 4.7 J W008 2.73 2.15 J 4.58 J 2inc Peristaltic - particulate µg/L 6 6 100 0.45 1.4 J W008 0.783 0.65 J 1.3 J 0.45 1.4 J W008 0.783 0.65 J 1.3 J				6														
Zinc Peristaltic - dissolved µg/L 6 6 100 1.5 4.7 J W008 2.73 2.15 J 4.58 J 1.5 4.7 J W008 2.73 2.15 J 4.58 J Zinc Peristaltic - particulate µg/L 6 6 100 0.45 1.4 J W008 0.783 0.65 J 1.3 J 0.45 1.4 J W008 0.783 0.65 J 1.3 J				6														
Zinc Peristaltic - particulate µg/L 6 6 100 0.45 1.4 J W008 0.783 0.65 J 1.3 J 0.45 1.4 J W008 0.783 0.65 J 1.3 J				6														
				6														
				6	6	100												

Table 5.4-9b. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (East Channel Single-Point Locations).

	r Indicator Contaminants in Surfac				_	,		Detected Conc	entrations			-	Dete	ected and Not Detect	ed Concentrations	3	
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	6	3	50	0.00095 J	0.0012 J	W008	0.00105	0.00099 J	0.00118 J	0.0006 U	0.0071 U	W007; W008	0.00176	0.0011 J	0.00355 U
PCBs ^c		~	_									0.0025 177	0.000 (1.177	*******	0.00125	0.00125.41	0.0010.11
Total PCBs Pesticides	Peristaltic - total	μg/L	6	0	0							0.0025 UT	0.00261 UT	W007	0.00127	0.00125 U	0.0013 U
Aldrin	Peristaltic - total	μg/L	6	0	0							0.000472 U	0.000524 U	W007	0.00025	0.000249 U	0.000261 U
Dieldrin	Peristaltic - total	μg/L μg/L	6	0	0							0.000472 U	0.000524 U	W007	0.00025	0.000249 U	0.000261 U
Total chlordanes	Peristaltic - total	μg/L	6	0	0							0.000472 UT	0.000524 UT	W007	0.00025	0.000249 U	0.000261 U
DDx	Peristaltic - total	μg/L	6	0	0							0.000472 UJT	0.000524 UJT	W007	0.00025	0.000249 UJ	0.000261 U
PAHs																	
Total PAHs	Peristaltic - total	μg/L	6	5	83	0.0102 JT	0.0751 JT	W008	0.0402	0.0411 JT	0.0716 J	0.0075 UJT	0.0751 JT	W008	0.0341	0.029 J	0.0708 J
Phthalates	Domintoltin total	~/I	6	0	0							0.20 11	0.44 11	W007, W000	0.171	0.149 11	0.22 11
Bis(2-ethylhexyl) phthalate RM 05<06 Metals	Peristaltic - total	μg/L	b	U	U							0.29 U	0.44 U	W007; W008	0.171	0.148 U	0.22 U
Arsenic	Peristaltic - dissolved	$\mu g/L$	3	3	100	0.322	0.46	W010	0.381	0.36	0.45	0.322	0.46	W010	0.381	0.36	0.45
Arsenic	Peristaltic - particulate	μg/L	3	3	100	0.058	0.08	W010	0.0657	0.059	0.0779	0.058	0.08	W010	0.0657	0.059	0.0779
Arsenic	Peristaltic - total	μg/L	3	3	100 33	0.38 0.14 J	0.54 0.14 J	W010 W010	0.446	0.419 0.14 J	0.528 0.14 J	0.38	0.54 0.19 U	W010 W010	0.446	0.419 0.095 U	0.528
Chromium Chromium	Peristaltic - dissolved Peristaltic - particulate	μg/L	3	1 2	55 67	0.14 J 0.18 J	0.14 J	W010 W010	0.14 0.27	0.14 J 0.27 J	0.14 J 0.351 J	0.14 J 0.18 J	0.19 U 0.43 U	W010 W010	0.108 0.252	0.095 U 0.215 U	0.136 J 0.346
Chromium	Peristaltic - particulate Peristaltic - total	μg/L μg/L	3	2	67	0.32	0.36	W010 W010	0.34	0.27 3	0.351 3	0.32	0.43 U	W010 W010	0.232	0.32	0.356
Copper	Peristaltic - dissolved	μg/L	3	3	100	0.5	0.9 J	W010	0.663	0.59	0.869 J	0.5	0.9 J	W010	0.663	0.59	0.869 J
Copper	Peristaltic - particulate	μg/L	3	3	100	0.27	0.4	W010	0.323	0.3 J	0.39 J	0.27	0.4	W010	0.323	0.3 J	0.39 J
Copper	Peristaltic - total	μg/L	3	3	100	0.86	1.2 J	W010	0.987	0.9	1.17 J	0.86	1.2 J	W010	0.987	0.9	1.17 J
Zinc	Peristaltic - dissolved	$\mu g/L$	3	3	100	1.7	4.7	W010	2.8	2 J	4.43 J	1.7	4.7	W010	2.8	2 J	4.43 J
Zinc	Peristaltic - particulate ^d	μg/L	3	3	100	0	0.8 J	W010	0.4	0.4	0.76 J	0	0.8 J	W010	0.4	0.4	0.76 J
Zinc	Peristaltic - total	$\mu g/L$	3	3	100	2.1	2.8 J	W010	2.37	2.2	2.74 J	2.1	2.8 J	W010	2.37	2.2	2.74 J
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	3	0	0							0.0006 U	0.0071 U	W010	0.00138	0.0003 U	0.00323 U
PCBs ^c	Desired in Art 1		3	0	0							0.0025 LIT	0.00267 UT	W010	0.00128	0.00125 LIT	0.00133 U
Total PCBs Pesticides	Peristaltic - total	μg/L	3	U	U							0.0025 UT	0.00267 U1	W010	0.00128	0.00125 UT	0.00133 U
Aldrin	Peristaltic - total	μg/L	3	0	0							0.000476 U	0.0005 U	W010	0.000246	0.00025 U	0.00025 U
Dieldrin	Peristaltic - total	μg/L	3	0	Ö							0.000476 U	0.0005 U	W010	0.000246	0.00025 U	0.00025 U
Total chlordanes	Peristaltic - total	μg/L	3	0	0							0.000476 UT	0.0005 UT	W010	0.000246	0.00025 UT	0.00025 U
DDx	Peristaltic - total	$\mu g/L$	3	0	0							0.000476 UT	0.0005 UJT	W010	0.000246	0.00025 UJT	0.00025 U.
PAHs		~	_					****						*****			
Total PAHs Phthalates	Peristaltic - total	μg/L	3	1	33	0.0177 JT	0.0177 JT	W010	0.0177	0.0177 JT	0.0177 JT	0.0074 UT	0.0177 JT	W010	0.00837	0.0037 UT	0.0163 J
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	3	0	0							0.28 U	4 U	W010	0.853	0.42 U	1.84 U
RM 06<07		r-6 -															
Metals																	
Arsenic	Peristaltic - dissolved	$\mu g/L$	8	8	100	0.252	0.46	W014	0.336	0.316	0.431	0.252	0.46	W014	0.336	0.316	0.431
Arsenic	Peristaltic - particulate	μg/L	8	8	100	0.043	0.107	W013-2	0.0701	0.0605	0.103	0.043	0.107	W013-2	0.0701	0.0605	0.103
Arsenic Chromium	Peristaltic - total Peristaltic - dissolved	μg/L μg/L	8	8 5	100 62	0.359 0.13 J	0.52 0.22	W014 W013-2	0.406 0.168	0.387 0.17 J	0.49 0.214 J	0.359 0.13 J	0.52 0.22	W014 W013-2	0.406 0.139	0.387 0.13 J	0.49 0.21 J
			0	5													
Chromium Chromium	Peristaltic - particulate ^d Peristaltic - total	μg/L μg/I	8	6 5	75 62	0 J 0.24	0.46 0.68	W013-2 W013-2	0.201 0.371	0.163 J 0.31	0.423 0.609	0 J 0.24	0.46 0.68	W013-2 W013-2	0.197 0.304	0.185 U 0.27	0.408 0.556
Copper	Peristaltic - total Peristaltic - dissolved	μg/L μg/L	8	<i>5</i>	75	0.24	0.87	W013-2 W014	0.655	0.61	0.868	0.24 0.44 U	0.87	W013-2 W014	0.553	0.56	0.336 0.867
Copper	Peristaltic - particulate	μg/L μg/L	8	8	100	0.3	0.98	W013-2	0.609	0.508 J	0.966	0.3	0.98	W013-2	0.609	0.508 J	0.966
Copper	Peristaltic - total	μg/L	8	8	100	0.87	1.48	W013-2	1.1	0.973	1.47 J	0.87	1.48	W013-2	1.1	0.973	1.47 J
Zinc	Peristaltic - dissolved	μg/L	8	6	75	0.9 J	2.3 J	W014	1.68	1.7	2.25 J	0.9 J	2.3 J	W014	1.5	1.5	2.23 J
Zinc	Peristaltic - particulate ^d	μg/L	8	8	100	0	2.91 J	W013-1	1.32	0.95 J	2.91 J	0	2.91 J	W013-1	1.32	0.95 J	2.91 J
Zinc	Peristaltic - total	μg/L	8	7	88	1.65 T	4.7	W013-2	2.75	2.6	4.25 J	1.65 T	4.7	W013-2	2.55	2.45	4.18 J
Butyltins														W013-1; W013-2;			
Tributyltin ion	Peristaltic - total	μg/L	8	0	0							0.0006 U	0.0071 U	W013-1, W013-2, W014	0.00152	0.0003 U	0.00355 U
PCBs ^c	VAD Column dissolved	., ~/T	6	_	100	0.000624 IT	0.00242 17	W012 1	0.00144	0.00120 1	0.00226 1	0.000624 IT	0.00242 17	W/012 1	0.00144	0.00120 1	0.00226 1
Total PCBs Total PCBs	XAD Column - dissolved XAD Filter - particulate	μg/L	6 5	6 5	100 100	0.000624 JT 0.00138 JT	0.00242 JT 0.00956 JT	W013-1 W013-1	0.00144 0.00427	0.00139 J 0.00262 T	0.00236 J 0.00883 J	0.000624 JT	0.00242 JT 0.00956 JT	W013-1 W013-1	0.00144 0.00427	0.00139 J 0.00262 T	0.00236 J 0.00883 J
Total PCBs	Peristaltic - total	μg/L μg/L	5	3 1	20	0.00138 J1 0.0154 T	0.00956 J1 0.0154 T	W013-1 W014	0.00427	0.00262 T 0.0154 T	0.00883 J 0.0154 T	0.00138 JT 0.0025 UT	0.00956 J1 0.0154 T	W013-1 W014	0.00427	0.00262 T 0.00125 UT	0.00883 J
Total PCBs	XAD Column+Filter - total	μg/L μg/L	6	6	100	0.00206 J	0.0134 I 0.012 J	W014-1	0.00501	0.00293 J	0.0134 I	0.0023 UT	0.0134 I 0.012 J	W013-1	0.00501	0.00123 U1 0.00293 J	0.0120 0.011 J
PCDD/Fs Homologs		10-	~	-							2.4		y				
Total PCDD/Fs	XAD Column - dissolved	$\mu g/L$	6	6	100	0.000000897 JT	0.0000125 JT	W013-2	0.00000452	0.00000311 J	0.000011 J	0.000000897 JT	0.0000125 JT	W013-2	0.00000452	0.00000311 J	0.000011 J
Total PCDD/Fs	XAD Filter - particulate	μg/L	6	6	100	0.0000263 T	0.000156 T	W013-1	0.0000607	0.0000466	0.00013	0.0000263 T	0.000156 T	W013-1	0.0000607	0.0000466	0.00013
Total PCDD/Fs	XAD Column+Filter - total	μg/L	6	6	100	0.0000307	0.000162	W013-1	0.0000653	0.0000504 J	0.000135 J	0.0000307	0.000162	W013-1	0.0000653	0.0000504 J	0.000135 J

Table 5.4-9b. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (East Channel Single-Point Locations).

Table 5.4-90. Summary Statistics for	indicator Contaminants in Surface	c water, Le	DW-FIOW EVENUS	(East Channel Sil	igic-i oim	Locations).		Detected Con	centrations				Dete	ected and Not Detect	ed Concentration	ns	
Analyte	Method	Units	# Analyzed	# Detected % l	Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
PCDD/Fs																	
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	6	6	100	0.00000000106 T	0.0000000382 JT	W013-2	0.0000000109	0.00000000591 J	0.0000000317 J	0.00000000106 T	0.0000000382 JT	W013-2	0.0000000109	0.00000000591 J	0.0000000317 J
TCDD TEQ (ND=0)	XAD Filter - particulate	$\mu g/L$	6	6	100	0.000000109 JT	0.00000091 JT	W013-2	0.000000287	0.000000121 J	0.000000771 J	0.000000109 JT	0.00000091 JT	W013-2	0.000000287	0.000000121 J	0.000000771 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	6	6	100	0.00000011 J	0.000000917 J	W013-2	0.000000298	0.000000141 J	0.000000779 J	0.00000011 J	0.000000917 J	W013-2	0.000000298	0.000000141 J	0.000000779 J
Pesticides																	
Aldrin	XAD Column - dissolved	μg/L	6	5	83	0.000000537 J	0.00000144 J	W013-2	0.00000105	0.00000119 J	0.00000141 J	0.000000418 UJ	0.00000144 J	W013-2	0.000000908	0.000000991 J	0.0000014 J
Aldrin	XAD Filter - particulate	μg/L	6	6	100	0.000000122 J	0.000000953 J	W013-1	0.000000419	0.00000036 J	0.000000816 J	0.000000122 J	0.000000953 J	W013-1	0.000000419	0.00000036 J	0.000000816 J
Aldrin	Peristaltic - total	μg/L	5	0	0							0.000472 U	0.000526 U	W013-2	0.000246	0.000245 U	0.000259 U
Aldrin	XAD Column+Filter - total	μg/L	6	6	100	0.00000031 J	0.00000214 J	W013-1	0.00000129	0.00000129 J	0.00000205 J	0.00000031 J	0.00000214 J	W013-1	0.00000129	0.00000129 J	0.00000205 J
Dieldrin	XAD Column - dissolved	μg/L	6	6	100	0.0000227	0.00004	W013-1	0.0000307	0.0000296	0.0000393	0.0000227	0.00004	W013-1	0.0000307	0.0000296	0.0000393
Dieldrin Dieldrin	XAD Filter - particulate Peristaltic - total	μg/L	0	5	83	0.00000024 J	0.00000427 J	W013-1	0.0000022	0.00000214 J	0.00000389 J	0.0000024 J 0.000472 U	0.00000427 J 0.000526 U	W013-1 W013-2	0.000002 0.000246	0.00000207 J 0.000245 U	0.0000379 J 0.000259 U
Dieldrin	XAD Column+Filter - total	μg/L	5	6	100	0.0000227	0.0000443 J	W013-1	0.0000325	0.0000318 J	0.0000426 J	0.000472 0	0.000320 U 0.0000443 J	W013-2 W013-1	0.000246	0.000243 U 0.0000318 J	0.000239 U 0.0000426 J
Total chlordanes	XAD Column - dissolved	μg/L μg/L	6	6	100	0.0000227 0.0000126 JT	0.0000443 J 0.0000263 JT	W013-1 W013-2	0.0000323	0.0000318 J 0.0000162 J	0.0000420 J 0.0000252 J	0.0000227 0.0000126 JT	0.0000443 J 0.0000263 JT	W013-1 W013-2	0.0000323	0.0000318 J 0.0000162 J	0.0000420 J 0.0000252 J
Total chlordanes	XAD Filter - particulate	μg/L μg/L	6	6	100	0.00000120 JT	0.0000203 JT 0.0000134 JT	W013-1	0.0000176	0.0000102 J	0.0000232 J 0.0000116 J	0.00000126 JT	0.0000203 JT 0.0000134 JT	W013-1	0.0000176	0.0000102 J	0.0000232 J
Total chlordanes	Peristaltic - total	μg/L μg/L	5	0	0							0.000472 UT	0.000526 UT	W013-2	0.000246	0.000245 UT	0.000259 U
Total chlordanes	XAD Column+Filter - total	μg/L	6	6	100	0.0000173 J	0.0000353 J	W013-1	0.0000235	0.0000216 J	0.0000333 J	0.0000172 U1	0.0000353 J	W013-1	0.0000235	0.0000216 J	0.0000333 J
DDx	XAD Column - dissolved	μg/L	6	6	100	0.0000254 JT	0.00013 JT	W013-1	0.0000567	0.00004 J	0.000117 J	0.0000254 JT	0.00013 JT	W013-1	0.0000567	0.00004 J	0.000117 J
DDx	XAD Filter - particulate	μg/L	6	6	100	0.00000763 JT	0.000111 JT	W013-1	0.0000416	0.0000305 J	0.0000948 J	0.00000763 JT	0.000111 JT	W013-1	0.0000416	0.0000305 J	0.0000948 J
DDx	Peristaltic - total	μg/L	5	0	0							0.000472 UT	0.000526 UT	W013-2	0.000246	0.000245 UT	0.000259 U
DDx	XAD Column+Filter - total	μg/L	6	6	100	0.0000492 J	0.000241 J	W013-1	0.0000982	0.0000754 J	0.000204 J	0.0000492 J	0.000241 J	W013-1	0.0000982	0.0000754 J	0.000204 J
PAHs																	
Total PAHs	XAD Column - dissolved	μg/L	6	6	100	0.0129 JT	0.0344 JT	W013-2	0.0218	0.0218 J	0.0315 J	0.0129 JT	0.0344 JT	W013-2	0.0218	0.0218 J	0.0315 J
Total PAHs	XAD Filter - particulate	μg/L	6	6	100	0.000916 T	0.0105 T	W013-1	0.00468	0.00396 J	0.00928 J	0.000916 T	0.0105 T	W013-1	0.00468	0.00396 J	0.00928 J
Total PAHs	Peristaltic - total	μg/L	8	5	62	0.0026 JT	0.0293 JT	W013-2	0.0149	0.0148 JT	0.0265 J	0.0026 JT	0.0293 JT	W013-2	0.0117	0.0101 J	0.0245 J
Total PAHs	XAD Column+Filter - total	μg/L	6	6	100	0.0162 J	0.0353 J	W013-2	0.0265	0.0275 J	0.0334 J	0.0162 J	0.0353 J	W013-2	0.0265	0.0275 J	0.0334 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	XAD Column - dissolved	μg/L	6	2	33	0.0121	0.0198	W013-1	0.016	0.016	0.0194	0.00338 U	0.0198	W013-1	0.00671	0.00244 U	0.0179
Bis(2-ethylhexyl) phthalate	XAD Filter - particulate	μg/L	6	1	17	0.0052 J	0.0052 J	W013-1	0.0052	0.0052 J	0.0052 J	0.00257 U	0.00859 U	W013-1	0.00325	0.00313 U	0.00497 J
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	7	0	0	0.0121	0.025 I	W/012.1	0.0106	0.0106.1	0.0244 I	0.27 U	0.91 U	W014	0.211	0.15 U	0.389 U
Bis(2-ethylhexyl) phthalate	XAD Column+Filter - total	μg/L	6	2	33	0.0121	0.025 J	W013-1	0.0186	0.0186 J	0.0244 J	0.00543 U	0.025 J	W013-1	0.0084	0.00388 U	0.0218 J
RM 08<09 Metals																	
Arsenic	Peristaltic - dissolved	μg/L	6	6	100	0.249	0.43	W021	0.342	0.333	0.425	0.249	0.43	W021	0.342	0.333	0.425
Arsenic	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	6	6	100	0.041	0.088	W021 W018	0.0668	0.0675	0.0878	0.041	0.088	W021 W018	0.0668	0.0675	0.0878
Arsenic	Peristaltic - total	μg/L μg/L	6	6	100	0.337	0.48	W018; W021	0.409	0.397	0.48	0.337	0.48	W018; W021	0.409	0.397	0.48
Chromium	Peristaltic - dissolved	μg/L	6	5	83	0.11 J	0.25	W021	0.174	0.16 J	0.246	0.11 J	0.25	W021	0.165	0.14 J	0.245
Chromium	Peristaltic - particulate ^d	_	6	5	83	0	0.19 J	W018	0.106	0.1 J	0.186 J	0	0.36 U	W018	0.118	0.135 J	0.188 J
Chromium	Peristaltic - particulate Peristaltic - total	μg/L μg/L	6	4	67	0.21	0.19 3	W018	0.100	0.1 3	0.387	0.21	0.30 0	W018 W018	0.118	0.133 3	0.378
Copper	Peristaltic - dissolved	μg/L μg/L	6	6	100	0.61	1.23 J	W021	0.815	0.755 J	1.15 J	0.61	1.23 J	W021	0.815	0.755 J	1.15 J
Copper	Peristaltic - particulate	μg/L	6	6	100	0.21	0.51 J	W021	0.383	0.395 J	0.488 J	0.21	0.51 J	W021	0.383	0.395 J	0.488 J
Copper	Peristaltic - total	μg/L	6	6	100	0.86	1.74 J	W021	1.2	1.17	1.63 J	0.86	1.74 J	W021	1.2	1.17	1.63 J
Zinc	Peristaltic - dissolved	μg/L	6	6	100	1.61	4.9	W018	2.78	2.49	4.48	1.61	4.9	W018	2.78	2.49	4.48
Zinc	Peristaltic - particulate ^d	μg/L	6	6	100	0	1.71	W021	0.563	0.5	1.45	0	1.71	W021	0.563	0.5	1.45
Zinc	Peristaltic - total	μg/L μg/L	6	6	100	2	3.34	W018	2.83	2.85	3.34	2	3.34	W018	2.83	2.85	3.34
Butyltins	1 cristance total	µБ/ L	o o	o o	100	_	3.51	***************************************	2.03	2.05	5.54	-	3.54	***************************************	2.03	2.03	3.54
Tributyltin ion	Peristaltic - total	μg/L	6	0	0							0.0006 U	0.0071 U	W018: W021	0.00144	0.000475 U	0.00355 U
PCBs ^c														ŕ			
Total PCBs	XAD Column - dissolved	μg/L	3	3	100	0.000162 JT	0.000567 JT	W018	0.000405	0.000487 JT	0.000559 J	0.000162 JT	0.000567 JT	W018	0.000405	0.000487 JT	0.000559 J
Total PCBs	XAD Filter - particulate	μg/L μg/L	3	3	100	0.000102 JT 0.000277 JT	0.00112 JT	W018	0.000579	0.000487 JT 0.000341 JT	0.00104 J	0.000102 JT 0.000277 JT	0.000307 JT 0.00112 JT	W018 W018	0.000579	0.000487 JT 0.000341 JT	0.000339 J
Total PCBs	Peristaltic - total	μg/L	4	0	0							0.0025 UT	0.0026 UT	W021	0.00126	0.00125 U	0.00129 U
Total PCBs	XAD Column+Filter - total	μg/L	3	3	100	0.000439 J	0.00169 J	W018	0.000985	0.000828 J	0.0016 J	0.000439 J	0.00169 J	W018	0.000985	0.000828 J	0.0016 J
Pesticides																	
Aldrin	XAD Column - dissolved	μg/L	3	2	67	0.000000659 J	0.000000972 J	W018	0.000000816	0.000000816 J	0.000000956 J	0.000000659 J	0.00000143 U	W018	0.000000782	0.000000715 U	0.000000946 J
Aldrin	XAD Filter - particulate	μg/L	3	3	100	0.00000039 J	0.000000629 J	W018	0.000000473	0.0000004 J	0.000000606 J	0.00000039 J	0.000000629 J	W018	0.000000473	0.0000004 J	0.000000606 J
Aldrin	Peristaltic - total	μg/L	4	0	0							0.000481 U	0.00049 U	W021	0.000242	0.000241 U	0.000244 U
Aldrin	XAD Column+Filter - total	μg/L	3	3	100	0.0000004 J	0.0000016 J	W018	0.00000102	0.00000105 J	0.00000155 J	0.0000004 J	0.0000016 J	W018	0.00000102	0.00000105 J	0.00000155 J
Dieldrin	XAD Column - dissolved	μg/L	3	3	100	0.000029	0.0000421	W018	0.0000339	0.0000306	0.000041	0.000029	0.0000421	W018	0.0000339	0.0000306	0.000041
Dieldrin	XAD Filter - particulate	$\mu g/L$	3	2	67	0.00000154 J	0.0000018 J	W018	0.00000167	0.00000167 J	0.00000179 J	0.00000154 J	0.00000184 UJ	W018	0.00000142	0.00000154 J	0.00000177 J
Dieldrin	Peristaltic - total	μg/L	4	0	0							0.000481 U	0.00049 U	W021	0.000242	0.000241 U	0.000244 U
Dieldrin	XAD Column+Filter - total	$\mu g/L$	3	3	100	0.0000306 J	0.0000436 J	W018	0.000035	0.0000308 J	0.0000424 J	0.0000306 J	0.0000436 J	W018	0.000035	0.0000308 J	0.0000424 J
Total chlordanes	XAD Column - dissolved	μg/L	3	3	100	0.0000165 JT	0.0000266 JT	W018	0.0000207	0.000019 JT	0.0000258 J	0.0000165 JT	0.0000266 JT	W018	0.0000207	0.000019 JT	0.0000258 J
Total chlordanes	XAD Filter - particulate	μg/L	3	3	100	0.00000484 JT	0.00000707 JT	W018	0.00000572	0.00000524 JT	0.00000689 J	0.00000484 JT	0.00000707 JT	W018	0.00000572	0.00000524 JT	0.00000689 J
Total chlordanes	Peristaltic - total	μg/L	4	0	0							0.000481 UT	0.00049 UT	W021	0.000242	0.000241 U	0.000244 U
Total chlordanes	XAD Column+Filter - total	μg/L	3	3	100	0.0000213 J	0.0000318 J	W018	0.0000264	0.0000261 J	0.0000313 J	0.0000213 J	0.0000318 J	W018	0.0000264	0.0000261 J	0.0000313 J
DDx	XAD Column - dissolved	μg/L	3	3	100	0.0000359 JT	0.0000727 JT	W018	0.0000535	0.0000518 JT	0.0000706 J	0.0000359 JT	0.0000727 JT	W018	0.0000535	0.0000518 JT	0.0000706 J
DDx	XAD Filter - particulate	μg/L	3	3	100	0.000025 JT	0.0000514 JT	W018	0.0000345	0.0000271 JT	0.000049 J	0.000025 JT	0.0000514 JT	W018	0.0000345	0.0000271 JT	0.000049 J
DDx	Peristaltic - total	μg/L	4	0	0 100	0.0000609 J	0.000103 J	W018	0.000088	0.0000998 J	0.000103 J	0.000481 UT	0.00049 UJT 0.000103 J	W021 W018	0.000242 0.000088	0.000241 U 0.0000998 J	0.000244 UJ 0.000103 J
DDx	XAD Column+Filter - total	μg/L	3	3	100	0.0000009 J	0.000103 J	W018	0.000088	0.0000998 J	0.000103 J	0.0000609 J	0.000103 J	W018	0.000088	0.0000998 J	0.000103 J

Table 5.4-9b. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (East Channel Single-Point Locations).

		,			_	,		Detected Conc	entrations				Dete	ected and Not Detect	ed Concentrations		
Analyte	Method	Units	# Analyzed	# Datastad	9/ Datastad	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
PAHs		CIRC	# Allalyzeu	# Detected	/8 Detected	14111111111111	Maximum	Zocation(o)		Wedian	Tercentile	(Iun DL)	(run DL)	Zocation(b)	(IIIII DE)	(nan DL)	(Hall DL)
Total PAHs	XAD Column - dissolved	μg/L	3	3	100	0.00748 JT	0.0567 JT	W018	0.0284	0.0211 JT	0.0531 J	0.00748 JT	0.0567 JT	W018	0.0284	0.0211 JT	0.0531 J
Total PAHs	XAD Filter - particulate	μg/L	3	3	100	0.001 JT	0.0348 T	W018	0.0136	0.005 T	0.0318	0.001 JT	0.0348 T	W018	0.0136	0.005 T	0.0318
Total PAHs	Peristaltic - total	μg/L	6	4	67	0.0087 JT	0.288 JT	W021	0.082	0.0154 J	0.248 J	0.0075 UT	0.288 JT	W021	0.0565	0.0088 J	0.222 J
Total PAHs	XAD Column+Filter - total	μg/L	3	3	100	0.0125 J	0.0577 J	W018	0.042	0.0559 J	0.0575 J	0.0125 J	0.0577 J	W018	0.042	0.0559 J	0.0575 J
Phthalates		r-6 -															
Bis(2-ethylhexyl) phthalate	XAD Column - dissolved	μg/L	3	1	33	0.00394 J	0.00394 J	W018	0.00394	0.00394 J	0.00394 J	0.00355 U	0.00562 U	W018	0.00284	0.00281 U	0.00383 J
Bis(2-ethylhexyl) phthalate	XAD Filter - particulate	μg/L	3	1	33	0.00593 J	0.00593 J	W018	0.00593	0.00593 J	0.00593 J	0.0057 U	0.00831 U	W018	0.00431	0.00416 U	0.00575 J
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	6	0	0							0.29 U	0.69 U	W021	0.193	0.148 U	0.316 U
Bis(2-ethylhexyl) phthalate	XAD Column+Filter - total	μg/L	3	1	33	0.00987 J	0.00987 J	W018	0.00987	0.00987 J	0.00987 J	0.0057 U	0.00987 J	W018	0.00563	0.00416 U	0.0093 J
RM 09<10																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	3	3	100	0.325	0.44	W020	0.375	0.359	0.432	0.325	0.44	W020	0.375	0.359	0.432
Arsenic	Peristaltic - particulate	μg/L	3	3	100	0.03	0.07	W020	0.0493	0.048	0.0678	0.03	0.07	W020	0.0493	0.048	0.0678
Arsenic	Peristaltic - total	μg/L	3	3	100	0.395	0.47	W020	0.424	0.407	0.464	0.395	0.47	W020	0.424	0.407	0.464
Chromium	Peristaltic - dissolved	μg/L	3	2	67	0.1 J	0.16 J	W020	0.13	0.13 J	0.157 J	0.1 J	0.22 U	W020	0.123	0.11 U	0.155 J
Chromium	Peristaltic - particulate	μg/L	3	2	67	0.04 J	0.12 J	W020	0.08	0.08 J	0.116 J	0.04 J	0.36 U	W020	0.113	0.12 J	0.174 J
Chromium	Peristaltic - total	μg/L	3	2	67	0.2	0.22	W020	0.21	0.21	0.219	0.2	0.36 U	W020	0.2	0.2	0.218
Copper	Peristaltic - dissolved	μg/L	3	3	100	0.61	1.19 J	W020	0.897	0.89	1.16 J	0.61	1.19 J	W020	0.897	0.89	1.16 J
Copper	Peristaltic - particulate	μg/L	3	3	100	0.19	0.52 J	W020	0.367	0.39	0.507 J	0.19	0.52 J	W020	0.367	0.39	0.507 J
Copper	Peristaltic - total	μg/L	3	3	100	0.8	1.71 J	W020	1.26	1.28	1.67 J	0.8	1.71 J	W020	1.26	1.28	1.67 J
Zinc	Peristaltic - dissolved	μg/L	3	3	100	1.79	2.5	W020	2.26	2.5	2.5	1.79	2.5	W020	2.26	2.5	2.5
Zinc	Peristaltic - particulate	μg/L	3	3	100	0.4	2.77	W020	1.26	0.6	2.55	0.4	2.77	W020	1.26	0.6	2.55
Zinc	Peristaltic - total	μg/L	3	3	100	2.9	4.56	W020	3.52	3.1	4.41	2.9	4.56	W020	3.52	3.1	4.41
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	3	0	0							0.0006 U	0.0071 U	W020	0.00147	0.00055 U	0.00325 U
PCBs ^c																	
Total PCBs	Peristaltic - total	μg/L	3	0	0							0.0025 UT	0.0025 UT	W020	0.00125	0.00125 UT	0.00125 U
Pesticides																	
Aldrin	Peristaltic - total	μg/L	3	0	0							0.00049 U	0.00051 U	W020	0.000248	0.000245 U	0.000254 U
Dieldrin	Peristaltic - total	μg/L	3	0	0							0.00049 U	0.00051 U	W020	0.000248	0.000245 U	0.000254 U
Total chlordanes	Peristaltic - total	μg/L	3	0	0							0.00049 UT	0.00051 UT	W020	0.000248	0.000245 UT	0.000254 U
DDx	Peristaltic - total	μg/L	3	0	0							0.00049 UT	0.00051 UJT	W020	0.000248	0.000245 UT	0.000254 UJ
PAHs																	
Total PAHs	Peristaltic - total	μg/L	3	2	67	0.0049 JT	0.0413 JT	W020	0.0231	0.0231 J	0.0395 J	0.0049 JT	0.0413 JT	W020	0.0166	0.0049 JT	0.0377 J
Phthalates		_															
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	3	0	0							0.29 U	0.58 U	W020	0.193	0.145 U	0.276 U

-- data not available.

DDx - 2.4' and 4.4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan RM - River Mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalent

XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

^d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-9c. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (Mid-Channel Single-Point Locations).

			_			Detected Conce	ntrations				D	etected and Not Dete	cted Concentratio	ns	
														95th	
						Maximum			95 th	Minimum	Maximum	Maximum	Mean	Median	Percentile
Analyte	Method	Units	# Analyzed # Detected % Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
No data for this table.															

Notes:

-- data not available.

DL - detection limit

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results is "J" qualified, and with "J" if at least one of the results is "J" qualified.

Table 5.4-9d. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (West Channel Single-Point Locations).

			Low How Even	(Detected Concent	rations				Det	ected and Not Detected	l Concentrations		
Analyte	Method	Units	#A 1 1	#D 4 4 1 0	/ D l	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Multnomah Channel	Witting	Units	# Analyzed	# Detected %	6 Detected	Minimum	Maximum	Location(s)	Mean	Median	Percentile	(Iuli DL)	(IUII DL)	Location(s)	(nan DL)	(nail DL)	(naii DL)
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	3	3	100	0.299	0.41	W003	0.354	0.353	0.404	0.299	0.41	W003	0.354	0.353	0.404
Arsenic	Peristaltic - particulate	μg/L	3	3	100	0.056	0.084	W003	0.0733	0.08	0.0836	0.056	0.084	W003	0.0733	0.08	0.0836
Arsenic	Peristaltic - total	μg/L	3	3	100	0.355	0.49	W003	0.427	0.437	0.485	0.355	0.49	W003	0.427	0.437	0.485
Chromium Chromium	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	3	3	67 100	0.13 J 0.18	0.29 0.54	W003 W003	0.21 0.307	0.21 J 0.2 J	0.282 J 0.506 J	0.13 J 0.18	0.29 0.54	W003 W003	0.167 0.307	0.13 J 0.2 J	0.274 J 0.506 J
Chromium	Peristaltic - total	μg/L μg/L	3	3	100	0.33	0.54	W003	0.447	0.47	0.533	0.33	0.54	W003	0.447	0.47	0.533
Copper	Peristaltic - dissolved	μg/L	3	3	100	0.46	0.74	W003	0.633	0.7	0.736	0.46	0.74	W003	0.633	0.7	0.736
Copper	Peristaltic - particulate	μg/L	3	3	100	0.41	0.67	W003	0.533	0.52	0.655	0.41	0.67	W003	0.533	0.52	0.655
Copper	Peristaltic - total	μg/L	3	3	100	0.87	1.41	W003	1.17	1.22	1.39	0.87	1.41	W003	1.17	1.22	1.39
Zinc	Peristaltic - dissolved	μg/L	3	3	100 100	0.9	1.9 J	W003 W003	1.53	1.8	1.89 J 1.03 J	0.9	1.9 J	W003 W003	1.53 0.747	1.8	1.89 J
Zinc Zinc	Peristaltic - particulate Peristaltic - total	μg/L μg/L	3	3	100	0.3 1.8	1.04 J 2.94 J	W003 W003	0.747 2.28	0.9 2.1	2.86 J	0.3 1.8	1.04 J 2.94 J	W003 W003	2.28	0.9 2.1	1.03 J 2.86 J
Butyltins	i cristante - totai	μд/ Ц	3	3	100	1.0	2.54 3	***************************************	2.20	2.1	2.00 3	1.0	2.)¬ J	***************************************	2.20	2.1	2.00 3
Tributyltin ion	Peristaltic - total	μg/L	3	0	0							0.0006 U	0.0071 U	W003	0.00138	0.0003 U	0.00323 U
PCBs ^c																	
Total PCBs	Peristaltic - total	μg/L	3	0	0							0.0025 UJT	0.0025 UJT	W003	0.00125	0.00125 UJT	0.00125 UJ
Pesticides																	
Aldrin	Peristaltic - total	μg/L	3	0	0							0.00049 UJ	0.000505 UJ	W003	0.000249	0.00025 U	0.000252 UJ
Dieldrin Total chlordanes	Peristaltic - total Peristaltic - total	μg/L	3	0	0							0.00049 UJ 0.00049 UJT	0.000505 UJ 0.000505 UJT	W003 W003	0.000249 0.000249	0.00025 U 0.00025 UT	0.000252 UJ 0.000252 UJ
DDx	Peristaltic - total	μg/L μg/L	3	0	0						 	0.00049 UJT	0.000505 UJT	W003 W003	0.000249	0.00025 UT	0.000252 UJ
PAHs	Toristance total	μ ₀ , Δ	5	Ü	· ·							0.00017 031	0.000303 031	11003	0.000219	0.00025 61	0.000232 C3
Total PAHs Phthalates	Peristaltic - total	$\mu g/L$	3	2	67	0.015 JT	0.042 JT	W003	0.0285	0.0285 J	0.0407 J	0.0074 UT	0.042 JT	W003	0.0202	0.015 JT	0.0393 J
Bis(2-ethylhexyl) phthalate RM 01.9<03	Peristaltic - total	μg/L	3	0	0							0.28 U	0.32 U	W003	0.148	0.145 U	0.159 U
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	5	5	100	0.285	0.62	W002	0.501	0.508	0.62	0.285	0.62	W002	0.501	0.508	0.62
Arsenic Arsenic	Peristaltic - particulate Peristaltic - total	μg/L μg/L	5	5 5	100 100	0.02 0.35	0.09 0.71	W002 W002	0.0572 0.558	0.062 0.557	0.085 0.696	0.02 0.35	0.09 0.71	W002 W002	0.0572 0.558	0.062 0.557	0.085 0.696
Chromium	Peristaltic - dissolved	μg/L μg/L	5	3	60	0.13 J	0.24	W002	0.187	0.19 J	0.235 J	0.11 U	0.24	W002 W002	0.136	0.13 J	0.23 J
Chromium	Peristaltic - particulate	μg/L	5	4	80	0.23 J	0.55	W002	0.313	0.235 J	0.504 J	0.23 J	0.55	W002	0.298	0.24 U	0.488 J
Chromium	Peristaltic - total	μg/L	5	4	80	0.36	0.55	W002	0.453	0.45	0.538	0.36	0.55	W002	0.41	0.43	0.534
Copper	Peristaltic - dissolved	μg/L	5	5	100	0.51	0.84	W002	0.694	0.67	0.836	0.51	0.84	W002	0.694	0.67	0.836
Copper	Peristaltic - particulate	μg/L	5	5 5	100	0.29	0.68	W002	0.454	0.41	0.66	0.29	0.68	W002	0.454	0.41	0.66
Copper Zinc	Peristaltic - total Peristaltic - dissolved	μg/L μg/L	5	3	100 60	0.92 1.1	1.5 2.3	W002 W002	1.15 1.53	0.96 1.2	1.48 2.19	0.92 1.1	1.5 2.3	W002 W002	1.15 1.18	0.96 1.1	1.48 2.08
Zinc	Peristaltic - particulate ^d		5	5	100	0	2.78 J	W002	1.39	0.9	2.72 J	0	2.78 J	W002	1.39	0.9	2.72 J
Zinc	Peristaltic - particulate Peristaltic - total	μg/L μg/L	5	5	100	1.8	2.78 J	W002 W002	2.21	2	2.72 J	1.8	2.78 J	W002 W002	2.21	2	2.72 J
Butyltins		r-6-	-	_						_						_	
Tributyltin ion	Peristaltic - total	μg/L	5	0	0							0.0006 U	0.0071 U	W002	0.00095	0.0003 U	0.0029 U
PCBs ^c																	
Total PCBs Pesticides	Peristaltic - total	μg/L	2	0	0							0.0025 UJT	0.00255 UT	W002	0.00126	0.00126 UJ	0.00127 UJ
Aldrin	Peristaltic - total	μg/L	3	0	0							0.000481 UJ	0.000538 UJ	W002	0.000252	0.000248 U	0.000267 UJ
Dieldrin Total chlordanes	Peristaltic - total Peristaltic - total	μg/L	3	0	0 33	0.00212 JT	0.00212 JT	W002	0.00212	0.00212 JT	0.00212 JT	0.000481 UJ 0.000481 UJT	0.000538 UJ 0.00212 JT	W002 W002	0.000252 0.000869	0.000248 U 0.000248 UT	0.000267 UJ 0.00193 J
DDx PAHs	Peristaltic - total	μg/L μg/L	3	0	0		0.00212 31	W002	0.00212	0.00212 31	0.00212 31	0.000481 UJT	0.00212 JT 0.000538 UJT	W002 W002	0.000809	0.000248 UT	0.000267 UJ
Total PAHs Phthalates	Peristaltic - total	$\mu g/L$	5	5	100	0.0049 JT	0.0132 JT	W002	0.00818	0.0055 JT	0.013 J	0.0049 JT	0.0132 JT	W002	0.00818	0.0055 JT	0.013 J
Bis(2-ethylhexyl) phthalate RM 04<05 Metals	Peristaltic - total	μg/L	5	0	0							0.29 U	0.56 U	W002	0.174	0.15 UJ	0.254 U
Arsenic	Peristaltic - dissolved	μg/L	3	3	100	0.319	0.42	W006	0.356	0.33	0.411	0.319	0.42	W006	0.356	0.33	0.411
Arsenic	Peristaltic - particulate	μg/L	3	3	100	0.07	0.098	W006	0.0827	0.08	0.0962	0.07	0.098	W006	0.0827	0.08	0.0962
Arsenic	Peristaltic - total	μg/L	3	3	100	0.399	0.49 T	W006	0.439	0.428	0.484	0.399	0.49 T	W006	0.439	0.428	0.484
Chromium	Peristaltic - dissolved	μg/L	3	2	67	0.13 J	0.22	W006	0.175	0.175 J	0.216 J	0.13 J	0.22	W006	0.145	0.13 J	0.211 J
Chromium Chromium	Peristaltic - particulate Peristaltic - total	μg/L μg/L	3	2	67 67	0.24 J 0.37	0.38 0.6	W006 W006	0.31 0.485	0.31 J 0.485	0.373 J 0.589	0.24 J 0.37	0.38 U 0.6	W006 W006	0.27 0.387	0.24 J 0.37	0.366 J 0.577
Copper	Peristaltic - dissolved	μg/L μg/L	3	3	100	0.62	0.93	W006	0.483	0.483	0.389	0.62	0.93	W006 W006	0.793	0.83	0.92
Copper	Peristaltic - particulate	μg/L μg/L	3	3	100	0.07	0.52 J	W006	0.37	0.52	0.52 J	0.07	0.52 J	W006	0.37	0.52	0.52 J
Copper	Peristaltic - total	μg/L	3	3	100	1	1.35 JT	W006	1.16	1.14	1.33 J	1	1.35 JT	W006	1.16	1.14	1.33 J

Table 5.4-9d. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (West Channel Single-Point Locations).

Table 3.4-9d. Summary Statistics to	90. Summary Stausucs for indicator Contaminants in St			ints (West Chai	illici Siligic-i c	int Locations).		Detected Concent	trations				Dete	ected and Not Detected	1 Concentrations		
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Zinc	Peristaltic - dissolved	μg/L	3	3	100	1.8	2.8	W006	2.2	2 J	2.72 J	1.8	2.8	W006	2.2	2 J	2.72 J
Zinc	Peristaltic - particulate ^d	μg/L	3	3	100	0	1.25 J	W006	0.65	0.7	1.2 J	0	1.25 J	W006	0.65	0.7	1.2 J
Zinc	Peristaltic - total	μg/L	3	3	100	2.5	3.25 JT	W006	2.75	2.5	3.18 J	2.5	3.25 JT	W006	2.75	2.5	3.18 J
Butyltins			_														
Tributyltin ion	Peristaltic - total	μg/L	3	1	33	0.0011 J	0.0011 J	W006	0.0011	0.0011 J	0.0011 J	0.0006 U	0.0071 U	W006	0.00165	0.0011 J	0.00331 J
PCBs ^c			_	_	_												
Total PCBs	Peristaltic - total	μg/L	3	0	0							0.0025 UT	0.00256 UT	W006	0.00126	0.00126 UT	0.00128 U
Pesticides Aldrin	Peristaltic - total	па/І	2	0	0							0.0005 U	0.000521 U	W006	0.000255	0.000255 U	0.00026 U
Dieldrin	Peristaltic - total	μg/L μg/L	3	0	0							0.0005 U	0.000521 U	W006	0.000255	0.000255 U	0.00026 U
Total chlordanes	Peristaltic - total	μg/L μg/L	3	0	0							0.0005 UT	0.000521 UT	W006	0.000255	0.000255 UT	0.00026 U
DDx	Peristaltic - total	μg/L	3	0	0							0.0005 UJT	0.000521 UJT	W006	0.000255	0.000255 UT	0.00026 UJ
PAHs																	
Total PAHs	Peristaltic - total	μg/L	3	3	100	0.021 JT	0.0373 JT	W006	0.0312	0.0352 JT	0.0371 J	0.021 JT	0.0373 JT	W006	0.0312	0.0352 JT	0.0371 J
Phthalates			_	_	_												
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	3	0	0							0.29 U	0.45 U	W006	0.172	0.145 U	0.217 U
RM 05<06 Metals																	
Arsenic	Peristaltic - dissolved	μg/L	3	3	100	0.329	0.42	W009	0.37	0.362	0.414	0.329	0.42	W009	0.37	0.362	0.414
Arsenic	Peristaltic - particulate	μg/L	3	3	100	0.045	0.08	W009	0.059	0.052	0.0772	0.045	0.08	W009	0.059	0.052	0.0772
Arsenic	Peristaltic - total	μg/L	3	3	100	0.374	0.5	W009	0.429	0.414	0.491	0.374	0.5	W009	0.429	0.414	0.491
Chromium	Peristaltic - dissolved	μg/L	3	1	33	0.16 J	0.16 J	W009	0.16	0.16 J	0.16 J	0.16 J	0.2 U	W009	0.12	0.1 U	0.154 J
Chromium	Peristaltic - particulate	μg/L	3	2	67	0.14 J	0.38	W009	0.26	0.26 J	0.368 J	0.14 J	0.48 U	W009	0.253	0.24 U	0.366
Chromium	Peristaltic - total	μg/L	3	2	67	0.3	0.38	W009	0.34	0.34	0.376	0.3	0.48 U	W009	0.307	0.3	0.372
Copper	Peristaltic - dissolved	μg/L	3	3	100	0.5	0.73	W009	0.61	0.6	0.717	0.5	0.73	W009	0.61	0.6	0.717
Copper	Peristaltic - particulate	μg/L	3	3	100	0.3	0.7 J	W009	0.46	0.38	0.668 J	0.3 0.8	0.7 J	W009	0.46	0.38	0.668 J
Copper Zinc	Peristaltic - total Peristaltic - dissolved	μg/L μg/L	3	3	100 100	0.8 1.6	1.43 J 1.8 J	W009 W009	1.07 1.7	0.98 1.7	1.39 J 1.79 J	0.8 1.6	1.43 J 1.8 J	W009 W009	1.07 1.7	0.98 1.7	1.39 J 1.79 J
Zinc	Peristaltic - particulate	μg/L μg/L	3	3	100	0.6	1.7 J	W009	1.7	0.7	1.6 J	0.6	1.7 J	W009 W009	1.7	0.7	1.6 J
Zinc	Peristaltic - total	μg/L	3	3	100	2.3	3.5 J	W009	2.7	2.3	3.38 J	2.3	3.5 J	W009	2.7	2.3	3.38 J
Butyltins																	
Tributyltin ion PCBs ^c	Peristaltic - total	μg/L	3	I	33	0.0011 J	0.0011 J	W009	0.0011	0.0011 J	0.0011 J	0.0006 U	0.0071 U	W009	0.00165	0.0011 J	0.00331 J
Total PCBs	Peristaltic - total	μg/L	3	0	0							0.0025 UT	0.0025 UT	W009	0.00125	0.00125 UT	0.00125 U
Pesticides																	
Aldrin	Peristaltic - total	μg/L	3	0	0							0.000485 U	0.000532 U	W009	0.000253	0.00025 U	0.000264 U
Dieldrin Total chlordanes	Peristaltic - total	μg/L	3	0	0							0.000485 U 0.000485 UT	0.000532 U 0.000532 UT	W009 W009	0.000253	0.00025 U 0.00025 UT	0.000264 U
DDx	Peristaltic - total Peristaltic - total	μg/L μg/L	3	0	0						 	0.000485 UT	0.000532 UIT	W009 W009	0.000253 0.000253	0.00025 UT	0.000264 U 0.000264 UJ
PAHs	rensume - total	μg/L	3	O	Ü							0.000403 61	0.000332 031	11007	0.000233	0.00025 61	0.000204 63
Total PAHs	Peristaltic - total	μg/L	3	2	67	0.0343 JT	0.0779 JT	W009	0.0561	0.0561 J	0.0757 J	0.0074 UT	0.0779 JT	W009	0.0386	0.0343 JT	0.0735 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	3	0	0							0.28 U	0.41 U	W009	0.162	0.14 U	0.199 U
RM 06<07																	
Metals			_	_	100	0.21	0.45	W/010	0.200	0.274	0.465	0.21	0.45	W012	0.200	0.076	0.465
Arsenic	Peristaltic - dissolved	μg/L	6	6	100	0.31	0.47	W012	0.389	0.376	0.465	0.31	0.47	W012	0.389	0.376	0.465
Arsenic Arsenic	Peristaltic - particulate Peristaltic - total	μg/L μg/L	6	6 6	100 100	0.0425 0.353 T	0.09 0.56	W012 W012	0.0616 0.451	0.0605 0.436	0.085 0.55	0.0425 0.353 T	0.09 0.56	W012 W012	0.0616 0.451	0.0605 0.436	0.085 0.55
Chromium	Peristaltic - dissolved	μg/L μg/L	6	2	33	0.14 J	0.17 J	W012 W012	0.155	0.155 J	0.169 J	0.333 T 0.14 J	0.19 U	W012 W015	0.108	0.0925 U	0.163 J
Chromium	Peristaltic - particulate	μg/L	6	5	83	0.115 J	0.59	W012	0.306	0.325	0.548	0.115 J	0.59	W012	0.285	0.253	0.538
Chromium	Peristaltic - total	μg/L	6	5	83	0.26	0.59	W012	0.368	0.325 T	0.548	0.26	0.59	W012	0.337	0.305	0.538
Copper	Peristaltic - dissolved	μg/L	6	6	100	0.42	0.85 J	W012	0.652	0.69	0.848 J	0.42	0.85 J	W012	0.652	0.69	0.848 J
Copper	Peristaltic - particulate	μg/L	6	6	100	0.265	1.08 J	W012	0.458	0.355	0.913 J	0.265	1.08 J	W012	0.458	0.355	0.913 J
Copper	Peristaltic - total	μg/L	6	6	100	0.685 T	1.93 J	W012	1.11	1.01	1.76 J	0.685 T	1.93 J	W012	1.11	1.01	1.76 J
Zinc	Peristaltic - dissolved	μg/L	6	6	100	1.5	2.2	W015	1.77	1.75 J	2.1	1.5	2.2	W015	1.77	1.75 J	2.1
Zinc	Peristaltic - particulate ^d	μg/L	6	6	100	0	2.5 J	W012	1.05	0.95	2.2 J	0	2.5 J	W012	1.05	0.95	2.2 J
Zinc	Peristaltic - total	μg/L	6	6	100	2 T	4.3 J	W012	2.78	2.7 J	3.95 J	2 T	4.3 J	W012	2.78	2.7 J	3.95 J
Butyltins Tributyltin ion	Peristaltic - total	п∞/Т	6	0	0							0.0006 U	0.0071 U	W012; W015	0.00138	0.0003 U	0.00355 U
PCBs ^c	i cristanic - total	μg/L	Ü	U	U							0.0000 0	0.00/1 0	W012; W013	0.00138	0.0003 0	0.00333 U
Total PCBs	XAD Column - dissolved	μg/L	3	3	100	0.000254 JT	0.000639 JT	W015	0.000432	0.000404 JT	0.000616 J	0.000254 JT	0.000639 JT	W015	0.000432	0.000404 JT	0.000616 J
Total PCBs	XAD Filter - particulate	$\mu g/L$	3	3	100	0.000285 JT	0.00129 T	W015	0.000658	0.000398 JT	0.0012 J	0.000285 JT	0.00129 T	W015	0.000658	0.000398 JT	0.0012 J
Total PCBs	Peristaltic - total	μg/L	3	0	0			 W/015				0.0025 UJT	0.0026 UT	W012	0.00127	0.00125 UT	0.0013 U
Total PCBs	XAD Column+Filter - total	μg/L	3	3	100	0.000539 J	0.00193 J	W015	0.00109	0.000802 J	0.00182 J	0.000539 J	0.00193 J	W015	0.00109	0.000802 J	0.00182 J

Table 5.4-9d. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (West Channel Single-Point Locations).

Table 3.4-9d. Summary Statistics to	of indicator Contaminants in Surfa	acc water,	Low-1 low Ever	nts (West Chan	ner single-r	mit Locations).		Detected Concer	ntrations				Det	ected and Not Detected	l Concentrations	ı	
Analyte	Method	Units	# Analyzed	# Detected '	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
PCDD/Fs Homologs			" TITILITY DOG	" Detected	· Detected	<u> </u>		· ·				,	, , , , , , , , , , , , , , , , , , ,	· ·	· · · · · · · · · · · · · · · · · · ·	, ,	
Total PCDD/Fs	XAD Column - dissolved	$\mu g/L$	3	3	100	0.00000201 JT	0.00000402 T	W015	0.000003	0.00000296 T	0.00000391	0.00000201 JT	0.00000402 T	W015	0.000003	0.00000296 T	0.00000391
Total PCDD/Fs	XAD Filter - particulate	μg/L	3	3	100	0.0000436 T	0.000078 T	W015	0.0000563	0.0000474 T	0.0000749	0.0000436 T	0.000078 T	W015	0.0000563	0.0000474 T	0.0000749
Total PCDD/Fs	XAD Column+Filter - total	μg/L	3	3	100	0.0000456 J	0.000082	W015	0.0000593	0.0000504	0.0000789	0.0000456 J	0.000082	W015	0.0000593	0.0000504	0.0000789
PCDD/Fs TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	2	3	100	0.0000000238 JT	0.0000000334 JT	W015	0.000000027	0.0000000239 JT	0.0000000325 J	0.0000000238 JT	0.0000000334 JT	W015	0.000000027	0.0000000239 JT	0.0000000325 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L μg/L	3	3	100	0.0000000238 JT	0.0000000334 JT 0.0000000469 JT	W015	0.000000027	0.0000000239 JT 0.0000000417 JT	0.0000000323 J	0.0000000238 JT 0.0000000333 JT	0.0000000334 JT 0.0000000469 JT	W015	0.000000027	0.0000000239 JT 0.0000000417 JT	0.0000000323 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	3	3	100	0.000000357 J	0.000000502 J	W015	0.000000433	0.000000441 J	0.000000496 J	0.000000357 J	0.000000502 J	W015	0.000000433	0.000000441 J	0.000000496 J
Pesticides		1.0															
Aldrin	XAD Column - dissolved	$\mu g/L$	3	3	100	0.00000115 J	0.00000327 J	W015	0.00000195	0.00000142 J	0.00000309 J	0.00000115 J	0.00000327 J	W015	0.00000195	0.00000142 J	0.00000309 J
Aldrin	XAD Filter - particulate	μg/L	3	3	100	0.000000693 J	0.000013	W015	0.00000498	0.00000126 J	0.0000118 J	0.000000693 J	0.000013	W015	0.00000498	0.00000126 J	0.0000118 J
Aldrin	Peristaltic - total	μg/L	3	0	0							0.000481 U	0.00051 U	W012	0.000249	0.00025 U	0.000255 U
Aldrin Dieldrin	XAD Column+Filter - total XAD Column - dissolved	μg/L	3	3	100 100	0.00000211 J 0.000036	0.0000163 J 0.0000468	W015 W015	0.00000693 0.0000423	0.00000241 J 0.0000441	0.0000149 J 0.0000465	0.00000211 J 0.000036	0.0000163 J 0.0000468	W015 W015	0.00000693 0.0000423	0.00000241 J 0.0000441	0.0000149 J 0.0000465
Dieldrin	XAD Column - dissolved XAD Filter - particulate	μg/L μg/L	3	3	100	0.000038 0.0000387 J	0.0000468	W015	0.0000423	0.0000441 0.00000685 J	0.0000463 0.0000148 J	0.000038 0.0000387 J	0.0000468	W015	0.0000423	0.0000441 0.00000685 J	0.0000463 0.0000148 J
Dieldrin	Peristaltic - total	μg/L μg/L	3	0	0	0.00000367 3	0.0000157				0.00001 4 0 3	0.000481 U	0.00051 U	W013	0.000249	0.0005 U	0.000255 U
Dieldrin	XAD Column+Filter - total	μg/L	3	3	100	0.0000399 J	0.0000625	W015	0.0000511	0.000051 J	0.0000613 J	0.0000399 J	0.0000625	W015	0.0000511	0.000051 J	0.0000613 J
Total chlordanes	XAD Column - dissolved	μg/L	3	3	100	0.0000216 JT	0.0000555 JT	W015	0.0000341	0.0000252 JT	0.0000525 J	0.0000216 JT	0.0000555 JT	W015	0.0000341	0.0000252 JT	0.0000525 J
Total chlordanes	XAD Filter - particulate	$\mu g/L$	3	3	100	0.0000127 JT	0.000185 JT	W015	0.0000716	0.0000172 JT	0.000168 J	0.0000127 JT	0.000185 JT	W015	0.0000716	0.0000172 JT	0.000168 J
Total chlordanes	Peristaltic - total	μg/L	3	0	0							0.000481 UT	0.00051 UT	W012	0.000249	0.00025 UT	0.000255 U
Total chlordanes	XAD Column+Filter - total	μg/L	3	3	100 100	0.0000343 J	0.000241 J	W015	0.000106	0.0000424 J	0.000221 J	0.0000343 J	0.000241 J	W015 W015	0.000106	0.0000424 J	0.000221 J 0.00332
DDx DDx	XAD Column - dissolved XAD Filter - particulate	μg/L μg/L	3	3	100	0.00198 T 0.00161 T	0.00346 T 0.00421 T	W015 W015	0.00251 0.00298	0.0021 T 0.00312 T	0.00332 0.0041	0.00198 T 0.00161 T	0.00346 T 0.00421 T	W015	0.00251 0.00298	0.0021 T 0.00312 T	0.00332
DDx	Peristaltic - total	μg/L μg/L	3	1	33	0.000839 T	0.000421 T	W012	0.000238	0.000312 T	0.000839 T	0.0005 UT	0.000421 T	W012	0.00238	0.000255 UT	0.000781
DDx	XAD Column+Filter - total	μg/L	3	3	100	0.00359	0.00767	W015	0.00549	0.00522	0.00743	0.00359	0.00767	W015	0.00549	0.00522	0.00743
PAHs																	
Total PAHs	XAD Column - dissolved	$\mu g/L$	3	3	100	0.0564 JT	0.169 JT	W015	0.096	0.0625 JT	0.158 J	0.0564 JT	0.169 JT	W015	0.096	0.0625 JT	0.158 J
Total PAHs	XAD Filter - particulate	μg/L	3	3	100	0.0178 T	0.0619 T	W015	0.0393	0.0381 T	0.0595	0.0178 T	0.0619 T	W015	0.0393	0.0381 T	0.0595
Total PAHs	Peristaltic - total	μg/L	6	6	100 100	0.0172 JT	2.46 JT	W012	0.649	0.0353 J	2.17 J	0.0172 JT	2.46 JT	W012	0.649	0.0353 J	2.17 J
Total PAHs Phthalates	XAD Column+Filter - total	μg/L	3	3	100	0.0803 J	0.231 J	W015	0.135	0.0945 J	0.217 J	0.0803 J	0.231 J	W015	0.135	0.0945 J	0.217 J
Bis(2-ethylhexyl) phthalate	XAD Column - dissolved	μg/L	3	1	33	0.00351 J	0.00351 J	W015	0.00351	0.00351 J	0.00351 J	0.00346 U	0.00566 U	W015	0.00269	0.00283 U	0.00344 J
Bis(2-ethylhexyl) phthalate	XAD Filter - particulate	μg/L μg/L	3	2	67	0.00424 J	0.033	W015	0.0186	0.0186 J	0.0316 J	0.00424 J	0.033	W015	0.0138	0.00428 U	0.0301
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	6	0	0							0.29 U	2.1 U	W015	0.383	0.26 U	0.896 U
Bis(2-ethylhexyl) phthalate	XAD Column+Filter - total	$\mu g/L$	3	2	67	0.00775 J	0.033	W015	0.0204	0.0204 J	0.0317 J	0.00775 J	0.033	W015	0.015	0.00775 J	0.0305 J
RM 07<08																	
Metals Arsenic	Peristaltic - dissolved	ua/I	7	7	100	0.33	0.47	W017	0.384	0.376	0.464	0.33	0.47	W017	0.384	0.376	0.464
Arsenic	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	7	7	100	0.043	0.128	W017 W017	0.0711	0.061	0.404	0.043	0.128	W017 W017	0.0711	0.061	0.404
Arsenic	Peristaltic - total	μg/L μg/L	7	7	100	0.373	0.56	W017	0.455	0.437	0.548	0.373	0.56	W017	0.455	0.437	0.548
Chromium	Peristaltic - dissolved	μg/L	7	2	29	0.12 J	0.17 J	W017	0.145	0.145 J	0.168 J	0.12 J	0.21 U	W016-1	0.102	0.085 U	0.155 J
Chromium	Peristaltic - particulate	$\mu g/L$	7	4	57	0.15 J	0.3	W016-1	0.228	0.23 J	0.299	0.15 J	0.48 U	W016-1	0.221	0.23 U	0.297
Chromium	Peristaltic - total	μg/L	7	4	57	0.27	0.34	W017	0.3	0.295	0.334	0.27	0.48 U	W016-1	0.262	0.27	0.328
Copper	Peristaltic - dissolved	μg/L	7	7	100 100	0.37 0.17	1.12	W016-1 W017	0.646	0.61 0.36	1.02 J 0.877 J	0.37 0.17	1.12	W016-1 W017	0.646 0.453	0.61 0.36	1.02 J 0.877 J
Copper Copper	Peristaltic - particulate Peristaltic - total	μg/L μg/L	7	7	100	0.17	1.77	W017 W017	0.453 1.1	0.36	0.877 J 1.65 J	0.69	1.77	W017 W017	0.433 1.1	0.36	1.65 J
Zinc	Peristaltic - total Peristaltic - dissolved	μg/L μg/L	7	5	71	1.6	2.15 J	W017 W016-1	1.79	1.7	2.08 J	1.4 U	2.15 J	W017 W016-1	1.49	1.7	2.05 J
Zinc	Peristaltic - particulate	μg/L	7	7	100	0.45 J	2.1	W016-1	1.21	0.9	2.07	0.45 J	2.1	W016-1	1.21	0.9	2.07
Zinc	Peristaltic - total	μg/L	7	7	100	2	3.5 J	W017	2.49	2.4	3.23 J	2	3.5 J	W017	2.49	2.4	3.23 J
Butyltins														W016-1; W016-2;			
Tributyltin ion	Peristaltic - total	μg/L	7	0	0							0.0006 U	0.0071 U	W017	0.00169	0.0003 U	0.00355 U
PCBs^c Total PCBs	XAD Column - dissolved	µo/T	2	3	100	0.000137 JT	0.000581 JT	W016-1	0.000322	0.000247 JT	0.000548 J	0.000137 JT	0.000581 JT	W016-1	0.000322	0.000247 JT	0.000548 Ј
Total PCBs	XAD Column - dissolved XAD Filter - particulate	μg/L μg/L	3	3	100	0.000137 JT 0.000201 JT	0.000581 JT 0.000695 JT	W016-1 W016-1	0.000322	0.000247 JT 0.000238 JT	0.000548 J 0.000649 J	0.000137 JT 0.000201 JT	0.000581 JT 0.000695 JT	W016-1 W016-1	0.000322	0.000247 JT 0.000238 JT	0.000548 J 0.000649 J
Total PCBs	Peristaltic - total	μg/L μg/L	2	0	0	0.000201 31	0.000093 31	W010-1	0.000378	0.000238 31	0.000049 3	0.0025 UT	0.00256 UT	W010-1 W017	0.00127	0.000238 J1 0.00127 U	0.00128 U
Total PCBs	XAD Column+Filter - total	μg/L	3	3	100	0.000375 J	0.00128 J	W016-1	0.0007	0.000448 J	0.00119 J	0.000375 J	0.00128 J	W016-1	0.0007	0.000448 J	0.00119 J
Pesticides																	
Aldrin	XAD Column - dissolved	μg/L	3	2	67	0.000000702 J	0.0000014 J	W016-1	0.00000105	0.00000105 J	0.00000137 J	0.000000702 J	0.00000144 U	W016-1	0.000000941	0.00000072 U	0.00000133 J
Aldrin	XAD Filter - particulate	μg/L	3	2	67	0.000000652 Ј	0.000000979 Ј	W016-1	0.000000816	0.000000816 J	0.000000963 J	0.000000504 UJ	0.000000979 J	W016-1	0.000000628	0.000000652 J	0.000000946 J
Aldrin Aldrin	Peristaltic - total XAD Column+Filter - total	μg/L	3	0	0 100	0.000000702 J	0.00000205 J	 W016-1	0.00000124	0.000000979 J	0.00000194 J	0.000481 U 0.00000702 J	0.00051 U 0.00000205 J	W017 W016-1	0.00025 0.00000124	0.000255 U 0.000000979 J	0.000255 U 0.00000194 J
Aldrin Dieldrin	XAD Column+Filter - total XAD Column - dissolved	μg/L μg/L	3	3	100	0.00000702 J	0.00000205 J	W016-1 W016-1	0.00000124	0.00000979 J	0.0000194 J	0.00000702 J	0.00000205 J 0.0000424	W016-1 W016-1	0.00000124	0.000000979 J	0.0000194 J 0.0000417
Dieldrin	XAD Filter - particulate	μg/L μg/L	3	2	67	0.0000337 J	0.0000424 0.00000456 J	W016-1	0.0000397	0.0000347 0.00000397 J	0.0000417 0.0000045 J	0.000023 0.00000203 UJ	0.0000424 0.00000456 J	W016-1	0.00000394	0.0000347 0.00000337 J	0.0000417 0.00000444 J
Dieldrin	Peristaltic - total	μg/L μg/L	3	0	0							0.000481 U	0.00051 U	W017	0.00025	0.000255 U	0.000255 U

Table 5.4-9d. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (West Channel Single-Point Locations).

			Low How Even	(,-		Detected Concent	trations				Det	ected and Not Detected	Concentrations		
								Maximum			95 th	Minimum	Maximum	Maximum	Mean	Median	95th Percentile
Analyte	Method	Units	# Analyzed	# Detected		Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Dieldrin	XAD Column+Filter - total	μg/L	3	3	100	0.000023 J	0.000047 J	W016-1	0.0000361	0.0000383 J	0.0000461 J	0.000023 J	0.000047 J	W016-1	0.0000361	0.0000383 J	0.0000461 J
Total chlordanes Total chlordanes	XAD Column - dissolved	μg/L	3	3	100 100	0.000014 JT	0.0000235 JT	W016-1	0.0000194	0.0000206 JT	0.0000232 J	0.000014 JT	0.0000235 JT 0.0000155 JT	W016-1 W016-1	0.0000194	0.0000206 JT 0.00000944 JT	0.0000232 J 0.0000149 J
Total chlordanes	XAD Filter - particulate Peristaltic - total	μg/L μg/L	3	0	0	0.00000739 JT	0.0000155 JT	W016-1	0.0000108	0.00000944 JT 	0.0000149 J	0.00000739 JT 0.000481 UT	0.0000133 JT 0.00051 UT	W016-1 W017	0.0000108 0.00025	0.0000944 JT 0.000255 UT	0.0000149 J 0.000255 U
Total chlordanes	XAD Column+Filter - total	μg/L μg/L	3	3	100	0.0000214 J	0.000039 J	W016-1	0.0000301	0.00003 J	0.0000381 J	0.0000214 J	0.00031 C1	W016-1	0.00023	0.000233 UT	0.000233 C
DDx	XAD Column - dissolved	μg/L	3	3	100	0.000494 JT	0.00297 T	W016-1	0.00142	0.000781 T	0.00275	0.000494 JT	0.00297 T	W016-1	0.00142	0.000781 T	0.00275
DDx	XAD Filter - particulate	μg/L	3	3	100	0.000743 JT	0.00679 T	W016-1	0.00324	0.00219 T	0.00633	0.000743 JT	0.00679 T	W016-1	0.00324	0.00219 T	0.00633
DDx	Peristaltic - total	$\mu g/L$	3	1	33	0.000693 JT	0.000693 JT	W017	0.000693	0.000693 JT	0.000693 JT	0.00051 UT	0.000693 JT	W017	0.000401	0.000255 UT	0.000649 J
DDx	XAD Column+Filter - total	μg/L	3	3	100	0.00124 J	0.00976	W016-1	0.00466	0.00297	0.00908	0.00124 J	0.00976	W016-1	0.00466	0.00297	0.00908
PAHs	VAD CL PLI	Œ	2	2	100	0.0101 IT	0.0672 IT	W016 1	0.0206	0.0112 IT	0.0617.1	0.0101 77	0.0672 IT	W0161	0.0206	0.0112 17	0.0617.1
Total PAHs Total PAHs	XAD Column - dissolved XAD Filter - particulate	μg/L μg/L	3	3	100 100	0.0101 JT 0.00686 T	0.0673 JT 0.0321 T	W016-1 W016-1	0.0296 0.0164	0.0113 JT 0.0102 JT	0.0617 J 0.0299 J	0.0101 JT 0.00686 T	0.0673 JT 0.0321 T	W016-1 W016-1	0.0296 0.0164	0.0113 JT 0.0102 JT	0.0617 J 0.0299 J
Total PAHs	Peristaltic - total	μg/L μg/L	7	3	43	0.00080 T	0.0489 JT	W017	0.0331	0.0102 JT 0.0388 JT	0.0479 J	0.0074 UJT	0.0321 T 0.0489 JT	W010-1	0.0172	0.0102 JT 0.008 UT	0.0259 J 0.0459 J
Total PAHs	XAD Column+Filter - total	μg/L μg/L	3	3	100	0.0110 J1	0.0994 J	W016-1	0.046	0.0203 J	0.0915 J	0.0182 J	0.0994 J	W016-1	0.046	0.0203 J	0.0915 J
Phthalates		1.0															
Bis(2-ethylhexyl) phthalate	XAD Column - dissolved	$\mu g/L$	3	1	33	0.00435 J	0.00435 J	W016-1	0.00435	0.00435 J	0.00435 J	0.00338 U	0.00435 J	W016-1	0.00272	0.00213 U	0.00413 J
Bis(2-ethylhexyl) phthalate	XAD Filter - particulate	μg/L	3	1	33	0.00457 J	0.00457 J	W016-1	0.00457	0.00457 J	0.00457 J	0.00457 J	0.00749 U	W016-1	0.00387	0.00375 U	0.00449 J
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	7	0	0							0.27 U	4.1 U	W017	0.531	0.145 U	1.66 U
Bis(2-ethylhexyl) phthalate	XAD Column+Filter - total	μg/L	3	1	33	0.00892 J	0.00892 J	W016-1	0.00892	0.00892 J	0.00892 J	0.0066 U	0.00892 J	W016-1	0.00532	0.00375 U	0.0084 J
RM 08<09 Metals																	
Arsenic	Peristaltic - dissolved	μg/L	3	3	100	0.307	0.46	W019	0.385	0.389	0.453	0.307	0.46	W019	0.385	0.389	0.453
Arsenic	Peristaltic - particulate	μg/L	3	3	100	0.0565	0.08	W019	0.0658	0.061	0.0781	0.0565	0.08	W019	0.0658	0.061	0.0781
Arsenic	Peristaltic - total	μg/L	3	3	100	0.368	0.54	W019	0.451	0.446 T	0.531	0.368	0.54	W019	0.451	0.446 T	0.531
Chromium	Peristaltic - dissolved	$\mu g/L$	3	2	67	0.13 J	0.16 J	W019	0.145	0.145 J	0.159 J	0.13 J	0.21 U	W019	0.132	0.13 J	0.157 J
Chromium	Peristaltic - particulate	$\mu g/L$	3	3	100	0.14 J	0.51	W019	0.282	0.195 J	0.479 J	0.14 J	0.51	W019	0.282	0.195 J	0.479 J
Chromium	Peristaltic - total	μg/L	3	3	100	0.3	0.51	W019	0.378	0.325 T	0.492	0.3	0.51	W019	0.378	0.325 T	0.492
Copper	Peristaltic - dissolved Peristaltic - particulate	μg/L	3	3	100 100	0.44 0.36	0.85 J 0.76 J	W019 W019	0.637 0.503	0.62 0.39	0.827 J 0.723 J	0.44 0.36	0.85 J 0.76 J	W019 W019	0.637 0.503	0.62 0.39	0.827 J 0.723 J
Copper Copper	Peristaltic - particulate Peristaltic - total	μg/L μg/L	3	3	100	0.30	0.76 J 1.61 J	W019 W019	1.14	1.01 T	1.55 J	0.8	1.61 J	W019 W019	1.14	1.01 T	1.55 J
Zinc	Peristaltic - dissolved	μg/L μg/L	3	3	100	1.6	1.74	W019	1.68	1.7	1.74	1.6	1.74	W019	1.68	1.7	1.74
Zinc	Peristaltic - particulate	μg/L	3	3	100	0.6	1.98	W019	1.24	1.15	1.9	0.6	1.98	W019	1.24	1.15	1.9
Zinc	Peristaltic - total	μg/L	3	3	100	2.2	3.72	W019	2.92	2.85 T	3.63	2.2	3.72	W019	2.92	2.85 T	3.63
Butyltins																	
Tributyltin ion PCBs^c	Peristaltic - total	μg/L	3	0	0							0.0006 U	0.0071 U	W019	0.00138	0.0003 U	0.00323 U
Total PCBs	Peristaltic - total	μg/L	3	0	0							0.0025 UT	0.00263 UT	W019	0.00128	0.00127 UT	0.00131 U
Pesticides																	
Aldrin	Peristaltic - total	μg/L	3	0	0							0.000481 U	0.0005 U	W019	0.000244	0.000243 U	0.000249 U
Dieldrin	Peristaltic - total	μg/L	3	0	0							0.000481 U	0.0005 U	W019	0.000244	0.000243 U	0.000249 U
Total chlordanes DDx	Peristaltic - total Peristaltic - total	μg/L μg/L	3	0	0 33	0.00115 T	0.00115 T	W019	0.00115	0.00115 T	0.00115 T	0.000481 UT 0.000481 UT	0.0005 UT 0.00115 T	W019 W019	0.000244 0.000544	0.000243 UT 0.000243 UJT	0.000249 U 0.00106 J
PAHs	renstanc - total	μg/L	3	1	33	0.00113 1	0.00113 1	W019	0.00113	0.00113 1	0.00113 1	0.000481 01	0.00113 1	W019	0.000344	0.000243 UJ1	0.00100 J
Total PAHs	Peristaltic - total	μg/L	3	2	67	0.0026 JT	0.0492 JT	W019	0.0259	0.0259 J	0.0469 J	0.0026 JT	0.0492 JT	W019	0.0185	0.0037 UT	0.0447 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	3	0	0							0.29 U	0.44 U	W019	0.17	0.145 U	0.213 U
RM 09<10																	
Metals Arsenic	Peristaltic - dissolved	/I	2	3	100	0.397	0.493	W022	0.447	0.45	0.489	0.397	0.493	W022	0.447	0.45	0.489
Arsenic	Peristaltic - particulate	μg/L μg/L	3	3	100	0.066	0.493	W022 W022	0.107	0.43	0.489	0.066	0.493	W022 W022	0.447	0.43	0.166
Arsenic	Peristaltic - total	μg/L μg/L	3	3	100	0.463	0.668	W022	0.554	0.53	0.654	0.463	0.668	W022	0.554	0.53	0.654
Chromium	Peristaltic - dissolved	μg/L	3	3	100	0.11 J	0.28	W022	0.193	0.19 J	0.271 J	0.11 J	0.28	W022	0.193	0.19 J	0.271 J
Chromium	Peristaltic - particulate ^d	μg/L	3	3	100	0	0.22 J	W022	0.133	0.18 J	0.216 J	0	0.22 J	W022	0.133	0.18 J	0.216 J
Chromium	Peristaltic - total	μg/L	3	2	67	0.33	0.37	W022	0.35	0.35	0.368	0.33	0.44 U	W022	0.307	0.33	0.366
Copper	Peristaltic - dissolved	μg/L	3	3	100	0.49	1.64 J	W022	1	0.88	1.56 J	0.49	1.64 J	W022	1	0.88	1.56 J
Copper	Peristaltic - particulate ^d	μg/L	3	3	100	0 J	0.56	W022	0.233	0.14	0.518	0 J	0.56	W022	0.233	0.14	0.518
Copper	Peristaltic - total	μg/L	3	3	100	1.02	1.27 J	W022	1.11	1.05	1.25 J	1.02	1.27 J	W022	1.11	1.05	1.25 J
Zinc	Peristaltic - dissolved	μg/L	3	3	100	2.7	41.9	W022	16.1	3.7	38.1	2.7	41.9	W022	16.1	3.7	38.1
Zinc	Peristaltic - particulate	μg/L	3	3	100	1.3	16	W022	7.12	4.07	14.8	1.3	16	W022	7.12	4.07	14.8
Zinc Putalting	Peristaltic - total	μg/L	3	3	100	5	57.9	W022	23.2	6.77	52.8	5	57.9	W022	23.2	6.77	52.8
Butyltins Tributyltin ion	Peristaltic - total	μg/L	3	0	0							0.0006 U	0.0071 U	W022	0.00138	0.0003 U	0.00323 U
PCBs ^c	- cristance total	μ <u>5</u> / L	3	Ü	Ü							0.0000 0	0.0071 0	11022	0.00130	0.0003 0	0.00323 0
Total PCBs	Peristaltic - total	μg/L	3	1	33	0.00467 JT	0.00467 JT	W022	0.00467	0.00467 JT	0.00467 JT	0.0025 UT	0.00467 JT	W022	0.00239	0.00125 UT	0.00433 J

Table 5.4-9d. Summary Statistics for Indicator Contaminants in Surface Water, Low-Flow Events (West Channel Single-Point Locations).

								Detected Concen	trations				Det	ected and Not Detected	d Concentrations		
Analyte	Method	Units	# Analyze	d # Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Pesticides																	
Aldrin	Peristaltic - total	μg/L	3	0	0							0.00049 U	0.0005 U	W022	0.000247	0.000245 U	0.00025 U
Dieldrin	Peristaltic - total	μg/L	3	0	0							0.00049 U	0.0005 U	W022	0.000247	0.000245 U	0.00025 U
Total chlordanes	Peristaltic - total	μg/L	3	0	0							0.00049 UT	0.0005 UT	W022	0.000247	0.000245 UT	0.00025 U
DDx	Peristaltic - total	μg/L	3	0	0							0.00049 UT	0.0005 UJT	W022	0.000247	0.000245 UT	0.00025 UJ
PAHs																	
Total PAHs	Peristaltic - total	μg/L	3	3	100	0.0072 JT	0.0213 JT	W022	0.0164	0.0207 JT	0.0212 J	0.0072 JT	0.0213 JT	W022	0.0164	0.0207 JT	0.0212 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	3	0	0							0.27 U	0.81 U	W022	0.225	0.135 U	0.378 U

-- data not available.

DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/Fs - dioxins/furans

RM - River Mile

TCDD - tetrachlorodibenzo-p-dioxin

TCDD - tetrachlorodibenz TEQ - toxicity equivalent

XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.

$U-The\ material\ was\ analyzed\ for,\ but\ was\ not\ detected.\ The\ associated\ numerical\ value\ is\ the\ sample\ quantitation\ limit.$

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

Table 5.4-10. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (Transect Locations).

•		,		`				Detected Concer	trations				Det	ected and Not Detec	ted Concentratio	ons	
Annalinda	M.d., J	¥1:4				3.5	a	Maximum	Mari	h	95 th	Minimum	Maximum	Maximum	Mean (half DL)	Median	95th Percentile
Analyte Metals	Method	Units	# Analyzed	# Detected 0	% Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(nail DL)	(half DL) ^b	(half DL) ^b
Arsenic	Peristaltic - dissolved	μg/L	14	0	0							0.372 U	0.586 U	W025W	0.201	0.197 U	0.234 UJ
Arsenic	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	14	4	29	0.439 J	0.476 J	W005	0.455	0.452 J	0.473 J	0.394 UJ	0.647 UJ	W025W	0.289	0.197 U 0.22 UJ	0.464 J
Arsenic	Peristaltic - total	μg/L μg/L	14	4	29	0.439 J	0.476 J	W005	0.455	0.452 J	0.473 J	0.394 UJ	0.647 UJ	W025W	0.289	0.22 UJ	0.464 J
Chromium	Peristaltic - dissolved	μg/L μg/L	14	0	0	0.157 3			0.135	0.132 3		0.14 U	0.23 U	W005	0.0846	0.08 U	0.105 U
Chromium	Peristaltic - particulate	μg/L	14	0	0							0.21 U	0.39 U	W027	0.144	0.143 U	0.192 U
Chromium	Peristaltic - total	μg/L	14	0	0							0.21 U	0.39 U	W027	0.144	0.143 U	0.192 U
Copper	Peristaltic - dissolved	μg/L	14	14	100	0.46	1.23	W023M	0.582	0.55	0.814	0.46	1.23	W023M	0.582	0.55	0.814
Copper	Peristaltic - particulate ^d	μg/L	14	14	100	0	0.62	W024	0.326	0.32	0.51	0	0.62	W024	0.326	0.32	0.51
Copper	Peristaltic - total	μg/L μg/L	14	14	100	0.65	1.1	W024	0.867	0.86	1.05	0.65	1.1	W024	0.867	0.86	1.05
Zinc	Peristaltic - dissolved	μg/L	14	1	7	5.1	5.1	W025M	5.1	5.1	5.1	1.7 U	5.1	W025M	1.67	1.35 U	3.12
Zinc	Peristaltic - particulate ^d	μg/L	14	1	7	0	0	W025M	0		0	0	5.4 U	W024	1.81	2 U	2.41 U
Zinc	Peristaltic - total	μg/L μg/L	14	0	0			VV 0251VI				2.6 U	5.4 U	W024 W024	1.9	1.85 U	2.41 UJ
Butyltins	i cristante - totai	μg/L	14	O	U							2.0 0	3.4 0	W 024	1.9	1.65 0	2.41 03
Tributyltin ion	Peristaltic - total	μg/L	14	2.	14	0.001 J	0.011 J	W024	0.006	0.006 J	0.0105 J	0.0006 UJ	0.011 J	W024	0.00111	0.0003 UJ	0.0045 J
PCBs ^c	1 onstante total	F6.2		-		0.001	0.011		0.000	0.000	0.0100	0.0000	0.011		0.00111	0.0003 6	0.00 15 0
Total PCBs	XAD Column - dissolved	μg/L	14	14	100	0.0000777 JT	0.000954 JT	W025E	0.000218	0.000158 J	0.00052 J	0.0000777 JT	0.000954 JT	W025E	0.000218	0.000158 J	0.00052 J
Total PCBs	XAD Filter - particulate	$\mu g/L$	14	14	100	0.0000399 JT	0.000408 JT	W023E	0.000154	0.000124 J	0.000361 J	0.0000399 JT	0.000408 JT	W023E	0.000154	0.000124 J	0.000361 J
Total PCBs	XAD Column+Filter - total	μg/L	14	14	100	0.000121 J	0.00129 J	W025E	0.000372	0.000292 J	0.00081 J	0.000121 J	0.00129 J	W025E	0.000372	0.000292 J	0.00081 J
PCDD/Fs Homologs																	
Total PCDD/Fs	XAD Column - dissolved	μg/L	14	14	100	0.000000077 T	0.0000155 JT	W027	0.00000481	0.00000428	0.0000115 J	0.000000077 T	0.0000155 JT	W027	0.00000481	0.00000428	0.0000115 J
Total PCDD/Fs	XAD Filter - particulate	μg/L	14	14	100	0.00000543 JT	0.000109 T	W023E	0.0000309	0.0000252	0.0000668	0.00000543 JT	0.000109 T	W023E	0.0000309	0.0000252	0.0000668
Total PCDD/Fs	XAD Column+Filter - total	μg/L	14	14	100	0.00000551 J	0.000118	W023E	0.0000357	0.000027	0.0000754 J	0.00000551 J	0.000118	W023E	0.0000357	0.000027	0.0000754 J
PCDD/Fs		_						*****						*****			
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	14	14	100	0.00000000033 JT	0.0000000656 JT	W027		0.00000000901 J	0.0000000558 J	0.00000000033 JT	0.0000000656 JT	W027		0.00000000901 J	0.0000000558 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L	14	14	100	0.0000000127 JT	0.000000245 JT	W023E	0.00000007	0.0000000593 J	0.000000149 J	0.0000000127 JT	0.000000245 JT	W023E	0.00000007	0.0000000593 J	0.000000149 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	14	14	100	0.0000000133 J	0.000000278 Ј	W023E	0.0000000858	0.0000000743 J	0.000000187 J	0.0000000133 J	0.000000278 J	W023E	0.0000000858	0.0000000743 J	0.000000187 J
Pesticides Aldrin	XAD Column - dissolved	~/T	14	7	50	0.0000011 J	0.00000366 J	W005	0.00000227	0.00000201 J	0.00000362 J	0.0000011 J	0.00000724 U	W027	0.00000191	0.00000179 J	0.00000363 J
Aldrin	XAD Column - dissolved XAD Filter - particulate	μg/L μg/L	14	1	29	0.0000011 J	0.00000366 J 0.00000263 J	W003 W027	0.00000227	0.00000201 J 0.00000176 J	0.00000362 J 0.00000257 J	0.0000011 J	0.00000724 U 0.00000263 J	W027 W027	0.00000191	0.00000179 J 0.00000082 U	0.00000363 J 0.00000237 J
Aldrin	Peristaltic - total	μg/L μg/L	1	0	0	0.00000119 3	0.00000203 3	W 027	0.00000184	0.00000170 3	0.00000237 3	0.00047 U	0.00047 U	W027 W027	0.0000378	0.0000032 U	0.0000237 J 0.000235 U
Aldrin	XAD Column+Filter - total	μg/L μg/L	14	9	64	0.0000011 J	0.00000575 J	W027	0.00000258	0.00000204 J	0.00000491 J	0.000011 J	0.000077 U	W027 W027	0.0000233	0.000233 C	0.0000233 C
Dieldrin	XAD Column - dissolved	μg/L μg/L	14	14	100	0.0000011 J	0.0000467 J	W024	0.0000333	0.0000315 J	0.0000451 J	0.0000011 J	0.0000467 J	W024	0.0000333	0.00000101 J	0.0000425 J
Dieldrin	XAD Filter - particulate	μg/L	14	6	43	0.0000012 J	0.00000785 J	W024	0.0000046	0.00000479 J	0.00000763 J	0.0000012 J	0.00000785 J	W024	0.00000289	0.00000192 J	0.00000728 J
Dieldrin	Peristaltic - total	μg/L	1	0	0							0.0004 U	0.0004 U	W027	0.0002	0.0002 U	0.0002 U
Dieldrin	XAD Column+Filter - total	μg/L	14	14	100	0.0000251 J	0.0000537 J	W024	0.0000352	0.0000331 J	0.0000501 J	0.0000251 J	0.0000537 J	W024	0.0000352	0.0000331 J	0.0000501 J
Total chlordanes	XAD Column - dissolved	μg/L	14	14	100	0.0000121 JT	0.0000316 JT	W027	0.0000213	0.0000211 J	0.0000291 J	0.0000121 JT	0.0000316 JT	W027	0.0000213	0.0000211 J	0.0000291 J
Total chlordanes	XAD Filter - particulate	μg/L	14	4	29	0.00000132 JT	0.0000098 JT	W027	0.000006	0.00000643 J	0.00000936 J	0.00000132 JT	0.0000168 UT	W025M	0.00000689	0.0000076 U	0.00000889 J
Total chlordanes	Peristaltic - total	μg/L	1	0	0							0.0015 UT	0.0015 UT	W027	0.00075	0.00075 UT	0.00075 UT
Total chlordanes	XAD Column+Filter - total	μg/L	14	14	100	0.0000134 J	0.0000376 J	W027	0.0000231	0.0000213 J	0.0000369 J	0.0000134 J	0.0000376 J	W027	0.0000231	0.0000213 J	0.0000369 J
DDx	XAD Column - dissolved	μg/L	14	14	100	0.0000332 JT	0.000141 JT	W011	0.0000756	0.0000715 J	0.000129 J	0.0000332 JT	0.000141 JT	W011	0.0000756	0.0000715 J	0.000129 J
DDx	XAD Filter - particulate	$\mu g/L$	14	13	93	0.00000786 JT	0.0000926 JT	W005	0.000054	0.0000585 JT	0.0000805 J	0.00000786 JT	0.0000926 JT	W005	0.0000504	0.0000559 J	0.0000795 J
DDx	Peristaltic - total	μg/L	1	1	100	0.0019 T	0.0019 T	W027	0.0019	0.0019 T	0.0019 T	0.0019 T	0.0019 T	W027	0.0019	0.0019 T	0.0019 T
DDx PAHs	XAD Column+Filter - total	μg/L	14	14	100	0.0000332 J	0.000201 J	W011	0.000126	0.000135 J	0.00019 J	0.0000332 Ј	0.000201 J	W011	0.000126	0.000135 J	0.00019 Ј
Total PAHs	XAD Column - dissolved	μg/L	14	14	100	0.00111 JT	0.0269 JT	W005	0.00825	0.00591 J	0.0215 J	0.00111 JT	0.0269 JT	W005	0.00825	0.00591 J	0.0215 J
Total PAHs	XAD Filter - particulate	μg/L	14	14	100	0.00168 JT	0.0182 JT	W005	0.00801	0.00786 J	0.015 J	0.00168 JT	0.0182 JT	W005	0.00801	0.00786 J	0.015 J
Total PAHs	Peristaltic - total	μg/L	14	9	64	0.0057 JT	0.068 JT	W027	0.0185	0.012 JT	0.05 J	0.0057 JT	0.068 JT	W027	0.016	0.012 J	0.0388 J
Total PAHs	XAD Column+Filter - total	μg/L	14	14	100	0.00279 J	0.0389 J	W005	0.0163	0.0163 J	0.0325 J	0.00279 J	0.0389 J	W005	0.0163	0.0163 J	0.0325 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	14	1	7	6.8 J	6.8 J	W005	6.8	6.8 J	6.8 J	0.14 U	6.8 J	W005	0.915	0.47 UJ	3 J

PCB - polychlorinated biphenyl

TEQ - toxicity equivalent

-- data not available. ND - not detected PCDD/Fs - dioxins/furans XAD - hydrophobic crosslinked polystyrene copolymer resin DDx - 2,4' and 4,4'-DDD, -DDE, -DDT PAH - polycyclic aromatic hydrocarbon TCDD - tetrachlorodibenzo-p-dioxin

Reason codes for qualifiers:

DL - detection limit

J - The associated numerical value is an estimated quantity.

- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

A - Total value based on limited number of analytes.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results according percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-11a. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (Single-Point Locations).

								Detected Concer	ntrations				Det	tected and Not Detec	cted Concentration	s	
Analyte	Method	Units			<u> </u>	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Metals	Metriod	Units	# Analyzed #	Detected	6 Detected	Minimum	Maximum	Location(s)	Mean	Median	Percentile	(IUII DL)	(IUII DL)	Location(s)	(Hall DL)	(nail DL)	(nair DL)
Arsenic	Peristaltic - dissolved	μg/L	26	5	19	0.38 J	0.48 T	W038	0.415	0.404 JT	0.466	0.38 J	0.48 T	W038	0.243	0.201 U	0.41 J
Arsenic	Peristaltic - particulate ^d	μg/L	26	20	77	0 J	0.512 J	W038	0.355	0.452 J	0.483 J	0 1	0.512 J	W038	0.324	0.438 J	0.48 J
Arsenic	Peristaltic - total	μg/L	26 26	19 0	73	0.428 J	0.526 JT	W038	0.463	0.458 J	0.513 J	0.412 UJ	0.526 JT 0.21 U	W038 W032	0.398 0.0804	0.452 J 0.08 U	0.505 J 0.1 U
Chromium Chromium	Peristaltic - dissolved Peristaltic - particulate	μg/L	26 26	0	0							0.1 U 0.23 U	0.21 U 0.42 U	W032 W032	0.0804	0.08 U 0.158 U	0.1 U 0.194 U
	1	μg/L	26	0	0									W032 W032			0.194 U 0.194 U
Chromium	Peristaltic - total Peristaltic - dissolved	μg/L	26 26	26	100	0.5	0.78	W035	0.56	0.555	0.638	0.23 U 0.5	0.42 U 0.78	W032 W035	0.16 0.56	0.158 U 0.555	0.638
Copper	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	26	26	100	0.26	0.78	W033 W031	0.357	0.355	0.638	0.26	0.78	W033 W031	0.357	0.355	0.638
Copper Copper	Peristaltic - particulate Peristaltic - total	μg/L μg/L	26	26	100	0.26	1.14	W031 W035	0.537	0.333	1.1	0.26	1.14	W031 W035	0.537	0.333	1.1
Zinc	Peristaltic - dissolved	μg/L μg/L	26	4	15	4.8	6.6	W034 W031; W034;	5.5	5.3	6.42	2.2 U	6.6	W034	2.08	1.43 U	5.35
Zinc	Peristaltic - particulate ^d	ua/I	26	4	15	0	0	W031; W034; W035; W036	0	0	0	0	7 U	W028	1.76	1.85 U	2.88 U
Zinc	Peristaltic - particulate Peristaltic - total	μg/L μg/L	26	0	0			W033, W030				3 U	7 U	W028 W028	2.05	1.83 U 1.9 U	2.88 U
Butyltins	i cristanie - totai	μg/L	20	U	Ü							3 0	7 0	W 028	2.03	1.9 0	2.88 0
Tributyltin ion	Peristaltic - total	μg/L	26	2	8	0.0013 J	0.0014 J	W035	0.00135	0.00135 J	0.0014 J	0.0006 UJ	0.0045 U	W034	0.000456	0.0003 U	0.00138 J
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	26	26	100	0.0000893 JT	0.00237 JT	W030	0.000328	0.000181 J	0.000695 J	0.0000893 JT	0.00237 JT	W030	0.000328	0.000181 J	0.000695 J
Total PCBs	XAD Filter - particulate	μg/L	26	26	100	0.0000231 JT	0.000457 JT	W028	0.000179	0.000157 J	0.000417 J	0.0000231 JT	0.000457 JT	W028	0.000179	0.000157 J	0.000417 J
Total PCBs	XAD Column+Filter - total	μg/L	26	26	100	0.000112 J	0.00259 J	W030	0.000507	0.000333 J	0.0011 J	0.000112 J	0.00259 J	W030	0.000507	0.000333 J	0.0011 J
PCDD/Fs Homologs																	
Total PCDD/Fs	XAD Column - dissolved	μg/L	8	8	100	0.00000279 T	0.00000855 T	W033	0.00000539	0.00000489 J	0.00000814	0.00000279 T	0.00000855 T	W033	0.00000539	0.00000489 J	0.00000814
Total PCDD/Fs	XAD Filter - particulate	μg/L	8	8	100	0.0000274 T	0.0000494 T	W032	0.0000404	0.0000411	0.000049	0.0000274 T	0.0000494 T	W032	0.0000404	0.0000411	0.000049
Total PCDD/Fs	XAD Column+Filter - total	μg/L	8	8	100	0.000036	0.0000552 J	W032	0.0000458	0.0000465	0.0000547 J	0.000036	0.0000552 J	W032	0.0000458	0.0000465	0.0000547 J
PCDD/Fs																	
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	8	8	100	0.0000000051 T	0.0000000173 JT	W033	0.00000000977	0.00000000843 J	0.0000000164 J	0.0000000051 T	0.0000000173 JT	W033	0.00000000977	0.00000000843 J	0.0000000164 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L	8	8	100	0.0000000726 JT	0.000000203 JT	W033	0.000000118	0.000000101 J	0.000000194 J	0.0000000726 JT	0.000000203 JT	W033	0.000000118	0.000000101 J	0.000000194 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L	8	8	100	0.0000000777 J	0.000000212 J	W033	0.000000127	0.000000108 J	0.000000202 J	0.0000000777 J	0.000000212 J	W033	0.000000127	0.000000108 J	0.000000202 J
Pesticides		_						*****						****			
Aldrin	XAD Column - dissolved	μg/L	12	4	33	0.00000203 J	0.00000426 J	W033	0.00000326	0.00000337 J	0.00000417 J	0.00000187 U	0.00000426 J	W033	0.00000208	0.00000193 U	0.00000394 J
Aldrin	XAD Filter - particulate	μg/L	12	6	50	0.000000635 J	0.00000366 Ј	W031	0.0000019	0.00000174 J	0.0000033 J	0.000000635 J	0.0000167 U	W035	0.00000222	0.00000156 J	0.00000577 J
Aldrin	Peristaltic - total	μg/L	17	0	0	 0.000000527 I	0.00000404.7			I		0.000057 U	0.0005 U	W026	0.000166	0.00016 U	0.000242 U
Aldrin	XAD Column+Filter - total	μg/L	12	,	75	0.000000635 J 0.0000319 J	0.00000484 J	W033 W031	0.00000272 0.0000391	0.00000223 J 0.0000367 J	0.00000461 J 0.0000479 J	0.000000635 J	0.0000167 U	W035 W031	0.00000303	0.00000215 J 0.0000367 J	0.00000642 J 0.0000479 J
Dieldrin Dieldrin	XAD Column - dissolved	μg/L	12 12	12 6	100 50	0.0000319 J 0.00000237 J	0.0000498 J 0.00000415 J	W031 W031	0.0000391	0.0000367 J 0.00000299 J	0.0000479 J 0.00000399 J	0.0000319 J 0.00000203 U	0.0000498 J 0.00000415 J	W031 W031	0.0000391 0.00000222	0.0000367 J 0.00000209 J	0.0000479 J 0.00000379 J
Dieldrin	XAD Filter - particulate Peristaltic - total	μg/L	17	0	0	0.00000237 J	0.00000413 J	WU31	0.00000307	0.00000299 J	0.00000399 J	0.0000203 U 0.0004 U	0.0000413 J 0.00042 U	W029; W037	0.0000222	0.0000209 J 0.0002 U	0.0000379 J 0.00021 U
Dieldrin	XAD Column+Filter - total	μg/L μg/L	17	12	100	0.0000319 J	0.0000501 J	W031	0.0000407	0.000037 J	0.0000499 J	0.0004 U 0.0000319 J	0.00042 U 0.000501 J	W029; W037 W031	0.000201	0.0002 U 0.000037 J	0.00021 U 0.0000499 J
Total chlordanes	XAD Column - dissolved	μg/L μg/L	12	12	100	0.0000319 J 0.00000672 JT	0.0000301 J 0.0000299 JT	W031 W032	0.0000407	0.000037 J	0.0000499 J 0.0000286 J	0.0000519 J 0.00000672 JT	0.0000301 J 0.0000299 JT	W031 W032	0.0000407	0.000037 J	0.0000499 J 0.0000286 J
Total chlordanes	XAD Filter - particulate	μg/L μg/L	12	11	92	0.00000072 JT 0.000000597 JT	0.0000299 JT 0.0000113 JT	W032	0.0000200	0.0000212 J 0.0000051 JT	0.0000280 J	0.00000072 JT 0.000000597 JT	0.0000233 JT 0.0000327 UT	W032 W034	0.0000200	0.0000212 J 0.00000687 J	0.0000286 J
Total chlordanes	Peristaltic - total	μg/L μg/L	17	2	12	0.00055 NJT	0.00115 JT	W032	0.00108	0.00108 J	0.00155 J	0.00055 NJT	0.0024 UT	W030	0.00076	0.0007 UT	0.00138 J
Total chlordanes	XAD Column+Filter - total	μg/L μg/L	12	12	100	0.000033 N31	0.0000368 J	W033	0.0000263	0.0000262 J	0.000365 J	0.000033 NJ I	0.00024 C1	W033	0.0000263	0.00007 C1	0.000365 J
DDx	XAD Column - dissolved	μg/L μg/L	12	12	100	0.0000415 JT	0.000246 JT	W033	0.000126	0.000134 J	0.000224 J	0.0000415 JT	0.000246 JT	W033	0.000126	0.000134 J	0.000224 J
DDx	XAD Filter - particulate	μg/L	12	12	100	0.0000113 JT	0.000429 JT	W033	0.000154	0.000144 J	0.000349 J	0.0000113 JT	0.000429 JT	W033	0.000154	0.000144 J	0.000349 J
DDx	Peristaltic - total	μg/L μg/L	17	12	71	0.0015 T	0.0047 NJT	W037	0.00258	0.00255 J	0.00393 J	0.001 UT	0.0047 NJT	W037	0.00201	0.002 NJT	0.00358 J
DDx	XAD Column+Filter - total	μg/L	12	12	100	0.0000767 J	0.000675 J	W033	0.00028	0.000282 J	0.000543 J	0.0000767 J	0.000675 J	W033	0.00028	0.000282 J	0.000543 J
PAHs Total PAHs	VAD Column dissolved	п.~/т	8	8	100	0.00108 JT	0.0298 JT	W035	0.0138	0.0158 J	0.027 J	0.00108 JT	0.0298 JT	W035	0.0138	0.0158 J	0.027 J
	XAD Column - dissolved	μg/L	8	8	100	0.00108 JT 0.00237 JT	0.0298 JT 0.0306 JT	W033 W033	0.0138	0.0158 J 0.0101 J	0.027 J 0.0294 J	0.00108 JT 0.00237 JT	0.0298 JT 0.0306 JT	W033 W033	0.0138	0.0158 J 0.0101 J	0.027 J 0.0294 J
Total PAHs Total PAHs	XAD Filter - particulate Peristaltic - total	μg/L	8 26	8 12	100 46	0.00237 JT 0.005 JT	0.0306 JT 0.12 JT	W033 W033	0.0126	0.0101 J 0.032 J	0.0294 J 0.087 J	0.00237 JT 0.005 JT	0.0306 JT 0.12 JT	W033 W033	0.0126	0.0101 J 0.0065 U	0.0294 J 0.0538 J
	XAD Column+Filter - total	μg/L	26 8	8	100	0.005 J1 0.00586 J	0.12 J1 0.0507 J	W033 W033	0.0349	0.032 J 0.0287 J	0.087 J 0.0486 J	0.005 J1 0.00586 J	0.12 J1 0.0507 J	W033 W033			0.0538 J 0.0486 J
Total PAHs Phthalates		μg/L	_			0.00580 J	0.0507 J		0.0204	0.0287 J					0.0264	0.0287 J	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	26	0	0							0.21 UJ	2.6 UJ	W032	0.353	0.26 UJ	1.03 UJ

PCDD/Fs - dioxins/furans

TEQ - toxicity equivalent

TCDD - tetrachlorodibenzo-p-dioxin

-- data not available.
DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

ND - not detected PAH - polycyclic aromatic hydrocarbon PCB - polychlorinated biphenyl XAD - hydrophobic crosslinked polystyrene copolymer resin

DL - detection limit

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

N - Presumptive evidence of presence of material; identification of the compound is not definitive.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

A - Total value based on limited number of analytes.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

Table 5.4-11b. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (East Channel Single-Point Locations).

Table 5.4-110. Summary Statistics	Tor indicator Contaminants in t	surface we	aci, stormwater	minucineed	Events (East C	Shanner Shighe T onte Local	tions).	Detected Con	centrations				Det	tected and Not Detect	ed Concentrations		
Analyte	Method	Units	# Analyzed #	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
RM 01.9<03																	
Metals	Peristaltic - dissolved	ua/I	2	0	0							0.422 U	0.425 U	W026	0.212	0.212 U	0.212 U
Arsenic Arsenic	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	2	2	100	0.458 J	0.481 J	W026	0.47	 0.47 J	0.48 J	0.422 U 0.458 J	0.423 U 0.481 J	W026 W026	0.212	0.212 U 0.47 J	0.212 U 0.48 J
Arsenic	Peristaltic - total	μg/L μg/L	2	2	100	0.458 J	0.481 J	W026	0.47	0.47 J	0.48 J	0.458 J	0.481 J	W026	0.47	0.47 J	0.48 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.13 U	0.15 U	W026	0.07	0.07 U	0.0745 U
Chromium	Peristaltic - particulate	μg/L	2	0	0							0.34 U	0.38 U	W026	0.18	0.18 U	0.189 U
Chromium	Peristaltic - total	μg/L	2	0	0							0.34 U	0.38 U	W026	0.18	0.18 U	0.189 U
Copper	Peristaltic - dissolved	$\mu g/L$	2	2	100	0.54	0.63	W026	0.585	0.585	0.626	0.54	0.63	W026	0.585	0.585	0.626
Copper	Peristaltic - particulate	μg/L	2	2	100	0.34	0.44	W026	0.39	0.39	0.435	0.34	0.44	W026	0.39	0.39	0.435
Copper	Peristaltic - total	μg/L	2	2	100	0.88	1.07	W026	0.975	0.975	1.06	0.88	1.07	W026	0.975	0.975	1.06
Zinc	Peristaltic - dissolved	μg/L	2	0	0							2.4 U	4.4 U	W026	1.7	1.7 U	2.15 U
Zinc	Peristaltic - particulate	μg/L	2	0	0							4.4 U	4.9 U	W026	2.33	2.33 U	2.44 U
Zinc	Peristaltic - total	μg/L	2	0	0							4.3 U	4.9 U	W026	2.3	2.3 U	2.44 U
Butyltins	D. C. D. C. J.	σ	2	0	0							0.0006.11	0.0006 11	111026	0.0002	0.0002.11	0.0002.11
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W026	0.0003	0.0003 U	0.0003 U
PCBs ^c		~						*****						*****			
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000634 JT	0.00069 JT	W026	0.000662	0.000662 J	0.000687 J	0.000634 JT	0.00069 JT	W026	0.000662	0.000662 J	0.000687 J
Total PCBs	XAD Filter - particulate	μg/L	2 2	2 2	100	0.000239 JT	0.000263 JT	W026	0.000251	0.000251 J	0.000262 J	0.000239 JT	0.000263 JT	W026	0.000251	0.000251 J	0.000262 J
Total PCBs Pesticides	XAD Column+Filter - total	μg/L	2	2	100	0.000897 J	0.000929 J	W026	0.000913	0.000913 J	0.000927 J	0.000897 J	0.000929 J	W026	0.000913	0.000913 J	0.000927 J
Aldrin	Peristaltic - total	ug/I	2	0	0							0.00048 U	0.0005 U	W026	0.000245	0.000245 U	0.00025 U
Dieldrin	Peristaltic - total	μg/L μg/L	2	0	0							0.00048 U	0.0003 U 0.0004 U	W026	0.000243	0.000243 U	0.00023 U
Total chlordanes	Peristaltic - total	μg/L μg/L	2	0	0							0.0004 C 0.0015 UT	0.0004 UT	W026	0.0002	0.0002 U	0.0002 U
DDx	Peristaltic - total	μg/L μg/L	2	0	0							0.001 UT	0.0010 UT	W026	0.000525	0.000525 U	0.000548 U
PAHs	Tensuate total	MB/L	-	O	V							0.001 C1	0.0011 61	11020	0.000323	0.000323 C	0.000540 €
Total PAHs Phthalates	Peristaltic - total	μg/L	2	1	50	0.011 JT	0.011 JT	W026	0.011	0.011 JT	0.011 JT	0.011 JT	0.013 UT	W026	0.00875	0.00875 J	0.0108 J
Bis(2-ethylhexyl) phthalate RM 03<04	Peristaltic - total	μg/L	2	0	0							0.52 UJ	0.79 UJ	W026	0.328	0.328 UJ	0.388 UJ
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	0	0							0.384 UJ	0.395 UJ	W028	0.195	0.195 UJ	0.197 UJ
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.442 J	0.478 J	W028	0.46	0.46 J	0.476 J	0.442 J	0.478 J	W028	0.46	0.46 J	0.476 J
Arsenic	Peristaltic - total	μg/L	2	2	100	0.442 J	0.478 J	W028	0.46	0.46 J	0.476 J	0.442 J	0.478 J	W028	0.46	0.46 J	0.476 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.18 U	0.2 U	W028	0.095	0.095 U	0.0995 U
Chromium	Peristaltic - particulate	μg/L	2	0	0							0.31 U	0.34 U	W028	0.163	0.163 U	0.169 U
Chromium	Peristaltic - total	μg/L	2	0	0							0.31 U	0.34 U	W028	0.163	0.163 U	0.169 U
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.56	0.64	W028	0.6	0.6	0.636	0.56	0.64	W028	0.6	0.6	0.636
Copper	Peristaltic - particulate	μg/L	2	2	100	0.3	0.36	W028	0.33	0.33	0.357	0.3	0.36	W028	0.33	0.33	0.357
Copper	Peristaltic - total	μg/L	2	2	100	0.92	0.94	W028	0.93	0.93	0.939	0.92	0.94	W028	0.93	0.93	0.939
Zinc	Peristaltic - dissolved	μg/L	2	0	0							2.2 U	3.7 U	W028	1.48	1.48 U	1.81 U
Zinc	Peristaltic - particulate	μg/L	2	0	0							5 U	7 U	W028	3	3 U	3.45 U
Zinc	Peristaltic - total	μg/L	2	0	0							5 U	7 U	W028	3	3 U	3.45 U
Butyltins Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W028	0.0003	0.0003 U	0.0003 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000353 JT	0.000696 JT	W028	0.000525	0.000525 J	0.000679 J	0.000353 JT	0.000696 JT	W028	0.000525	0.000525 J	0.000679 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.0000769 JT	0.000457 JT	W028	0.000267	0.000267 J	0.000438 J	0.0000769 JT	0.000457 JT	W028	0.000267	0.000267 J	0.000438 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.00043 J	0.00115 J	W028	0.000791	0.000791 J	0.00112 J	0.00043 J	0.00115 J	W028	0.000791	0.000791 J	0.00112 J
Pesticides		~	_	^								0.000	0.00000		0.000105	0.000100.75	0.000111 ==
Aldrin	Peristaltic - total	μg/L	2	0	0							0.0002 U	0.00023 U	W028	0.000108	0.000108 U	0.000114 U
Dieldrin	Peristaltic - total	μg/L	2	0	0							0.0004 U	0.0004 U	W028	0.0002	0.0002 U	0.0002 U
Total chlordanes	Peristaltic - total	μg/L	2	0	0	0.0010 T	0.0010 T	W020	0.0010	0.0010 T	 0.0010 T	0.0013 UT	0.002 UT	W028	0.000825	0.000825 U	0.000983 U
DDx	Peristaltic - total	μg/L	2	1	50	0.0019 T	0.0019 T	W028	0.0019	0.0019 T	0.0019 T	0.0015 UT	0.0019 T	W028	0.00133	0.00133	0.00184
PAHs Total PAHs	Peristaltic - total	$\mu g/L$	2	0	0							0.013 UT	0.013 UT	W028	0.0065	0.0065 U	0.0065 U
Phthalates Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.52 UJ	2.1 UJ	W028	0.655	0.655 UJ	1.01 UJ
RM 05<06 Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2.	0	0							0.395 U	0.405 UJ	W030	0.2	0.2 UJ	0.202 UJ
Arsenic	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	2	2	100	0.428 J	0.453 J	W030	0.441	0.441 J	0.452 J	0.428 J	0.453 J	W030 W030	0.441	0.441 J	0.452 J
Arsenic	Peristaltic - total	μg/L μg/L	2	2	100	0.428 J	0.453 J	W030	0.441	0.441 J	0.452 J	0.428 J	0.453 J	W030	0.441	0.441 J	0.452 J
Chromium	Peristaltic - dissolved	μg/L μg/L	2	0	0	0. 1 20 J	0. 1 33 3				0.432 3	0.14 U	0.18 U	W030	0.08	0.08 U	0.089 U
Chromium	Peristaltic - particulate	μg/L μg/L	2	0	0							0.14 U 0.29 U	0.3 U	W030	0.148	0.148 U	0.15 U
Chromium	Peristaltic - total	μg/L μg/L	2	0	0							0.29 U	0.3 U	W030	0.148	0.148 U	0.15 U
		r.8/ - -	-	•	•							0.27	0.5 0	050	0.1.0	0.1.0	0.12 0

Table 5.4-11b. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (East Channel Single-Point Locations).

			iter, Stormwater		-			Detected Con	ncentrations				Dete	cted and Not Detect	ed Concentrations	3	
					%			Maximum			95 th	Minimum	Maximum	Maximum	Mean	Median	95th Percentile
Analyte	Method	Units	# Analyzed #	# Detected	Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.58	0.6	W030	0.59	0.59	0.599	0.58	0.6	W030	0.59	0.59	0.599
Copper	Peristaltic - particulate	μg/L	2	2	100	0.33	0.37	W030	0.35	0.35	0.368	0.33	0.37	W030	0.35	0.35	0.368
Copper	Peristaltic - total	μg/L	2	2	100	0.93	0.95	W030	0.94	0.94	0.949	0.93	0.95	W030	0.94	0.94	0.949
Zinc	Peristaltic - dissolved	μg/L	2	0	0							2.6 U	2.7 U	W030	1.33	1.33 U	1.35 U
Zinc Zinc	Peristaltic - particulate	μg/L	2 2	0	0							3.4 U 3.4 U	3.7 U 3.7 U	W030 W030	1.78 1.78	1.78 U 1.78 U	1.84 U 1.84 U
Butyltins	Peristaltic - total	μg/L	2	U	U							3.4 0	3.7 0	W030	1./6	1.76 U	1.64 U
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W030	0.0003	0.0003 U	0.0003 U
PCBs ^c	Terrotative total	FB/2	-		· ·							0.0000	0.0000		0.0005	0.0005	0.0000
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000215 JT	0.00237 JT	W030	0.00129	0.00129 J	0.00226 J	0.000215 JT	0.00237 JT	W030	0.00129	0.00129 J	0.00226 J
Total PCBs	XAD Filter - particulate	μg/L μg/L	2	2	100	0.000213 JT	0.000216 JT	W030	0.000129	0.000129 J	0.000213 J	0.000162 JT	0.000216 JT	W030	0.000129	0.000129 J	0.000213 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000377 J	0.00259 J	W030	0.00148	0.00148 J	0.00248 J	0.000377 J	0.00259 J	W030	0.00148	0.00148 J	0.00248 J
Pesticides																	
Aldrin	Peristaltic - total	μg/L	2	0	0							0.00023 U	0.00029 U	W030	0.00013	0.00013 U	0.000144 U
Dieldrin	Peristaltic - total	μg/L	2	0	0							0.0004 U	0.0004 U	W030	0.0002	0.0002 U	0.0002 U
Total chlordanes	Peristaltic - total	μg/L	2	0	0							0.0014 UT	0.0024 UT	W030	0.00095	0.00095 U	0.00118 U
DDx	Peristaltic - total	μg/L	2	2	100	0.002 JT	0.0033 NJT	W030	0.00265	0.00265 J	0.00324 J	0.002 JT	0.0033 NJT	W030	0.00265	0.00265 J	0.00324 J
PAHs		_												*****			
Total PAHs	Peristaltic - total	μg/L	2	0	0							0.013 UT	0.013 UT	W030	0.0065	0.0065 U	0.0065 U
Phthalates	Poristaltia total	ua/I	2	0	0							0.29 UJ	0.76 UJ	W030	0.263	0.263 UJ	0.368 UJ
Bis(2-ethylhexyl) phthalate RM 06<07	Peristaltic - total	μg/L	2	U	U							0.29 UJ	0.76 UJ	W030	0.263	0.265 UJ	0.308 UJ
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	2	100	0.38 J	0.404 JT	W032	0.392	0.392 J	0.403 J	0.38 J	0.404 JT	W032	0.392	0.392 J	0.403 J
Arsenic	Peristaltic - particulate ^d	μg/L	2	2	100	0 Ј	0.054 J	W032	0.027	0.027 J	0.0513 J	0 J	0.054 J	W032	0.027	0.027 J	0.0513 J
Arsenic	Peristaltic - total	μg/L μg/L	2	1	50	0.458 J	0.458 J	W032	0.458	0.458 J	0.458 J	0.456 UJ	0.458 J	W032	0.343	0.343 J	0.447 J
Chromium	Peristaltic - dissolved	μg/L μg/L	2	0	0				0.150		0.150 3	0.17 U	0.21 U	W032	0.095	0.095 U	0.104 U
Chromium	Peristaltic - particulate	μg/L	2	0	0							0.33 U	0.42 U	W032	0.188	0.188 U	0.208 U
Chromium	Peristaltic - total	μg/L	2	0	0							0.33 U	0.42 U	W032	0.188	0.188 U	0.208 U
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.58	0.59	W032	0.585	0.585	0.59	0.58	0.59	W032	0.585	0.585	0.59
Copper	Peristaltic - particulate	μg/L	2	2	100	0.29	0.35	W032	0.32	0.32	0.347	0.29	0.35	W032	0.32	0.32	0.347
Copper	Peristaltic - total	μg/L	2	2	100	0.88	0.93	W032	0.905	0.905	0.928	0.88	0.93	W032	0.905	0.905	0.928
Zinc	Peristaltic - dissolved	μg/L	2	0	0							3.1 U	3.9 U	W032	1.75	1.75 U	1.93 U
Zinc	Peristaltic - particulate	μg/L	2	0	0							3.9 U	3.9 U	W032	1.95	1.95 U	1.95 U
Zinc	Peristaltic - total	μg/L	2	0	0							3.3 U	3.9 U	W032	1.8	1.8 U	1.94 U
Butyltins Tributyltin ion	Peristaltic - total	ua/I	2	0	0							0.0006 U	0.0006 U	W032	0.0003	0.0003 U	0.0003 U
•	i cristanie - totai	μg/L	2	U	U							0.0000 C	0.0000 C	W032	0.0003	0.0003 0	0.0003 0
PCBs ^c Total PCBs	XAD Column - dissolved	ua/I	2	2	100	0.000229 JT	0.000335 JT	W032	0.000282	0.000282 J	0.00033 J	0.000229 JT	0.000335 JT	W032	0.000282	0.000282 Ј	0.00033 J
Total PCBs	XAD Column - dissolved XAD Filter - particulate	μg/L μg/L	2	2	100	0.000229 JT 0.00027 JT	0.000333 JT 0.000321 JT	W032 W032	0.000282	0.000282 J 0.000296 J	0.00033 J	0.000229 JT 0.00027 JT	0.000333 JT 0.000321 JT	W032 W032	0.000282	0.000282 J 0.000296 J	0.00033 J
Total PCBs	XAD Column+Filter - total	μg/L μg/L	2	2	100	0.00027 J1	0.000521 J1 0.000656 J	W032	0.000238	0.000276 J	0.000648 J	0.00027 J1 0.000499 J	0.000521 J1 0.000656 J	W032	0.000278	0.000270 J	0.000648 J
PCDD/Fs Homologs	THE COMMINITER TOWN	F6 2	-	-	100	0.000.55	0.000000	052	0.000270	0.000070	0.000010	0.000155	0.0000000	052	0.000570	0.000270	0.000010
Total PCDD/Fs	XAD Column - dissolved	μg/L	2	2	100	0.00000402 T	0.00000576 JT	W032	0.00000489	0.00000489 J	0.00000567 J	0.00000402 T	0.00000576 JT	W032	0.00000489	0.00000489 J	0.00000567 J
Total PCDD/Fs	XAD Filter - particulate	μg/L	2	2	100	0.0000343 T	0.0000494 T	W032	0.0000419	0.0000419	0.0000486	0.0000343 T	0.0000494 T	W032	0.0000419	0.0000419	0.0000486
Total PCDD/Fs	XAD Column+Filter - total	μg/L	2	2	100	0.0000383	0.0000552 J	W032	0.0000467	0.0000467 J	0.0000543 J	0.0000383	0.0000552 J	W032	0.0000467	0.0000467 J	0.0000543 J
PCDD/Fs																	
TCDD TEQ (ND=0)	XAD Column - dissolved	μg/L	2	2	100	0.0000000051 T	0.00000000779 JT	W032	0.00000000645	0.00000000645 J	0.00000000766 J	0.0000000051 T	0.00000000779 JT	W032	0.00000000645	0.00000000645 J	0.00000000766 J
TCDD TEQ (ND=0)	XAD Filter - particulate	μg/L	2 2	2 2	100	0.0000000726 JT 0.0000000777 J	0.0000000931 JT	W032	0.0000000829	0.0000000829 J	0.0000000921 J	0.0000000726 JT	0.0000000931 JT	W032	0.0000000829	0.0000000829 J	0.0000000921 J
TCDD TEQ (ND=0) Pesticides	XAD Column+Filter - total	μg/L	2	2	100	0.0000000/// J	0.000000101 J	W032	0.0000000893	0.0000000893 J	0.0000000997 J	0.0000000777 Ј	0.000000101 J	W032	0.0000000893	0.0000000893 J	0.0000000997 J
Aldrin	XAD Column - dissolved	μg/L	2	1	50	0.00000203 J	0.00000203 J	W032	0.00000203	0.00000203 J	0.00000203 J	0.00000195 U	0.00000203 J	W032	0.0000015	0.0000015 J	0.00000198 J
Aldrin	XAD Filter - particulate	μg/L μg/L	2	1	50	0.00000203 J	0.00000203 J	W032	0.00000203	0.00000203 J	0.00000203 J	0.00000155 U	0.00000203 J	W032	0.0000015	0.0000015 J	0.00000176 J
Aldrin	XAD Column+Filter - total	μg/L	2	2	100	0.00000223 J	0.00000223 J	W032	0.00000213	0.00000213 J	0.00000222 J	0.00000203 J	0.00000223 J	W032	0.00000213	0.00000213 J	0.00000222 J
Dieldrin	XAD Column - dissolved	μg/L	2	2	100	0.0000433 J	0.0000463 J	W032	0.0000448	0.0000448 J	0.0000462 J	0.0000433 J	0.0000463 J	W032	0.0000448	0.0000448 J	0.0000462 J
Dieldrin	XAD Filter - particulate	μg/L	2	2	100	0.00000293 J	0.00000304 J	W032	0.00000299	0.00000299 J	0.00000303 J	0.00000293 J	0.00000304 J	W032	0.00000299	0.00000299 J	0.00000303 J
Dieldrin	XAD Column+Filter - total	μg/L	2	2	100	0.0000462 J	0.0000493 J	W032	0.0000478	0.0000478 J	0.0000492 J	0.0000462 J	0.0000493 J	W032	0.0000478	0.0000478 J	0.0000492 J
Total chlordanes	XAD Column - dissolved	μg/L	2	2	100	0.0000212 JT	0.0000299 JT	W032	0.0000256	0.0000256 J	0.0000295 J	0.0000212 JT	0.0000299 JT	W032	0.0000256	0.0000256 J	0.0000295 J
Total chlordanes	XAD Filter - particulate	μg/L	2	2	100	0.0000051 JT	0.0000113 JT	W032	0.0000082	0.0000082 J	0.000011 J	0.0000051 JT	0.0000113 JT	W032	0.0000082	0.0000082 J	0.000011 J
Total chlordanes	XAD Column+Filter - total	μg/L	2	2	100	0.0000325 J	0.000035 J	W032	0.0000338	0.0000338 J	0.0000349 J	0.0000325 J	0.000035 J	W032	0.0000338	0.0000338 J	0.0000349 J
DDx	XAD Column - dissolved	μg/L	2	2	100	0.0000461 JT	0.0000479 JT	W032	0.000047	0.000047 J	0.0000478 J	0.0000461 JT	0.0000479 JT	W032	0.000047	0.000047 J	0.0000478 J
DDx	XAD Filter - particulate	μg/L	2 2	2	100	0.0000453 JT	0.0000535 JT	W032	0.0000494	0.0000494 J	0.0000531 J	0.0000453 JT	0.0000535 JT	W032	0.0000494	0.0000494 J	0.0000531 J
DDx PAHs	XAD Column+Filter - total	μg/L	2	2	100	0.0000914 J	0.000101 J	W032	0.0000964	0.0000964 J	0.000101 J	0.0000914 J	0.000101 J	W032	0.0000964	0.0000964 J	0.000101 J
PAHs Total PAHs	XAD Column - dissolved	μg/L	2	2	100	0.00236 JT	0.00368 JT	W032	0.00302	0.00302 J	0.00361 J	0.00236 JT	0.00368 JT	W032	0.00302	0.00302 J	0.00361 J
Total PAHs	XAD Column - dissolved XAD Filter - particulate	μg/L μg/L	2	2	100	0.00230 JT 0.00237 JT	0.00308 JT 0.0035 JT	W032 W032	0.00302	0.00302 J 0.00294 J	0.00344 J	0.00230 JT 0.00237 JT	0.00308 JT 0.0035 JT	W032 W032	0.00302	0.00302 J 0.00294 J	0.00344 J
Total PAHs	Peristaltic - total	μg/L μg/L	2	0	0	0.00237 31			0.002)4	0.002)4 3	0.00544 3	0.013 UT	0.013 UT	W032	0.0065	0.00254 J	0.0065 U
		r-8-2	-	v	Ü							0.015 01	0.015 01		0.0000	0.0000	

Table 5.4-11b. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (East Channel Single-Point Locations).

-								Detected Cor	ncentrations				Det	tected and Not Detect	ed Concentrations		
Analyte	Method	Units	# Analyzed #	# Datastad	%	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Total PAHs	XAD Column+Filter - total	μg/L	2.	2	100	0.00586 J	0.00605 J	W032	0.00596	0.00596 J	0.00604 J	0.00586 J	0.00605 J	W032	0.00596	0.00596 J	0.00604 J
Phthalates	THE COMMINITIES TOWN	F8-2	-	-	100	0.00500	0.00000		0.00570	0.00570	0.00001	0.00500	0.00000		0.00270	0.00570	0.00001
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.83 UJ	2.6 UJ	W032	0.858	0.858 UJ	1.26 UJ
RM 08<09																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	0	0							0.402 U	0.404 U	W035	0.202	0.202 U	0.202 U
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.457 J	0.464 J	W035	0.461	0.461 J	0.464 J	0.457 J	0.464 J	W035	0.461	0.461 J	0.464 J
Arsenic	Peristaltic - total	μg/L	2	2	100	0.457 J	0.464 J	W035	0.461	0.461 J	0.464 J	0.457 J	0.464 J	W035	0.461	0.461 J	0.464 J
Chromium Chromium	Peristaltic - dissolved Peristaltic - particulate	μg/L	2 2	0	0							0.13 U 0.34 U	0.16 U 0.39 U	W035 W035	0.0725 0.183	0.0725 U 0.183 U	0.0793 U 0.194 U
Chromium	Peristaltic - particulate Peristaltic - total	μg/L μg/L	2	0	0		 					0.34 U	0.39 U	W035 W035	0.183	0.183 U	0.194 U 0.194 U
Copper	Peristaltic - dissolved	μg/L μg/L	2	2	100	0.53	0.78	W035	0.655	0.655	0.768	0.53	0.78	W035	0.655	0.655	0.768
Copper	Peristaltic - particulate	μg/L μg/L	2	2	100	0.36	0.48	W035	0.42	0.42	0.474	0.36	0.48	W035	0.42	0.42	0.474
Copper	Peristaltic - total	μg/L	2	2	100	1.01	1.14	W035	1.08	1.08	1.13	1.01	1.14	W035	1.08	1.08	1.13
Zinc	Peristaltic - dissolved	μg/L	2	1	50	5.2	5.2	W035	5.2	5.2	5.2	2.4 U	5.2	W035	3.2	3.2	5
Zinc	Peristaltic - particulate ^d	μg/L	2	1	50	0	0	W035	0	0	0	0	6 U	W035	1.5	1.5	2.85
Zinc	Peristaltic - total	μg/L	2	0	0							4.8 U	6 U	W035	2.7	2.7 U	2.97 U
Butyltins		1.0															
Tributyltin ion	Peristaltic - total	μg/L	2	1	50	0.0014 J	0.0014 J	W035	0.0014	0.0014 J	0.0014 J	0.0006 U	0.0014 J	W035	0.00085	0.00085 J	0.00135 J
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000231 JT	0.000294 JT	W035	0.000263	0.000263 J	0.000291 J	0.000231 JT	0.000294 JT	W035	0.000263	0.000263 J	0.000291 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.000295 JT	0.000449 JT	W035	0.000372	0.000372 Ј	0.000441 J	0.000295 JT	0.000449 JT	W035	0.000372	0.000372 J	0.000441 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000589 J	0.00068 J	W035	0.000635	0.000635 J	0.000675 J	0.000589 J	0.00068 J	W035	0.000635	0.000635 J	0.000675 J
PCDD/Fs Homologs																	
Total PCDD/Fs	XAD Column - dissolved	μg/L	2	2	100	0.00000342 T	0.0000073 T	W035	0.00000536	0.00000536	0.00000711	0.00000342 T	0.0000073 T	W035	0.00000536	0.00000536	0.00000711
Total PCDD/Fs	XAD Filter - particulate	μg/L	2	2	100	0.0000453 T	0.0000465 T	W035	0.0000459	0.0000459	0.0000464	0.0000453 T	0.0000465 T	W035	0.0000459	0.0000459	0.0000464
Total PCDD/Fs	XAD Column+Filter - total	μg/L	2	2	100	0.0000487	0.0000538	W035	0.0000513	0.0000513	0.0000535	0.0000487	0.0000538	W035	0.0000513	0.0000513	0.0000535
PCDD/Fs	VAD Colours discolured	/1	2	2	100	0.0000000069 JT	0.0000000110_IT	11/025	0.0000000094	0.0000000094 J	0.0000000117 J	0.000000000 IT	0.0000000110_IT	W035	0.0000000094	0.0000000094 J	0.0000000117 1
TCDD TEQ (ND=0) TCDD TEQ (ND=0)	XAD Column - dissolved XAD Filter - particulate	μg/L	2 2	2 2	100	0.0000000069 JT 0.000000108 JT	0.0000000119 JT 0.000000124 JT	W035 W035	0.000000094	0.000000094 J 0.000000116 J	0.000000117 J 0.000000123 J	0.0000000069 JT 0.00000108 JT	0.0000000119 JT 0.000000124 JT	W035	0.000000094	0.000000094 J 0.000000116 J	0.0000000117 J 0.000000123 J
TCDD TEQ (ND=0)	XAD Column+Filter - total	μg/L μg/L	2	2	100	0.000000108 J1	0.000000124 J1 0.000000136 J	W035	0.000000110	0.000000110 J 0.000000125 J	0.000000125 J	0.000000108 J1 0.000000115 J	0.000000124 J1 0.000000136 J	W035	0.000000110	0.000000110 J 0.000000125 J	0.000000125 J
Pesticides	77 D Column Ther total	μgL	2	-	100	0.000000115 3	0.000000130 3	11 033	0.000000123	0.000000125 3	0.000000133 3	0.000000113 3	0.000000130 3	11 033	0.000000125	0.000000125 3	0.000000133
Aldrin	XAD Column - dissolved	μg/L	2	0	0							0.00000187 U	0.00000258 U	W035	0.00000111	0.00000111 U	0.00000127 U
Aldrin	XAD Filter - particulate	μg/L	2	1	50	0.00000141 J	0.00000141 J	W035	0.00000141	0.00000141 J	0.00000141 J	0.00000141 J	0.0000167 U	W035	0.00000488	0.00000488 J	0.000008 J
Aldrin	XAD Column+Filter - total	μg/L	2	1	50	0.00000141 J	0.00000141 J	W035	0.00000141	0.00000141 J	0.00000141 J	0.00000141 J	0.0000167 U	W035	0.00000488	0.00000488 J	0.000008 J
Dieldrin	XAD Column - dissolved	μg/L	2	2	100	0.0000326 J	0.0000444 J	W035	0.0000385	0.0000385 J	0.0000438 J	0.0000326 J	0.0000444 J	W035	0.0000385	0.0000385 J	0.0000438 J
Dieldrin	XAD Filter - particulate	μg/L	2	0	0							0.00000281 U	0.0000036 U	W035	0.0000016	0.0000016 U	0.00000178 U
Dieldrin	XAD Column+Filter - total	μg/L	2	2	100	0.0000326 J	0.0000444 J	W035	0.0000385	0.0000385 J	0.0000438 J	0.0000326 J	0.0000444 J	W035	0.0000385	0.0000385 J	0.0000438 J
Total chlordanes	XAD Column - dissolved	μg/L	2	2	100	0.0000162 JT	0.0000206 JT	W035	0.0000184	0.0000184 J	0.0000204 J	0.0000162 JT	0.0000206 JT	W035	0.0000184	0.0000184 J	0.0000204 J
Total chlordanes	XAD Filter - particulate	μg/L	2	2	100	0.00000905 JT	0.00000998 JT	W035	0.00000952	0.00000952 J	0.00000993 J	0.00000905 JT	0.00000998 JT	W035	0.00000952	0.00000952 J	0.00000993 J
Total chlordanes	XAD Column+Filter - total	μg/L	2	2	100	0.0000253 J	0.0000306 J	W035	0.0000279	0.0000279 J	0.0000303 J	0.0000253 J	0.0000306 J	W035	0.0000279	0.0000279 J	0.0000303 J
DDx DDx	XAD Column - dissolved XAD Filter - particulate	μg/L	2 2	2 2	100 100	0.0000415 JT 0.0000352 JT	0.0000469 JT 0.0000597 JT	W035 W035	0.0000442 0.0000475	0.0000442 J 0.0000475 J	0.0000466 J 0.0000585 J	0.0000415 JT 0.0000352 JT	0.0000469 JT 0.0000597 JT	W035 W035	0.0000442 0.0000475	0.0000442 J 0.0000475 J	0.0000466 J 0.0000585 J
DDx	XAD Filter - particulate XAD Column+Filter - total	μg/L μg/L	2	2	100	0.0000332 J1 0.0000767 J	0.0000397 J1 0.000107 J	W035	0.0000473	0.0000473 J 0.0000916 J	0.000105 J	0.0000332 J1 0.0000767 J	0.0000397 J1 0.000107 J	W035	0.0000473	0.0000473 J 0.0000916 J	0.0000383 J 0.000105 J
PAHs	AAD Column+1 mer = total	μg/L	2	2	100	0.0000707 3	0.000107 3	***033	0.0000910	0.0000910 3	0.000103 3	0.0000707 3	0.000107 3	***033	0.0000910	0.0000910 3	0.000103 3
Total PAHs	XAD Column - dissolved	μg/L	2	2	100	0.00108 JT	0.0298 JT	W035	0.0154	0.0154 J	0.0284 J	0.00108 JT	0.0298 JT	W035	0.0154	0.0154 J	0.0284 J
Total PAHs	XAD Filter - particulate	μg/L	2	2	100	0.00562 JT	0.00955 JT	W035	0.00759	0.00759 J	0.00935 J	0.00562 JT	0.00955 JT	W035	0.00759	0.00759 J	0.00935 J
Total PAHs	Peristaltic - total	μg/L	2	0	0							0.013 UT	0.013 UT	W035	0.0065	0.0065 U	0.0065 U
Total PAHs	XAD Column+Filter - total	μg/L	2	2	100	0.0067 J	0.0394 J	W035	0.023	0.023 J	0.0377 J	0.0067 J	0.0394 J	W035	0.023	0.023 J	0.0377 J
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.82 UJ	1.9 UJ	W035	0.68	0.68 UJ	0.923 UJ
RM 09<10																	
Metals		~	_					*****						****			
Arsenic	Peristaltic - dissolved	μg/L	2	1	50	0.48 T	0.48 T	W038	0.48	0.48 T	0.48 T	0.468 UJT	0.48 T	W038	0.357	0.357 J	0.468 J
Arsenic	Peristaltic - particulate Peristaltic - total	μg/L	2	2	100	0.046 J	0.512 J	W038	0.279	0.279 J	0.489 J	0.046 J	0.512 J	W038	0.279	0.279 J	0.489 J
Arsenic Chromium	Peristaltic - total Peristaltic - dissolved	μg/L	2 2	2	100	0.512 JT 	0.526 JT	W038	0.519	0.519 J	0.525 J	0.512 JT 0.15 UT	0.526 JT 0.16 UT	W038 W038	0.519 0.0775	0.519 J 0.0775 U	0.525 J 0.0798 U
Chromium	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	2	0	0							0.13 U1 0.32 U	0.16 U1 0.36 U	W038	0.0773	0.0773 U 0.17 U	0.0798 U 0.179 U
Chromium	Peristaltic - particulate Peristaltic - total	μg/L μg/L	2	0	0							0.32 UT	0.36 UT	W038 W038	0.17	0.17 U	0.179 U
Copper	Peristaltic - dissolved	μg/L μg/L	2	2	100	0.5 T	0.5 T	W038	0.5	0.5	0.5	0.5 T	0.5 T	W038	0.5	0.5	0.175 0
Copper	Peristaltic - particulate	μg/L	2	2	100	0.35	0.36	W038	0.355	0.355	0.36	0.35	0.36	W038	0.355	0.355	0.36
Copper	Peristaltic - total	μg/L	2	2	100	0.85 T	0.86 T	W038	0.855	0.855	0.86	0.85 T	0.86 T	W038	0.855	0.855	0.86
Zinc	Peristaltic - dissolved	μg/L	2	0	0							3.1 UT	3.6 UT	W038	1.68	1.68 U	1.79 U
Zinc	Peristaltic - particulate	μg/L	2	0	0							3.1 U	4.6 U	W038	1.93	1.93 U	2.26 U
Zinc	Peristaltic - total	μg/L	2	0	0							3 UT	4.6 UT	W038	1.9	1.9 U	2.26 U

Table 5.4-11b. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (East Channel Single-Point Locations).

								Detected Cone	centrations				Dete	ected and Not Detect	ed Concentrations		
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W038	0.0003	0.0003 U	0.0003 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.0000893 JT	0.0000946 JT	W038	0.000092	0.000092 J	0.0000943 J	0.0000893 JT	0.0000946 JT	W038	0.000092	0.000092 J	0.0000943 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.0000231 JT	0.0000874 JT	W038	0.0000553	0.0000553 J	0.0000842 J	0.0000231 JT	0.0000874 JT	W038	0.0000553	0.0000553 J	0.0000842 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000112 J	0.000182 J	W038	0.000147	0.000147 J	0.000179 J	0.000112 J	0.000182 J	W038	0.000147	0.000147 J	0.000179 J
Pesticides																	
Aldrin	Peristaltic - total	μg/L	2	0	0							0.00021 U	0.00034 U	W038	0.000138	0.000138 U	0.000167 U
Dieldrin	Peristaltic - total	μg/L	2	0	0							0.0004 U	0.0004 U	W038	0.0002	0.0002 U	0.0002 U
Total chlordanes	Peristaltic - total	μg/L	2	1	50	0.00055 NJT	0.00055 NJT	W038	0.00055	0.00055 NJT	0.00055 NJT	0.00055 NJT	0.0014 UT	W038	0.000625	0.000625 J	0.000693 J
DDx	Peristaltic - total	μg/L	2	2	100	0.0015 T	0.0026 NJT	W038	0.00205	0.00205 J	0.00255 J	0.0015 T	0.0026 NJT	W038	0.00205	0.00205 J	0.00255 J
PAHs																	
Total PAHs	Peristaltic - total	μg/L	2	0	0							0.013 UT	0.013 UT	W038	0.0065	0.0065 U	0.0065 U
Phthalates																	
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.73 UJ	0.75 UJ	W038	0.37	0.37 UJ	0.375 UJ

-- data not available.

DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/Fs - dioxins/furans

RM - River Mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalent

XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T- The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results and an interpolated value is the 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results are "U" qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified. It is qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

Table 5.4-11c. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (Mid-Channel Single-Point Locations).

						Detected Concentra	tions					Detected and Not Detected	Concentrations		
			_												95th
									95 th	Minimum	Maximum		Mean	Median	Percentile
Analyte	Method	Units	# Analyzed # Detected % Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	$(full DL)^a$	Maximum Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
No data for this table.															

Motor

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

-- data not available.

DL - detection limit

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

A - Total value based on limited number of analytes.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-11d. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (West Channel Single-Point Locations).

Table 5.4-11d. Summary Statistics I	of indicator Contaminants in Sur	race water	, Stormwater-initia	checa Even	ts (West Chain	er Single-1 out Location	۵).	Detected Concentra	tions				Γ	Detected and Not Detected Co	ncentrations		
Analyte	Method	Units	# Analyzed #	Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
RM 04<05																	
Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	0	0							0.39 U	0.418 U	W029	0.202	0.202 U	0.208 U
Arsenic	Peristaltic - particulate	μg/L	2	0	0							0.457 UJ	0.457 UJ	W029	0.229	0.229 UJ	0.229 UJ
Arsenic	Peristaltic - total Peristaltic - dissolved	μg/L	2 2	0	0							0.457 UJ 0.1 U	0.457 UJ	W029 W029	0.229 0.065	0.229 UJ 0.065 U	0.229 UJ 0.0785 U
Chromium Chromium	Peristaltic - dissolved Peristaltic - particulate	μg/L	2	0	0							0.1 U 0.24 U	0.16 U 0.26 U	W029 W029	0.063	0.125 U	0.0783 U 0.13 U
Chromium	Peristaltic - total	μg/L μg/L	2	0	0							0.24 U	0.26 U	W029 W029	0.125	0.125 U	0.13 U
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.5	0.54	W029	0.52	0.52	0.538	0.5	0.54	W029	0.52	0.52	0.538
Copper	Peristaltic - particulate	μg/L	2	2	100	0.3	0.38	W029	0.34	0.34	0.376	0.3	0.38	W029	0.34	0.34	0.376
Copper	Peristaltic - total	μg/L	2	2	100	0.84	0.88	W029	0.86	0.86	0.878	0.84	0.88	W029	0.86	0.86	0.878
Zinc	Peristaltic - dissolved	μg/L	2	0	0							2.2 U	2.8 U	W029	1.25	1.25 U	1.39 U
Zinc	Peristaltic - particulate	μg/L	2	0	0							3.2 U	3.7 U	W029	1.73	1.73 U	1.84 U
Zinc	Peristaltic - total	μg/L	2	0	0							3.2 U	3.7 U	W029	1.73	1.73 U	1.84 U
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 UJ	0.0006 UJ	W029	0.0003	0.0003 UJ	0.0003 UJ
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000165 JT	0.000179 JT	W029	0.000172	0.000172 J	0.000178 J	0.000165 JT	0.000179 JT	W029	0.000172	0.000172 J	0.000178 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.000085 JT	0.0000946 JT	W029	0.0000898	0.0000898 J	0.0000941 J	0.000085 JT	0.0000946 JT	W029	0.0000898	0.0000898 J	0.0000941 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.00025 J	0.000274 J	W029	0.000262	0.000262 J	0.000272 J	0.00025 J	0.000274 J	W029	0.000262	0.000262 J	0.000272 Ј
Pesticides	D 1 - 12 1											0.00046.11	0.00040.11	Wiozo	0.000225	0.000005 11	0.00024.11
Aldrin Dieldrin	Peristaltic - total Peristaltic - total	μg/L	2	0	0							0.00046 U 0.0004 U	0.00048 U 0.00042 U	W029	0.000235 0.000205	0.000235 U 0.000205 U	0.00024 U 0.00021 U
Total chlordanes	Peristaltic - total	μg/L μg/L	2	0	0							0.0004 U 0.0013 UT	0.00042 U 0.0016 UT	W029 W029	0.000203	0.000203 U 0.000725 U	0.00021 U 0.000793 U
DDx	Peristaltic - total	μg/L μg/L	2	2	100	0.002 NJT	0.0025 NJT	W029	0.00225	0.00225 J	0.00248 J	0.0013 CT 0.002 NJT	0.0025 NJT		0.00225	0.000725 U 0.00225 J	0.00248 J
PAHs	i cristatic - total	μg/L	2	2	100	0.002 1431	0.0023 101	**027	0.00223	0.00223 3	0.00240 3	0.002 1131	0.0023 1131	1102)	0.00223	0.00223 3	0.00240 3
Total PAHs	Peristaltic - total	μg/L	2	2	100	0.024 JT	0.032 JT	W029	0.028	0.028 J	0.0316 J	0.024 JT	0.032 JT	W029	0.028	0.028 J	0.0316 J
Phthalates		r-8-															
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.28 UJ	0.79 UJ	W029	0.268	0.268 UJ	0.382 UJ
RM 06<07 Metals																	
Arsenic	Peristaltic - dissolved	μg/L	2	0	0							0.393 UJ	0.399 UJ	W031	0.198	0.198 UJ	0.199 UJ
Arsenic	Peristaltic - particulate	μg/L	2	2	100	0.451 J	0.458 J	W031	0.455	0.455 J	0.458 J	0.451 J	0.458 J	W031	0.455	0.455 J	0.458 J
Arsenic	Peristaltic - total	μg/L	2	2	100	0.451 J	0.458 J	W031	0.455	0.455 J	0.458 J	0.451 J	0.458 J	W031	0.455	0.455 J	0.458 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.13 U	0.17 U	W031	0.075	0.075 U	0.084 U
Chromium	Peristaltic - particulate	μg/L	2	0	0							0.29 U	0.36 U	W031	0.163	0.163 U	0.178 U
Chromium	Peristaltic - total	μg/L	2	0	0				0.565	0.565	0.570	0.29 U	0.36 U	W031	0.163	0.163 U	0.178 U
Copper	Peristaltic - dissolved	μg/L	2	2	100 100	0.55	0.58	W031	0.565	0.565	0.579	0.55 0.37	0.58	W031	0.565	0.565	0.579
Copper	Peristaltic - particulate Peristaltic - total	μg/L	2	2	100	0.37 0.95	0.56 1.11	W031	0.465 1.03	0.465 1.03	0.551 1.1	0.37	0.56	W031 W031	0.465 1.03	0.465 1.03	0.551
Copper Zinc	Peristaltic - total Peristaltic - dissolved	μg/L	2	1	50	5.4	5.4	W031 W031	5.4	5.4	5.4	0.93 2.6 U	1.11 5.4	W031 W031	3.35	3.35	1.1 5.2
		μg/L															
Zinc Zinc	Peristaltic - particulate ^a Peristaltic - total	μg/L	2 2	0	50 0	0	0	W031	0	0	0	0 3.4 U	3.4 U 3.5 U	W031 W031	0.85 1.73	0.85 1.73 U	1.62 1.75 U
Butyltins	Feristatue - total	μg/L	2	U	U							3.4 0	3.3 0	W031	1./3	1.73 0	1.75 0
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W031	0.0003	0.0003 U	0.0003 U
PCBs ^c	Terminate total	F 5 2	-		Ü							0.0000	0.0000 0	***************************************	0.0005	0.0005	0.0000
Total PCBs	XAD Column - dissolved	μg/L	2	2	100	0.000155 JT	0.000173 JT	W031	0.000164	0.000164 J	0.000172 J	0.000155 JT	0.000173 JT	W031	0.000164	0.000164 J	0.000172 J
Total PCBs	XAD Filter - particulate	μg/L μg/L	2	2	100	0.000133 JT	0.000175 JT	W031	0.000104	0.000104 J	0.000172 J	0.000133 JT	0.000175 JT	W031	0.000118	0.000104 J	0.000172 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000265 J	0.000298 J	W031	0.000282	0.000282 J	0.000296 J	0.000265 J	0.000298 J	W031	0.000282	0.000282 J	0.000296 J
Pesticides		1.0															
Aldrin	XAD Column - dissolved	μg/L	2	0	0							0.0000038 U	0.00000391 U	W031	0.00000193	0.00000193 U	0.00000195 U
Aldrin	XAD Filter - particulate	μg/L	2	2	100	0.000000635 J	0.00000366 J	W031	0.00000215	0.00000215 J	0.00000351 J	0.000000635 J	0.00000366 J	W031	0.00000215	0.00000215 J	0.00000351 J
Aldrin	Peristaltic - total	μg/L	1	0	0							0.00027 U	0.00027 U	W031	0.000135	0.000135 U	0.000135 U
Aldrin	XAD Column+Filter - total	μg/L	2	2	100	0.000000635 J	0.00000366 J	W031	0.00000215	0.00000215 J	0.00000351 J	0.000000635 J	0.00000366 J	W031	0.00000215	0.00000215 J	0.00000351 J
Dieldrin	XAD Column - dissolved	μg/L	2	2	100	0.0000459 J	0.0000498 J	W031	0.0000479	0.0000479 J	0.0000496 J	0.0000459 J	0.0000498 J	W031	0.0000479	0.0000479 J	0.0000496 J
Dieldrin	XAD Filter - particulate	μg/L	2	1	50	0.00000415 J	0.00000415 J	W031	0.00000415	0.00000415 J	0.00000415 J	0.00000203 U	0.00000415 J	W031	0.00000258	0.00000258 J	0.00000399 J
Dieldrin	Peristaltic - total	μg/L	1	0	0	 0.0000400 I	0.0000501 I	 W021		0.0000400 I	0.00005 I	0.0004 U	0.0004 U	W031	0.0002	0.0002 U	0.0002 U
Dieldrin Total ablandance	XAD Column+Filter - total XAD Column - dissolved	μg/L	2	2	100 100	0.0000498 J	0.0000501 J	W031	0.0000499 0.0000138	0.0000499 J	0.00005 J	0.0000498 J	0.0000501 J	W031	0.0000499	0.0000499 J	0.00005 J
Total chlordanes Total chlordanes	XAD Column - dissolved XAD Filter - particulate	μg/L μg/I	2	2	100	0.00000672 JT 0.000000597 JT	0.0000208 JT 0.00000365 JT	W031 W031	0.0000138	0.0000138 J 0.00000212 J	0.0000201 J 0.0000035 J	0.00000672 JT 0.000000597 JT	0.0000208 JT 0.00000365 JT	W031 W031	0.0000138 0.00000212	0.0000138 J 0.00000212 J	0.0000201 J 0.0000035 J
Total chlordanes	Peristaltic - total	μg/L μg/L	1	0	0	0.000000397 J1	0.00000363 31	WU31	0.00000212	0.00000212 J	0.0000033 J	0.000000397 JT 0.0013 UT	0.0000363 JT 0.0013 UT	W031 W031	0.0000212	0.00000212 J 0.00065 UT	0.0000033 J 0.00065 UT
Total chlordanes Total chlordanes	XAD Column+Filter - total	μg/L μg/L	2	2	100	0.00000732 J	0.0000245 J	W031	0.0000159	0.0000159 J	0.0000236 J	0.0000732 J	0.0003 UT	W031 W031	0.00003	0.00003 U1 0.0000159 J	0.00003 U1 0.0000236 J
DDx	XAD Column - dissolved	μg/L μg/L	2	2	100	0.00000732 J 0.000167 JT	0.000177 JT	W031	0.000139	0.000139 J	0.000176 J	0.0000732 J 0.000167 JT	0.0000243 J	W031	0.000139	0.000139 J 0.000172 J	0.000176 J
DDx	XAD Filter - particulate	μg/L μg/L	2	2	100	0.0000193 JT	0.000147 JT	W031	0.0000172	0.0000172 J	0.000176 J	0.0000197 JT	0.000177 JT	W031	0.0000172	0.000172 J	0.000176 J
DDx	Peristaltic - total	μg/L	1	1	100	0.0029 JT	0.0029 JT	W031	0.0029	0.0029 JT	0.0029 JT	0.0029 JT	0.0029 JT	W031	0.0029	0.0029 JT	0.0029 JT
DDx	XAD Column+Filter - total	μg/L	2	2	100	0.000196 J	0.000311 J	W031	0.000254	0.000254 J	0.000305 J	0.000196 J	0.000311 J	W031	0.000254	0.000254 J	0.000305 J
PAHs Total PAHs	Peristaltic - total	μg/L	2	2	100	0.027 JT	0.032 JT	W031	0.0295	0.0295 J	0.0318 J	0.027 JT	0.032 JT	W031	0.0295	0.0295 J	0.0318 J
1000171113	1 oristatic - total	μg/L	2	4	100	0.02/ J1	0.032 J1	W 031	0.0233	0.0233 J	0.0310 J	0.027 J1	0.032 11	W 031	0.0273	0.0233 J	0.0510 J

Table 5.4-11d. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (West Channel Single-Point Locations).

Table 5.4-11d. Summary Statistics I	or indicator contaminants in puri	race water,	Stormwater inn	deneed Even	its (West Cha	mier Single 1 out Locati	Detected Concentrations							Detected and Not Detected Concentrations					
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b		
Phthalates			" Tildly Zed	" Betteteu	70 Detected					1/1-curair	T CT CCMATC	(run DD)	(Iun D2)			(Iuii DZ)	(IIIII D D)		
Bis(2-ethylhexyl) phthalate RM 07<08	Peristaltic - total	μg/L	2	0	0							0.32 UJ	0.48 UJ	W031	0.2	0.2 UJ	0.236 UJ		
Metals	Desistaltia dissalvad	/T	6	1	17	0.412	0.412	W/024	0.412	0.412	0.412	0.381 U	0.412	W034	0.221	0.195 U	0.250		
Arsenic Arsenic	Peristaltic - dissolved Peristaltic - particulate	μg/L μg/L	6	2	33	0.412 0.03 J	0.412 0.439 J	W034 W034	0.412 0.235	0.412 0.235 J	0.412 0.419 J	0.381 U 0.03 J	0.412 0.441 UJ	W034 W033	0.231 0.223	0.195 U 0.22 UJ	0.359 0.384 J		
Arsenic	Peristaltic - total	μg/L μg/L	6	2	33	0.439 J	0.442 J	W034	0.441	0.441 J	0.442 J	0.412 UJ	0.442 J	W034	0.291	0.22 UJ	0.441 J		
Chromium	Peristaltic - dissolved	μg/L	6	0	0							0.13 U	0.2 U	W033	0.0817	0.08 U	0.0988 U		
Chromium	Peristaltic - particulate	μg/L	6	0	0							0.23 U	0.34 U	W034	0.146	0.15 U	0.168 U		
Chromium	Peristaltic - total	μg/L	6	0	0							0.23 U	0.34 U	W034	0.146	0.15 U	0.168 U		
Copper	Peristaltic - dissolved	μg/L	6	6	100	0.5	0.56	W033	0.518	0.51	0.55	0.5	0.56	W033	0.518	0.51	0.55		
Copper	Peristaltic - particulate	μg/L	6	6	100	0.26	0.38	W034	0.332	0.35	0.378	0.26	0.38	W034	0.332	0.35	0.378		
Copper Zinc	Peristaltic - total Peristaltic - dissolved	μg/L	6	6	100 17	0.79 6.6	0.89 6.6	W033; W034 W034	0.85 6.6	0.855 6.6	0.89 6.6	0.79 2.3 U	0.89 6.6	W033; W034 W034	0.85 2.33	0.855 1.58 U	0.89 5.39		
		μg/L	0	1	17	0.0	0.0		0.0		0.0	0							
Zinc Zinc	Peristaltic - particulate ^a Peristaltic - total	μg/L μg/L	6	0	0	0	0	W034		0		0 3 U	4.6 U 4.6 U	W033 W033	1.67 1.92	1.9 U 1.9 U	2.28 U 2.28 U		
Butyltins	Feristatic - total	μg/L	Ü	U	U							3 0	4.0 0	W033	1.92	1.9 0	2.28 U		
Tributyltin ion PCBs ^c	Peristaltic - total	$\mu g/L$	6	1	17	0.0013 J	0.0013 J	W033	0.0013	0.0013 J	0.0013 J	0.0006 UJ	0.0045 U	W034	0.000792	0.0003 UJ	0.00201 J		
Total PCBs	XAD Column - dissolved	μg/L	6	6	100	0.000135 JT	0.000199 JT	W033	0.000169	0.000175 J	0.000197 J	0.000135 JT	0.000199 JT	W033	0.000169	0.000175 J	0.000197 J		
Total PCBs	XAD Filter - particulate	μg/L μg/L	6	6	100	0.000133 JT 0.00011 JT	0.000199 JT	W033	0.000109	0.000173 J	0.000197 J	0.000133 JT 0.00011 JT	0.000199 JT	W033	0.000109	0.000173 J 0.000149 J	0.000197 J		
Total PCBs PCDD/Fs Homologs	XAD Column+Filter - total	μg/L	6	6	100	0.000245 J	0.000368 J	W033	0.000314	0.000333 J	0.000361 J	0.000245 J	0.000368 J	W033	0.000314	0.000333 J	0.000361 J		
Total PCDD/Fs	XAD Column - dissolved	μg/L	4	4	100	0.00000279 T	0.00000855 T	W033	0.00000566	0.00000566	0.00000837	0.00000279 T	0.00000855 T	W033	0.00000566	0.00000566	0.00000837		
Total PCDD/Fs	XAD Filter - particulate	μg/L	4	4	100	0.0000274 T	0.0000483 T	W033	0.0000369	0.000036	0.0000466	0.0000274 T	0.0000483 T	W033	0.0000369	0.000036	0.0000466		
Total PCDD/Fs	XAD Column+Filter - total	$\mu g/L$	4	4	100	0.000036	0.0000511	W033	0.0000426	0.0000417	0.0000501	0.000036	0.0000511	W033	0.0000426	0.0000417	0.0000501		
PCDD/Fs	WAR CI II I I	Œ.			100	0.00000000545 455	0.000000172.77	111022	0.0000000116	0.0000000110.1	0.0000000160.1	0.0000000545.75	0.0000000172 17	11/022	0.0000000116	0.0000000110.1	0.0000000160.1		
TCDD TEQ (ND=0)	XAD Column - dissolved XAD Filter - particulate	μg/L	4	4	100 100	0.00000000547 JT 0.0000000795 JT	0.0000000173 JT 0.000000203 JT	W033 W033	0.0000000116 0.000000136	0.0000000118 J 0.000000131 J	0.0000000169 J 0.000000199 J	0.00000000547 JT 0.0000000795 JT	0.0000000173 JT 0.000000203 JT	W033 W033	0.0000000116 0.000000136	0.0000000118 J 0.000000131 J	0.0000000169 J 0.000000199 J		
TCDD TEQ (ND=0) TCDD TEQ (ND=0)	XAD Filter - particulate XAD Column+Filter - total	μg/L μg/L	4	4	100	0.0000000793 J1 0.00000000968 J	0.000000203 J1 0.000000212 J	W033		0.000000131 J	0.000000199 J 0.000000208 J	0.0000000793 J1 0.0000000968 J	0.000000203 J1 0.000000212 J	W033 W033	0.000000136	0.000000131 J	0.000000199 J 0.000000208 J		
Pesticides	AAD Column 1 ner - total	μg/L	-	7	100	0.0000000000	0.000000212 3	***************************************	0.000000140	0.000000141 3	0.000000200 3	0.0000000000	0.000000212 3	11033	0.000000140	0.000000141 3	0.000000200 3		
Aldrin	XAD Column - dissolved	μg/L	6	3	50	0.00000306 J	0.00000426 Ј	W033	0.00000366	0.00000367 J	0.0000042 J	0.00000262 U	0.00000426 J	W033	0.00000265	0.00000256 J	0.00000411 J		
Aldrin	XAD Filter - particulate	μg/L	6	2	33	0.0000017 J	0.00000178 J	W033	0.00000174	0.00000174 J	0.00000178 J	0.00000128 U	0.00000637 U	W033	0.00000161	0.00000144 J	0.00000283 J		
Aldrin	XAD Column+Filter - total	$\mu g/L$	6	4	67	0.0000017 J	0.00000484 J	W033	0.00000362	0.00000397 J	0.00000475 J	0.0000017 J	0.00000484 J	W033	0.00000302	0.00000287 J	0.0000047 J		
Dieldrin	XAD Column - dissolved	μg/L	6	6	100	0.0000319 J	0.0000368 J	W034	0.0000345	0.0000342 J	0.0000368 J	0.0000319 J	0.0000368 J	W034	0.0000345	0.0000342 J	0.0000368 J		
Dieldrin	XAD Filter - particulate	μg/L	6	6	50 100	0.00000237 J 0.0000319 J	0.00000349 J	W033 W033	0.00000276 0.0000359	0.00000242 J 0.0000367 J	0.00000338 J	0.00000237 J 0.0000319 J	0.00000349 J	W033 W033	0.00000205 0.0000359	0.00000189 J 0.0000367 J	0.00000322 J		
Dieldrin Total chlordanes	XAD Column+Filter - total XAD Column - dissolved	μg/L μg/L	6	6	100	0.0000319 J 0.0000106 JT	0.000037 J 0.0000275 JT	W033	0.0000339	0.0000367 J 0.000023 J	0.000037 J 0.0000274 J	0.0000319 J 0.0000106 JT	0.000037 J 0.0000275 JT	W033 W033	0.0000339	0.0000367 J	0.000037 J 0.0000274 J		
Total chlordanes	XAD Column - dissolved XAD Filter - particulate	μg/L μg/L	6	5	83	0.0000100 JT 0.00000201 JT	0.0000273 JT 0.00000964 JT	W033	0.0000221	0.000023 J	0.0000274 J	0.0000100 JT 0.00000201 JT	0.0000273 JT 0.0000327 UT		0.0000221	0.000025 J	0.0000274 J 0.0000147 J		
Total chlordanes	XAD Column+Filter - total	μg/L	6	6	100	0.0000106 J	0.0000368 J	W033	0.0000267	0.0000262 J	0.0000367 J	0.0000106 J	0.0000327 C1	W033	0.0000267	0.0000262 J	0.0000367 J		
DDx	XAD Column - dissolved	μg/L	6	6	100	0.000111 JT	0.000246 JT	W033	0.000164	0.000147 J	0.000236 J	0.000111 JT	0.000246 JT	W033	0.000164	0.000147 J	0.000236 J		
DDx	XAD Filter - particulate	$\mu g/L$	6	6	100	0.000142 JT	0.000429 JT	W033	0.000248	0.000222 J	0.000392 J	0.000142 JT	0.000429 JT	W033	0.000248	0.000222 J	0.000392 J		
DDx PAHs	XAD Column+Filter - total	μg/L	6	6	100	0.000253 J	0.000675 J	W033	0.000412	0.000396 J	0.000615 J	0.000253 J	0.000675 J	W033	0.000412	0.000396 J	0.000615 J		
Total PAHs	XAD Column - dissolved	μg/L	4	4	100	0.014 JT	0.0218 JT	W033	0.0184	0.0188 J	0.0215 J	0.014 JT	0.0218 JT	W033	0.0184	0.0188 J	0.0215 J		
Total PAHs	XAD Filter - particulate	μg/L	4	4	100	0.0107 JT	0.0306 JT	W033	0.0199	0.0191 J	0.0301 J	0.0107 JT	0.0306 JT	W033	0.0199	0.0191 J	0.0301 J		
Total PAHs Total PAHs	Peristaltic - total XAD Column+Filter - total	μg/L μg/L	6	3	83 100	0.0062 JT 0.0249 J	0.12 JT 0.0507 J	W033 W033	0.0506 0.0382	0.035 JT 0.0387 J	0.108 J 0.0498 J	0.0062 JT 0.0249 J	0.12 JT 0.0507 J	W033 W033	0.0438 0.0382	0.0335 J 0.0387 J	0.105 J 0.0498 J		
Phthalates	AAD Column+Filter - total	μg/L	4	4	100	0.0249 J	0.0307 3	W033	0.0382	0.0367 3	0.0496 J	0.0249 J	0.0307 3	W033	0.0362	0.0387 J	0.0496 J		
Bis(2-ethylhexyl) phthalate RM 08<09	Peristaltic - total	$\mu g \! / \! L$	6	0	0							0.21 UJ	0.47 UJ	W034	0.143	0.133 UJ	0.213 UJ		
Metals																			
Arsenic	Peristaltic - dissolved	μg/L	2	0	0							0.387 U	0.4 U	W036	0.197	0.197 U	0.2 U		
Arsenic	Peristaltic - particulate	$\mu g/L$	2	2	100	0.436 J	0.46 J	W036	0.448	0.448 J	0.459 J	0.436 J	0.46 J	W036	0.448	0.448 J	0.459 J		
Arsenic	Peristaltic - total	μg/L	2	2	100	0.436 J	0.46 J	W036	0.448	0.448 J	0.459 J	0.436 J	0.46 J	W036	0.448	0.448 J	0.459 J		
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.16 U	0.2 U	W036	0.09	0.09 U	0.099 U		
Chromium Chromium	Peristaltic - particulate Peristaltic - total	μg/L	2	0	0							0.29 U 0.29 U	0.37 U 0.37 U	W036 W036	0.165 0.165	0.165 U 0.165 U	0.183 U 0.183 U		
Copper	Peristaltic - total Peristaltic - dissolved	μg/L μg/L	2	2	100	0.54	0.58	W036	0.56	0.56	0.578	0.29 0	0.57 0	W036 W036	0.165	0.165 U	0.183 U 0.578		
Copper	Peristaltic - particulate	μg/L μg/L	2	2	100	0.34	0.38	W036	0.37	0.37	0.415	0.34	0.38	W036	0.37	0.37	0.415		
Copper	Peristaltic - total	μg/L μg/L	2	2	100	0.9	0.96	W036	0.93	0.93	0.957	0.9	0.96	W036	0.93	0.93	0.957		
Zinc	Peristaltic - dissolved	μg/L	2	1	50	4.8	4.8	W036	4.8	4.8	4.8	2.5 U	4.8	W036	3.03	3.03	4.62		
Zinc	Peristaltic - particulate ^d	μg/L	2	1	50	0	0	W036	0	0	0	0	3.7 U	W036	0.925	0.925	1.76		
Zinc	Peristaltic - total	μg/L	2	0	0							3.7 U	4.5 U	W036	2.05	2.05 U	2.23 U		
Butyltins																			
Tributyltin ion	Peristaltic - total	\mug/L	2	0	0							0.0006 UJ	0.0006 UJ	W036	0.0003	0.0003 UJ	0.0003 UJ		

Table 5.4-11d. Summary Statistics for Indicator Contaminants in Surface Water, Stormwater-Influenced Events (West Channel Single-Point Locations).

			·			U	•	Detected Concentra	tions				D	etected and Not Detected Co	oncentrations		
Analyte	Method	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
PCBs ^c																7	
Total PCBs	XAD Column - dissolved	μg/L	2.	2	100	0.000135 JT	0.000181 JT	W036	0.000158	0.000158 J	0.000179 J	0.000135 JT	0.000181 JT	W036	0.000158	0.000158 J	0.000179 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.000118 JT	0.000156 JT	W036	0.000137	0.000137 J	0.000175 J	0.000118 JT	0.000156 JT	W036	0.000137	0.000137 J	0.000175 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000291 J	0.000299 J	W036	0.000295	0.000295 J	0.000299 J	0.000291 J	0.000299 J	W036	0.000295	0.000295 J	0.000299 J
Pesticides	The Column Theoreton	F6 2	-	-	100	0.000271	0.0002/		0.000272	0.0002,5	0.0002// 0	0.000291	0.0002//	***************************************	0.000272	0.000272	0.0002//
Aldrin	Peristaltic - total	μg/L	4	0	0							0.00032 U	0.00048 U	W036	0.000201	0.000203 U	0.00024 U
Dieldrin	Peristaltic - total	μg/L μg/L	4	0	0							0.00032 U	0.00048 U	W036	0.0002	0.000203 U	0.00024 U
Total chlordanes	Peristaltic - total	μg/L μg/L	4	1	25	0.0016 JT	0.0016 JT	W036	0.0016	0.0016 JT	0.0016 JT	0.00073 UT	0.0004 C 0.0018 UT	W036	0.000823	0.0002 U	0.0002 C
DDx	Peristaltic - total	μg/L μg/L	4	3	75	0.0021 T	0.0029 JT	W036	0.00253	0.0026 T	0.00287 J	0.0016 UT	0.0029 JT	W036	0.0021	0.00235	0.00286 J
PAHs	i cristantic - total	μg/L	-	3	75	0.0021 1	0.0027 31	***************************************	0.00233	0.0020 1	0.00207 3	0.0010 01	0.0027 31	***************************************	0.0021	0.00233	0.00200 3
Total PAHs	Peristaltic - total	μg/L	2	1	50	0.005 JT	0.005 JT	W036	0.005	0.005 JT	0.005 JT	0.005 JT	0.013 UT	W036	0.00575	0.00575 J	0.00643 J
Phthalates	i eristattic - totai	μg/L	2	1	30	0.005 31	0.003 31	W030	0.003	0.003 31	0.005 31	0.003 31	0.013 01	W030	0.00373	0.00373 3	0.00043 3
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	0	0							0.35 UJ	0.78 UJ	W036	0.283	0.283 UJ	0.379 UJ
RM 09<10	i eristattic - totai	μg/L	2	U	U							0.55 05	0.78 03	W030	0.263	0.265 03	0.579 03
Metals																	
Arsenic	Peristaltic - dissolved	/T	2	1	50	0.401 J	0.401 J	W037	0.401	0.401 J	0.401 J	0.401 J	0.425 UJT	W037	0.307	0.307 J	0.392 J
Arsenic		μg/L	2	1	100	0.401 J 0.083 J	0.467 J	W037 W037	0.275	0.401 J 0.275 J	0.448 J	0.401 J 0.083 J	0.423 UJ1 0.467 J	W037 W037	0.275	0.307 J 0.275 J	0.392 J 0.448 J
	Peristaltic - particulate	μg/L	2	2													
Arsenic	Peristaltic - total	μg/L	2	2	100	0.467 JT	0.484 J	W037	0.476	0.476 J	0.483 J	0.467 JT	0.484 J	W037	0.476	0.476 J	0.483 J
Chromium	Peristaltic - dissolved	μg/L	2	0	0							0.14 UT	0.18 U	W037	0.08	0.08 U	0.089 U
Chromium	Peristaltic - particulate	μg/L	2	0	0							0.31 U	0.31 U	W037	0.155	0.155 U	0.155 U
Chromium	Peristaltic - total	μg/L	2	0	0							0.31 U	0.31 U	W037	0.155	0.155 U	0.155 U
Copper	Peristaltic - dissolved	μg/L	2	2	100	0.56 T	0.58	W037	0.57	0.57	0.579	0.56 T	0.58	W037	0.57	0.57	0.579
Copper	Peristaltic - particulate	μg/L	2	2	100	0.31	0.31	W037	0.31	0.31	0.31	0.31	0.31	W037	0.31	0.31	0.31
Copper	Peristaltic - total	μg/L	2	2	100	0.87 T	0.89	W037	0.88	0.88	0.889	0.87 T	0.89	W037	0.88	0.88	0.889
Zinc	Peristaltic - dissolved	μg/L	2	0	0							2.6 UT	2.8 U	W037	1.35	1.35 U	1.4 U
Zinc	Peristaltic - particulate	μg/L	2	0	0							3.1 U	4.7 U	W037	1.95	1.95 U	2.31 U
Zinc	Peristaltic - total	μg/L	2	0	0							3.1 UT	4.7 U	W037	1.95	1.95 U	2.31 U
Butyltins																	
Tributyltin ion	Peristaltic - total	μg/L	2	0	0							0.0006 U	0.0006 U	W037	0.0003	0.0003 U	0.0003 U
PCBs ^c																	
Total PCBs	XAD Column - dissolved	μg/L	2.	2.	100	0.000143 JT	0.000154 JT	W037	0.000149	0.000149 J	0.000153 J	0.000143 JT	0.000154 JT	W037	0.000149	0.000149 J	0.000153 J
Total PCBs	XAD Filter - particulate	μg/L	2	2	100	0.0000534 JT	0.000172 JT	W037	0.000113	0.000113 J	0.000166 J	0.0000534 JT	0.000172 JT	W037	0.000113	0.000113 J	0.000166 J
Total PCBs	XAD Column+Filter - total	μg/L	2	2	100	0.000196 J	0.000326 J	W037	0.000261	0.000261 J	0.00032 J	0.000196 J	0.000326 J	W037	0.000261	0.000261 J	0.00032 J
Pesticides	70 E Column 1 mer total	ив/ Ц	-	-	100	0.000170 3	0.000320 3	***************************************	0.000201	0.0002013	0.00032 3	0.000170 3	0.000320 3	11037	0.000201	0.000201 3	0.00032 3
Aldrin	Peristaltic - total	μg/L	2	0	0							0.000057 U	0.00028 U	W037	0.0000843	0.0000843 U	0.000134 U
Dieldrin	Peristaltic - total	μg/L μg/L	2	0	0							0.00037 U 0.0004 U	0.00028 U	W037 W037	0.000343	0.0000843 U	0.000134 U
Total chlordanes	Peristaltic - total		2	0	0							0.0004 U 0.00077 UT	0.00042 UT	W037 W037	0.000203	0.000203 U	0.00021 U 0.000684 U
DDx	Peristaltic - total	μg/L μg/L	2	1	50	0.0047 NJT	0.0047 NJT	W037	0.0047	0.0047 NJT	0.0047 NJT	0.00077 UT 0.0013 UT	0.0014 UT 0.0047 NJT	W037 W037	0.00343	0.000343 U 0.00268 J	0.000684 U 0.0045 J
PAHs	renstatue - totai	μg/L	2	1	30	0.004 / NJ I	0.004 / NJ I	W037	0.0047	0.004/ NJ1	0.004/ NJI	0.0015 U1	0.004/ NJ1	W037	0.00268	0.00208 J	0.0043 J
	Desistaltia tatal	/T	2	1	50	0.034 JT	0.034 JT	W037	0.034	0.034 JT	0.034 JT	0.012 177	0.034 JT	W037	0.0203	0.0203 J	0.0326 J
Total PAHs Phthalates	Peristaltic - total	$\mu g/L$	2	1	50	0.034 JT	0.034 JT	W037	0.034	0.034 JT	U.U34 J1	0.013 UT	0.034 JT	W037	0.0203	0.0203 J	0.0326 J
	Damiataltia tatal	/T	2	0	0							0.4 UJ	0.62.111	W037	0.255	0.255 UJ	0.205 111
Bis(2-ethylhexyl) phthalate	Peristaltic - total	μg/L	2	U	U							0.4 UJ	0.62 UJ	W037	0.255	0.255 UJ	0.305 UJ

Notes:

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile is the exact result value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

d Particulate values were calculated as the difference between total and dissolved concentrations. If the measured dissolved concentration was greater than or equal to the measured total concentration, the calculated particulate concentration was assigned a value of zero.

-- data not available.

DDx - 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl PCDD/Fs - dioxins/furans

RM - River Mile

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalent

XAD - hydrophobic crosslinked polystyrene copolymer resin

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Table 5.4-12. Total PCB Data Presented by Station and Sampling Event. AWQC-HH 0.0000064 μg/L AWQC-Eco 0.014 μg/L MCL 0.5 Nov-04 Mar-05 Jul-05 Jan-06 Sep-06 Nov-06 Jan-07 - Mar-07 μg/L Low Flow Low Flow Low Flow High Flow Low Flow Storm Water Flow High Flow Sample River Location Collection Type Collection Location Collection Method Qualifier Qualifier Value Qualifier Qualifier Value Qualifier Value Qualifier Value Qualifier Units W001 2.0E SP NB Peristaltic 0.0025 UJT $\mu \, g \! / \! L$ 0.0025 UT $\mu g\!/\!L$ 0.0063 JT μg/L W002 2.2W SP NB-1 0.00255 0.0025 UJT Peristaltic UT μg/L μg/L W003 3.0W SP NB Peristaltic 0.0025 UJT μg/L 0.0025 UT μg/L 0.0025 UJT μg/L SP W004 3.7E (International Slip) NB Peristaltic 0.00589 JT 0.0025 UJT $\mu g/L$ $\mu g/L$ NB-1 Peristaltic 0.0136 JT μg/L NB-2 Peristaltic 0.0109 μg/L W005 T 0.000469 0.000218 JT 0.0000779 3 9 M EDI-NB XAD - C IT JT $\mu g/L$ μg/L μg/L XAD - C+F 0.00095 μg/L 0.00044 μg/L 0.0003909 μg/L XAD - F 0.000481 0.000222 0.000313 JT JT JT μg/L μg/L μg/L EDI-NS 0.000472 XAD - C JT 0.000248 JT 0.0000698 JT μg/L μg/L μg/L XAD - C+F 0.000661 μg/L 0.000458 μg/L 0.0001397 J μg/L XAD - F 0.000189 JT μg/L 0.00021 JT μg/L 0.0000699 JT μg/L EDI-VI 0.0026 UT Peristaltic μg/L XAD - C 0.000135 JT μg/L 0.000235 JT μg/L 0.000294 JT μg/L XAD - C+F 0.000228 0.000401 0.000507 μg/L μg/L μg/L JT JT XAD - F 0.000093 μg/L 0.000166 JT μg/L 0.000213 μg/L M XAD - C 0.000073 μg/L XAD - C+F 0.000209 μg/L 0.000136 XAD - F JT μg/L W006 4.0W SP NB Peristaltic 0.00256 UT μg/L 0.00252 UT μg/L 0.0025 UT μg/L SP $\mu g \! / \! L$ 0.0025 W007 4.4E (T4/slip 1) NB 0.0026 UT 0.00261 UT UT Peristaltic μg/L μg/L W008 4.6E (T4/slip 3) SP NB Peristaltic 0.0025 UT μg/L 0.0025 UT μg/L 0.0025 UT μg/L W009 5.6W SP NB Peristaltic 0.0025 UT 0.0025 UT 0.0025 UT μg/L μg/L μg/L W010 5.7E SP NB Peristaltic 0.00267 UT μg/L VI 0.0025 UT Peristaltic $\mu g/L$ 0.0025 UT μg/L W011 6.3E T EDI-NB XAD - C 0.000144 JT 0.000061 JT μg/L μg/L XAD - C+F 0.000279 0.000137 J μg/L μg/L JT XAD - F 0.000135 JT μg/L 0.000076 μg/L EDI-NB-1 XAD - C 0.000433 JT μg/L XAD - C+F 0.000946 $\mu g\!/\!L$ XAD - F 0.000513 JT μg/L EDI-NS XAD - C 0.000154 JT μg/L 0.0000599 JT μg/L XAD - C+F 0.000239 0.0001319 $\mu g/L$ I μg/L XAD - F 0.000085 JT μg/L 0.000072 JT μg/L EDI-NS-1 XAD - C 0.000428 JT μg/L XAD - C+F 0.000673 μg/L XAD - F 0.000245 JT $\mu g/L$ EDI-VI Peristaltic 0.0025 UT μg/L XAD - C 0.000217 0.000236 JT 0.00028 JT JT $\mu g/L$ μg/L μg/L XAD - C+F 0.000388 $\mu g/L$ 0.000495 $\mu g/L$ 0.000479 $\mu g/L$ XAD - F 0.000171 JT 0.000259 JT 0.000199 JT μg/L μg/L μg/L W012 6.3W SP NB 0.0025 UIT UT UT Peristaltic μg/L 0.0026 μg/L 0.0025 μg/L W013 6.7E SP NB-1 Peristaltic 0.0025 UT μg/L 0.00242 XAD - C 0.000719 JT μg/L JT μg/L 0.00206 μg/L XAD - C+F 0.003339 $\mu g/L$ 0.01198 $\mu g/L$ 0.00798 $\mu g/L$ XAD - F 0.00262 0.00956 JT 0.00592 JT μg/L μg/L μg/L NB-2 0.0025 UT Peristaltic μg/L XAD - C 0.000624 JT 0.000681 0.00216 μg/L μg/L μg/L XAD - C+F 0.002514 0.002061 $\mu \, g\!/\! L$ 0.00216 μg/L μg/L XAD - F 0.00189 $\mu g/L$ 0.00138 JT $\mu g/L$ W014 6.7E SP VI Peristaltic 0.0154 μg/L 0.0026 UT μg/L 0.0025 UT μg/L SP W015 NB XAD - C 0.000639 JT 0.000254 0.000404 6 9W μg/L JT μg/L JT μg/L XAD - C+F 0.001929 $\mu g/L$ 0.000539 $\mu g/L$ 0.000802 μg/L XAD - F 0.00129 0.000285 0.000398 JT μg/L JT μg/L μg/L JT W016 7.2W 0.000137 0.000247 0.000581 XAD - C μg/L IT μg/L IT μg/L XAD - C+F 0.000375 $\mu g/L$ 0.000448 $\mu g/L$ 0.001276 J $\mu g/L$ XAD - F 0.000238 JT 0.000201 μg/L 0.000695 JT JT μg/L μg/L W017 7.5W SP NB 0.0025 UT Peristaltic 0.00256 UT μg/L μg/L W018 8.3E (Swan Island Lagoon) SP NB Peristaltic 0.0025 UT μg/L 0.000162 XAD - C 0.000567 IT IT μg/L JT μg/L 0.000487 μg/L XAD - C+F 0.000439 $\mu g/L$ 0.001687 $\mu g/L$ 0.000828 $\mu g/L$ JT JT XAD - F 0.000277 0.00112 JT 0.000341

μg/L

μg/L

μg/L

Table 5.4-12. Total PCB Data Presented by Station and Sampling Event. AWQC-HH 0.0000064 μg/L AWQC-Eco 0.014 μg/L MCL 0.5 $\mu\,g/L$ Nov-04 Mar-05 Jul-05 Jan-06 Sep-06 Nov-06 Jan-07 - Mar-07 High Flow Storm Water Flow Low Flow Low Flow Low Flow Low Flow High Flow Sample River Location Collection Type Collection Location Collection Method Qualifier Qualifier Units Value Qualifier Value Qualifier Value Qualifier Value Qualifier Value Qualifier Units W019 8.6W NB Peristaltic 0.00253 UT μg/L 0.00263 UT μg/L 0.0025 UT μg/L W020 9.1E (Swan Island Lagoon) SP VI Peristaltic 0.0025 UT 0.0025 UT 0.0025 UT μg/L μg/L μg/L 8.7E (Swan Island Lagoon) W021 SP NB Peristaltic 0.0025 UT 0.0026 UT 0.0025 UT μg/L μg/L μg/L W022 9 7W SP NR Peristaltic 0.0025 UT $\mu g/L$ 0.0025 UT $\mu g/L$ 0.00467 JT $\mu g/L$ W023 10.9M VI-M XAD - C 0.000172 0.0000777 T JT JT 0.0000387 JT μg/L μg/L ug/L 0.000278 0.000109 0.0001214 XAD - C+F μg/L μg/L μg/L XAD - F 0.000106 JT μg/L 0.0000437 JT μg/L 0.0000703 JT μg/L 11E T VI-E XAD - C 0.000287 0.000144 0.0000693 JT JT JT μg/L μg/L μg/L 0.000552 0.000169 XAD - C+F 0.00095 μg/L μg/L T μg/L JT XAD - F 0.000663 JT μg/L 0.000408 JT μg/L 0.0000997 μg/L 11M T EDI-VI Peristaltic 0.0025 UT μg/L XAD - C 0.0000424 0.000104 JT 0.000204 JT JT μg/L μg/L μg/L XAD - C+F 0.0006084 0.0001714 μg/L 0.000322 μg/L μg/L XAD - F 0.000118 JT 0.000566 JT 0.0000674 JT μg/L μg/L μg/L M XAD - C 0.0000674 JT μg/L XAD - C+F 0.0001944 μg/L 0.000127 XAD - F JT μg/L VI-W 0.000104 11W T XAD - C 0.00021 JT $\mu \, g \! / \! L$ 0.0000601 JT μg/L μg/L XAD - C+F 0.0002746 μg/L 0.000221 μg/L 0.0001361 μg/L XAD - F 0.0000646 0.000117 0.000076 JT JT JT μg/L μg/L μg/L W024 15 9M T EDI-NB XAD - C 0.000131 JT 0.000087 IT 0.0000476 JT μg/L μg/L μg/L XAD - C+F 0.0001736 μg/L 0.000205 μg/L 0.0000705 J μg/L XAD - F 0.0000426 0.000118 0.0000229 JT JT JT μg/L μg/L ug/L EDI-NS XAD - C 0.000132 JT 0.000109 JT 0.0000574 JT μg/L μg/L μg/L XAD - C+F 0.0001587 0.0001489 μg/L 0.0000783 μg/L μg/L μg/L XAD - F 0.0000267 JT 0.0000399 JT μg/L 0.0000209 JT μg/L M XAD - C 0.0000514 JT μg/L 0.0001293 XAD - C+F μg/L XAD - F 0.0000779 μg/L W025 VI-E 2E T XAD - C 0.000417 JT $\mu g/L$ 0.000954 JT μg/L 0.0000768 JT μg/L XAD - C+F 0.0004324 μg/L 0.00129 $\mu \, g \! / \! L$ 0.000165 μg/L XAD - F 0.0000154 JT 0.000336 JT μg/L 0.0000882 JT μg/L μg/L 2M T VI-M XAD - C 0.000359 JT 0.000286 JT 0.0000834 JT $\mu g \! / \! L$ μg/L μg/L XAD - C+F 0.0003768 0.000389 0.0001508 μg/L $\mu g/L$ μg/L XAD - F 0.0000178 JT 0.000103 JT μg/L 0.0000674 JT μg/L μg/L 2W T VI-W XAD - C 0.000415 JT 0.00017 JT 0.0000701 JT μg/L μg/L μg/L 0.0004285 0.0001103 XAD - C+F 0.0002345 $\mu g/L$ $\mu \, g \! / \! L$ $\mu g/L$ XAD - F 0.0000135 JT μg/L 0.0000645 JT μg/L 0.0000402 JT μg/L W026 2.1E SP NB XAD - C 0.000634 JT 0.000154 JT μg/L μg/L XAD - C+F 0.000268 0.000897 $\mu g/L$ $\mu \, g / L$ XAD - F 0.000263 JT μg/L 0.000114 JT μg/L NS XAD - C 0.00069 JT 0.000127 JT μg/L μg/L 0.000929 0.000223 XAD - C+F $\mu g/L$ J μg/L XAD - F 0.000239 JT μg/L 0.000096 JT μg/L 2.9W (Multnomah Channel) T EDI-NB XAD - C 0.000162 JT 0.0000995 JT μg/L μg/L XAD - C+F 0.000305 0.0002755 J μg/L μg/L XAD - F 0.000143 JT μg/L 0.000176 JT μg/L EDI-NB-1 XAD - C 0.000419 JT μg/L XAD - C+F 0.000656 $\mu g\!/\!L$ XAD - F 0.000237 JT $\mu g/L$ EDI-NS XAD - C 0.000197 μg/L 0.0000996 JT μg/L XAD - C+F 0.000327 0.0002496 $\mu \, g \! / \! L$ $\mu g/L$ J JT XAD - F 0.00013 JT μg/L 0.00015 μg/L EDI-NS-1 XAD - C 0.000416 JT μg/L XAD - C+F 0.000664 $\mu g/L$ J JT 0.000248 XAD - F μg/L W028 3.6E SP NB XAD - C 0.000353 JT μg/L 0.000102 JT μg/L XAD - C+F $\mu\,g/L$ 0.0001561 0.0004299 μg/L JT XAD - F 0.0000769 JT $\mu g/L$ 0.0000541 μg/L SP NS XAD - C 0.000696 JT 0.000285 JT μg/L μg/L XAD - C+F 0.001153 0.00046 μg/L J μg/L XAD - F 0.000457 JT 0.000175 JT

μg/L

μg/L

QC-HH	0.000064	μg/L																							
QC-Eco	0.014	μg/L																							
MCL	0.5	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			v-06		Ja	n-07 - M	
1-	D: Iti	C-11+i T	Callastian Lasstian	Callantina Mathad	V-1	Low Flow	T T : 4	¥7-1	Low Flow	T I!4	V-1	Low Flow	II.i.	3 7 - 1	High Flow Oualifier	I I:4-	37-1	Low Flow	T T : 4	Storm W			V-1	High Fl	
ample Vo20	River Location	Collection Type	Collection Location	Collection Method	Value	Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units	value	Quanner	Units	varue	Qualifier	Units	Value Qual		Units	Value		
V029	4.4W	SP	NB	XAD - C XAD - C+F																0.000165 0.00025	T I	μg/L μg/L	0.0000839 0.0001773	JT J	!
				XAD - F																0.000085	T	μg/L μg/L	0.0000934	JT	
		SP	NS	XAD - C																	T	μg/L	0.0000844	JT	
				XAD - C+F																0.0002736	J	μg/L	0.0001727	J	
				XAD - F																	T	$\mu g/L$	0.0000883	JT	ŀ
V030	5.5E	SP	NB	XAD - C																0.000215		μg/L	0.000076	JT	
				XAD - C+F																0.000377	-	μg/L	0.0001489	J	
		SP	NS	XAD - F XAD - C																0.000162 0.00237	T	μg/L	0.0000729	JT JT	
		31	1/13	XAD - C+F																0.00257		μg/L μg/L	0.0000768 0.0001105	J	
				XAD - F																0.000216	-	μg/L μg/L	0.0000337	JT	
V031	6.1W	SP	NB	XAD - C																0.000155		μg/L	0.000111	JT	
				XAD - C+F																0.000265	J	μg/L	0.000459	J	
				XAD - F																0.00011	T	$\mu g/L$	0.000348	JT	ŀ
		SP	NS	XAD - C																	T	μg/L	0.0000982	JT	
				XAD - C+F																0.000298	J	μg/L	0.000188	J	ŀ
V032	6.7E	SP	ND	XAD - F																0.000125		μg/L	0.0000898	JT	
VU32	0.7E	Sr	NB	XAD - C XAD - C+F																0.000229 0.000499	T	μg/L μg/I	0.000125 0.00032	JT J	
				XAD - C+1																	T	μg/L μg/L	0.00032		
		SP	NS	XAD - C																	T	μg/L	0.000132		
				XAD - C+F																0.000656		μg/L	0.000261	J	
				XAD - F																0.000321	T	$\mu g/L$	0.000121	JT	ŀ
V033	7.0W	SP	NB	XAD - C																	T	μg/L	0.0000815		
				XAD - C+F																0.000326	-	μg/L	0.0002035	J	
		CD.	NID 2	XAD - F																0.000157		μg/L	0.000122	JT	ŀ
		SP	NB-2	XAD - C XAD - C+F																0.000189 0.000368	T	μg/L			
				XAD - C+1																	T	μg/L μg/L			
		SP	NS	XAD - C																	T	μg/L	0.0000785	JT	,
				XAD - C+F																0.000341	J	μg/L	0.0001721	J	
				XAD - F																0.000161	T	μg/L	0.0000936	JT	
		SP	NS-2	XAD - C																	T	μg/L			
				XAD - C+F																0.00034		μg/L			
V024	7.500	CD	ND	XAD - F																	T	μg/L	0.000000	IT	
V034	7.5W	SP	NB	XAD - C XAD - C+F																0.000142 0.000265	_	μg/L μg/L	0.000089 0.000191	JT J	
				XAD - F																	T	μg/L μg/L	0.000101	JT	
		SP	NS	XAD - C																	T	μg/L	0.000109	JT	
				XAD - C+F																0.000245	J	μg/L	0.0001996	J	
				XAD - F																0.00011		μg/L	0.0000906	JT	
V035	8.5E (Swan Island Lagoon)	SP	NB	XAD - C																0.000231	T	μg/L	0.000223	JT	
				XAD - C+F																0.00068	J	μg/L	0.000703	J	ŀ
		SP	NS	XAD - F XAD - C																0.000449 0.000294		μg/L	0.00048 0.000253		
		31	1/13	XAD - C+F																0.000294	Ī	μg/L μg/L	0.000233	JT J	
				XAD - F																0.000295	T	μg/L μg/L	0.000496		
V036	8.6W	SP	NB	XAD - C																0.000135		μg/L	0.000116		
				XAD - C+F																0.000291	J	μg/L	0.000339	J	ŀ
				XAD - F																0.000156		μg/L	0.000223		ŀ
		SP	NS	XAD - C																0.000181		μg/L	0.000137	JT	ŀ
				XAD - C+F																0.000299		μg/L	0.000302	J	!
V037	9.6W	CD	NB	XAD - F XAD - C																0.000118 0.000154		μg/L μg/I	0.000165		
1037	7.U W	SP	IND	XAD - C XAD - C+F																	J	μg/L μg/L	0.000146 0.000371	J	!
				XAD - C+1																0.000320		μg/L μg/L	0.000371	JT	
		SP	NS	XAD - C																0.000172		μg/L μg/L	0.000154		
				XAD - C+F																0.0001964		μg/L	0.00034	J	
				XAD - F																0.0000534	an .	μg/L	0.000186	JT	

February 8, 2016

Table 5.4-12. Total PCB Data Presented by Station and Sampling Event.

		_																	
AWQC-HH	0.000064	μg/L																	
AWQC-Eco	0.014	μg/L																	
MCL	0.5	μg/L			Nov-04		Mar-05		Jul-05		Jan-06		Sep-06		Nov-0	ó	Ja	n-07 - Ma	r-07
					Low Flow		Low Flow		Low Flow		High Flow		Low Flow		Storm Water	·Flow		High Flov	v
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value	Qualifier	Units										
W038	9.9E	SP	NB	XAD - C											0.0000893 JT	μg/L	0.000065	JT	μg/L
				XAD - C+F											0.0001124 J	μg/L	0.000168	J	μg/L
				XAD - F											0.0000231 JT	μg/L	0.000103	JT	μg/L
			NS	XAD - C											0.0000946 JT	μg/L	0.0000602	JT	μg/L
				XAD - C+F											0.000182 J	μg/L	0.000115	J	μg/L
				XAD - F											0.0000874 JT	ug/L	0.0000548	JT	ug/L

Notes:

AWQC-Eco - ambient water quality criteria (ecological, Oregon)

AWQC-HH - ambient water quality criteria (human health, Oregon)
MCL - maximum concentration limit (USEPA)

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel NB - near bottom

SP - single point

T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

Table 5.4-13. Total PCDD/F Data Presented by Station and Sampling Event.

						Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06			07 - Mar-0	7
Sample	River Location	Collection Type	Collection Location	Collection Method		Low Flow Qualifier	Units		Low Flow Qualifier	Units		Low Flow Qualifier	Units		High Flow Qualifier	Units		.ow Flow Qualifier	Units		Water Flov Qualifier	w Units		ligh Flow Qualifier	Units
W005	3.9 M	T	EDI-NB	XAD - C	,	Quarrier	Cinto	, unu	Quantier	Cinto	, and	Quarrier	- Cinto	, and	Quantier	Cinto	0.000000924	JT	μg/L	0.00000614	T	μg/L	0.00000331	JT	μg/L
	3.7 1.1	•	221112	XAD - C+F													0.000051624	J	μg/L	0.00005014	•	μg/L	0.00002471	J	μg/L
				XAD - F													0.0000507	T	μg/L	0.000044	T	μg/L	0.0000214	T	μg/L
			EDI-NS	XAD - C													0.00000398	JT	μg/L	0.00000173	T	μg/L	0.00000344	JT	μg/L
				XAD - C+F													0.00001788	J	μg/L	0.00002823		μg/L	0.00001564	J	μg/L
			EDI-VI	XAD - F XAD - C	0.0000011	Т	ua/I	0.000000757	JT	ца/І	0.00000389	T	ua/l				0.0000139	T	μg/L	0.0000265	T	μg/L	0.0000122	T	μg/L
			EDI-VI	XAD - C+F	0.0000011	1	μg/L μg/L	0.00000757		μg/L μg/L	0.00000389	1	μg/l μg/l												
				XAD - F	0.0000228	T	μg/L	0.0000272		μg/L	0.0000466	T	μg/l												
			M	XAD - C						10				0.00000382	T	$\mu g/L$									
				XAD - C+F										0.00004402		$\mu g/L$									
******		_		XAD - F										0.0000402	T	μg/L					_	~		****	~
W011	6.3E	T	EDI-NB	XAD - C																0.00000183 0.00002573	T	μg/L	0.00000345	JT J	μg/L
				XAD - C+F XAD - F																0.00002373	Т	μg/L μg/L	0.00002155 0.0000181	T	μg/L μg/L
			EDI-NB-1	XAD - C													0.00000204	T	μg/L	0.0000237	1	μg/L	0.0000101	•	μg/L
				XAD - C+F													0.00005144	_	μg/L						
				XAD - F													0.0000494	T	μg/L						
			EDI-NS	XAD - C																0.000000084	T	μg/L	0.00000141	JT	μg/L
				XAD - C+F																0.000019884	J	μg/L	0.00001481	J	μg/L
			EDING 1	XAD - F													0.00000202	TD.	/r	0.0000198	JT	μg/L	0.0000134	T	μg/L
			EDI-NS-1	XAD - C XAD - C+F													0.00000202 0.00001922	T	μg/L μg/L						
				XAD - C+I													0.00001722	Т	μg/L μg/L						
			EDI-VI	XAD - C	0.00000186	JT	μg/L	0.000000791	JT	μg/L	0.00000273	T	μg/l				***************************************	_	r-8						
				XAD - C+F	0.00002546	J	μg/L	0.000034491	J	μg/L	0.00002623		μg/l												
				XAD - F	0.0000236	T	μg/L	0.0000337	T	$\mu g/L$	0.0000235		μg/l												
W013	6.7E	SP	NB-1	XAD - C	0.00000178	JT	μg/L	0.000000897	JT	μg/L	0.00000644	T	μg/l												
				XAD - C+F	0.00005188	J T	μg/L	0.000045597	J T	μg/L	0.00016244 0.000156	т	μg/l												
			NB-2	XAD - F XAD - C	0.0000501 0.00000107	T	μg/L μg/L	0.0000447 0.0000125	JT	μg/L μg/L	0.000136		μg/l μg/l												
			ND 2	XAD - C+F	0.00004957		μg/L μg/L	0.0000513		μg/L μg/L	0.00003074		μg/l												
				XAD - F	0.0000485	T	μg/L	0.0000388		μg/L	0.0000263	T	μg/l												
W015	6.9W	SP	NB	XAD - C	0.00000402	T	μg/L	0.00000201	JT	$\mu g/L$	0.00000296	T	μg/l												
				XAD - C+F	0.00008202	_	μg/L	0.00004561	J	μg/L	0.00005036	_	μg/l												
11/022	10.0M	T	VII M	XAD - F	0.000078	T	μg/L	0.0000436	T	μg/L	0.0000474	T	μg/l				0.0000018	IT	/Т	0.000000077	т	/1	0.00000216	IT	
W023	10.9M	T	VI-M	XAD - C XAD - C+F													0.0000018 0.0000195	JT J	μg/L μg/L	0.000000077 0.000005507	T J	μg/L μg/L	0.00000216 0.00000536	JT J	μg/L
				XAD - C+I													0.0000173	T	μg/L μg/L	0.00000543	JT	μg/L μg/L	0.00000330	JT	μg/L μg/L
	11E		VI-E	XAD - C													0.00000362	JT	μg/L	0.00000935	T	μg/L	0.00000169	JT	μg/L
				XAD - C+F													0.00002712	J	μg/L	0.00011835		μg/L	0.00003119	J	μg/L
				XAD - F													0.0000235	T	μg/L	0.000109	T	μg/L	0.0000295	T	μg/L
	11M		EDI-VI	XAD - C	0.00000049	T	μg/L	0.000000875		μg/L	0.00000174	T	μg/l												
				XAD - C+F	0.00001859	Т	μg/L	0.000016775		μg/L	0.00002654	т	μg/l												
			M	XAD - F XAD - C	0.0000181	1	μg/L	0.0000159	1	μg/L	0.0000248	T	μg/l	0.00000386	JT	μg/L									
			141	XAD - C+F										0.00003366	J	μg/L μg/L									
				XAD - F										0.0000288	T	μg/L									
	11W		VI-W	XAD - C													0.00000583	JT	$\mu g/L$	0.00000488	JT	$\mu g/L$	0.0000028	JT	$\mu g/L$
				XAD - C+F													0.00001493	J	μg/L	0.00003998	J	μg/L	0.0000273	J	μg/L
W/024	15.004	TD.	EDIND	XAD - F													0.0000091	T	μg/L	0.0000351	T	μg/L	0.0000245	T	μg/L
W024	15.9M	T	EDI-NB	XAD - C XAD - C+F													0.000000833 0.000009313	JT	μg/L	0.00000429 0.00003809	T	μg/L	0.00000146	JT	μg/L
				XAD - C+I													0.000009313	T	μg/L μg/L	0.0000338	T	μg/L μg/L	0.00000814 0.00000668	JT	μg/L μg/L
			EDI-NS	XAD - C													0.0000027	JT	μg/L μg/L	0.000003304	JT	μg/L μg/L	0.00000443	JT	μg/L
				XAD - C+F													0.00000849	J	μg/L	0.00002304	J	μg/L	0.00000973	J	μg/L
				XAD - F													0.00000579	T	μg/L	0.00002	JT	μg/L		JT	μg/L
			M	XAD - C										0.00000413	JT	μg/L									
				XAD - C+F										0.00003003	J	μg/L									
				XAD - F										0.0000259	T	μg/L									

Table 5.4-13. Total PCDD/F Data Presented by Station and Sampling Event.

14010 5	3. Total FCDD/F Data Flesente	a by Buildin una Bui			Nov-04			Mar-05			Jul-05			Jan-06		Sep-06			Nov-06			an-07 - Mar-0	
					Low Flow			Low Flow			Low Flow			High Flow		Low Flow			Water Flo			High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units	Value Qualifier	Units	Value (Qualifier	Units	Value	Qualifier	Units
W025	2E	T	VI-E	XAD - C												0.00000325 JT	$\mu g/L$	0.00000488	JT	μg/L	0.00000403		μg/L
				XAD - C+F												0.00000704 J	μg/L	0.00002308	J	μg/L	0.0000166	3 J	μg/L
				XAD - F												0.00000379 JT	μg/L	0.0000182	JT	μg/L	0.0000120	б Т	μg/L
	2M		VI-M	XAD - C												0.0000034 JT	μg/L	0.0000026	T	μg/L	0.0000029	7 T	μg/L
				XAD - C+F												0.0000059 J	μg/L	0.0000213	J	μg/L	0.0000131	7	μg/L
				XAD - F												0.0000025 JT	μg/L	0.0000187	JT	μg/L	0.00000843	5 JT	μg/L
	2W		VI-W	XAD - C												0.00000404 JT	μg/L	0.00000426	T	μg/L	0.0000022	2 T	μg/L
				XAD - C+F												0.00000621 J	μg/L	0.00001596	J	μg/L	0.0000120	6	μg/L
				XAD - F												0.00000217 JT		0.0000117	JT	μg/L	0.00000986	6 T	μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	XAD - C														0.00000874	JT	μg/L	0.00000236	6 T	μg/L
				XAD - C+F														0.00003814	J	μg/L	0.00002886	6	μg/L
				XAD - F														0.0000294	T	μg/L	0.0000265	5 T	μg/L
			EDI-NB-1	XAD - C												0.00000113 T	μg/L						
				XAD - C+F																			
				XAD - F																			
			EDI-NS	XAD - C													r-8	0.0000155	JT	μg/L	0.00000343	3 JT	μg/L
				XAD - C+F				0.00000217 JT μg/L 0.00000113 T μg/L 0.00002813 μg/L	0.0000522	J	μg/L	0.00003003		μg/L									
				XAD - F														0.0000367	T	μg/L	0.0000266		μg/L
			EDI-NS-1	XAD - C												0.00000172 T	поЛ.	0.0000007	•	F62	0.000020	,	F6 2
			221101	XAD - C+F													ug/L						
				XAD - F													ug/L						
W032	6.7E	SP	NB	XAD - C												0.00002.1	F62	0.00000576	JT	μg/L	0.00000278	8 Т	μg/L
052	0.72	51	1.5	XAD - C+F														0.00005516	I	μg/L	0.00002888		μg/L
				XAD - F														0.0000494	T	μg/L	0.000026		μg/L
			NS	XAD - C														0.00000402	T	μg/L	0.0000050		μg/L
			115	XAD - C+F														0.00003832	•	μg/L μg/L	0.0000246		μg/L μg/L
				XAD - F														0.0000343	T	μg/L μg/L	0.0000196		μg/L μg/L
W033	7.0W	SP	NB	XAD - C														0.0000343	T	μg/L μg/L	0.0000179		μg/L μg/L
***033	7.0 **	Ŋ1	ND	XAD - C+F														0.0000394	1	μg/L μg/L	0.0000017		μg/L μg/L
				XAD - C+1														0.00003504	T	μg/L μg/L	0.0000249		μg/L μg/L
			NB-2	XAD - C														0.0000331	T		0.000024	, , ,	μg/L
			ND-2	XAD - C+F														0.00005109	1	μg/L μg/L			
				XAD - C+1														0.00003107	T	μg/L μg/L			
			NS	XAD - C														0.0000483	T	μg/L μg/L	0.00000533	3 Т	μg/L
			NS	XAD - C XAD - C+F														0.00004427	1		0.0000033		
				XAD - C+F														0.0000369	Т	μg/L	0.0000340		μg/L
			NS-2	XAD - C														0.0000369	T	μg/L	0.000029.	, 1	μg/L
			N3-2	XAD - C XAD - C+F														0.00000833	1	μg/L			
				XAD - C+F XAD - F															т	μg/L			
W025	9.5E (C I-1 I I)	CD	ND															0.0000274	T	μg/L	0.000005	о т	
W035	8.5E (Swan Island Lagoon)	SP	NB	XAD - C														0.00000342	T	μg/L	0.0000052		μg/L
				XAD - C+F														0.00004872	т	μg/L	0.0000749		μg/L
			Ma	XAD - F														0.0000453	T	μg/L	0.000069		μg/L
			NS	XAD - C														0.0000073	T	μg/L	0.0000037		μg/L
				XAD - C+F														0.0000538		μg/L	0.0000744		μg/L
				XAD - F														0.0000465	T	μg/L	0.000070	7 JT	μg/L

Notes:

C - column E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom SP - single point

T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

Reason codes for descriptors:

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

C F	0.00000000051	μg/L																				
C-Eco	0.000038	μg/L																				
CL	0.00003	μg/L				v-04 Flow			ar-05 v Flow		Jul-05 Low Flow		Jan-06 High Flow		Sep-0 Low Flo			Nov-0 Storm Wate				- Mar-07 n Flow
nple	River Location	Collection Type	Collection Location	Collection Method		Qualifier	Units		Qualifier	Units	Value Qualifie	r Units	Value Qualifier	Units		ıalifier	Units			Units		Qualifie
)5	3.9 M	T	EDI-NB	XAD - C											0.00000000321	JT	μg/L	0.0000000115	JT	μg/L	0.0000000102	JT
				XAD - C+F											0.00000019721	J	μg/L	0.0000001094	J	μg/L	0.0000000682	
			EDI-NS	XAD - F											0.000000194	JT IT	μg/L	0.0000000979	JT IT	μg/L	0.000000058	
			EDI-NS	XAD - C XAD - C+F											0.0000000113 0.000000071	JT J	μg/L μg/L	0.000000011 0.000000709	JT I	μg/L μg/L	0.00000000836 0.00000004736	
				XAD - F											0.000000071	JT	μg/L μg/L	0.0000000599	JT	μg/L μg/L	0.000000039	
			EDI-VI	XAD - C	0.0000000189	JT	μg/L	0.00000000291	JT	μg/L	0.0000000103 JT	μg/L					1.0			1.0		
				XAD - C+F	0.00000004959	J	$\mu g/L$	0.00000009511	J	$\mu g/L$	0.0000003273 Ј	μg/L										
				XAD - F	0.0000000477	JT	$\mu g/L$	0.0000000922	JT	$\mu g/L$	0.000000317 JT	μg/L		_								
			M	XAD - C									0.000000015 JT	μg/L								
				XAD - C+F XAD - F									0.0000000862 J 0.0000000712 JT	μg/L μg/L								
	6.3E	Т	EDI-NB	XAD - C									0.0000000712 J1	μg/L				0.000000000528	Т	μg/L	0.00000000942	JT
		_		XAD - C+F														0.000000089028	J	μg/L	0.00000004252	
				XAD - F														0.0000000885	JT	μg/L	0.0000000331	JT
			EDI-NB-1	XAD - C											0.00000000612	JT	μg/L					
				XAD - C+F											0.00000015512	J	μg/L					
			EDI-NS	XAD - F XAD - C											0.000000149	JT	μg/L	0.00000000033	JT	μg/L	0.00000000424	JT
			LDI-N5	XAD - C+F														0.0000000053	J	μg/L μg/L	0.000000003374	
				XAD - F														0.0000000543	JT	μg/L	0.0000000295	
			EDI-NS-1	XAD - C											0.00000000636	JT	$\mu g/L$					
				XAD - C+F											0.00000006366	J	μg/L					
			EDI-VI	XAD - F	0.00000000222	IT	/I	0.00000000463	IT	/T	0.00000000459 T	/I			0.0000000573	JT	μg/L					
			EDI-VI	XAD - C XAD - C+F	0.00000000322 0.00000006212	JT I	μg/L μg/L	0.00000000403	JT J	μg/L μg/L	0.00000000459 T 0.00000009109 J	μg/L μg/L										
				XAD - F	0.0000000589	JT	μg/L μg/L	0.00000000348	JT	μg/L μg/L	0.00000009105 JT	μg/L										
	6.7E	SP	NB-1	XAD - C	0.00000000196	JT	μg/L	0.00000000481	JT	μg/L	0.0000000122 JT	μg/L										
				XAD - C+F	0.00000012696	J	μg/L	0.00000011381	J	$\mu g/L$	0.0000003652 J	μg/L										
			11D 4	XAD - F	0.000000125	JT	μg/L	0.000000109	JT	μg/L	0.000000353 JT	μg/L										
			NB-2	XAD - C	0.000000011006	T J	μg/L	0.0000000382 0.0000001542	JT	μg/L	0.000000007 JT	μg/L										
				XAD - C+F XAD - F	0.0000011006 0.00000109	JT	μg/L μg/L	0.0000001342	J JT	μg/L μg/L	0.000000917 J 0.00000091 JT	μg/L μg/L										
	6.9W	SP	NB	XAD - C	0.00000001334	JT	μg/L μg/L	0.0000000110	JT	μg/L μg/L	0.000000031 JT	μg/L										
				XAD - C+F	0.0000005024	J	μg/L	0.0000004408	J	μg/L	0.0000003569 Ј	μg/L										
				XAD - F	0.000000469	JT	$\mu g/L$	0.000000417	JT	$\mu g/L$	0.000000333 JT	μg/L										
	10.9M	T	VI-M	XAD - C											0.00000000348	JT	μg/L	0.0000000006	JT	μg/L	0.00000000637	
				XAD - C+F XAD - F											0.00000004438 0.0000000409	J JT	μg/L	0.0000000133 0.0000000127	J JT	μg/L	0.00000001134 0.000000000497	
															0.0000000409	JT	μg/L μg/L	0.0000000127	JT	μg/L μg/L	0.00000000437	
	11E		VI-E	XAD - C											0.0000000643	J	μg/L	0.0000002783	J	μg/L	0.00000006567	
	11E		VI-E	XAD - C XAD - C+F																		
	11E		VI-E												0.0000000515	JT	μg/L	0.000000245	JT	μg/L	0.0000000613	JT
	11E 11M		VI-E EDI-VI	XAD - C+F	0.000000000558	T	μg/L	0.00000000309	JT	μg/L	0.00000000205 T	μg/L			0.0000000515	JT	μg/L	0.000000245	JT		0.0000000613	JT
				XAD - C+F XAD - F XAD - C XAD - C+F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L			0.0000000515	JT	μg/L	0.000000245	JT		0.0000000613	JT
			EDI-VI	XAD - C+F XAD - F XAD - C XAD - C+F XAD - F		T J JT							0.0000000140	ug/I	0.0000000515	JT	μg/L	0.000000245	JТ		0.0000000613	JT
				XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000149 JT 0.0000000912 I	μg/L μσ/Ι.	0.000000515	JT	μg/L	0.000000245	JT		0.0000000613	JT
			EDI-VI	XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C XAD - C+F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J	μg/L	0.0000000515	JT	μg/L	0.000000245	JT		0.0000000613	JT
			EDI-VI	XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L			0.0000000515 0.0000000167	JT	μg/L μg/L	0.000000245	JT JT	μg/L	0.0000000613 0.00000000756	
	11 M		EDI-VI M	XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C XAD - C	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J	μg/L	0.0000000167 0.000000407	JT J		0.000000011 0.000000871	JT J	μg/L μg/L μg/L	0.00000000756 0.00000004756	JT J
	11M		EDI-VI M VI-W	XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C XAD - C+F XAD - C+F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J	μg/L	0.000000167 0.000000407 0.00000024	JT J JT	μg/L μg/L μg/L	0.000000011 0.000000871 0.000000761	JT J JT	μg/L μg/L μg/L μg/L μg/L	0.0000000756 0.0000004756 0.0000004	JT J JT
	11 M	T	EDI-VI M	XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C XAD - C+F XAD - C XAD - C+F XAD - C+F XAD - C-F XAD - C-F XAD - C-F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J	μg/L	0.0000000167 0.0000000407 0.000000024 0.0000000107	JT J JT JT	μg/L μg/L μg/L μg/L	0.000000011 0.0000000871 0.0000000761 0.0000000071	JT J	μg/L μg/L μg/L μg/L μg/L μg/L	0.0000000756 0.0000004756 0.0000000489	JT J JT JT
ı	11M	Т	EDI-VI M VI-W	XAD - C+F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J	μg/L	0.0000000167 0.000000407 0.000000024 0.00000000107 0.00000003137	JT J JT JT J	μg/L μg/L μg/L μg/L μg/L	0.000000011 0.000000871 0.0000000761 0.0000000071 0.000000077	JT J JT JT	μg/L μg/L μg/L μg/L μg/L μg/L	0.00000000756 0.00000004756 0.0000000489 0.00000001649	JT JT JT JT
	11M	Т	EDI-VI M VI-W	XAD - C+F XAD - F XAD - C XAD - C+F XAD - F XAD - C XAD - C+F XAD - C XAD - C+F XAD - C+F XAD - C-F XAD - C-F XAD - C-F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J	μg/L	0.0000000167 0.000000407 0.000000024 0.00000000107 0.00000003137	JT J JT JT	μg/L μg/L μg/L μg/L	0.000000011 0.0000000871 0.0000000761 0.0000000071	JT J JT	μg/L μg/L μg/L μg/L μg/L μg/L	0.0000000756 0.0000004756 0.0000000489	JT J JT JT J J
	11M	T	EDI-VI M VI-W EDI-NB	XAD - C+F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J	μg/L	0.0000000167 0.0000000407 0.00000000107 0.0000000013137 0.0000000303	JT J JT JT J J JT	µg/L µg/L µg/L µg/L µg/L µg/L	0.000000011 0.000000871 0.0000000761 0.0000000777 0.0000000776	JT J JT JT J J	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.00000000756 0.0000004756 0.0000000489 0.00000001649 0.0000000116	JT JT JT JT
	11M	T	EDI-VI M VI-W EDI-NB EDI-NS	XAD - C+F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J 0.0000000763 JT	μg/L μg/L	0.000000167 0.0000000407 0.00000000107 0.00000003137 0.0000000333 0.000000149	JT J	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.00000011 0.000000871 0.0000000761 0.0000000777 0.0000000706 0.00000000616	II II II II II	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.0000000756 0.0000004756 0.0000000489 0.00000001649 0.0000000116	JT J
	11M	T	EDI-VI M VI-W EDI-NB	XAD - C+F	0.000000042958	J	μg/L	0.00000007379	J	μg/L	0.00000006425 Ј	μg/L	0.0000000912 J	μg/L	0.000000167 0.0000000407 0.0000000107 0.0000000107 0.00000003137 0.0000000149 0.0000000269	JT J	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.00000011 0.000000871 0.000000071 0.000000077 0.000000077 0.0000000016 0.00000000616	JT JT JT JT JT JT	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.0000000756 0.0000004756 0.00000004 0.00000001649 0.0000000116 0.000000101 0.0000000238	JT J

Table 5.4-14. TCDD TEQ Data Presented by Station and Sampling Event.

AWQC-HH	0.00000000051	μg/L																							
AWQC-Eco	0.000038	μg/L																							
MCL	0.00003	μg/L				Nov-04			Mar-05			Jul-05			Jan-06		Sep-				v-06			- Mar-07	
a .		a				Low Flow			Low Flow			Low Flow			High Flow		Low F				ater Flow			1 Flow	
Sample	River Location		Collection Location		Value	Qualifier	Units		•		Value	Qualifier			Qualifier										
W025	2E	T	VI-E	XAD - C													0.0000000116	JT	μg/L	0.00000000937		μg/L	0.000000011		μg/L
				XAD - C+F													0.00000001811	J	μg/L	0.00000005007		μg/L	0.0000000374		μg/L
	22.6	-	*****	XAD - F													0.00000000651	JT	μg/L	0.0000000407		μg/L	0.0000000264		μg/L
	2M	T	VI-M	XAD - C													0.0000000214	JT	μg/L	0.00000000564		μg/L	0.00000000858		μg/L
				XAD - C+F													0.000000002627	J	μg/L	0.00000004474		μg/L	0.00000002648		μg/L
	2337	Т	VI-W	XAD - F													0.00000000487	JT	μg/L	0.0000000391		μg/L	0.0000000141		μg/L
	2W	1	VI-W	XAD - C													0.000000017	JT	μg/L	0.00000000865		μg/L	0.00000000288		μg/L
				XAD - C+F XAD - F													0.00000002119 0.000000000419	J	μg/L	0.00000004215		μg/L	0.0000000000000000000000000000000000000		μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	XAD - F XAD - C													0.00000000419	JT	μg/L	0.0000000335 0.0000000505		μg/L	0.000000018		μg/L
W027	2.9 w (Multhoman Channel)	1	EDI-ND	XAD - C XAD - C+F																0.0000000303		μg/L μg/L	0.00000000339		μg/L
				XAD - C+F XAD - F																0.0000001091			0.0000000645		μg/L μg/L
			EDI-NB-1	XAD - C													0.0000000051	JT	μg/L	0.0000000380	J 1	μg/L	0.0000000042	JI	μg/L
			EDI-ND-1	XAD - C+F													0.0000000031	J	μg/L μg/L						
				XAD - F													0.0000000877	JT	μg/L μg/L						
			EDI-NS	XAD - C													0.0000000077	0.1	F62	0.0000000656	JT	цg/L	0.00000000538	Т	μg/L
				XAD - C+F																0.0000001381		μg/L	0.00000006728		μg/L
				XAD - F																0.0000000725			0.0000000619		μg/L
			EDI-NS-1	XAD - C													0.00000000921	JT	μg/L			1.0			1.0
				XAD - C+F													0.00000009171	J	μg/L						
				XAD - F													0.0000000825	JT	μg/L						
W032	6.7E	SP	NB	XAD - C																0.00000000779	JT	μg/L	0.00000000378	T	μg/L
				XAD - C+F																0.00000010089	J	$\mu g/L$	0.00000004908	J	μg/L
				XAD - F																0.0000000931		$\mu g/L$	0.0000000453	JT	μg/L
			NS	XAD - C																0.0000000051		μg/L	0.00000000719		μg/L
				XAD - C+F																0.0000000777		μg/L	0.00000005089		μg/L
				XAD - F																0.0000000726		μg/L	0.0000000437		μg/L
W033	7.0W	SP	NB	XAD - C																0.00000000907		μg/L	0.00000000274		μg/L
				XAD - C+F																0.00000021207		μg/L	0.00000008404		μg/L
			ND 4	XAD - F																0.000000203		μg/L	0.0000000813	JT	μg/L
			NB-2	XAD - C																0.00000000547		μg/L			
				XAD - C+F XAD - F																0.00000018347		μg/L			
			NS	XAD - F XAD - C																0.000000178 0.0000000146		μg/L	0.0000000143	IT	/T
			No	XAD - C+F																0.0000000140		μg/L	0.0000000143 0.00000075		μg/L
				XAD - C+I																0.0000000835		μg/L μg/L	0.000000072		μg/L μg/L
			NS-2	XAD - C																0.000000033		μg/L μg/L	0.000000000	JI	μg/L
			110-2	XAD - C+F																0.0000000175		μg/L μg/L			
				XAD - F																0.0000000795		μg/L μg/L			
W035	8.5E (Swan Island Lagoon)	SP	NB	XAD - C																0.0000000069		μg/L	0.00000000817	т	μg/L
., 055	(S. mai Island Dagoon)			XAD - C+F																0.0000000000		μg/L μg/L	0.00000000017	J	μg/L μg/L
				XAD - F																0.0000001149		μg/L μg/L	0.00000014517		μg/L μg/L
			NS	XAD - C																0.0000000119		μg/L	0.00000000598		μg/L
				XAD - C+F																0.0000001359		μg/L	0.00000016798		μg/L
				XAD - F																0.000000124		μg/L	0.000000162		μg/L

Notes:

AWQC-Eco - ambient water quality criteria (ecological, Oregon)

AWQC-HH - ambient water quality criteria (human health, Oregon)

MCL - maximum concentration limit (USEPA)

C - column E - East SP - single point T - transect EDI - equal distance integrated VI - vertically integrated

F - filter

M - mid-channel XAD - hydrophobic crosslinked polystyrene copolymer resin

NB - near bottom

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

Table 5.4-15. DDx Data Presented by Station and Sampling Event. AWQC-Eco 0.001 Nov-04 Mar-05 Jul-05 Jan-06 Sep-06 Nov-06 Jan-07 - Mar-07 Low Flow Low Flow High Flow Low Flow Storm Water Flow Low Flow High Flow Qualifier River Location Collection Type Collection Location Collection Method Value Qualifier Value Qualifier Value Qualifier Units Value Oualifier Units Value Qualifier Units Value Units Value Qualifier Sample Units W001 2.0E SP NB 0.000472 UJT 0.0187 NJT μg/L 0.000481 UJT μg/L Peristaltic μg/L W002 SP 2.2W NB Peristaltic 0.000481 UJT μg/L 0.000495 NB-1 Peristaltic UT 0.000538 UJT ug/L μg/L SP W003 3 0W NB Peristaltic 0 00049 UJT μg/L 0.0005 UT μg/L 0.000505 UJT μg/L SP W004 3.7E (International Slip) NB Peristaltic 0.0005 UJT 0.000526 UJT μg/L μg/L NB-1 Peristaltic 0.000485 UT μg/L 0.000485 NB-2 Peristaltic UT μg/L W005 3.9 M T EDI-NB XAD - C 0.00027259 IT μg/L 0.00006991 μg/L 0.000195 μg/L XAD - C+F 0.00054627 $\mu g/L$ 0.0001625 0.000578 ug/L μg/L 0.00009259 0.000383 IT XAD - F 0.00027368 IT μg/L μg/L μg/L EDI-NS XAD - C 0.00026787 JT μg/L 0.00006849 JT μg/L 0.0002 JT μg/L XAD - C+F 0.00037686 0.00014087 0.000535 $\mu g/L$ μg/L μg/L JT 0.00007238 JT 0.00010899 JT 0.000335 XAD - F μg/L μg/L μg/L EDI-VI 0.000151 XAD - C 0.0000571 JT μg/L 0.0000862 $\mu g/L$ JT $\mu\,g/L$ XAD - C+F 0.0000987 0.000125 μg/L 0.0001763 μg/L ug/L 0.0000416 JT 0.0000388 JT 0.0000253 JT XAD - F μg/L μg/L μg/L M XAD - C 0.000175 JT μg/L XAD - C+F 0.000599 μg/L XAD - F 0.000424 JT μg/L W006 4.0W SP NB Peristaltic 0.0005 UJT μg/L 0.00051 UT $\mu g/L$ 0.000521 UJT μg/L W007 SP 0.0005 0.000524 UJT 4.4E (T4/slip 1) NB Peristaltic 0.000495 UJT UT $\mu g/L$ μg/L μg/L W008 4.6E (T4/slip 3) SP NB Peristaltic 0.000472 UJT μg/L 0.00049 UT $\mu g/L$ 0.000515 UJT μg/L W009 5.6W SP NB Peristaltic 0.0005 UT 0.000485 UT 0.000532 UJT μg/L μg/L μg/L W010 5.7E SP NB Peristaltic 0.0005 UJT μg/L UT 0.000476 VI Peristaltic 0.0005 $\mu g/L$ UT μg/L W011 6.3E T EDI-NB XAD - C 0.00014076 μg/L 0.000157 μg/L XAD - C+F 0.00020149 0.000481 μg/L μg/L 0.000324 XAD - F 0.00006073 JT JT $\mu g/L$ $\mu g/L$ EDI-NB-1 XAD - C 0.00017346 JT μg/L XAD - C+F 0.00043702 μg/L XAD - F 0.00026356 JT μg/L EDI-NS XAD - C 0.00009189 JT μg/L 0.000158 μg/L XAD - C+F 0.00012824 0.000502 $\mu\,g/L$ μg/L 0.000344 XAD - F 0.00003635 JT JT μg/L μg/L EDI-NS-1 XAD - C 0.00015448 JT μg/L XAD - C+F 0.00029297 ug/L XAD - F 0.00013849 JT μg/L EDI-VI XAD - C 0.0000587 JT $\mu g\!/\!L$ 0.0000949 μg/L 0.000151 JT $\mu g/L$ XAD - C+F 0.0001085 0.0001949 0.0002365 μg/L μg/L μg/L 0.0000498 0.0000855 XAD - F IT 0.0001 IT Т μg/L $\mu g/L$ $\mu g/L$ W012 6.3W SP NB Peristaltic 0.0005 UT μg/L 0.00051 UT μg/L 0.000839 Т $\mu g/L$ SP W013 6.7E NB-1 Peristaltic 0.000472 UT μg/L XAD - C 0.000033 JT μg/L 0.000047 JT μg/L 0.00013 JT $\mu g/L$ XAD - C+F 0.0000654 $\mu g/L$ 0.0000931 0.000241 $\mu g/L$ μg/L XAD - F 0.0000324 IT 0.0000461 IT 0.000111 IT μg/L μg/L μg/L NB-2 Peristaltic 0.000526 UT μg/L XAD - C 0.0000267 JT 0.0000254 JT 0.0000778 μg/L μg/L μg/L JT XAD - C+F 0.0000552 0.0000492 0.00008543 $\mu \, g \! / \! L$ $\mu g/L$ $\mu \, g/L$ XAD - F 0.0000285 JT 0.0000238 JT 0.00000763 JT μg/L μg/L μg/L W014 6.7E SP VI 0.00049 0.000481 0.00049 UT UT UT Peristaltic μg/L μg/L μg/L W015 6.9W SP NB XAD - C 0.00346 T μg/L 0.0021 T $\mu g/L$ 0.00198 T $\mu g/L$ 0.00522 XAD - C+F 0.00767 $\mu g/L$ 0.00359 μg/L μg/L 0.00312 0.00161 0.00421 XAD - F Т Т μg/L $\mu g\!/\!L$ $\mu \, g \! / \! L$ W016 7.2W SP NB XAD - C 0.000781 μg/L 0.000494 JT $\mu g/L$ 0.00297 $\mu g/L$ XAD - C+F 0.002971 0.001237 0.00976 μg/L μg/L μg/L 0.000743 0.00679 XAD - F 0.00219 JT Т μg/L μg/L μg/L W017 7.5W SP NB Peristaltic 0.00051 UT μg/L 0.00051 UT μg/L 0.000693 JT μg/L W018 8.3E (Swan Island Lagoon) SP 0.000481 NB Peristaltic UT μg/L XAD - C 0.0000359 JT μg/L 0.0000518 JT $\mu g/L$ 0.0000727 JT $\mu \, g/L$ XAD - C+F 0.0001032 μg/L μg/L μg/L 0.000025 IT 0.0000514 JT 0.0000271 IT XAD - F μg/L $\mu g/L$ μg/L W019 8.6W SP NB Peristaltic 0.000481 UT μg/L 0.00115 μg/L 0.000485 UJT μg/L

0.00051

0.00049

UJT

UJT

μg/L

μg/L

W020

W021

9.1E (Swan Island Lagoon)

8.7E (Swan Island Lagoon)

SP

SP

VI

NB

0.00049

0.000481

UT

UT

μg/L

μg/L

Peristaltic

Peristaltic

0.00049

0.000481

UT

UT

μg/L

μg/L

Table 5.4-15. DDx Data Presented by Station and Sampling Event. AWQC-Eco 0.001 Nov-04 Mar-05 Jul-05 Jan-06 Sep-06 Nov-06 Jan-07 - Mar-07 Low Flow Low Flow Low Flow High Flow Low Flow Storm Water Flow High Flow Qualifier Qualifier River Location Collection Type Collection Location Collection Method Value Qualifier Value Oualifier Units Value Qualifier Units Value Qualifier Units Value Units Value Qualifier Sample W022 0.00049 9.7W SP NB Peristaltic 0.00049 UT UT μg/L 0.0005 UJT μg/L μg/L W023 10.9M T VI-M XAD - C 0.000054988 0.00003322 0.000174 μg/L μg/L μg/L XAD - C+F 0.00003322 0.00059 μg/L μg/L μg/L XAD - F 0.000034089 IT 0.00000803 UT 0.000416 JT μg/L μg/L μg/L 11E VI-E XAD - C 0.000057692 JT 0.00004924 JT 0.000182 JT μg/L μg/L μg/L XAD - C+F 0.000098972 0.000102344 0.000618 μg/L μg/L μg/L XAD - F 0.00004128 JT 0.000053104 JT 0.000436 JT μg/L μg/L μg/L EDI-VI 11M XAD - C 0.0000124 JT μg/L 0.0000316 JT μg/L 0.0000578 JT μg/L XAD - C+F 0.0000428 μg/L 0.0000458 0.0000869 $\mu g/L$ μg/L XAD - F 0.0000304 JT 0.0000142 JT 0.0000291 JT μg/L μg/L μg/L 0.000155 M XAD - C JT μg/L XAD - C+F 0.000584 μg/L XAD - F 0.000429 JT μg/L 0.000070067 11W VI-W 0.00004151 XAD - C JT μg/L JT μg/L 0.000148 JT μg/L XAD - C+F 0.000097669 μg/L 0.00010001 μg/L 0.000471 μg/L XAD - F 0.000027602 JT 0.0000585 JT 0.000323 JT μg/L μg/L μg/L W024 15 9M T EDI-NB 0.00003784 XAD - C 0.0000388 IT μg/L JT μg/L 0.00021 JT μg/L XAD - C+F 0.00006868 0.00009107 0.000421 μg/L μg/L μg/L XAD - F 0.00002988 JT 0.00005323 JT 0.000211 JT μg/L μg/L μg/L EDI-NS XAD - C 0.000043702 JT μg/L 0.00005016 JT μg/L 0.000154 JT μg/L XAD - C+F0.000060273 0.00005802 0.000346 μg/L μg/L μg/L XAD - F 0.000016571 JT 0.00000786 JT 0.000192 JT $\mu\,g/L$ μg/L μg/L M 0.00015 JT XAD - C μg/L XAD - C+F 0.000512 μg/L XAD - F 0.000362 JT μg/L W025 T VI-E 2E XAD - C 0.0002741 JT 0.00008957 JT 0.0000959 JT μg/L $\mu g/L$ μg/L XAD - C+F 0.000284532 μg/L 0.00011956 μg/L 0.0002509 μg/L XAD - F 0.000010432 JT 0.00002999 JT 0.000155 JT μg/L μg/L μg/L 2M VI-M 0.00012235 XAD - C 0.00024812 0.0000975 JT JT $\mu g \! / \! L$ JT $\mu g/L$ μg/L XAD - C+F 0.000262476 μg/L 0.00018359 μg/L 0.0002305 μg/L XAD - F 0.000014356 JT 0.00006124 JT 0.000133 JT μg/L μg/L μg/L 2W VI-W 0.00010082 XAD - C 0.00031059 JT JT 0.000136 JT μg/L μg/L μg/L XAD - C+F0.000322376 μg/L 0.00014371 μg/L 0.000256 μg/L XAD - F 0.000011786 JT 0.00004289 JT 0.00012 JT μg/L μg/L μg/L W026 2.1E SP NB 0.0011 UT 0.00057 JT Peristaltic μg/L μg/L NS Peristaltic 0.001 UT μg/L 0.00032 JT μg/L 2.9W (Multnomah Channel) 0.00007311 0.00013 W027 EDI-NB XAD - C JT JT μg/L μg/L XAD - C+F 0.00014425 μg/L 0.000375 μg/L XAD - F 0.00007114 JT 0.000245 JT μg/L μg/L EDI-NB-1 0.00028383 XAD - C JT μg/L XAD - C+F 0.00045373 μg/L 0.0001699 XAD - F JT μg/L EDI-NS 0.0019 Peristaltic μg/L XAD - C 0.00008963 JT μg/L 0.000124 JT μg/L XAD - C+F 0.00015151 0.000361 $\mu g/L$ μg/L 0.00006188 JT 0.000237 JT XAD - F μg/L μg/L EDI-NS-1 XAD - C 0.00031119 JT μg/L XAD - C+F0.00050027 μg/L XAD - F 0.00018908 JT μg/L W028 3.6E SP NB Peristaltic 0.0015 UT μg/L 0.00018 NJT μg/L 0.0019 0.00017 NS Peristaltic JT $\mu g/L$ μg/L 0.00047 W029 4.4W SP 0.002 NJT NB Peristaltic μg/L NJT μg/L NS Peristaltic 0.0025 NJT 0.00096 NJT μg/L μg/L W030 5.5E SP NB Peristaltic 0.0033 NJT 0.00094 UT μg/L μg/L NS Peristaltic 0.002 JT μg/L 0.00022 JT μg/L W031 6.1W SP NB XAD - C 0.0001666 JT 0.000287 JT μg/L μg/L XAD - C+F 0.00031121 0.000857 μg/L μg/L XAD - F 0.00014461 JT μg/L 0.00057 JT μg/L

NS

Peristaltic

XAD - C

XAD - C+F

XAD - F

 $\mu g/L$

 $\mu g/L$

μg/L

0.0029

0.00017671

0.00019603

0.00001932

JT

JT

JT

μg/L

μg/L

μg/L

μg/L

0.000264

0.000524

0.00026

JT

Table 5.4-15. DDx Data Presented by Station and Sampling Event.

AWQC-Eco	0.001	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06			1-07 - Mar-	
G 1	D: 1	G II d T			** 1	Low Flow	** **	** 1	Low Flow	** *.	X 7 1	Low Flow	** **	** 1	High Flow	TT 1.	*7.1	Low Flow	** **		Water Flow			High Flow	
Sample	River Location		Collection Location	Collection Method	Value	Qualifier	Units		Qualifier	Units	Value (_	Units												
W032	6.7E	SP	NB	XAD - C																0.000047901	JT	μg/L	0.000126	JT	μg/L
				XAD - C+F																0.000101411	J	μg/L	0.000338	J	μg/L
			210	XAD - F																0.00005351	JT	μg/L	0.000212	JT	μg/L
			NS	XAD - C																0.000046104	JT	μg/L	0.000113	JT	μg/L
				XAD - C+F																0.000091444	J	μg/L	0.000266	J	μg/L
11/022	7.00	CD	ND	XAD - F																0.00004534	JT	μg/L	0.000153	JT	μg/L
W033	7.0W	SP	NB	XAD - C																0.0001517	JT	μg/L «	0.000208	JT	μg/L
				XAD - C+F																0.00043479	J	μg/L	0.000624	J	μg/L
			NID 2	XAD - F																0.00028309	JT	μg/L	0.000416	JT	$\mu g/L$
			NB-2	XAD - C																0.00014149	JT	μg/L			
				XAD - C+F																0.00035949	J	μg/L			
			NG	XAD - F																0.000218	JT	μg/L	0.000104	TT	7.
			NS	XAD - C																0.00024637	JT	μg/L σ	0.000184	JT	μg/L
				XAD - C+F XAD - F																0.00067518	J	μg/L	0.00053	J	μg/L
			NS-2																	0.00042881 0.00020619	JT	μg/L	0.000346	JT	μg/L
			NS-2	XAD - C																	JT	μg/L			
				XAD - C+F XAD - F																0.00043193 0.00022574	J JT	μg/L			
11/02/	7.531	CD	ND																			μg/L	0.000110	IT	Л
W034	7.5W	SP	NB	XAD - C XAD - C+F																0.00011074 0.00025323	JT	μg/L	0.000119 0.000289	JT	μg/L
				XAD - C+F XAD - F																0.00025325	JT	μg/L	0.000289	JT	μg/L
			NS	XAD - F XAD - C																0.00014249	JT JT	μg/L	0.00017	JT	μg/L
			No	XAD - C XAD - C+F																0.0001273	J I	μg/L	0.000138	J I	μg/L
				XAD - C+F XAD - F																0.00031744	JT	μg/L	0.000293	JT	μg/L
W035	8.5E (Swan Island Lagoon)) SP	NB	XAD - F XAD - C																0.00019014	JT JT	μg/L	0.000133	JT	μg/L
WU33	8.3E (Swall Island Lagoon)) Sr	ND	XAD - C XAD - C+F																0.00004687	J I	μg/L	0.000121	J I	μg/L
				XAD - C+I																0.00010037	JT	μg/L	0.00029	JT	μg/L
			NS	XAD - C																0.0000397	JT	μg/L	0.000109	JT	μg/L
			110	XAD - C+F																0.00004131	J I	μg/L μg/L	0.000103	JI	μg/L μg/L
				XAD - C+1																0.00007672	JT		0.000278	JT	
W036	8.6W	SP	NB	Peristaltic																0.0003321	JT	μg/L	0.000173	JT	μg/L
W030	8.0 W	ы	NB-2	Peristaltic																0.0016	UT	μg/L	0.00049	JI	μg/L
			NS	Peristaltic																0.0010	т	μg/L	0.0003	JT	а/Т
			NS-2	Peristaltic																0.0021	T	μg/L	0.0003	JI	μg/L
W037	9.6W	SP	NB	Peristaltic																0.0026	I NJT	μg/L	0.00205	NJT	цαЛ
WU3/	9.0 W	or	NS NS	Peristaltic																0.0047	UT	μg/L	0.00205		μg/L
W038	0.05	CD																			T	μg/L		NJT	μg/L
WU38	9.9E	SP	NB	Peristaltic																0.0015	L	μg/L	0.0004	JT	μg/L
			NS	Peristaltic																0.0026	NJT	μg/L	0.00094	UT	μg/L

Notes:

AWQC-Eco - ambient water quality criteria (ecological, Oregon)

- C column
- E East
- EDI equal distance integrated
- F filter
- M mid-channel
- NB near bottom SP - single point
- T transect
- VI vertically integrated
- W West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

						Nov-04			Mar-05			Jul-05			Jan-06			Sep-06		G,	Nov-06			n-07 - Mar-	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Low Flow Qualifier	Units		Low Flow Qualifier	Units	Value (Low Flow Qualifier	Units		High Flow Qualifier	Units	Value	Low Flow Qualifier	Units	Value (n Water Fl Jualifier	ow Units	Value	High Flow Qualifier	v Uni
W001	2.0E	SP	NB	Peristaltic	0.012		μg/L	0.0109	JT	μg/L	0.0101	JT	μg/L												
W002	2.2W	SP	NB	Peristaltic	0.0055	JT	μg/L			-	0.0400		-												
			NB-1	Peristaltic				0.005	JT	μg/L	0.0123	JT	μg/L												
V003	3.0W	SP	NB-2 NB	Peristaltic Peristaltic	0.015	IT	ua/I	0.0049 0.0074	JT UT	μg/L	0.0132 0.042	JT JT	μg/L												
v003 V004	3.7E (International Slip)	SP	NB	Peristaltic	0.013	JT JT	μg/L	0.0074	UI	μg/L	0.042	JT	μg/L μg/L												
¥004	3.7E (International Stip)	31	NB-1	Peristaltic	0.0737	JI	μg/L	0.0055	JT	μg/L	0.0147	JI	μg/L												
V005	3.9 M	T	EDI-NB	Peristaltic				0.0022	31	μgΔ							0.03	JT	μg/L	0.013	UT	μg/L	0.013	UT	μg/
				XAD - C													0.0302	JT	μg/L	0.0108	JT	μg/L	0.0174	JT	μg
				XAD - C+F													0.0661	J	μg/L	0.029	J	μg/L	0.02304	J	μg
				XAD - F													0.0359	JT	μg/L	0.0182	JT	$\mu g/L$	0.00564	JT	μg
			EDI-NS	Peristaltic													0.015	JT	μg/L	0.016	JT	$\mu g/L$	0.013	UT	μg/
				XAD - C													0.0334	JT	μg/L	0.0269	JT	μg/L	0.017	JT	μg/
				XAD - C+F													0.0439	J	μg/L	0.0389	J	μg/L	0.02101	J	μg/
			EDI-VI	XAD - F Peristaltic	0.0074	UT	ua/I	0.0074	UT	u α/I	0.0183	JT	ug/I				0.0105	JT	μg/L	0.012	JT	μg/L	0.00401	JT	μg/
			EDI-VI	XAD - C	0.0074	JT	μg/L μg/L	0.0074	JT	μg/L μg/L	0.0163	JT	μg/L μg/L												
				XAD - C+F	0.0111	J	μg/L μg/L	0.012	J	μg/L μg/L	0.0598	J	μg/L μg/L												
				XAD - F	0.00741	JT	μg/L	0.0045	JT	μg/L	0.0108	JT	μg/L												
			M	Peristaltic									10	0.0362	JT	$\mu g/L$									
				XAD - C										0.0483	JT	μg/L									
				XAD - C+F										0.0594	J	μg/L									
11006	4.000	ap.	ND.	XAD - F	0.021	TO	/=	0.0252	T/D	7	0.0252	TTD	7	0.0111	JT	μg/L									
W006	4.0W 4.4E (T4/slip 1)	SP SP	NB NB	Peristaltic Peristaltic	0.021 0.0075	JT UJT	μg/L	0.0373 0.0168	JT JT	μg/L	0.0352 0.0578	JT JT	μg/L												
W007 W008	4.4E (T4/slip 1) 4.6E (T4/slip 3)	SP	NB	Peristaltic	0.0073		μg/L μg/L	0.0103	JT JT	μg/L μg/L	0.0578	JT	μg/L												
W009	5.6W	SP	NB	Peristaltic	0.0711	JT	μg/L μg/L	0.0074	UT	μg/L μg/L	0.0731	JT	μg/L μg/L												
W010	5.7E	SP	NB	Peristaltic	0.0074	UT	μg/L	0.007.	0.1	F6 2	0.00.10	0.1	F6 2												
			VI	Peristaltic			r-6 -	0.0074	UT	μg/L	0.0177	JT	μg/L												
W011	6.3E	T	EDI-NB	Peristaltic									10							0.016	JT	μg/L	0.013	UT	μg/L
				XAD - C																0.00383	JT	μg/L	0.00626	JT	μg/I
				XAD - C+F																0.01703	J	$\mu g/L$	0.00998	J	μg/L
				XAD - F																0.0132	JT	$\mu g/L$	0.00372	JT	μg/L
			EDI-NB-1	Peristaltic													0.013	JT	μg/L						
				XAD - C XAD - C+F													0.0233 0.0544	T J	μg/L						
				XAD - C+F													0.0344	JT	μg/L μg/L						
			EDI-NS	Peristaltic													0.0511	31	MB/L	0.0098	JT	μg/L	0.013	UT	μg/L
				XAD - C																0.00592	JT	μg/L	0.00582	JT	μg/L
				XAD - C+F																0.01294	J	μg/L	0.00945	J	μg/I
				XAD - F																0.00702	JT	$\mu g/L$	0.00363	JT	μg/L
			EDI-NS-1	Peristaltic													0.013	UT	μg/L						
				XAD - C													0.0307	T	μg/L						
				XAD - C+F XAD - F													0.0421 0.0114		μg/L						
			EDI-VI	Peristaltic	0.0422	JT	μg/L	0.0074	UT	μg/L	0.0255	JT	μg/L				0.0114	JI	μg/L						
			LDI-VI	XAD - C	0.0101		μg/L μg/L	0.0412	JT	μg/L μg/L	0.0233	JT	μg/L μg/L												
				XAD - C+F	0.01357	J	μg/L	0.04729	J	μg/L	0.0405	J	μg/L												
				XAD - F	0.00347	T	μg/L	0.00609	JT	μg/L	0.0131	T	μg/L												
W012	6.3W	SP	NB	Peristaltic		JT	μg/L	0.0312	JT	μg/L	2.459	JT	μg/L												
W013	6.7E	SP	NB-1	Peristaltic	0.016	UT	μg/L	0.0026	JT	μg/L	0.0121	JT	μg/L												
				XAD - C	0.0219		μg/L	0.0217	JT	μg/L	0.017	JT	μg/L												
				XAD - C+F	0.02753		μg/L	0.02481	J T	μg/L	0.0275	J T	μg/L												
			NB-2	XAD - F Peristaltic	0.00563 0.015	JT UT	μg/L μg/L	0.00311 0.0293	T JT	μg/L μg/L	0.0105	T	μg/L												
			ND-2	XAD - C	0.0229	JT	μg/L μg/L	0.0344	JT	μg/L μg/L	0.0129	JT	μg/L												
				XAD - C+F	0.02752	J	μg/L	0.035316	J	μg/L	0.01619	J	μg/L												
				XAD - F	0.00462	JT	μg/L	0.000916	T	μg/L	0.00329	T	μg/L												
W014	6.7E	SP	VI	Peristaltic	0.0155		μg/L	0.0074	UT	μg/L	0.0148	JT	μg/L												
W015	6.9W	SP	NB	Peristaltic	0.0172	JT	μg/L	0.0293	JT	μg/L	0.0394	JT	μg/L												
				XAD - C	0.0564	JT	μg/L	0.0625	JT	μg/L	0.169	JT	μg/L												
				XAD - C+F XAD - F	0.0945 0.0381	J	μg/L μg/L	0.0803 0.0178	J T	μg/L μg/L	0.2309 0.0619	J T	μg/L μg/L												
				VAIN L			/1																		

Table 5.4-16. Total PAH Data Presented by Station and Sampling Event.

1 able 3.4-1	16. Total PAH Data Presented by	y Station and Samp	illig Event.			Nov-04			Mar-05			Jul-05			Jan-06			Sep-06		No	v-06	Ja	n-07 - Mar-	07
G 1	D' 1 '	C. H: Th				Low Flow	*** **		Low Flow			Low Flow			High Flow			Low Flow	***		ater Flow		High Flow	TT 1.
Sample	River Location		Collection Location			Qualifier	Units		Qualifier	Units	Value		Units	Value	Qualifier	Units	Value	Qualifier	Units	Value Qual	ifier Units	Value	Qualifier	Units
W016	7.2W	SP	NB	XAD - C XAD - C+F	0.0101 0.0203	JT J	μg/L μg/L	0.0113 0.01816	JT J	μg/L μg/L	0.0673 0.0994	JT J	μg/L μg/L											
				XAD - F	0.0102	JT	μg/L μg/L	0.00686	T	μg/L μg/L	0.0321	T	μg/L μg/L											
			NB-1	Peristaltic	0.012	UT	μg/L	0.0074	UT	μg/L	0.0388	JT	μg/L											
			NB-2	Peristaltic	0.0074	UJT	$\mu g/L$																	
W017	7.5W	SP	NB	Peristaltic	0.0116	JT	$\mu g/L$	0.016	UT	$\mu g/L$	0.0489	JT	$\mu g/L$											
W018	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic	0.015	UT	$\mu g/L$	0.0087	JT	μg/L	0.0219	JT	$\mu g/L$											
				XAD - C	0.00748	JT	μg/L	0.0211	JT	μg/L	0.0567	JT	μg/L											
				XAD - C+F	0.01248	J	μg/L	0.0559	J	μg/L	0.0577	J	μg/L											
W019	8.6W	SP	NB	XAD - F Peristaltic	0.005 0.0026	T JT	μg/L μg/L	0.0348 0.0074	T UT	μg/L μg/L	0.001 0.0492	JT JT	μg/L μg/L											
W019	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.0020	JT	μg/L μg/L	0.0074	UT	μg/L μg/L	0.0472	JT	μg/L μg/L											
W021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	0.0075	UT	μg/L μg/L	0.0089	JT	μg/L μg/L	0.2883	JT	μg/L μg/L											
W022	9.7W	SP	NB	Peristaltic	0.0207	JT	μg/L	0.0072	JT	μg/L	0.0213	JT	μg/L											
W023	10.9M	T	VI-M	Peristaltic			r-6-			F-6-			r-6 -				0.013	UT	$\mu g/L$	0.0077	JT μg/L	0.013	UT	$\mu g/L$
				XAD - C													0.00346	JT	μg/L	0.00111	JT μg/L	0.0066	JT	μg/L
				XAD - C+F													0.003971	J	μg/L	0.00279	J μg/L	0.005684	J	μg/L
				XAD - F													0.000511	JT	μg/L		JT μg/L	0.00277	JT	μg/L
	11E		VI-E	Peristaltic													0.01	JT	μg/L		JT μg/L	0.013	UT	μg/L
				XAD - C													0.0108	JT	μg/L		JT μg/L	0.00763	JT	μg/L
				XAD - C+F XAD - F													0.01648 0.00568	J JT	μg/L		J μg/L IT μg/L	0.01222 0.00459	J JT	μg/L
	11M		EDI-VI	Peristaltic	0.0283	JT	μg/L	0.0074	UT	μg/L	0.043	UT	μg/L				0.00308	JI	μg/L	0.0129	JT μg/L	0.00439	JI	μg/L
	11111		EDI-VI	XAD - C	0.0203	JT	μg/L μg/L	0.0655	JT	μg/L μg/L	0.0043	JT	μg/L μg/L											
				XAD - C+F	0.00614	J	μg/L	0.065982	J	μg/L	0.01058	J	μg/L											
				XAD - F	0.00177	T	μg/L	0.000482	T	μg/L	0.00227	T	μg/L											
			M	Peristaltic										0.0093	UT	$\mu g/L$								
				XAD - C										0.0264	JT	$\mu g/L$								
				XAD - C+F										0.03296	J	μg/L								
	1137		371 337	XAD - F										0.00656	JT	μg/L	0.017	IT	/T	0.026	TTP /T	0.013	LITE	/T
	11W		VI-W	Peristaltic XAD - C													0.016 0.00849	JT JT	μg/L		JT μg/L JT μg/L	0.013 0.00959	UT JT	μg/L
				XAD - C+F													0.00849	J1 Ī	μg/L μg/L		IT μg/L J μg/L	0.00939	J	μg/L μg/L
				XAD - F													0.00077	JT	μg/L μg/L		JT μg/L	0.0037	JT	μg/L μg/L
W024	15.9M	T	EDI-NB	Peristaltic													0.013	UT	μg/L		IT μg/L	0.018	T	μg/L
				XAD - C													0.00381	JT	μg/L	0.00117	JT μg/L	0.00809	JT	μg/L
				XAD - C+F													0.004529	J	$\mu g/L$		J μg/L	0.008676	J	$\mu g/L$
			PD 1 1 1 0	XAD - F													0.000719	JT	μg/L		JT μg/L	0.000586	JT	μg/L
			EDI-NS	Peristaltic													0.013	UT	μg/L		JT μg/L	0.014	JT	μg/L
				XAD - C XAD - C+F													0.00479 0.00613	JT	μg/L		JT μg/L J μg/L	0.00612 0.006435	JT J	μg/L
				XAD - C+I													0.0013	JТ	μg/L μg/L		J μg/L JT μg/L	0.000433	JT	μg/L μg/L
			M	Peristaltic										0.0028	JT	μg/L	0.0015	0.1	F6 2	0.00175	,, kg,	0.000515	• •	F6 2
				XAD - C										0.0246	JT	μg/L								
				XAD - C+F										0.02864	J	$\mu g/L$								
				XAD - F										0.00404	JT	μg/L								
W025	2E	T	VI-E	Peristaltic													0.022		μg/L		JT μg/L	0.013	UT	μg/L
				XAD - C XAD - C+F													0.0361	JT	μg/L		JT μg/L	0.00687	JT	μg/L
				XAD - C+F XAD - F													0.03743 0.00133	JT	μg/L μg/L		J μg/L JT μg/L	0.01109 0.00422	J JT	μg/L μg/L
	2M	T	VI-M	Peristaltic													0.014	JT	μg/L		JT μg/L	0.013	UT	μg/L μg/L
		T	VI-M	XAD - C													0.0334	JT	μg/L		T μg/L	0.00897	JT	μg/L
				XAD - C+F													0.03501	J	μg/L		J μg/L	0.01147	J	μg/L
				XAD - F													0.00161	JT	$\mu g/L$		JT μg/L	0.0025	JT	μg/L
	2W	T	VI-W	Peristaltic													0.02	JT	$\mu g/L$		JT μg/L	0.013	UT	μg/L
		T	VI-W	XAD - C													0.0306	T	μg/L		JT μg/L	0.00734	JT	μg/L
				XAD - C+F													0.03187	J	μg/L		J μg/L	0.00898	J	μg/L
W026	2.1E	SP	NB	XAD - F Peristaltic													0.00127	JT	μg/L		JT μg/L JT μg/L	0.00164 0.013	JT UT	μg/L μg/L
11020	2.115	51	NS NS	Peristaltic																0.013				μg/L μg/L
			140	1 CHStartic																0.011	, μg/L	0.013	O I	μg/∟

Table 5.4-16, Total P.	AH Data Presented I	w Station and	Sampling Event
1 able 5.4-10. 10tal P.	An Data Fresenteu t	ov Station and	i Sambinie Event.

						Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06			-07 - Mar-	
Comple	River Location	Collection Type	Collection Location	Callaction Mathad	Value	Low Flow		Volue	Low Flow Qualifier	v Units	Value	Low Flow Qualifier	Units	Volue	High Flow Oualifier	Units		Low Flow	Units		m Water Fl	low Units		High Flow	
Sample	2.9W (Multnomah Channel)		Collection Location	Collection Method	value	Qualifier	Units	value	Quanner	Units	value	Quanner	Units	varue	Quanner	Units	varue	Qualifier	Units	Value (Value (_	Units
W027	2.9w (Multhoman Channel)	T	EDI-NB	Peristaltic XAD - C																0.068 0.0059	JT JT	μg/L μg/L	0.017 0.0081	JT JT	μg/L μg/L
				XAD - C+F																0.0059	J	μg/L μg/L	0.0149	J	μg/L μg/L
				XAD - F																0.0107	JT	μg/L μg/L	0.0068	JT	μg/L μg/L
			EDI-NB-1	Peristaltic													0.046	JT	$\mu g/L$	0.0107	31	µБ Б	0.0000	31	MBL
			EDI NO 1	XAD - C													0.0282	JT	μg/L μg/L						
				XAD - C+F													0.051	J	μg/L						
				XAD - F													0.0228	JT	μg/L						
			EDI-NS	Peristaltic															1.0	0.013	UT	$\mu g/L$	0.02	JT	$\mu g/L$
				XAD - C																0.0119	T	μg/L	0.00921	JT	μg/L
				XAD - C+F																0.0226	J	μg/L	0.01541	J	μg/L
				XAD - F																0.0107	JT	μg/L	0.0062	JT	μg/L
			EDI-NS-1	Peristaltic													0.036	JT	$\mu g/L$						
				XAD - C													0.0343	JT	μg/L						
				XAD - C+F													0.0479	J	μg/L						
				XAD - F													0.0136	JT	μg/L						
W028	3.6E	SP	NB	Peristaltic																0.013	UT	$\mu g/L$	0.013	UT	μg/L
			NS	Peristaltic																0.013	UT	$\mu g/L$	0.013	UT	$\mu g/L$
W029	4.4W	SP	NB	Peristaltic																0.024	JT	μg/L	0.013	UT	μg/L
			NS	Peristaltic																0.032	JT	$\mu g/L$	0.013	UT	$\mu g/L$
W030	5.5E	SP	NB	Peristaltic																0.013	UT	μg/L	0.013	UT	μg/L
			NS	Peristaltic																0.013	UT	μg/L	0.013	JT	μg/L
W031	6.1W	SP	NB	Peristaltic																0.032	JT	μg/L	7.4	T	μg/L
			NS	Peristaltic																0.027	JT	μg/L	0.058	JT	μg/L
W032	6.7E	SP	NB	Peristaltic																0.013	UT	μg/L	0.013	UT	μg/L
				XAD - C																0.00236	JT	μg/L	0.0061	JT	μg/L
				XAD - C+F																0.00586	J	μg/L	0.01042	J	μg/L
				XAD - F																0.0035	JT	μg/L	0.00432	JT	μg/L
			NS	Peristaltic																0.013	UT	μg/L	0.0065	UT	μg/L
				XAD - C																0.00368	JT	μg/L	0.00883	JT	μg/L
				XAD - C+F																0.00605	J	μg/L	0.01199	J	μg/L
				XAD - F																0.00237	JT	μg/L	0.00316	JT	μg/L
W033	7.0W	SP	NB	Peristaltic																0.12	JT	μg/L	0.013	UT	μg/L
				XAD - C																0.0175	JT	μg/L	0.00608	JT	μg/L
				XAD - C+F																0.0448	J	μg/L	0.01268	J	μg/L
				XAD - F																0.0273	JT	μg/L	0.0066	JT	μg/L
			NB-2	Peristaltic																0.06	JT	$\mu g/L$	0.013	UT	μg/L
				XAD - C																0.014	JT	μg/L			
				XAD - C+F																0.0249	J	μg/L			
				XAD - F																0.0109	JT	μg/L			
			NS	Peristaltic																0.035	JT	$\mu g/L$	0.013	UT	μg/L
				XAD - C																0.0201	JT	$\mu g/L$	0.00606	JT	μg/L
				XAD - C+F																0.0507	J	μg/L	0.01148	J	μg/L
				XAD - F																0.0306	JT	μg/L	0.00542	JT	μg/L
			NS-2	Peristaltic																0.032	JT	μg/L	0.0047	JT	μg/L
				XAD - C																0.0218	JT	$\mu g/L$			
				XAD - C+F																0.0325	J	μg/L			
				XAD - F																0.0107	JT	μg/L			_
W034	7.5W	SP	NB	Peristaltic																0.019	UT	$\mu g/L$	0.013	UT	μg/L
			NS	Peristaltic																0.0062	JT	μg/L	0.013	UT	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic																0.013	UT	μg/L	0.088	JT	μg/L
				XAD - C																0.00108	JT	μg/L	0.0142	JT	μg/L
				XAD - C+F																0.0067	J 	μg/L	0.0652	J	μg/L
				XAD - F																0.00562	JT	μg/L	0.051	JT	μg/L
			NS	Peristaltic																0.013	UT	μg/L	0.11	JT	μg/L
				XAD - C																0.0298	JT	μg/L	0.0204	JT	μg/L
				XAD - C+F																0.03935	J	μg/L	0.1067	J	μg/L
****	0	a=		XAD - F																0.00955	JT	μg/L	0.0863	JT	μg/L
W036	8.6W	SP	NB	Peristaltic																0.005	JT	μg/L	0.018	JT	μg/L
			NS	Peristaltic																0.013	UT	μg/L	0.27	JT	μg/L

Table 5.4-16. Total PAH Data Presented by Station and Sampling Event.

					Nov-04		Mar-0	5	Jul-05			Jan-06		Sep-06		Nov-0)	Jan-07	- Mar-07	7
					Low Flov	7	Low Flo	ow	Low Flow			High Flow		Low Flow		Storm Water	Flow	Hig	h Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value Qualifie	r Units	Value Qualifier	Units	Value	Qualifier U	nits	Value Qualifier	Units	Value Qualifie	Units	Value Qua	lifier	Units
W037	9.6W	SP	NB	Peristaltic												0.013 UT	μg/L	0.013	UT	μg/L
			NS	Peristaltic												0.034 JT	μg/L	0.013	UT	$\mu g/L$
W038	9.9E	SP	NB	Peristaltic												0.013 UT	μg/L	0.013	UT	$\mu g/L$
			NS	Peristaltic												0.013 UT	μg/L	0.05	JT	μg/L

Notes:

C - column E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom

SP - single point

T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

QC-HH		μg/L	. <u></u>			N 04).r 05			T 1 0 7			T 05			0 05			NT 0-			07.31	07
MCL	6	μg/L				Nov-04 Low Flow			Mar-05 Low Flow		,	Jul-05 Low Flow			Jan-06 High Flow			Sep-06 Low Flow		Sto	Nov-06 rm Water	Flow		-07 - Mar High Flow	
ample	River Location	Collection Type	Collection Location	Collection Method	Value		Units		Qualifier	Units		Qualifier	Units		Qualifier	Units	Value		Units	Value		Units	Value		Ur
W001	2.0E	SP	NB	Peristaltic	0.47	U	μg/L	0.3	U	μg/L	0.28	U	μg/L												
V002	2.2W	SP	NB	Peristaltic	0.56	U	μg/L																		
			NB-1	Peristaltic				0.29	U	$\mu g/L$	0.3	UJ	$\mu g/L$												
			NB-2	Peristaltic				0.3	U	$\mu g/L$	0.29	U	$\mu g/L$												
7003	3.0W	SP	NB	Peristaltic	0.32	U	μg/L	0.29	U	μg/L	0.28	U	μg/L												
V004	3.7E (International Slip)	SP	NB	Peristaltic	0.69	U	μg/L				0.3	U	μg/L												
			NB-1	Peristaltic				0.28	U	μg/L															
W005	3.9 M	T	EDI-NB	Peristaltic													0.47	U	μg/L	6.8	J	μg/L	1.3	J	μg
			EDI-NS	Peristaltic													0.7		μg/L	0.64	UJ	μg/L	0.27	U	μg
			EDI-VI	Peristaltic	0.38	U	μg/L	0.29	U	μg/L	0.42	U	μg/L												
				XAD - C XAD - C+F	0.00432 0.00432	U	μg/L	0.00312	U	μg/L	0.00361	J J	μg/L												
				XAD - C+F XAD - F	0.00432	U U	μg/L	0.00491 0.00491	U U	μg/L	0.00909 0.00548	J	μg/L												
			M	Peristaltic	0.00331	U	μg/L	0.00491	U	μg/L	0.00348	J	μg/L	0.29	U	μg/L									
V006	4.0W	SP	NB	Peristaltic	0.45	U	μg/L	0.29	U	μg/L	0.29	U	μg/L	0.27	0	μg.Б									
V007	4.4E (T4/slip 1)	SP	NB	Peristaltic	0.44	U	μg/L	0.29	U	μg/L	0.29	U	μg/L												
7008	4.6E (T4/slip 3)	SP	NB	Peristaltic	0.44	U	μg/L	0.29	U	μg/L	0.3	Ü	μg/L												
V009	5.6W	SP	NB	Peristaltic	0.41	U	μg/L	0.28	U	μg/L	0.28	U	μg/L												
W010	5.7E	SP	NB	Peristaltic	0.84	U	μg/L			10															
			VI	Peristaltic			10	0.28	U	μg/L	4	U	μg/L												
V011	6.3E	T	EDI-NB	Peristaltic																1.9	UJ	μg/L	2.2	J	μg
			EDI-NB-1	Peristaltic													0.24	U	μg/L						
			EDI-NS	Peristaltic																1.2	UJ	μg/L	0.41	U	με
			EDI-NS-1	Peristaltic													0.15	U	μg/L						
			EDI-VI	Peristaltic	1.3	U	μg/L	0.29	U	μg/L	0.3	U	μg/L												
				XAD - C	0.00514		$\mu g/L$	0.00346	U	$\mu g/L$	0.00631	J	$\mu g/L$												
				XAD - C+F	0.00607	U	μg/L	0.00639	U	μg/L	0.01107	J	μg/L												
				XAD - F	0.00607	U	μg/L	0.00639	U	μg/L	0.00476	J	μg/L												
V012	6.3W	SP	NB	Peristaltic	0.43	U	μg/L	0.29	U	μg/L	0.61	U	μg/L												
V013	6.7E	SP	NB-1	Peristaltic	0.47	U	μg/L	0.27	U	μg/L	0.3	U	μg/L												
				XAD - C	0.00431	U	μg/L	0.00338	U	μg/L	0.0198		μg/L												
				XAD - C+F XAD - F	0.00859 0.00859	U U	μg/L	0.0056 0.0056	U U	μg/L	0.025 0.0052	J J	μg/L												
			NB-2	Peristaltic	0.00839	U	μg/L μg/L	0.0030	U	μg/L	0.0032	J	μg/L												
			ND-2	XAD - C	0.00543	U	μg/L μg/L	0.00358	U	μg/L	0.0121		μg/L												
				XAD - C+F	0.00543	U	μg/L μg/L	0.00536	U	μg/L μg/L	0.0121		μg/L μg/L												
				XAD - F	0.00485	U	μg/L	0.00693	U	μg/L	0.00257	U	μg/L												
V014	6.7E	SP	VI	Peristaltic	0.45	U	μg/L	0.29	U	μg/L	0.91	U	μg/L												
V015	6.9W	SP	NB	Peristaltic	0.87	U	μg/L	0.29	U	μg/L	2.1	U	μg/L												
				XAD - C	0.00566	U	μg/L	0.00346	U	μg/L	0.00351	J	μg/L												
				XAD - C+F	0.033		$\mu g/L$	0.00855	U	$\mu g/L$	0.00775	J	$\mu g/L$												
				XAD - F	0.033		μg/L	0.00855	U	μg/L	0.00424	J	μg/L												
W016	7.2W	SP	NB	XAD - C	0.00426	U	μg/L	0.00338	U	μg/L	0.00435	J	μg/L												
				XAD - C+F	0.00749	U	μg/L	0.0066	U	μg/L	0.00892	J	μg/L												
			NTD 1	XAD - F	0.00749	U	μg/L	0.0066	U	μg/L	0.00457	J	μg/L												
			NB-1	Peristaltic	0.27	U	μg/L	0.28	U	μg/L	1.5	U	μg/L												
W017	7.5W	CD	NB-2	Peristaltic	0.29	UJ U	μg/L	0.20	II	~/T	4.1	T.T	/1												
W017 W018		SP SP	NB	Peristaltic	0.7	U	μg/L	0.29	U U	μg/L	4.1 0.29	U U	μg/L												
W 018	8.3E (Swan Island Lagoon)	SF	NB	Peristaltic XAD - C	0.46 0.00562	U	μg/L	0.29 0.00355	U	μg/L	0.00394	J	μg/L μg/L												
				XAD - C+F	0.00502 0.0057	U	μg/L μg/L	0.00333	U	μg/L μg/L	0.00394	J	μg/L μg/L												
				XAD - F	0.0057	U	μg/L μg/L	0.00831	U	μg/L μg/L	0.00593	Ī	μg/L μg/L												
V019	8.6W	SP	NB	Peristaltic	0.44	U	μg/L μg/L	0.00031	U	μg/L μg/L	0.00333	U	μg/L μg/L												
7020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.58	U	μg/L	0.29	Ü	μg/L	0.29	Ü	μg/L												
/021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	0.69	U	μg/L	0.3	Ü	μg/L	0.29	Ü	μg/L												
022	9.7W	SP	NB	Peristaltic	0.27	U	μg/L	0.27	U	μg/L	0.81	U	μg/L												
/023	10.9M	T	VI-M	Peristaltic			. 5						. 5				0.21	U	μg/L	0.78	U	μg/L	1.1	J	με
	11E		VI-E	Peristaltic													0.36	U	μg/L	1.2	U	μg/L	0.82	U	με
	11M		EDI-VI	Peristaltic	0.9	U	μg/L	0.3	U	μg/L	0.34	U	μg/L						-						
				XAD - C	0.00494	U	μg/L	0.004	U	μg/L	0.0171		μg/L												
				XAD - C+F	0.00647	U	$\mu g/L$	0.00632	U	$\mu g/L$	0.02299	J	μg/L												
				XAD - F	0.00647	U	$\mu g/L$	0.00632	U	$\mu g/L$	0.00589	J	$\mu g \! / \! L$												
			M	Peristaltic										0.29	U	μg/L									με
	11W		VI-W	Peristaltic										0.2)	č	r.o. =	0.21	U	μg/L	1.8	U	$\mu g/L$	0.42		U

Table 5.4-17. BEHP Data Presented by Station and Sampling Event.

AWQC-HH	0.2	μg/L																						
MCL	6	μg/L				Nov-04			Mar-05			Jul-05			Jan-06		Sep-06			Nov-06			-07 - Mar-0	J7
						Low Flow			Low Flow			Low Flow			High Flow		Low Flow			m Water Fl			High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Qualifier	Units	Value Qualifier	Units	Value (Qualifier	Units	Value (Qualifier	Units									
W024	15.9M	T	EDI-NB	Peristaltic													0.4 U	μg/L	1.9	UJ	μg/L	2.1	J	μg/L
			EDI-NS	Peristaltic													0.14 U	μg/L	0.26	UJ	μg/L	0.76	UJ	$\mu g/L$
			M	Peristaltic										0.27	7 U	μg/L								
W025	2E	T	VI-E	Peristaltic													1.5	μg/L	1.1	UJ	μg/L	1.6	J	μg/L
	2M	T	VI-M	Peristaltic													0.26 U	μg/L	0.59	U	μg/L	0.12	U	μg/L
	2W	T	VI-W	Peristaltic													1.2	μg/L	0.14	U	μg/L	0.16	U	μg/L
W026	2.1E	SP	NB	Peristaltic															0.52	UJ	μg/L	0.23	U	μg/L
			NS	Peristaltic															0.79	UJ	μg/L	0.63	U	μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic															0.23	UJ	μg/L	1.4	U	μg/L
			EDI-NB-1	Peristaltic													1.3	μg/L						
			EDI-NS	Peristaltic															0.29	UJ	μg/L	0.66	U	$\mu g/L$
			EDI-NS-1	Peristaltic													0.12 U	μg/L						
W028	3.6E	SP	NB	Peristaltic															2.1	UJ	μg/L	0.25	U	μg/L
			NS	Peristaltic															0.52	UJ	μg/L	0.098	U	$\mu g/L$
W029	4.4W	SP	NB	Peristaltic															0.79	UJ	μg/L	1.9	J	μg/L
			NS	Peristaltic															0.28	UJ	μg/L	0.75	U	$\mu g/L$
W030	5.5E	SP	NB	Peristaltic															0.29	UJ	μg/L	0.26	U	$\mu g/L$
		SP	NS	Peristaltic															0.76	UJ	μg/L	0.58	U	$\mu g/L$
W031	6.1W	SP	NB	Peristaltic															0.32	UJ	μg/L	0.73	U	$\mu g/L$
			NS	Peristaltic															0.48	UJ	μg/L	0.35	U	$\mu g/L$
W032	6.7E	SP	NB	Peristaltic															2.6	UJ	μg/L	3.5	J	$\mu g/L$
			NS	Peristaltic															0.83	UJ	μg/L	0.71	U	$\mu g/L$
W033	7.0W	SP	NB	Peristaltic															0.29	UJ	μg/L	0.69	U	$\mu g/L$
			NB-2	Peristaltic															0.28	UJ	μg/L	0.9	U	μg/L
			NS	Peristaltic															0.22	UJ	μg/L	0.48	U	$\mu g/L$
			NS-2	Peristaltic															0.21	UJ	μg/L	0.98	J	$\mu g/L$
W034	7.5W	SP	NB	Peristaltic															0.47	UJ	μg/L	0.4	U	$\mu g/L$
			NS	Peristaltic															0.25	UJ	μg/L	0.6	U	$\mu g/L$
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic															1.9	UJ	μg/L	0.36	U	$\mu g/L$
			NS	Peristaltic															0.82	UJ	μg/L	0.31	U	μg/L
W036	8.6W	SP	NB	Peristaltic															0.78	UJ	μg/L	0.56	U	$\mu g/L$
			NS	Peristaltic															0.35	UJ	μg/L	2.8	J	$\mu g/L$
W037	9.6W	SP	NB	Peristaltic															0.62	UJ	μg/L	0.78	U	$\mu g/L$
			NS	Peristaltic															0.4	UJ	μg/L	0.41	U	$\mu g/L$
W038	9.9E	SP	NB	Peristaltic															0.73	UJ	μg/L	0.82	U	$\mu g/L$
			NS	Peristaltic															0.75	UJ	μg/L	1	J	μg/L

AWQC-HH - ambient water quality criteria (human health, Oregon)
MCL - maximum concentration limit (USEPA)

C - column

E - East

EDI - equal distance integrated
F - filter

M - mid-channel

NB - near bottom SP - single point

T - transect

VI - vertically integrated

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Table 5.4-18. Total Chlordane Data Presented by Station and Sampling Event. AWQC-HH 0.000081 μg/L AWQC-Eco 0.0043 μg/L Nov-04 Mar-05 Jul-05 Jan-07 - Mar-07 MCL μg/L Jan-06 Sep-06 Nov-06 High Flow Low Flow Low Flow Low Flow Low Flow Storm Water Flow High Flow Collection Type Collection Location Collection Method Value Value Oualifier Qualifier River Location Value Oualifier Value Oualifier Units Value Value Oualifier Oualifier Qualifier W001 2.0E Peristaltic 0.000472 UJT μg/L 0.00049 UT μg/L 0.000481 UJT μg/L W002 2.2W SP NB Peristaltic 0.000481 UJT μg/L NB-1 Peristaltic 0.000495 UT μg/L 0.00212 JT μg/L W003 SP NB UJT 0.000505 3.0W Peristaltic 0.00049 μg/L 0.0005 UT μg/L UJT μg/L W004 3.7E (International Slip) SP NB Peristaltic 0.0005 UT μg/L 0.000526 UJT μg/L NB-1 Peristaltic 0.000485 UT μg/L NB-2 Peristaltic 0.000485 UT μg/L W005 3.9 M EDI-NB XAD - C 0.0000219 0.0000538 Т 0.0000401 μg/L ug/L ug/L XAD - C+F 0.0000219 0.0000943 0.0000588 μg/L μg/L μg/L XAD - F 0.0000156 0.0000405 JT 0.0000187 IT $\mu g/L$ UT $\mu g\!/\!L$ μg/L EDI-NS XAD - C 0.0000335 JT μg/L 0.0000265 JT μg/L 0.0000557 JT μg/L XAD - C+F 0.00004319 0.0000265 0.0000907 μg/L μg/L μg/L XAD - F 0.00000969 JT 0.00000485 UT 0.000035 JT μg/L μg/L μg/L EDI-VI 0.0000134 0.0000199 0.0000259 XAD - C IT μg/L μg/L μg/L XAD - C+F 0.00001713 μg/L 0.00002369 μg/L 0.000026001 μg/L XAD - F 0.00000373 JT 0.00000379 JT 0.000000101 JT μg/L μg/L μg/L XAD - C 0.0000436 JT μg/L 0.0000694 XAD - C+F μg/L XAD - F 0.0000258 JT μg/L W006 4.0W NB Peristaltic 0.0005 UT μg/L 0.00051 UT μg/L 0.000521 UT μg/L W007 4.4E (T4/slip 1) SP NB 0.000495 UT 0.0005 UT 0.000524 UT Peristaltic μg/L μg/L μg/L W008 4.6E (T4/slip 3) SP NB Peristaltic 0.000472 UT μg/L 0 00049 UT μg/L 0.000515 UT μg/L W009 5.6W SP NB Peristaltic 0.0005 UT 0.000485 UT 0.000532 UT μg/L μg/L μg/L W010 5.7E SP NB Peristaltic 0.0005 UT μg/L VI Peristaltic 0.000476 0.0005 UT ug/L UT ug/L EDI-NB W011 Т 0.0000212 0.0000393 JT 6.3E XAD - C JT μg/L μg/L XAD - C+F 0.0000212 μg/L 0.0000685 $\mu g/L$ XAD - F 0.0000144 UT μg/L 0.0000292 JT μg/L EDI-NB-1 XAD - C 0.0000299 JT μg/L XAD - C+F 0.0000478 μg/L JT XAD - F 0.0000179 $\mu g/L$ EDI-NS XAD - C 0.0000166 μg/L 0.0000391 μg/L XAD - C+F 0.0000166 0.0000663 μg/L μg/L XAD - F 0.0000151 UT 0.0000272 IT μg/L μg/L EDI-NS-1 XAD - C 0.0000293 JT μg/L XAD - C+F 0.0000406 μg/L XAD - F 0.0000113 JT μg/L EDI-VI XAD - C 0.0000188 0.0000223 JT 0.0000283 $\mu g\!/\!L$ μg/L μg/L XAD - C+F 0.0000233 0.00003066 0.00003701 μg/L μg/L μg/L XAD - F 0.0000045 0.00000836 JT 0.00000871 JT μg/L μg/L μg/L W012 6.3W NB 0.0005 UT 0.00051 UT 0.000481 UT Peristaltic ug/L ug/L ug/L W013 NB-1 Peristaltic 0.000472 UT μg/L XAD - C 0.0000144 JT 0.0000179 0.0000219 μg/L μg/L μg/L XAD - C+F 0.00001924 0.00002399 0.0000353 μg/L μg/L μg/L XAD - F 0.00000484 IT 0.00000609 IT 0.0000134 IT μg/L μg/L μg/L NB-2 Peristaltic 0.000526 UT μg/L XAD - C 0.0000127 0.0000126 0.0000263 μg/L μg/L μg/L XAD - C+F 0.00001728 0.00001786 0.000027236 μg/L μg/L μg/L 0.00000526 0.000000936 XAD - F 0.00000458 IT IT IT μg/L μg/L $\mu g/L$ W014 6.7E SP VI Peristaltic 0.00049 UT μg/L 0.000481 UT μg/L 0.00049 UT μg/L 6.9W XAD - C 0.0000555 0.0000216 0.0000252 W015 NB JT JT JT μg/L μg/L μg/L 0.0002405 0.0000343 0.0000424 XAD - C+F μg/L $\mu g/L$ μg/L XAD - F 0.000185 JT $\mu g/L$ 0.0000127 JT μg/L 0.0000172 JT μg/L W016 7.2W SP NB XAD - C 0.000014 JT 0.0000206 JT 0.0000235 JT μg/L μg/L μg/L XAD - C+F 0.00002139 0.00003004 0.000039 ug/L ug/L ug/L 0.00000944 JT 0.0000155 JT XAD - F 0.00000739 μg/L μg/L μg/L W017 7 5W SP NB Peristaltic 0.00051 UT $\mu g\!/\!L$ 0.00051 UT μg/L 0.000481 UT μg/L W018 8.3E (Swan Island Lagoon) SP NB Peristaltic 0.000481 UT μg/L XAD - C 0.0000165 IT 0.000019 0.0000266 μg/L μg/L μg/L XAD - C+F 0.00002134 μg/L 0.00002607 μg/L 0.00003184 μg/L XAD - F 0.00000484 μg/L 0.00000707 JT μg/L 0.00000524 JT μg/L

Table 5.4-18. Total Chlordane Data Presented by Station and Sampling Event. AWQC-HH 0.000081 μg/L AWQC-Eco 0.0043 μg/L Nov-04 Mar-05 Jul-05 Jan-07 - Mar-07 MCL μg/L Jan-06 Sep-06 Nov-06 High Flow Low Flow Low Flow Low Flow Low Flow Storm Water Flow High Flow Collection Type Collection Location Collection Method Oualifier Qualifier River Location Value Value Qualifier Value Qualifier Value Value Oualifier Oualifier Qualifier W019 8.6W NB Peristaltic 0.000481 0.0005 0.000485 UT μg/L UT UT μg/L μg/L W020 9.1E (Swan Island Lagoon) SP VI Peristaltic 0.00049 UT μg/L 0.00049 UT μg/L 0.00051 UT μg/L SP UT $\mu g\!/\!L$ W021 8.7E (Swan Island Lagoon) NB Peristaltic 0.000481 UT ug/L 0.000481 UT $\mu g\!/\!L$ 0.00049 W022 9 7W SP NB Peristaltic 0.00049 UT μg/L 0.00049 UT μg/L 0.0005 UT μg/L 10.9M W023 Т VI-M XAD - C 0.0000247 JT 0.0000167 JT 0.0000365 JT μg/L μg/L μg/L XAD - C+F 0.00003038 0.0000167 0.0000698 μg/L μg/L μg/L JT JT 0.0000333 XAD - F 0.00000568 $\mu g/L$ 0.0000158 UT μg/L $\mu g \! / \! L$ 11E VI-E XAD - C 0.0000256 JT 0.0000145 JT μg/L 0.0000477 JT μg/L μg/L XAD - C+F 0.00003331 0.00002139 0.0000911 μg/L μg/L μg/L XAD - F 0.00000771 JT 0.00000689 JT $\mu g \! / \! L$ 0.0000434 JT μg/L μg/L EDI-VI 11M 0.00000787 IT 0.000018 IT 0.0000214 IT XAD - C $\mu g/L$ μg/L $\mu g \! / \! L$ XAD - C+F 0.00001337 μg/L 0.00002079 μg/L 0.00002781 μg/L XAD - F 0.0000055 JT μg/L 0.00000279 μg/L 0.00000641 JT μg/L M XAD - C 0.0000457 JT $\mu g \! / \! L$ XAD - C+F 0.0000732 μg/L XAD - F 0.0000275 JT μg/L 11W VI-W XAD - C 0.0000269 JT 0.0000205 0.0000449 μg/L μg/L μg/L XAD - C+F 0.00003315 0.0000742 0.0000205 μg/L μg/L ug/L 0.0000293 XAD - F 0.00000625 0.0000167 JT JT $\mu g/L$ UT μg/L μg/L W024 15 9M т FDI-NR XAD - C 0.0000181 IT $\mu g/L$ 0.0000234 JT $\mu g\!/\!L$ 0.0000361 JT μg/L XAD - C+F 0.00002232 μg/L 0.0000234 μg/L 0.0000483 μg/L XAD - F 0.00000422 0.0000153 UT 0.0000122 JT JT μg/L μg/L μg/L EDI-NS XAD - C 0.0000197 0.0000277 0.0000265 JT IT μg/L JT μg/L μg/L 0.0000384 XAD - C+F 0.00002267 0.0000277 μg/L μg/L μg/L XAD - F 0.00000297 JT μg/L 0.000014 UT $\mu g/L$ 0.0000119 JT $\mu g/L$ M XAD - C 0.0000474 JT μg/L XAD - C+F 0.0000727 $\mu g \! / \! L$ XAD - F 0.0000253 JT μg/L W025 2E Т VI-E 0.0000331 0.0000183 0.0000281 JT XAD - C JT μg/L μg/L $\mu g \! / \! L$ XAD - C+F 0.0000331 0.0000183 μg/L 0.0000418 μg/L μg/L 0.0000111 0.0000137 XAD - F UT 0.0000164 UT μg/L μg/L ug/L 2M VI-M XAD - C 0.0000298 0.000021 0.0000284 JT JT JT μg/L μg/L μg/L XAD - C+F 0.000021 0.0000397 0.0000298 $\mu g/L$ μg/L μg/L XAD - F 0.00000982 UT μg/L 0.0000168 UT μg/L 0.0000113 μg/L 2W VI-W XAD - C 0.0000312 μg/L 0.0000121 μg/L 0.0000349 μg/L 0.00004364 XAD - C+F 0.0000312 $\mu g\!/\!L$ 0.00001342 μg/L μg/L 0.00000874 0.00000132 XAD - F 0.0000081 UT JT JT μg/L $\mu g\!/\!L$ μg/L W026 2.1E SP NB Peristaltic 0.0015 UT μg/L 0.00073 UT $\mu g/L$ 0.0018 UT 0.00073 UT NS Peristaltic μg/L μg/L 0.0000378 0.0000268 JT 2.9W (Multnomah Channel) EDI-NB XAD - C JT W027 μg/L μg/L XAD - C+F 0.0000366 μg/L 0.0000626 μg/L XAD - F 0.0000098 JT 0.0000248 JT μg/L μg/L EDI-NB-1 0.0000318 XAD - C JT μg/L XAD - C+F 0.00004105 μg/L XAD - F 0.00000925 JT μg/L EDI-NS Peristaltic 0.0015 UT μg/L 0.0000316 0.0000348 JT XAD - C IT $\mu g/L$ $\mu g \! / \! L$ 0.000056 XAD - C+F 0.00003757 μg/L μg/L XAD - F 0.00000597 JT μg/L 0.0000212 JT μg/L EDI-NS-1 XAD - C 0.0000324 μg/L XAD - C+F 0.0000448 μg/L XAD - F 0.0000124 JT μg/L W028 3.6E SP NB Peristaltic 0.002 UT μg/L 0.00073 UT $\mu g/L$ 0.00073 NS Peristaltic 0.0013 UT μg/L UT μg/L 0.00029 JT W029 4.4W SP NB Peristaltic 0.0013 UT μg/L μg/L 0.00073 NS Peristaltic 0.0016 UT UT μg/L μg/L W030 5.5E SP NB Peristaltic 0.0024 UT μg/L 0.0006 NIT $\mu g \! / \! L$ NS Peristaltic 0.0014 UT 0.00051 μg/L μg/L SP 0.0000441 W031 6 1W NB XAD - C 0.0000208 JT JT μg/L μg/L XAD - C+F 0.00002445 μg/L 0.0000834 μg/L XAD - F 0.00000365 JT 0.0000393 JT μg/L μg/L NS Peristaltic 0.0013 UT μg/L XAD - C 0.0000422 0.00000672 JT μg/L JT μg/L XAD - C+F 0.000007317 μg/L 0.0000596 μg/L XAD - F 0.000000597 JT 0.0000174 μg/L μg/L

Table 5.4-18. Total Chlordane Data Presented by Station and Sampling Event.

	otal Chiordane Data i rescrited		ipinig Event.																						
AWQC-HH	0.000081	μg/L																							
AWQC-Eco	0.0043	μg/L																							
MCL	2	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06			-07 - Mar-0	7
						Low Flow			Low Flow			Low Flow			High Flow			Low Flow			Water Flow			High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units												
W032	6.7E	SP	NB	XAD - C																0.0000212	JT	μg/L	0.0000352	JT	μg/L
				XAD - C+F																0.0000325	J	μg/L	0.0000523	J	μg/L
				XAD - F																0.0000113	JT	μg/L	0.0000171	JT	μg/L
			NS	XAD - C																0.0000299	JT	μg/L	0.0000332	JT	μg/L
				XAD - C+F																0.000035	J	$\mu g/L$	0.0000477	J	μg/L
				XAD - F																0.0000051	JT	μg/L	0.0000145	JT	μg/L
W033	7.0W	SP	NB	XAD - C																0.000024	JT	$\mu g/L$	0.0000495	JT	μg/L
				XAD - C+F																0.00002601	J	$\mu g/L$	0.0000859	J	μg/L
				XAD - F																0.00000201	JT	$\mu g/L$	0.0000364	JT	μg/L
			NB-2	XAD - C																0.0000275	JT	μg/L			
				XAD - C+F																0.00003614	J	$\mu g/L$			
				XAD - F																0.00000864	JT	$\mu g/L$			
			NS	XAD - C																0.0000272	JT	$\mu g/L$	0.0000456	JT	μg/L
				XAD - C+F																0.00003684	J	$\mu g/L$	0.0000788	J	μg/L
				XAD - F																0.00000964	JT	μg/L	0.0000332	JT	μg/L
			NS-2	XAD - C																0.0000211	JT	μg/L			
				XAD - C+F																0.0000244	J	μg/L			
				XAD - F																0.0000033	JT	$\mu g/L$			
W034	7.5W	SP	NB	XAD - C																0.0000106	JT	μg/L	0.0000351	JT	μg/L
				XAD - C+F																0.0000106	J	μg/L	0.0000466	J	μg/L
				XAD - F																0.0000327	UT	μg/L	0.0000115	JT	μg/L
			NS	XAD - C																0.0000219	JT	μg/L	0.0000378	JT	μg/L
				XAD - C+F																0.00002637	J	μg/L	0.0000511	J	μg/L
				XAD - F																0.00000447	JT	μg/L	0.0000133	JT	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	XAD - C																0.0000206	JT	μg/L	0.0000332	JT	μg/L
				XAD - C+F																0.00003058	J	μg/L	0.0000524	J	μg/L
				XAD - F																0.00000998	JT	μg/L	0.0000192	JT	μg/L
			NS	XAD - C																0.0000162	JT	μg/L	0.0000344	JT	μg/L
				XAD - C+F																0.00002525	J	μg/L	0.0000522	J	μg/L
				XAD - F																0.00000905	JT	μg/L	0.0000178	JT	μg/L
W036	8.6W	SP	NB	Peristaltic																0.00085	UT	μg/L	0.00073	UT	μg/L
			NB-2	Peristaltic																0.00073	UT	$\mu g/L$			
			NS	Peristaltic																0.0018	UT	$\mu g/L$	0.00073	UT	μg/L
			NS-2	Peristaltic																0.0016	JT	μg/L			
W037	9.6W	SP	NB	Peristaltic																0.00077	UT	μg/L	0.00073	UT	μg/L
			NS	Peristaltic																0.0014	UT	μg/L	0.00073	UT	μg/L
W038	9.9E	SP	NB	Peristaltic																0.0014	UT	μg/L	0.00073	UT	μg/L
			NS	Peristaltic																0.00055	NJT	μg/L	0.00073	UT	μg/L

Notes:

AWQC-Eco - ambient water quality criteria (ecological chronic, Oregon)
AWQC-HH - ambient water quality criteria (human health, USEPA)

MCL - maximum concentration limit

C - column

E - East

EDI - equal distance integrated F - filter

M - mid-channel

NB - near bottom

SP - single point

T - transect VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

QC-HH	0.000005	μg/L				lov-04		Mar-0				Jul-05			Jan-06			Sep-06			Nov-06			07 - Mar-0	7
1.	Di I	C-11+: T	Callertian I andian	Callandian Mada d		w Flow	T.T., Sa.,		ow Flow	T T 14		ow Flow	T T 14	X7 - 1	High Flow	T.T., 14.		ow Flow	T T 14		Water Flov			ligh Flow	T.T
mple	River Location	Collection Type	Collection Location			Qualifier	Units		Qualifier	Units		Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units	Value (Qualifier	Units	Value	Qualifier	Ur
7001	2.0E	SP	NB	Peristaltic	0.000472	UJ	μg/L	0.00049	U	μg/L	0.000481	UJ	μg/L												
002	2.2W	SP	NB	Peristaltic	0.000481	UJ	μg/L	0.000.405	**	7	0.000530	***	7												
7002	2.000	CD	NB-1	Peristaltic	0.00040	111		0.000495	U	μg/L	0.000538	UJ	μg/L												
7003 7004	3.0W 3.7E (International Slip)	SP SP	NB NB	Peristaltic Peristaltic	0.00049	UJ U	μg/L	0.0005	U	μg/L	0.000505	UJ UJ	μg/L												
004	5./E (International Stip)	Sr	NB-1	Peristaltic Peristaltic	0.0005	U	μg/L	0.000485	U	ua/I	0.000526	OJ.	μg/L												
			NB-1 NB-2	Peristaltic				0.000485	U	μg/L μg/L															
005	3.9 M	T	EDI-NB	XAD - C				0.000403	U	μg/L							0.00000446	J	μg/L	0.00000366	ĭ	μg/L	0.00000226	ī	μ
003	3.7 141	1	EDI-ND	XAD - C+F XAD - F													0.00000446 0.00000662 0.00000216	l 1	μg/L μg/L μg/L	0.00000366 0.00000173	J U	μg/L μg/L μg/L	0.000003203 0.000000943	J J	μ μ
			EDI-NS	XAD - C XAD - C+F													0.00000274 0.00000274	l l	μg/L μg/L	0.0000045 0.0000045	U U	μg/L μg/L	0.00000314 0.000003996	J J	μ μ
			ED. 111	XAD - F	0.000000550	***	~	0.00000107		~	0.0000022		~				0.00000112	U	μg/L	0.0000017	U	μg/L	0.000000856	J	μ
			EDI-VI	XAD - C	0.000000668	UJ	μg/L	0.00000107	J	μg/L	0.0000022		μg/L												
				XAD - C+F XAD - F	0.000000296 0.000000296	J J	μg/L	0.000001476 0.000000406	J	μg/L	0.000002307 0.000000107	J J	μg/L												
			M	XAD - F XAD - C XAD - C+F	0.000000296	J	μg/L	0.000000406	J	μg/L	0.000000107	J	μg/L	0.0000018 0.000003 6		μg/L μg/L									
				XAD - F										0.0000017	75 J	μg/L									
006	4.0W	SP	NB	Peristaltic	0.0005	U	$\mu g/L$	0.00051	U	μg/L	0.000521	U	$\mu g/L$			=									
007	4.4E (T4/slip 1)	SP	NB	Peristaltic	0.000495	U	$\mu g/L$	0.0005	U	$\mu g/L$	0.000524	U	$\mu g/L$												
800	4.6E (T4/slip 3)	SP	NB	Peristaltic	0.000472	U	μg/L	0.00049	U	μg/L	0.000515	U	μg/L												
009	5.6W	SP	NB	Peristaltic	0.0005	U	μg/L	0.000485	U	μg/L	0.000532	U	μg/L												
010	5.7E	SP	NB	Peristaltic	0.0005	U	μg/L																		
			VI	Peristaltic				0.0005	U	μg/L	0.000476	U	μg/L												
)11	6.3E	T	EDI-NB	XAD - C																0.00000211	U	μg/L	0.00000206	J	ŀ
				XAD - C+F																0.00000211	U	μg/L	0.000002806	J	ŀ
			EDI-NB-1	XAD - F													0.00000281	Ţ	/I	0.00000153	U	μg/L	0.000000746	J	ŀ
			EDI-ND-1	XAD - C XAD - C+F													0.00000281	J	μg/L μg/L						
				XAD - C+I													0.00000303	J	μg/L μg/L						
			EDI-NS	XAD - C													0.00000224	•	MSL	0.00000233	U	μg/L	0.00000184	J	μ
				XAD - C+F																0.00000233	Ü	μg/L	0.000002573	J	μ
				XAD - F																0.00000108	U	μg/L	0.000000733	J	μ
			EDI-NS-1	XAD - C													0.00000256	J	μg/L						·
				XAD - C+F													0.00000372	J	μg/L						
				XAD - F			_			~			~				0.00000116	J	μg/L						
			EDI-VI	XAD - C	0.000000871	J	μg/L	0.00000109	J	μg/L	0.00000198		μg/L												
				XAD - C+F XAD - F	0.000001203 0.000000332	J T	μg/L	0.000001594 0.000000504	J J	μg/L	0.000002744 0.000000764	J T	μg/L												
012	6.3W	SP	NB	Peristaltic	0.0005 0.0005	U	μg/L μg/L	0.00051	U	μg/L μg/L	0.000481	U	μg/L μg/L												
013	6.7E	SP	NB-1	Peristaltic	0.000472	U	μg/L μg/L	0.00031	C	μg/L	0.000401	C	μg/ L												
010	0.72	51	112 1	XAD - C	0.000000537	J	μg/L	0.000000791	J	μg/L	0.00000119	J	μg/L												
				XAD - C+F	0.000000943	J	μg/L	0.000001178	J	μg/L	0.000002143		μg/L												
				XAD - F	0.000000406	J	μg/L	0.000000387	J	μg/L	0.000000953	J	μg/L												
			NB-2	Peristaltic	0.000526	U	μg/L																		
				XAD - C	0.000000418	UJ	μg/L	0.00000144	J	μg/L	0.00000128		μg/L												
				XAD - C+F	0.00000031	J	μg/L	0.000001773	J	μg/L	0.000001402	J	μg/L												
014	6 7E	CD	WI	XAD - F	0.00000031	J	μg/L	0.000000333	J	μg/L	0.000000122	J	μg/L												
014	6.7E 6.9W	SP SP	VI NB	Peristaltic	0.00049	U	μg/L	0.000481	U	μg/L	0.00049	U I	μg/L												
015	6.9W	SP	NB	XAD - C XAD - C+F	0.00000327 0.00001627	J T	μg/L	0.00000142 0.000002113	J T	μg/L	0.00000115 0.00000241	J T	μg/L												
				XAD - C+I	0.000013	J	μg/L μg/L	0.000002113	J	μg/L μg/L	0.00000241	J	μg/L μg/L												
016	7.2W	SP	NB	XAD - C	0.000000702	J	μg/L	0.0000014	J	μg/L	0.00000124	Ü	μg/L												
				XAD - C+F	0.000000702	J	μg/L	0.000002052	J	μg/L	0.000000979	J	μg/L												
				XAD - F	0.000000504	UJ	μg/L	0.000000652	J	μg/L	0.000000979	J	μg/L												
017	7.5W	SP	NB	Peristaltic	0.00051	U	$\mu g/L$	0.00051	U	μg/L	0.000481	U	μg/L												
018	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic	0.000481	U	$\mu g/L$																		
				XAD - C	0.000000659	J	μg/L	0.000000972	J	μg/L	0.00000143		μg/L												
				XAD - C+F	0.000001049	Ĵ	μg/L	0.000001601	Ĵ	μg/L	0.0000004	J	μg/L												
7010	0.637	CD	ND	XAD - F	0.00000039	J	μg/L	0.000000629	J	μg/L	0.0000004	J	μg/L												
019	8.6W	SP	NB	Peristaltic	0.000481	U	μg/L	0.0005	U	μg/L	0.000485	U	μg/L												
020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.00049	U	μg/L	0.00049	U	μg/L	0.00051	U	μg/L												
021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	0.000481	U	μg/L	0.000481	U	μg/L	0.00049	U	μg/L												
022	9.7W	SP	NB VI M	Peristaltic	0.00049	U	μg/L	0.00049	U	μg/L	0.0005	U	μg/L				0.00000155	Ţ	с/Т	0.00000112	TT	/Т	0.00000171	T	
023	10.9M	T	VI-M	XAD - C													0.00000156	J T	μg/L μg/L	0.00000112 0.00000112	U U	μg/L	0.00000171 0.000002459	J	μ; μ;
				XAD - C+F													0.00000217	J	110/1		U	μg/L	0.0000002459		

QC-HH	0.000005	μg/L				Nov-04		Mar				Jul-05			Jan-06			Sep-06			Nov-06			07 - Mar-0	
						ow Flow			Low Flow			Low Flow			High Flow			Low Flow			Water Flo			igh Flow	
ımple	River Location	Collection Type	Collection Location		Value	Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units		Qualifier	Units		Qualifier	Units		Qualifier	
				XAD - F													0.00000061		μg/L	0.000000606	U	μg/L	0.000000749	J	μg
	11E		VI-E	XAD - C													0.00000186		μg/L	0.0000011	J	μg/L	0.00000162	J	μg/
				XAD - C+F													0.00000186		μg/L	0.0000011	J	μg/L	0.00000337	J	μg/
				XAD - F													0.000000624	U	μg/L	0.00000194	U	μg/L	0.00000175	J	μg
	11 M		EDI-VI	XAD - C	0.000000341	UJ	μg/L	0.00000064		μg/L	0.00000149		μg/L												
				XAD - C+F	0.000000341	UJ	μg/L	0.00000084	3 J	μg/L	0.000001941	1 J	μg/L												
				XAD - F	0.000000272	UJ	μg/L	0.00000019	7 J	μg/L	0.000000451	l J	μg/L												
			M	XAD - C										0.00000192		μg/L									
				XAD - C+F										0.00000389	J	μg/L									
				XAD - F										0.00000197	J	μg/L									
	11W		VI-W	XAD - C													0.00000218	J	μg/L	0.00000161	J	μg/L	0.00000201	J	μg
				XAD - C+F													0.000002775		μg/L	0.00000161	J	μg/L	0.00000313	J	μg
				XAD - F													0.000000595		μg/L	0.000000868	U	μg/L	0.00000112	J	μg
024	15.9M	T	EDI-NB	XAD - C													0.00000128	U	μg/L	0.00000201	J	μg/L	0.00000252	J	μg
				XAD - C+F													0.00000128	U	μg/L	0.00000201	J	μg/L	0.000003332	J	μg
				XAD - F													0.000000501	U	μg/L	0.00000158	U	μg/L	0.000000812	J	μg
			EDI-NS	XAD - C													0.00000149	J	μg/L	0.00000204	J	μg/L	0.00000259	J	μg
				XAD - C+F													0.000001791	J	μg/L	0.00000204	J	μg/L	0.00000259	J	μg/
				XAD - F													0.000000301	J	μg/L	0.00000058	U	μg/L	0.000000524	U	μg/
			M	XAD - C										0.00000194	J	$\mu g/L$									
				XAD - C+F										0.00000319	J	μg/L									
				XAD - F										0.00000125	J	μg/L									
)25	2E	T	VI-E	XAD - C													0.00000409	J	μg/L	0.00000245	U	μg/L	0.000003	J	μg
				XAD - C+F													0.00000409	J	μg/L	0.00000245	U	μg/L	0.000003917	J	μg
				XAD - F													0.00000526		μg/L	0.0000011	U	μg/L	0.000000917	J	μg/
	2M		VI-M	XAD - C													0.00000316		μg/L	0.00000189	U	μg/L	0.00000124	J	μg/
				XAD - C+F													0.00000316		μg/L	0.00000119	J	μg/L	0.00000124	J	μg/
				XAD - F													0.00000024		μg/L	0.00000119	J	μg/L	0.000000456	U	μg/
	2W		VI-W	XAD - C													0.00000294		μg/L	0.00000197	J	μg/L	0.00000163	J	μg/
				XAD - C+F													0.00000294		μg/L	0.00000326	J	μg/L	0.000002045	J	μg/
				XAD - F													0.000000191		μg/L	0.00000129	J	μg/L	0.000000415	J	μg/
026	2.1E	SP	NB	Peristaltic																0.0005	U	μg/L	0.0007	U	μg/
			NS	Peristaltic																0.00048	U	μg/L	0.00064	U	μg/
27	2.9W (Multnomah Channel)	Т	EDI-NB	XAD - C																0.00000352	Ī	μg/L	0.00000284	Ī	μg/
-,	2.5 W (Watthoman Chame)	•	EDI ND	XAD - C+F																0.00000575	J	μg/L μg/L	0.00000475	I	μg/
				XAD - F																0.00000223	I	μg/L μg/L	0.00000191	I	μg/
			EDI-NB-1	XAD - C													0.00000301	I	μg/L	0.00000223	,	μg/L	0.00000171	,	μ
			EDI ND 1	XAD - C+F													0.00000301		μg/L						
				XAD - F													0.00000138		μg/L						
			EDI-NS	Peristaltic													0.00000130	,	µБ/ Б	0.00047	U	μg/L			
			LDITIO	XAD - C																0.00000724	Ü	μg/L μg/L	0.00000241	I	μg
				XAD - C+F																0.00000724	J	μg/L μg/L	0.00000247	I	μg
				XAD - F																0.00000263	J	μg/L μg/L	0.00000347	J	μg
			EDI-NS-1	XAD - C													0.00000326	ī	μg/L	0.00000203	,	μg/L	0.00000100	3	МВ
			LDI-NO-1	XAD - C+F													0.00000320		μg/L μg/L						
				XAD - F													0.00000134		μg/L μg/L						
28	3.6E	SP	NB	Peristaltic													0.00000134	3	μg/L	0.0002	U	μg/L	0.00069	U	μg/
20	3.0L	51	NS	Peristaltic																0.0002	U	μg/L μg/L	0.00048	U	μg/ μg/
20	4 4337	CD																			-				
29	4.4W	SP	NB	Peristaltic																0.00046	U	μg/L	0.0018	U	μg
20	7. FD	an.	NS	Peristaltic																0.00048	U	μg/L	0.0018	U	μg
30	5.5E	SP	NB	Peristaltic																0.00023	U	μg/L	0.0052	**	μg/
			NS	Peristaltic																0.00029	U	μg/L	0.0058	U	μg
31	6.1W	SP	NB	XAD - C																0.0000038	U	μg/L	0.00000283	U	μg
				XAD - C+F																0.00000366	J	μg/L	0.0000012	J	μg
				XAD - F																0.00000366	J	μg/L	0.0000012	J	μg
			NS	Peristaltic																0.00027	U	μg/L			
				XAD - C																0.00000391	U	μg/L	0.00000215	U	μg
				XAD - C+F																0.000000635	J	μg/L	0.00000215	U	με

Table 5.4-19. Aldrin Data Presented by Station and Sampling Event.

AWQC-HH	0.000005	μg/L			Nov-04 Low Flow		Ma	r-05 Low Flow			Jul-05 Low Flow			Jan-06			Sep-06 Low Flow			lov-06 Water Flo			07 - Mar-0	1
Sample	River Location	Collection Type	Collection Location	Collection Method	Oualifier	Units	Value	Oualifier	Units	Value		Units	Value	High Flow Oualifier	Units	Value		Units		water Fio Dualifier	w Units		ligh Flow Qualifier	Units
W032	6.7E	SP	NB	XAD - C															0.00000195	U	μg/L	0.00000182	J	μg/L
				XAD - C+F															0.00000223	J	μg/L	0.00000243	J	μg/L
				XAD - F															0.00000223	J	μg/L	0.00000061	J	μg/L
			NS	XAD - C															0.00000203	J	μg/L	0.00000174	J	μg/L
				XAD - C+F															0.00000203	J	μg/L	0.000002454	J	μg/L
				XAD - F															0.00000155	U	μg/L	0.000000714	J	μg/L
W033	7.0W	SP	NB	XAD - C															0.00000367	J	μg/L	0.00000259	J	μg/L
				XAD - C+F															0.00000367	J	μg/L	0.00000407	J	μg/L
				XAD - F															0.00000237	U	μg/L	0.00000148	J	μg/L
			NB-2	XAD - C															0.00000262	U	μg/L			
				XAD - C+F															0.0000017	J	μg/L			
				XAD - F															0.0000017	J	μg/L			
			NS	XAD - C															0.00000426	J	μg/L	0.00000216		μg/L
				XAD - C+F															0.00000426	J	μg/L	0.00000216		μg/L
				XAD - F															0.00000637	U	μg/L	0.00000133	U	μg/L
			NS-2	XAD - C															0.00000306	J	μg/L			
				XAD - C+F															0.00000484	J	μg/L			
*****		~~		XAD - F															0.00000178	J	μg/L			~
W034	7.5W	SP	NB	XAD - C															0.00000313	U	μg/L	0.00000182	Ū	μg/L
				XAD - C+F															0.00000313	U	μg/L	0.000000514	J	μg/L
			***	XAD - F															0.00000229	U	μg/L	0.000000514	J	μg/L
			NS	XAD - C															0.00000412	U	μg/L	0.00000247	U	μg/L
				XAD - C+F															0.00000412	U	μg/L	0.00000247	U	μg/L
111025	0.5E/G 11 11	CD	MD	XAD - F															0.00000128	U	μg/L	0.000000892	Ū	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	XAD - C															0.00000258	U	μg/L	0.00000197	J	μg/L
				XAD - C+F XAD - F															0.00000141 0.00000141	J	μg/L	0.00000301	J	μg/L
			NS	XAD - F XAD - C															0.00000141	U	μg/L	0.00000104 0.00000251	J	μg/L
			NS	XAD - C XAD - C+F															0.0000167	U	μg/L μg/L	0.00000231	J	μg/L
				XAD - C+I															0.0000167	U			Ţ	μg/L
W036	8.6W	SP	NB	Peristaltic															0.00048	U	μg/L	0.00000101 0.00084	U	μg/L
W 030	8.0W	SP																	0.00048	U	μg/L	0.00064	U	μg/L
			NB-2	Peristaltic																	μg/L	0.00000	**	OT.
			NS NG 2	Peristaltic															0.00032	U	μg/L	0.00099	U	μg/L
******	0.471	an.	NS-2	Peristaltic															0.00048	U	μg/L	0.000	**	
W037	9.6W	SP	NB	Peristaltic															0.000057	U	μg/L	0.00069	U	μg/L
			NS	Peristaltic															0.00028	U	μg/L	0.00088	U	μg/L
W038	9.9E	SP	NB	Peristaltic															0.00034	U	μg/L	0.00048	U	$\mu g/L$
			NS	Peristaltic															0.00021	U	μg/L	0.00048	U	μg/L

AWQC-HH - ambient water quality criteria (human health, Oregon)

- C column E East
- EDI equal distance integrated
- F filter M mid-channel NB - near bottom
- SP single point
- T transect VI - vertically integrated
- XAD hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

- J The associated numerical value is an estimated quantity.
 U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Section Column	AWQC-HH	Dieldrin Data Presented by Stat 0.0000053	μg/L	voiit.																					
Mathematical Math	-																				Nov-06			07 - Mar-0	7
Mode 2-se St. St. Principle According Principle According St. Principle According Pr	0 1	D: 1 .:	C 11 .: T					** **			** **			** **			X7.1		** **		rm Water F			igh Flow	** **
March Marc	-														value Qualifier	Units	value	Qualifier	Units	Value	Qualifier	Units	Value (ualifier	Units
March Marc									0.00049	U	μg/L	0.000481	UJ	μg/L											
Month	W002	2.2W	SP			0.000481	UJ	μg/L			_			~											
March Marc	******	2.077	an.			0.000.40	***	~																	
Property								0.0005	U	μg/L															
Marche M	W004	3.7E (International Slip)	SP			0.0005	U	μg/L			_	0.000526	UJ	μg/L											
Profess																									
No. 1998	111005	2014	T.						0.000485	U	μg/L						0.000043		σ.	0.0000266		/1	0.000120		σ
No. W005	3.9 M	Т	EDI-NB																		μg/L	0.000138		μg/L	
Part																			_			μg/L	0.0001572	J J	μg/L
No. Process			EDI NC																		μg/L	0.0000192 0.000144	J	μg/L	
Pick				EDI-NS																		μg/L μg/L	0.000144	J	μg/L μg/L
Part																						μg/L μg/L	0.000153	J	μg/L μg/L
No. Color No.				EDI-VI		0.0000275		ug/L	0.0000319		ug/L	0.0000392		ug/L			0.000003	15 3	µБ/ Б	0.00000374	C	μgъ	0.0000133	•	µg/ Б
Main							J																		
Mathematical Registry Math							UJ																		
Mode				M	XAD - C										0.00033	μg/L									
WOOF					XAD - C+F										0.0003837										
March Marc					XAD - F										0.0000537	μg/L									
Mathematical Note Properties Propertie					Peristaltic						μg/L			μg/L											
No.	W007	4.4E (T4/slip 1)			Peristaltic	0.000495	U	μg/L	0.0005	U	μg/L	0.000524	U	μg/L											
Will S.TE SP NB		• •			Peristaltic	0.000472					$\mu g/L$			μg/L											
V011 0.3E								μg/L	0.000485	U	$\mu g/L$	0.000532	U	μg/L											
Mail	W010	5.7E	SP		Peristaltic	0.0005	U	μg/L																	
Main					Peristaltic				0.0005	U	$\mu g/L$	0.000476	U	μg/L											
March Mar	W011	6.3E	T	EDI-NB																		μg/L	0.000125		μg/L
National Part Section																					μg/L	0.0001439	J	μg/L	
National Content				EDV VD 4													0.0000		~	0.00000268	3 U	μg/L	0.0000189	J	μg/L
				EDI-NB-I																					
FDI-NS																									
				EDI NC													0.0000030)O J	μg/L	0.000031	ĭ	μg/L	0.000126		ua/I
				EDI-NS																		μg/L μg/L	0.000120	J	μg/L μg/L
Figure																						μg/L μg/L	0.0001435	J	μg/L μg/L
NAD - CF			EDI-NS-1													0.000044	14	ug/L	0.0000012	Ū	µg/2	0.0000172	·	F6 2	
Mode																	0.00000)4 U							
				EDI-VI	XAD - C	0.0000299		μg/L	0.0000373		μg/L	0.0000409)	μg/L											
W012 6.3W SP NB Peristaltic 0.0005 U $\mu p L$ 0.0004SI U $\mu p L$ 0.00004T J $\mu p L$ 0.00002T J $\mu p L$ 0.00004T J $\mu p L$ 0.00002T J $\mu p L$ 0.0000074 J $\mu p L$ 0.00000074 J $\mu p L$ 0.0000074					XAD - C+F	0.0000299	J	μg/L	0.0000405	J	$\mu g/L$	0.00004336	J	μg/L											
W013 6.7E SP NB-1 NB-1 NB-1 NB-1 NB-1 NB-1 NB-1 NB-1					XAD - F	0.000002	UJ	μg/L	0.0000032		μg/L														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								μg/L	0.00051	U	μg/L	0.000481	U	μg/L											
	W013	6.7E	SP				U	μg/L																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				NB-1																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							J																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				ND 2			J TT		0.00000235	J	μg/L	0.00000427	J	μg/L											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				IN B -∠			U		0.0000227		11.0×/I	0.0000273		це/Т											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							Ť																		
W014 6.7E SP VI Peristatic 0.00049 U $\mu g/L$ 0.000481 U $\mu g/L$ 0.0000481 U $\mu g/L$ 0.0000491 U $\mu g/L$ 0.0000491 U $\mu g/L$ 0.0000491 U $\mu g/L$ 0.0000481 U $\mu g/L$ 0.0000481 U $\mu g/L$ 0.0000491 U $\mu g/L$ 0.0000481 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td></td>							J																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W014	6.7E	SP	VI			U																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-			-															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			~-							J															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W016	7.2W	SP	NB								0.0000424	ļ												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					XAD - C+F		J																		
W018 8.3E (Swan Island Lagoon) SP NB Peristaltic 0.000481 U $\mu g/L$ XAD - C 0.0000306 $\mu g/L$ 0.000029 $\mu g/L$ 0.0000421 $\mu g/L$ XAD - C+F 0.000306 J $\mu g/L$ 0.0000308 J $\mu g/L$ 0.00004364 J $\mu g/L$ XAD - F 0.00003184 UJ $\mu g/L$ 0.0000318 J $\mu g/L$ 0.0000318 J $\mu g/L$ 0.0000118 J $\mu g/L$ W019 8.6W SP NB Peristaltic 0.000481 U $\mu g/L$ 0.00005 U $\mu g/L$ 0.0000485 U $\mu g/L$ W020 9.1E (Swan Island Lagoon) SP VI Peristaltic 0.00049 U $\mu g/L$ 0.00049 U $\mu g/L$ 0.00049 U $\mu g/L$ 0.00051 U $\mu g/L$							UJ																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							U		0.00051	U	$\mu g/L$	0.000481	U	μg/L											
$ XAD - C + F \qquad \textbf{0.0000306} \qquad J \qquad \mu g/L \qquad \textbf{0.0000308} \qquad J \qquad \mu g/L \qquad \textbf{0.00004364} \qquad J \qquad \mu g/L \\ XAD - F \qquad 0.00000184 \qquad UJ \qquad \mu g/L \qquad 0.0000018 \qquad J \qquad \mu g/L \qquad 0.00000154 \qquad J \qquad \mu g/L \\ W019 \qquad 8.6W \qquad SP \qquad NB \qquad Peristaltic \qquad \textbf{0.000481} \qquad U \qquad \mu g/L \qquad \textbf{0.0005} \qquad U \qquad \mu g/L \qquad \textbf{0.000485} \qquad U \qquad \mu g/L \\ W020 \qquad 9.1E (Swan Island Lagoon) \qquad SP \qquad VI \qquad Peristaltic \qquad \textbf{0.00049} \qquad U \qquad \mu g/L \qquad \textbf{0.00049} \qquad U \qquad \mu g/L \qquad \textbf{0.00051} \qquad U \qquad \mu g/L \\ \hline $	W018	8.3E (Swan Island Lagoon)	SP	NB			U																		
XAD - F																									
W019 8.6W SP NB Peristaltic 0.000481 U μg/L 0.0005 U μg/L 0.000485 U μg/L W020 9.1E (Swan Island Lagoon) SP VI Peristaltic 0.00049 U μg/L 0.00049 U μg/L 0.00051 U μg/L							J																		
W020 9.1E (Swan Island Lagoon) SP VI Peristaltic 0.00049 U µg/L 0.00049 U µg/L 0.00051 U µg/L	111010	0.577	~~) TP																					
W1/21 X /E.(NWAN ISJANG LAGOON) SP NK Peristalfic ####################################																									
	W021					0.000481		μg/L	0.000481		μg/L			μg/L											
W022 9.7W SP NB Peristaltic 0.00049 U μg/L 0.00049 U μg/L 0.0005 U μg/L	W022	9.7W	SP	NB	Peristaltic	0.00049	U	μg/L	0.00049	U	μg/L	0.0005	U	μg/L											

Table 5.4-20. Dieldrin Data Presented by Station and Sampling Event.

	Dieldrin Data Presented by Stat		ent.																	
AWQC-HH	0.0000053	μg/L			NT 04			E	Y 1 0 7		¥ 0:		0 0:		**	0.6		Y 07	M 07	
AWQC-Eco	0.056	μg/L			Nov-04		Mar-0		Jul-05		Jan-06		Sep-06			v-06			- Mar-07	
Cammla	Divon I costion	Callaction True	Callaction Lagation	Collection Method	Low Flow Value Qualifier	Units	Low Fl Value Qualifi		Low Flow Value Qualifier		High Flow Value Qualifier	Timito	Low Flow Value Qualifier	Timito	Value Qua	ater Flow	Units	Value Oua	Flow	I Imito
Sample	River Location		Collection Location		value Quanner	Units	value Quann	er Units	value Quanner	Units	value Quanner	Units		Units					umer	Units
W023	10.9M	T	VI-M	XAD - C									0.0000377	μg/L		J	μg/L	0.000107	*	μg/L
				XAD - C+F									0.0000377 0.00000205 U	μg/L	0.0000283	J	μg/L	0.0001233	J T	μg/L
	116		VI-E	XAD - F XAD - C									0.00000205 U 0.0000392	μg/L		U J	μg/L	0.0000163	J	μg/L
	11E		VI-E	XAD - C XAD - C+F									0.0000392 0.0000416 J	μg/L		J	μg/L	0.000151 0.0001768		μg/L μg/L
				XAD - C+I									0.0000410 J 0.0000024 J	μg/L μg/L		J	μg/L μg/L	0.0001703		μg/L μg/L
	11M		EDI-VI	XAD - C	0.0000143	μg/L	0.0000286	μg/L	0.0000385	μg/L			0.0000024	μg/L	0.0000055	3	μg/L	0.0000238		μg/L
	11111		LDI VI	XAD - C+F	0.0000143 J	μg/L μg/L	0.00002985 J		0.00004049 J	μg/L μg/L										
				XAD - F	0.00000243 J	μg/L	0.000002365 J		0.00000199 J	μg/L μg/L										
			M	XAD - C		1.0		1.0		1.0	0.000302	μg/L								
				XAD - C+F							0.000353	μg/L								
				XAD - F							0.000051	μg/L								
	11 W		VI-W	XAD - C									0.0000437	μg/L	0.0000304	J	μg/L	0.000147		μg/L
				XAD - C+F									0.00004615 J	μg/L	0.00003468	J	$\mu g/L$	0.0001646	J	μg/L
				XAD - F									0.00000245 J	μg/L	0.00000428	J	μg/L	0.0000176	J	μg/L
W024	15.9M	T	EDI-NB	XAD - C									0.0000332	μg/L		J	μg/L	0.0000918		μg/L
				XAD - C+F									0.00003481 J	μg/L	0.00004815	J	μg/L	0.00009933	J	μg/L
				XAD - F									0.00000161 J	μg/L	0.00000785	J	μg/L	0.00000753	J	μg/L
			EDI-NS	XAD - C									0.0000353	μg/L		J	μg/L	0.0000632		μg/L
				XAD - C+F									0.0000353	μg/L		J	μg/L	0.00007046	J	μg/L
			M	XAD - F							0.00027	/1	0.000000989 U	μg/L	0.00000697	J	μg/L	0.00000726	J	μg/L
			M	XAD - C							0.00027	μg/L								
				XAD - C+F XAD - F							0.0003161 0.0000461	μg/L								
W025	2E	T	VI-E	XAD - C							0.0000401	μg/L	0.0000435	μg/L	0.0000293	ĭ	μg/L	0.0000777		ug/I
W 023	ZE	1	V I-E	XAD - C+F									0.0000433 J	μg/L μg/L		J	μg/L μg/L	0.0000777	ĭ	μg/L μg/L
				XAD - F									0.000000989 J	μg/L μg/L		J	μg/L μg/L	0.00000859	J	μg/L μg/L
	2M		VI-M	XAD - C									0.0000401	μg/L		J	μg/L	0.0000777		μg/L
				XAD - C+F									0.0000401	μg/L		J	μg/L	0.00008487	J	μg/L
				XAD - F									0.000000731 U	μg/L		U	μg/L	0.00000717	J	μg/L
	2W		VI-W	XAD - C									0.0000437	μg/L		J	μg/L	0.0000853		μg/L
				XAD - C+F									0.0000437	μg/L	0.0000251	J	μg/L	0.00009142	J	μg/L
				XAD - F									0.000000948 U	μg/L	0.00000291	U	μg/L	0.00000612	J	μg/L
W026	2.1E	SP	NB	Peristaltic											0.0004	U	$\mu g/L$	0.0004	U	μg/L
			NS	Peristaltic											0.0004	U	μg/L	0.0004	U	μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	XAD - C											0.0000306	J	μg/L	0.000135		μg/L
				XAD - C+F											0.0000306	J	μg/L	0.0001577		μg/L
				XAD - F											0.00000231	U	μg/L	0.0000227		μg/L
			EDI-NB-1	XAD - C									0.000041	μg/L						
				XAD - C+F									0.000041	μg/L						
			EDING	XAD - F									0.00000374 U	μg/L	0.0004	**	σ.			
			EDI-NS	Peristaltic												U	μg/L	0.00012		/1
				XAD - C XAD - C+F											0.0000371 0.0000371	J	μg/L	0.00013 0.0001502		μg/L
				XAD - C+F XAD - F												U	μg/L μg/L	0.0001502		μg/L μg/L
			EDI-NS-1	XAD - C									0.0000442	μg/L	0.0000022	U	μg/L	0.0000202		μg/L
			LDI-NS-I	XAD - C+F									0.0000442	μg/L μg/L						
				XAD - F									0.00000369 U	μg/L						
W028	3.6E	SP	NB	Peristaltic									0.00000000	F62	0.0004	U	μg/L	0.0012	J	μg/L
		~-	NS	Peristaltic												U	μg/L	0.0004	U	μg/L
W029	4.4W	SP	NB	Peristaltic												U	μg/L	0.001	NJ	μg/L
022	*****	~ .	NS	Peristaltic												U	μg/L μg/L	0.0004	U	μg/L μg/L
W030	5.5E	SP	NB	Peristaltic												U	μg/L μg/L	0.0004	U	μg/L μg/L
.,,050	5.50	51	NS	Peristaltic												U	μg/L μg/L	0.0004	U	μg/L μg/L
W031	6.1W	SP	NB	XAD - C											0.000459	J	μg/L μg/L	0.000117	-	μg/L μg/L
.,,051	0.1 11	51	.10	XAD - C+F											0.00005005	J	μg/L μg/L	0.000117	J	μg/L μg/L
				XAD - F											0.00000415	J	μg/L μg/L	0.0000192	J	μg/L μg/L
			NS	Peristaltic												U	μg/L μg/L		-	r-o
				XAD - C											0.0000498	J	μg/L	0.000119		μg/L
				XAD - C+F											0.0000498	J	μg/L	0.0001298	J	μg/L
				XAD - F												U	μg/L	0.0000108	J	μg/L

Table 5.4-20. Dieldrin Data Presented by Station and Sampling Event.

AWQC-HH	0.0000053	μg/L																						
AWQC-Eco	0.056	μg/L			Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06		Jan-	07 - Mar-0	7
					Low Flow			Low Flow			Low Flow			High Flow			Low Flow		Storn	Water Flo	ow	H	ligh Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value	Qualifier	Units	Value (Qualifier	Units	Value (Qualifier	Units									
W032	6.7E	SP	NB	XAD - C															0.0000463	J	μg/L	0.000109		μg/L
			NB	XAD - C+F															0.00004934	J	μg/L	0.0001225	J	μg/L
			NB	XAD - F															0.00000304	J	μg/L	0.0000135	J	μg/L
			NS	XAD - C															0.0000433	J	μg/L	0.0000993		μg/L
			NS	XAD - C+F															0.00004623	J	μg/L	0.0001113	J	$\mu g/L$
			NS	XAD - F															0.00000293	J	μg/L	0.000012	J	μg/L
W033	7.0W	SP	NB	XAD - C															0.0000335	J	μg/L	0.000158		μg/L
				XAD - C+F															0.00003699	J	μg/L	0.0001904		μg/L
				XAD - F															0.00000349	J	μg/L	0.0000324		μg/L
			NB-2	XAD - C															0.0000338	J	μg/L			
				XAD - C+F															0.00003617	J	μg/L			
				XAD - F															0.00000237	J	μg/L			
			NS	XAD - C															0.0000366	J	μg/L	0.000151		μg/L
				XAD - C+F															0.0000366	J	μg/L	0.0001802		μg/L
				XAD - F															0.00000281	U	μg/L	0.0000292		μg/L
			NS-2	XAD - C															0.0000346	J	μg/L			
				XAD - C+F															0.00003702	J	μg/L			
				XAD - F															0.00000242	J	μg/L			_
W034	7.5W	SP	NB	XAD - C															0.0000368	J	μg/L	0.000105		μg/L
				XAD - C+F															0.0000368	J	μg/L	0.0001146	J	μg/L
			270	XAD - F															0.00000265	Ü	μg/L	0.0000096	J	μg/L
			NS	XAD - C															0.0000319	Ĵ	μg/L	0.000116		μg/L
				XAD - C+F															0.0000319	J	μg/L	0.00012467	J	μg/L
W/025	9.5E (C I-11 I)	CD	ND	XAD - F															0.00000256	U	μg/L	0.00000867	J	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	XAD - C XAD - C+F															0.0000444 0.0000444	J	μg/L	0.0000995	Y	μg/L
				XAD - C+F XAD - F															0.0000444	U	μg/L	0.0001096 0.0000101	J T	μg/L
			NS	XAD - C															0.000036	ī	μg/L	0.0000101	J	μg/L
			No	XAD - C XAD - C+F															0.0000326	J	μg/L μg/L	0.00010847	ĭ	μg/L
				XAD - C+F															0.0000320	U	μg/L μg/L	0.00010347	ĭ	μg/L μg/L
W036	8.6W	SP	NB	Peristaltic															0.0004	U	μg/L μg/L	0.0000	NJ	μg/L μg/L
***030	8.0 W	51	NB-2	Peristaltic															0.0004	U		0.0012	143	μg/L
			NS NS	Peristaltic															0.0004	U	μg/L	0.0004	U	па/І
			NS-2																0.0004	U	μg/L	0.0004	U	μg/L
W/027	0.6W	CD		Peristaltic																0	μg/L	0.0004	**	/Т
W037	9.6W	SP	NB	Peristaltic															0.00042	U	μg/L	0.0004	U	μg/L
*****			NS	Peristaltic															0.0004	U	μg/L	0.0004	U	μg/L
W038	9.9E	SP	NB	Peristaltic															0.0004	U	μg/L	0.0004	U	μg/L
			NS	Peristaltic															0.0004	U	μg/L	0.0004	UJ	μg/L

Notes:

AWQC-Eco - ambient water quality criteria (ecological, Oregon)
AWQC-HH - ambient water quality criteria (human health, Oregon)

C - column E - East

EDI - equal distance integrated

M - mid-channel

NB - near bottom SP - single point

T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

	Total Arsenic Data Presented	by Station and Samp	oling Event.																			
AWQC-HH	2.1	μg/L																				
AWQC-Eco MCL	150 10	μg/L μg/L			Nov-	-04		Mar-05	5		Jul-05		Jan-06		Sep-06			Nov-06		Jan	-07 - Mar-	07
ez		_			Low F			Low Flo			Low Flow		High Flow	1	Low Flow			n Water Fl	low		High Flow	0,
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualif	ier U	nits Valu	e Qualifier	Units	Value (Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Ç	ualifier	Units	Value (Qualifier	Units
W001	2.0E	SP	NB	Peristaltic	0.328 T	μ	g/L 0. 4	245 T	μg/L	0.745	T	μg/L										
W002	2.2W	SP	NB	Peristaltic	0.35		g/L															
			NB-1	Peristaltic				533	μg/L	0.64		μg/L										
			NB-2	Peristaltic				557	μg/L	0.71		μg/L										
W003	3.0W	SP	NB	Peristaltic	0.355			437	μg/L	0.49		μg/L										
W004	3.7E (International Slip)	SP	NB	Peristaltic	0.39	μ	g/L	400	~	0.48		μg/L										
111005	2016	m	NB-1	Peristaltic			0	489	μg/L						0.51	æ	0.456		σ.	0.200		•
W005	3.9 M	T	EDI-NB EDI-NS	Peristaltic Peristaltic											0.51 0.46	μg/L	0.476 0.446	J J	μg/L	0.309 0.324		μg/L
			EDI-NS EDI-VI	Peristaltic Peristaltic	0.39		g/L 0	452	μg/L	0.55		па/І			0.40	μg/L	0.440	J	μg/L	0.324		μg/L
			M	Peristaltic	0.39	μ	.g/L U	432	μg/L	0.33		μg/L	0.54	μg/L								
W006	4.0W	SP	NB	Peristaltic	0.399	ш	g/L 0	428	μg/L	0.49	Т	μg/L	0.54	μg/L								
W007	4.4E (T4/slip 1)	SP	NB	Peristaltic	0.3805 T			485 T	μg/L	0.48	-	μg/L										
W008	4.6E (T4/slip 3)	SP	NB	Peristaltic	0.389			417	μg/L	0.48		μg/L										
W009	5.6W	SP	NB	Peristaltic	0.374			414	μg/L	0.5		μg/L										
W010	5.7E	SP	NB	Peristaltic	0.38		g/L															
			VI	Peristaltic			0	419	μg/L	0.54		μg/L										
W011	6.3E	T	EDI-NB	Peristaltic													0.447	UJ	μg/L	0.356	JT	μg/L
			EDI-NB-1	Peristaltic											0.455	μg/L						
			EDI-NS	Peristaltic													0.422	UJ	$\mu g/L$	0.317	J	μg/L
			EDI-NS-1	Peristaltic					~			~			0.457	μg/L						
W012	6.2007	GD.	EDI-VI	Peristaltic	0.365			447	μg/L	0.5		μg/L										
W012 W013	6.3W 6.7E	SP SP	NB NB-1	Peristaltic Peristaltic	0.3525 T 0.369 T		-	437	μg/L	0.56 0.43		μg/L										
W013	0.7E	Sr	NB-2	Peristaltic Peristaltic	0.369 T 0.359		-	362 405	μg/L μg/L	0.43		μg/L										
W014	6.7E	SP	VI	Peristaltic	0.365		~	435	μg/L μg/L	0.52		μg/L										
W015	6.9W	SP	NB	Peristaltic	0.399 T		-	435	μg/L μg/L	0.52		μg/L μg/L										
W016	7.2W	SP	NB-1	Peristaltic	0.386		-	437	μg/L	0.5		μg/L										
			NB-2	Peristaltic	0.373		g/L															
W017	7.5W	SP	NB	Peristaltic	0.41			0.52	μg/L	0.56		μg/L										
W018	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic	0.337			363	μg/L	0.48		μg/L										
W019	8.6W	SP	NB	Peristaltic	0.368			455 T	μg/L	0.54		μg/L										
W020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.407		~	395	μg/L	0.47		μg/L										
W021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	0.383		-	0.41	μg/L	0.48		μg/L										
W022 W023	9.7W 10.9M	SP T	NB VI-M	Peristaltic Peristaltic	0.668	μ	g/L 0	463	μg/L	0.53		μg/L			0.46	о/Т	0.41	TIT	/T	0.307	T	а/Т
W 023	10.5M 11E	1	VI-IVI VI-E	Peristaltic											0.47	μg/L μg/L	0.41 0.419	UJ UJ	μg/L μg/L	0.307	1	μg/L
	11M		EDI-VI	Peristaltic	0.349 T		g/L 0	426	μg/L	0.485	T	μg/L			0.47	μg/L	0.419	OJ.	μg/L	0.329		μg/L
	11111		M	Peristaltic	0.54)	μ	.g/L 0	420	μg/L	0.405	1	μg/L	0.48	μg/L								
	11W		VI-W	Peristaltic									0.40	μдЦ	0.48	μg/L	0.394	UJ	μg/L	0.334		μg/L
W024	15.9M	T	EDI-NB	Peristaltic											0.427 T	μg/L	0.406	UJT	μg/L	0.254	T	μg/L
			EDI-NS	Peristaltic											0.418	μg/L	0.42	UJ	μg/L	0.459	T	μg/L
			M	Peristaltic									0.28	μg/L		. 5			. 5			
W025	2E	T	VI-E	Peristaltic										. 0	0.64 T	$\mu g/L$	0.436	UJ	$\mu g/L$	0.299		$\mu g/L$
	2M		VI-M	Peristaltic											0.61	μg/L	0.442	UJ	μg/L	0.257		μg/L
	2W		VI-W	Peristaltic											0.56	μg/L	0.647	UJ	μg/L	0.267	T	μg/L
W026	2.1E	SP	NB	Peristaltic													0.481	J	$\mu g/L$	0.32	J	μg/L
			NS	Peristaltic													0.458	J	μg/L	0.32	J	μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic												_	0.457	J	μg/L	0.402	J	μg/L
			EDI-NB-1	Peristaltic											0.5	μg/L	0.420	-	~			-
			EDI-NS	Peristaltic											0.40	Л	0.439	J	μg/L	0.353	J	μg/L
W028	3.6E	SP	EDI-NS-1 NB	Peristaltic Peristaltic											0.49	μg/L	0.442	т	пс/Т	0.306	ī	u.c./I
VV U.20	3.0E	Sr	NS NS	Peristaltic													0.442	J J	μg/L μg/L	0.333	J	μg/L μg/L
W029	4.4W	SP	NB	Peristaltic													0.457	UJ	μg/L μg/L	0.329	J	μg/L μg/L
., 02)		51	NS	Peristaltic													0.457	UJ	μg/L μg/L	0.317	JT	μg/L μg/L
W030	5.5E	SP	NB	Peristaltic													0.428	J	μg/L μg/L	0.328	J	μg/L
	·-		NS	Peristaltic													0.453	J	μg/L	0.317	J	μg/L
W031	6.1W	SP	NB	Peristaltic													0.458	J	μg/L	0.478	J	μg/L
			NS	Peristaltic													0.451	J	$\mu g/L$	0.324	J	μg/L
W032	6.7E	SP	NB	Peristaltic													0.458	J	μg/L	0.32	_	μg/L
			NS	Peristaltic													0.456	UJ	μg/L	0.305	T	μg/L

Table 5.4-21a. Total Arsenic Data Presented by Station and Sampling Event.

AWOC-HH 2.1 us/L

AWQC-HH		μg/L																							
AWQC-Eco	150	μg/L																							
MCL	10	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06		Jan-	-07 - Mar-0	07
•		_				Low Flow			Low Flow			Low Flow			High Flow			Low Flow			m Water F	low		High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Qualifier	Units	Value (Qualifier	Units	Value Q	ualifier	Units												
W033	7.0W	SP	NB	Peristaltic																0.44	UJ	μg/L	0.34	J	μg/L
			NB-2	Peristaltic																0.412	UJ	μg/L	0.35	J	μg/L
			NS	Peristaltic																0.441	UJ	μg/L	0.33	JT	μg/L
			NS-2	Peristaltic																0.439	UJ	μg/L	0.32	J	μg/L
W034	7.5W	SP	NB	Peristaltic																0.442	J	$\mu g/L$	0.357	JT	μg/L
			NS	Peristaltic																0.439	J	μg/L	0.627	J	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic																0.457	J	μg/L	0.383	J	μg/L
			NS	Peristaltic																0.464	J	μg/L	0.355	J	μg/L
W036	8.6W	SP	NB	Peristaltic																0.436	J	μg/L	0.377	J	μg/L
			NS	Peristaltic																0.46	J	μg/L	0.366	JT	μg/L
W037	9.6W	SP	NB	Peristaltic																0.484	J	μg/L	0.318	J	μg/L
			NS	Peristaltic																0.467	JT	μg/L	0.356	J	μg/L
W038	9.9E	SP	NB	Peristaltic																0.526	JT	$\mu g/L$	0.31		μg/L
			NS	Peristaltic																0.512	JT	μg/L	0.3		μg/L

Notes:

AWQC-Eco - ambient water quality criteria (ecological, Oregon)

AWQC-HH - ambient water quality criteria (human health, Oregon)

MCL - maximum concentration limit (USEPA)

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom SP - single point

T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

Table 5.4-21b. Dissolved Arsenic Data Presented by Station and Sampling Event.

AWOC-HH 2.1 ug/L

AwQC-IIII	2.1	μg/L
AWQC-Eco	150	μg/L
MCL	10	μg/L

MCL	10	_ μg/L			Nov-04		Mar-05		Jul-05		Jan-06		Sep-06			Nov-06		Jan-)7 - Mar-0)7
					Low Flow		Low Flow		Low Flow		High Flow		Low Flow			n Water F	low	Н	igh Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Q	ualifier	Units	Value Q	ıalifier	Units
W001	2.0E	SP	NB	Peristaltic	0.286	$\mu g/L$	0.359	$\mu g/L$	0.64	$\mu g/L$										
W002	2.2W	SP	NB	Peristaltic	0.285	μg/L														
			NB-1	Peristaltic			0.471	μg/L	0.62	μg/L										
111002	2.011	GD.	NB-2	Peristaltic	0.200	/*	0.508	μg/L	0.62	μg/L										
W003	3.0W	SP	NB	Peristaltic	0.299	μg/L	0.353	μg/L	0.41	μg/L										
W004	3.7E (International Slip)	SP	NB NB-1	Peristaltic Peristaltic	0.315	μg/L	0.406	/I	0.41	$\mu g/L$										
W005	3.9 M	Т	EDI-NB	Peristaltic			0.400	$\mu g/L$					0.42 U	μg/L	0.396	U	μg/L	0.253		μg/L
***003	3.9 W	1	EDI-NS	Peristaltic									0.19	μg/L μg/L	0.397	U	μg/L μg/L	0.274		μg/L μg/L
			EDI-NS EDI-VI	Peristaltic	0.328	μg/L	0.394	μg/L	0.48	ua/I			0.17	μg/L	0.397	U	μg/L	0.274		μg/L
			M	Peristaltic	0.520	μg/L	0.374	μg/L	0.40	μg/L	0.21	μg/L								
W006	4.0W	SP	NB	Peristaltic	0.319	μg/L	0.33	μg/L	0.42	μg/L	0.21	μд/Ц								
W007	4.4E (T4/slip 1)	SP	NB	Peristaltic	0.315	μg/L μg/L	0.373	μg/L μg/L	0.42	μg/L										
W008	4.6E (T4/slip 3)	SP	NB	Peristaltic	0.333	μg/L	0.375	μg/L	0.43	μg/L										
W009	5.6W	SP	NB	Peristaltic	0.329	μg/L	0.362	μg/L	0.42	μg/L										
W010	5.7E	SP	NB	Peristaltic	0.322	μg/L														
			VI	Peristaltic			0.36	μg/L	0.46	$\mu g/L$										
W011	6.3E	T	EDI-NB	Peristaltic											0.398	U	μg/L	0.271	J	μg/L
			EDI-NB-1	Peristaltic									0.41 U	$\mu g/L$						
			EDI-NS	Peristaltic											0.39	U	μg/L	0.255	J	μg/L
			EDI-NS-1	Peristaltic									0.389 U	$\mu g/L$						
			EDI-VI	Peristaltic	0.308	$\mu g/L$	0.402	$\mu g/L$	0.45	$\mu g/L$										
W012	6.3W	SP	NB	Peristaltic	0.31	μg/L	0.379	μg/L	0.47	$\mu g/L$										
W013	6.7E	SP	NB-1	Peristaltic	0.291	μg/L	0.301	μg/L	0.37	μg/L										
			NB-2	Peristaltic	0.252	μg/L	0.31	μg/L		_										
W014	6.7E	SP	VI	Peristaltic	0.322	μg/L	0.378	μg/L	0.46	μg/L										
W015	6.9W 7.2W	SP SP	NB NB 1	Peristaltic Peristaltic	0.353	μg/L	0.372	μg/L	0.45 0.45	μg/L										
W016	7.2 w	SP	NB-1 NB-2	Peristaltic	0.333 0.33	μg/L μg/L	0.376	$\mu g/L$	0.45	$\mu g/L$										
W017	7.5W	SP	NB NB	Peristaltic	0.337	μg/L μg/L	0.392	μg/L	0.47	μg/L										
W017	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic	0.249	μg/L μg/L	0.298	μg/L μg/L	0.41	μg/L μg/L										
W019	8.6W	SP	NB	Peristaltic	0.307	μg/L μg/L	0.389	μg/L μg/L	0.46	μg/L μg/L										
W020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.359	μg/L	0.325	μg/L	0.44	μg/L										
W021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	0.342	μg/L	0.323	μg/L	0.43	μg/L										
W022	9.7W	SP	NB	Peristaltic	0.493	μg/L	0.397	μg/L	0.45	μg/L										
W023	10.9M	T	VI-M	Peristaltic									0.43	$\mu g/L$	0.388	U	μg/L	0.207		μg/L
	11E		VI-E	Peristaltic									0.43	$\mu g/L$	0.373	U	μg/L	0.221		μg/L
	11M		EDI-VI	Peristaltic	0.29	μg/L	0.36	μg/L	0.43	$\mu g/L$										
			M	Peristaltic							0.21	$\mu g/L$								
	11W		VI-W	Peristaltic									0.44	$\mu g/L$	0.372	U	μg/L	0.218		μg/L
W024	15.9M	T	EDI-NB	Peristaltic									0.394	$\mu g/L$	0.384	UT	μg/L	0.186		μg/L
			EDI-NS	Peristaltic									0.395	μg/L	0.381	U	μg/L	0.191		μg/L
			M	Peristaltic							0.2	$\mu g/L$								
W025	2E	T	VI-E	Peristaltic									0.58	$\mu g/L$	0.396	U	μg/L	0.207		μg/L
	2M		VI-M	Peristaltic									0.6	μg/L	0.374	U	μg/L	0.201		μg/L
	2W		VI-W	Peristaltic									0.52	μg/L	0.586	U	μg/L	0.201		μg/L
W026	2.1E	SP	NB	Peristaltic											0.425	U	μg/L	0.26	J	μg/L
			NS	Peristaltic											0.422	U	μg/L	0.23	J	μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic											0.397	U	μg/L	0.281	J	μg/L
			EDI-NB-1	Peristaltic									0.48	μg/L						
			EDI-NS	Peristaltic											0.403	UJ	μg/L	0.216	J	μg/L
			EDI-NS-1	Peristaltic									0.47	$\mu g/L$						
W028	3.6E	SP	NB	Peristaltic											0.384	UJ	μg/L	0.202	J	μg/L
			NS	Peristaltic											0.395	UJ	μg/L	0.213	J	μg/L
W029	4.4W	SP	NB	Peristaltic											0.39	U	μg/L	0.206	J	μg/L
_			NS	Peristaltic											0.418	U	μg/L	0.223	J	μg/L
W030	5.5E	SP	NB	Peristaltic											0.405	UJ	μg/L	0.185	J	μg/L
			NS	Peristaltic											0.395	U	μg/L	0.222	J	μg/L

Jan-07 - Mar-07

Table 5.4-21b. Dissolved Arsenic Data Presented by Station and Sampling Event.

AWQC-HH	2.1	μg/L
AWQC-Eco	150	μg/L
MCL	10	μg/L

						Low Flow			Low Flow			Low Flow			High Flow			Low Flow		Stor	m Water F	low		High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Qualifier	Units	Value (Qualifier	Units	Value	Qualifier	Units												
W031	6.1W	SP	NB	Peristaltic																0.393	UJ	μg/L	0.261	J	μg/L
			NS	Peristaltic																0.399	UJ	μg/L	0.26	J	μg/L
W032	6.7E	SP	NB	Peristaltic																0.404	JT	$\mu g/L$	0.22		μg/L
			NS	Peristaltic																0.38	J	μg/L	0.22		μg/L
W033	7.0W	SP	NB	Peristaltic																0.391	U	μg/L	0.26	J	μg/L
			NB-2	Peristaltic																0.402	U	$\mu g/L$	0.23	J	μg/L
			NS	Peristaltic																0.381	U	μg/L	0.26	J	μg/L
			NS-2	Peristaltic																0.387	U	μg/L	0.28	J	μg/L
W034	7.5W	SP	NB	Peristaltic																0.412		μg/L	0.285	J	μg/L
			NS	Peristaltic																0.389	U	μg/L	0.341	J	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic																0.402	U	$\mu g/L$	0.296	J	μg/L
			NS	Peristaltic																0.404	U	μg/L	0.281	J	μg/L
W036	8.6W	SP	NB	Peristaltic																0.387	U	$\mu g/L$	0.201	J	μg/L
			NS	Peristaltic																0.4	U	μg/L	0.208	J	μg/L
W037	9.6W	SP	NB	Peristaltic																0.401	J	$\mu g/L$	0.224	J	μg/L
			NS	Peristaltic																0.425	UJT	μg/L	0.211	J	μg/L
W038	9.9E	SP	NB	Peristaltic																0.48	T	$\mu g/L$	0.21		μg/L
-			NS	Peristaltic																0.468	UJT	μg/L	0.21		μg/L

Jul-05

Jan-06

Sep-06

Nov-06

Mar-05

Notes:

AWQC-Eco - ambient water quality criteria (ecological, Oregon)

AWQC-HH - ambient water quality criteria (human health, Oregon)

MCL - maximum concentration limit (USEPA)

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom

SP - single point T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

Nov-04

MCL	100	μg/L				Nov-04			Mar-05			Jul-05		Jan-06		Sep-06			Nov-06			07 - Mar-	
						Low Flow			Low Flow			Low Flow		High Flov		Low Flow			m Water F			ligh Flow	
ample	River Location	Collection Type	Collection Location	Collection Method	Value (Qualifier	Units	Value (Qualifier	Units		Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Ç	Qualifier	Units	Value Q	ualifier	Un
W001	2.0E	SP	NB	Peristaltic	0.305	T	$\mu g/L$	0.48	T	$\mu g/L$	0.625	T	μg/L										
V002	2.2W	SP	NB	Peristaltic	0.36		$\mu g/L$																
			NB-1	Peristaltic				0.47		μg/L	0.55		μg/L										
1000		an.	NB-2	Peristaltic	0.00		-	0.43		μg/L	0.48	U	μg/L										
V003	3.0W	SP	NB	Peristaltic	0.33		μg/L	0.47		$\mu g/L$	0.54		μg/L										
V004	3.7E (International Slip)	SP	NB	Peristaltic	0.51		μg/L	0.01		/T	0.48	U	$\mu g/L$										
V005	3.9 M	Т	NB-1 EDI-NB	Peristaltic Peristaltic				0.91		$\mu g/L$						1.09	a/I	0.34	T.I	a/I	0.00		
V 003	3.9 W	1	EDI-NS	Peristaltic												0.38	μg/L μg/L	0.34	U U	μg/L μg/L	0.99 0.99		μ <u>g</u> μ <u>g</u>
			EDI-NS EDI-VI	Peristaltic	0.3		μg/L	0.38		μg/L	0.53		ua/I			0.30	μg/L	0.38	U	μg/L	0.55		μg
			M	Peristaltic	0.3		μg/L	0.36		μg/L	0.55		μg/L	1.25	μg/L								
V006	4.0W	SP	NB	Peristaltic	0.37		μg/L	0.6		μg/L	0.38	UT	μg/L	1.20	μβЪ								
V007	4.4E (T4/slip 1)	SP	NB	Peristaltic	0.2	JT	μg/L	0.31	UT	μg/L	0.37	U	μg/L										
V008	4.6E (T4/slip 3)	SP	NB	Peristaltic	0.305	T	μg/L	0.29	U	μg/L	0.29	U	μg/L										
V009	5.6W	SP	NB	Peristaltic	0.3		μg/L	0.38		μg/L	0.48	U	μg/L										
W010	5.7E	SP	NB	Peristaltic	0.32		μg/L			r-8-			r-6 -										
			VI	Peristaltic			r-6-	0.36		$\mu g/L$	0.43	U	$\mu g/L$										
W011	6.3E	T	EDI-NB	Peristaltic														0.21	U	μg/L	1.28	T	μg
			EDI-NB-1	Peristaltic												0.55	$\mu g/L$			10			
			EDI-NS	Peristaltic														0.22	U	μg/L	1.1		μg
			EDI-NS-1	Peristaltic												0.35	$\mu g/L$						
			EDI-VI	Peristaltic	0.3		$\mu g/L$	0.29		$\mu g/L$	0.43	U	μg/L										
W012	6.3W	SP	NB	Peristaltic	0.285	T	$\mu g/L$	0.26		$\mu g/L$	0.59		μg/L										
V013	6.7E	SP	NB-1	Peristaltic	0.325	T	μg/L	0.42	U	μg/L	0.39	U	μg/L										
			NB-2	Peristaltic	0.31		$\mu g/L$	0.68		μg/L													
/014	6.7E	SP	VI	Peristaltic	0.3		μg/L	0.24		μg/L	0.35	U	μg/L										
V015	6.9W	SP	NB	Peristaltic	0.325	T	μg/L	0.38		μg/L	0.36	U	μg/L										
V016	7.2W	SP	NB-1	Peristaltic	0.3		μg/L	0.33	U	μg/L	0.48	U	μg/L										
			NB-2	Peristaltic	0.29		μg/L																
V017	7.5W	SP	NB	Peristaltic	0.34		μg/L	0.27		μg/L	0.46	U	μg/L										
V018	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic	0.31		μg/L	0.4	_	μg/L	0.36	U	μg/L										
V019	8.6W	SP	NB	Peristaltic	0.3		μg/L	0.325	T	μg/L	0.51		μg/L										
V020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.2		μg/L	0.22		μg/L	0.36	U	μg/L										
7021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	0.23		μg/L	0.21		μg/L	0.32	U	μg/L										
/022	9.7W	SP	NB	Peristaltic	0.37		μg/L	0.33		$\mu g/L$	0.44	U	μg/L			0.20	7	0.27	**	/=	0.06	m.	
/023	10.9M	T	VI-M	Peristaltic												0.38	μg/L	0.27	U	μg/L	0.96	T	μg
	11E		VI-E	Peristaltic	0.20		/7	0.61		/T	0.22	TITE	/T			0.5	$\mu g/L$	0.3	U	μg/L	1		μg
	11M		EDI-VI	Peristaltic	0.29		μg/L	0.61		$\mu g/L$	0.33	UT	μg/L	1.62	/1								
	11W		M VI-W	Peristaltic										1.62	$\mu g/L$	0.41	/T	0.25	T.T.	/T	1 14		
V024	11 W 15.9M	Т	VI-W EDI-NB	Peristaltic Peristaltic												0.41 0.355 T	μg/L	0.25 0.27	U UT	μg/L	1.14 0.72	Т	μg
VU24	13.9101	1	EDI-NB EDI-NS	Peristaltic												0.34	μg/L	0.27	U	μg/L	0.72	T	μg
			M	Peristaltic										1.68	ug/I	0.34	μg/L	0.23	U	μg/L	0.65	1	μg
V025	2E	T	VI-E	Peristaltic										1.00	μg/L	0.42 T	μg/L	0.29	U	μg/L	0.74		μg
023	2M	1	VI-E VI-M	Peristaltic												0.37	μg/L μg/L	0.23	U	μg/L μg/L	0.74		μg μg
	2W		VI-W	Peristaltic												0.35	μg/L μg/L	0.3	U	μg/L μg/L	0.59	Т	μg μg
026	2.1E	SP	NB	Peristaltic												0.00	µg/L	0.29	U	μg/L μg/L	0.39		με με
020	2.11)I	NS NS	Peristaltic														0.34	U	μg/L μg/L	0.30		μg μg
027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic														0.34	U	μg/L μg/L	1.73		με με
J21	2.5 ((maintoinan Chaille)	1	EDI-NB-1	Peristaltic												0.51	μg/L	0.57	J	ME/L	1.75		με
			EDI-NB-1 EDI-NS	Peristaltic												0.01	µg/L	0.28	U	μg/L	1.53		με
			EDI-NS-1	Peristaltic												0.46	μg/L		_	r.o	2,000		re
028	3.6E	SP	NB	Peristaltic												****	r.o. =	0.31	U	μg/L	1.02		μ
	•		NS	Peristaltic														0.34	Ü	μg/L	1.07		μ
029	4.4W	SP	NB	Peristaltic														0.26	Ü	μg/L	0.88		μ
			NS	Peristaltic														0.24	Ü	μg/L	0.865	T	μ
7030	5.5E	SP	NB	Peristaltic														0.3	Ü	μg/L	0.99		με
			NS	Peristaltic														0.29	U	μg/L	0.95		μе
U021	6.1W	SP	NB	Peristaltic														0.29	U	μg/L	1.92		μg
V031																							μg

Table 5.4-22a. Total Chromium Data Presented by Station and Sampling Event.

MCL	100	μg/L			Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06		Jan	n-07 - Mar-()7
					Low Flov			Low Flow			Low Flow			High Flow			Low Flow		St	orm Water F	low]	High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value	Qualifier	Units	Value (Qualifier	Units												
W032	6.7E	SP	NB	Peristaltic															0.33	U	μg/L	0.7		μg/L
			NS	Peristaltic															0.42	U	μg/L	0.725	T	μg/L
W033	7.0W	SP	NB	Peristaltic															0.31	U	μg/L	1.08		μg/L
			NB-2	Peristaltic															0.26	U	μg/L	1.06		μg/L
			NS	Peristaltic															0.29	U	μg/L	0.925	T	μg/L
			NS-2	Peristaltic															0.23	U	μg/L	0.93		μg/L
W034	7.5W	SP	NB	Peristaltic															0.34	U	μg/L	0.99	T	μg/L
			NS	Peristaltic															0.32	U	μg/L	0.88		μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic															0.39	U	μg/L	0.88		μg/L
			NS	Peristaltic															0.34	U	μg/L	0.86		μg/L
W036	8.6W	SP	NB	Peristaltic															0.37	U	μg/L	1.62		μg/L
			NS	Peristaltic															0.29	U	μg/L	1.7	T	μg/L
W037	9.6W	SP	NB	Peristaltic															0.31	U	μg/L	1.17		μg/L
			NS	Peristaltic															0.31	UT	μg/L	1.08		μg/L
W038	9.9E	SP	NB	Peristaltic															0.36	UT	μg/L	0.85		μg/L
			NS	Peristaltic															0.32	UT	μg/L	0.82		μg/L

Notes:

MCL - maximum concentration limit (USEPA)

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom

SP - single point T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

MCL	100	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06			07 - Mar-0	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Low Flow Oualifier	Units	Value (Low Flow	Units		Low Flow Dualifier	Units	Value	High Flow	Units	Value	Low Flow	Units	Storr Value Q	n Water Fl malifier	low Units	Hi Value Qu	igh Flow	Unit
W001	2.0E	SP	NB	Peristaltic Peristaltic	0.13	T T		0.22	Т		0.14	U		varue	Quantier	Cinto	v uruc	Quantities	Cints	value Q	uummer	Cints	value Qu	unner	
W001 W002	2.0E 2.2W	SP SP	NB NB	Peristaltic	0.13	J	μg/L μg/L	0.22	1	μg/L	0.14	U	μg/L												
11002	2.2 11	51	NB-1	Peristaltic	0.13	3	μg/L	0.24		μg/L	0.13	U	μg/L												
			NB-2	Peristaltic				0.19	J	μg/L	0.11	U	μg/L												
W003	3.0W	SP	NB	Peristaltic	0.13	J	μg/L	0.29	-	μg/L	0.16	U	μg/L												
W004	3.7E (International Slip)	SP	NB	Peristaltic	0.13	J	μg/L			1.0	0.16	U	μg/L												
	,		NB-1	Peristaltic			10	0.33		μg/L			10												
W005	3.9 M	T	EDI-NB	Peristaltic													0.22	U	$\mu g/L$	0.23	U	$\mu g/L$	0.57		μg/
			EDI-NS	Peristaltic													0.26	U	$\mu g/L$	0.15	U	$\mu g/L$	0.65		μg/
			EDI-VI	Peristaltic	0.2	J	$\mu g/L$	0.18	U	$\mu g/L$	0.26		μg/L												
			M	Peristaltic										0.18	U	$\mu g/L$									
W006	4.0W	SP	NB	Peristaltic	0.13	J	$\mu g/L$	0.22		$\mu g/L$	0.17	U	μg/L												
W007	4.4E (T4/slip 1)	SP	NB	Peristaltic	0.13	J	μg/L	0.2	U	μg/L	0.2	U	μg/L												
W008	4.6E (T4/slip 3)	SP	NB	Peristaltic	0.14	J	μg/L	0.17	U	μg/L	0.25	U	μg/L												
W009	5.6W	SP	NB	Peristaltic	0.16	J	μg/L	0.2	U	μg/L	0.2	U	μg/L												
W010	5.7E	SP	NB	Peristaltic	0.14	J	μg/L	0.10	T.	/1	0.10		/1												
W011	6.3E	T	VI EDI-NB	Peristaltic Peristaltic				0.18	U	μg/L	0.19	U	μg/L							0.14	U	uc/I	0.54		
WUII	0.5E	1	EDI-NB EDI-NB-1	Peristaltic													0.25	TT	ua/I	0.14	U	μg/L	0.54		μg/
			EDI-NS	Peristaltic													0.23	U	μg/L	0.14	U	μg/L	0.5		μg/
			EDI-NS-1	Peristaltic													0.2	ī	μg/L	0.14	O	μg/L	0.5		μg/
			EDI-VI	Peristaltic	0.12	J	μg/L	0.15	J	μg/L	0.29		μg/L				0.2	J	μg/L						
W012	6.3W	SP	NB	Peristaltic	0.17	J	μg/L	0.14	J	μg/L	0.16	U	μg/L												
W013	6.7E	SP	NB-1	Peristaltic	0.13	J	μg/L	0.19	J	μg/L	0.18	U	μg/L												
			NB-2	Peristaltic	0.16	U	μg/L	0.22		μg/L															
W014	6.7E	SP	VI	Peristaltic	0.17	J	$\mu g/L$	0.13	J	$\mu g/L$	0.21	U	μg/L												
W015	6.9W	SP	NB	Peristaltic	0.15	U	μg/L	0.19	U	$\mu g/L$	0.18	U	μg/L												
W016	7.2W	SP	NB-1	Peristaltic	0.16	U	$\mu g/L$	0.17	U	$\mu g/L$	0.21	U	μg/L												
			NB-2	Peristaltic	0.15	U	$\mu g/L$																		
W017	7.5W	SP	NB	Peristaltic	0.17	J	$\mu g/L$	0.12	J	$\mu g/L$	0.16	U	μg/L												
W018	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic	0.12	J	μg/L	0.23		μg/L	0.24	U	μg/L												
W019	8.6W	SP	NB	Peristaltic	0.16	J	μg/L	0.13	J	μg/L	0.21	U	μg/L												
W020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.16	J	μg/L	0.1	J	μg/L	0.22	U	μg/L												
W021 W022	8.7E (Swan Island Lagoon) 9.7W	SP SP	NB NB	Peristaltic Peristaltic	0.16 0.19	J I	μg/L	0.11 0.11	J	μg/L	0.25 0.28		μg/L												
W022 W023	9.7W 10.9M	T	VI-M	Peristaltic	0.19	J	μg/L	0.11	J	μg/L	0.20		μg/L				0.26	U	μg/L	0.19	U	μg/L	0.34	U	μg/l
11023	11E	1	VI-W VI-E	Peristaltic													0.26	U	μg/L μg/L	0.13	U	μg/L μg/L	0.35	U	μg/1 μg/1
	11M		EDI-VI	Peristaltic	0.14	U	μg/L	0.24		μg/L	0.22	U	μg/L				0.20		F6 2	0.2		F6 2	0.00	Ü	rg.
	11111		M	Peristaltic	0.1.	Ü	F6 2	0.2 •		F6 2	0.22	Ü	rg 2	0.2	U	μg/L									
	11W		VI-W	Peristaltic												1.0	0.26	U	μg/L	0.19	U	μg/L	0.35	U	μg/l
W024	15.9M	T	EDI-NB	Peristaltic													0.24	U	μg/L	0.17	UT	μg/L	0.57	J	μg/
			EDI-NS	Peristaltic													0.22	U	μg/L	0.16	U	μg/L	0.83		μg/.
			M	Peristaltic										0.17	U	μg/L									
W025	2E	T	VI-E	Peristaltic													0.24	U	μg/L	0.17	U	$\mu g/L$	0.27	U	μg/I
	2M		VI-M	Peristaltic													0.26		$\mu g/L$	0.15	U	$\mu g/L$	0.28	U	μg/l
	2W		VI-W	Peristaltic													0.23	U	$\mu g/L$	0.16	U	$\mu g/L$	0.25	U	μg/l
W026	2.1E	SP	NB	Peristaltic																0.15	U	$\mu g/L$	0.24	U	μg/1
			NS	Peristaltic																0.13	U	$\mu g/L$	0.23	U	μg/l
W027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic																0.16	U	$\mu g/L$	0.8		μg/
			EDI-NB-1	Peristaltic													0.23	U	μg/L						
			EDI-NS	Peristaltic													0.22	T 7	/1	0.16	U	$\mu g/L$	0.69		μg/l
W020	2.CE	CD	EDI-NS-1	Peristaltic													0.23	U	μg/L	A 10	T T	, . = /T	0.15	T.	. ,
W028	3.6E	SP	NB	Peristaltic																0.18	U	μg/L	0.15	U	μg/l
W029	4.4W	SP	NS NB	Peristaltic Peristaltic																0.2 0.16	U U	μg/L	0.14 0.13	U U	μg/.
vv UZ9	4.4 W	ər	NS NS	Peristaltic Peristaltic																0.16 0.1	U	μg/L μg/L	0.13 0.12	U	μg/.
W030	5.5E	SP	NB	Peristaltic Peristaltic																0.1 0.18	U	μg/L μg/L	0.12	U	μg/ μg/
	J.JL	O1		1 CHStantic																	-				
W 030			NS	Peristaltic																0 14	11	μσ/I	0 23	U	1107
W030	6.1W	SP	NS NB	Peristaltic Peristaltic																0.14 0.13	U U	μg/L μg/L	0.23 0.55	U U	μg/I μg/I

Table 5.4-22b. Dissolved	Chromium Data Presented by	y Station and Sampling Event.

MCL	100	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06		Jan	-07 - Mar-(7
		•			I	ow Flow			Low Flow			Low Flow			High Flow			Low Flow		Storr	n Water Fl	ow]	High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Q	ualifier	Units	Value	Qualifier	Units	Value Q	ualifier	Units	Value (Qualifier	Units									
W032	6.7E	SP	NB	Peristaltic																0.21	U	μg/L	0.24	U	μg/L
			NS	Peristaltic																0.17	U	$\mu g/L$	0.23	U	μg/L
W033	7.0W	SP	NB	Peristaltic																0.2	U	$\mu g/L$	0.43		μg/L
			NB-2	Peristaltic																0.15	U	$\mu g/L$	0.26	U	μg/L
			NS	Peristaltic																0.13	U	μg/L	0.43		μg/L
			NS-2	Peristaltic																0.17	U	$\mu g/L$	0.5		μg/L
W034	7.5W	SP	NB	Peristaltic																0.14	U	$\mu g/L$	0.44	U	μg/L
			NS	Peristaltic																0.19	U	$\mu g/L$	0.64		μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic																0.16	U	$\mu g/L$	0.48	U	μg/L
			NS	Peristaltic																0.13	U	$\mu g/L$	0.45	U	μg/L
W036	8.6W	SP	NB	Peristaltic																0.2	U	$\mu g/L$	0.31	U	μg/L
			NS	Peristaltic																0.16	U	μg/L	0.39	U	μg/L
W037	9.6W	SP	NB	Peristaltic																0.18	U	μg/L	0.36	U	μg/L
			NS	Peristaltic																0.14	UT	$\mu g/L$	0.32	U	μg/L
W038	9.9E	SP	NB	Peristaltic																0.15	UT	$\mu g/L$	0.24	U	μg/L
			NS	Peristaltic																0.16	UT	$\mu g/L$	0.17	U	μg/L

Notes:

MCL - maximum concentration limit (USEPA)

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom

SP - single point

T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

WQC-HH MCL	1300 1300	μg/L				Nov-04		Mar-05			Jul-05			Jan-06		Sep-06		Nov-0)6	T	-07 - Mar-	. 07
MCL	1300	μg/L				Low Flow		Low Flow		I	ow Flow		I	Jan-06 High Flow		Low Flow		Storm Wat			-07 - Mar- High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value (Qualifier	Units	Value Qualifier	Units	Value Q	ualifier	Units	Value Ç	Qualifier	Units	Value Qualifier	Units	Value Qualifie	r Units	Value Q	ualifier	Units
W001	2.0E	SP	NB	Peristaltic	0.8	T	μg/L	1.075 T	μg/L	1.69	T	$\mu g/L$										
W002	2.2W	SP	NB NB-1	Peristaltic Peristaltic	0.92		μg/L	0.94	μg/L	1.42		μg/L										
			NB-2	Peristaltic				0.96	μg/L μg/L	1.5		μg/L μg/L										
W003	3.0W	SP	NB	Peristaltic	0.87		μg/L	1.22	μg/L μg/L	1.41		μg/L μg/L										
W004	3.7E (International Slip)	SP	NB	Peristaltic	1.13		μg/L		1.0	1.38		μg/L										
	-		NB-1	Peristaltic				2.09	μg/L													
W005	3.9 M	T	EDI-NB	Peristaltic												1.55	μg/L	1.02	μg/L	1.86		μg/L
			EDI-NS	Peristaltic			~		~			~				1.1	μg/L	0.96	μg/L	1.76		μg/L
			EDI-VI	Peristaltic	0.84		μg/L	0.91	μg/L	1.33	J	μg/L	2.05		Л							
W006	4.0W	SP	M NB	Peristaltic Peristaltic	1		ug/I	1.14	ua/I	1.35	JT	u «/I	3.05	J	μg/L							
W007	4.4E (T4/slip 1)	SP	NB NB	Peristaltic	0.77	Т	μg/L μg/L	0.89 T	μg/L μg/L	1.36	J	μg/L μg/L										
W008	4.6E (T4/slip 3)	SP	NB	Peristaltic	0.8	T	μg/L μg/L	0.89	μg/L μg/L	1.09	J	μg/L μg/L										
W009	5.6W	SP	NB	Peristaltic	0.8	_	μg/L	0.98	μg/L	1.43	J	μg/L										
W010	5.7E	SP	NB	Peristaltic	0.9		μg/L					10										
			VI	Peristaltic				0.86	μg/L	1.2	J	$\mu g/L$										
W011	6.3E	T	EDI-NB	Peristaltic														0.85	μg/L	2.12	T	$\mu g/L$
			EDI-NB-1	Peristaltic												1.3	μg/L		_			
			EDI-NS	Peristaltic												0.00	~	0.72	μg/L	1.94		μg/L
			EDI-NS-1 EDI-VI	Peristaltic Peristaltic	0.8		/I	1.06	/I	1.42	J	/T				0.88	μg/L					
W012	6.3W	SP	NB	Peristaltic	0.78	Т	μg/L μg/L	1.06 0.99	μg/L μg/L	1.42	J	μg/L μg/L										
W012 W013	6.7E	SP	NB-1	Peristaltic	0.76	T	μg/L μg/L	0.94	μg/L μg/L	1.19	J	μg/L μg/L										
	0.72	51	NB-2	Peristaltic	0.98	•	μg/L	1.48	μg/L			F62										
W014	6.7E	SP	VI	Peristaltic	0.87		μg/L	0.93	μg/L	1.45	J	μg/L										
W015	6.9W	SP	NB	Peristaltic	0.685	T	μg/L	1.02	μg/L	1.25	J	μg/L										
W016	7.2W	SP	NB-1	Peristaltic	0.69		μg/L	0.97	μg/L	1.29		μg/L										
			NB-2	Peristaltic	0.73		μg/L				_											
W017	7.5W	SP	NB	Peristaltic	0.86		μg/L	1.77	μg/L	1.38	J	μg/L										
W018 W019	8.3E (Swan Island Lagoon) 8.6W	SP SP	NB NB	Peristaltic Peristaltic	0.98 0.8		μg/L μg/L	1.06 1.01 T	μg/L μg/L	1.28 1.61	J J	μg/L										
W020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.8		μg/L μg/L	1.28	μg/L μg/L	1.71	J	μg/L μg/L										
W021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	0.86		μg/L μg/L	1.27	μg/L μg/L	1.74	J	μg/L μg/L										
W022	9.7W	SP	NB	Peristaltic	1.05		μg/L	1.02	μg/L	1.27	J	μg/L										
W023	10.9M	T	VI-M	Peristaltic												0.84	μg/L	0.65	μg/L	1.76	T	$\mu g/L$
	11E		VI-E	Peristaltic												1.12	μg/L	0.94	μg/L	1.79		μg/L
	11M		EDI-VI	Peristaltic	0.85		μg/L	0.82	μg/L	1.03	JT	μg/L										
	1.1337		M	Peristaltic									3.68	J	μg/L	1.01	7	0.77	a	2.05		Œ
W024	11W 15.9M	Т	VI-W EDI-NB	Peristaltic Peristaltic												1.01 0.705 T	μg/L	0.75 0.83 T	μg/L	2.05 1.16	Т	μg/L
W 024	13.9101	1	EDI-NS	Peristaltic												0.68	μg/L μg/L	1.1	μg/L μg/L	1.19	T	μg/L μg/L
			M	Peristaltic									3.57	J	μg/L	0.00	μg/L	1.1	μg/L	1.17	1	μg/L
W025	2E	T	VI-E	Peristaltic										•	F5-2	1.22 T	μg/L	0.84	μg/L	1.33		μg/L
	2M		VI-M	Peristaltic												1.09	μg/L	0.86	μg/L	1.1		μg/L
	2W		VI-W	Peristaltic												1.08	μg/L	0.87	μg/L	1.1	T	μg/L
W026	2.1E	SP	NB	Peristaltic														1.07	μg/L	1.64		μg/L
			NS	Peristaltic														0.88	μg/L	1.47		μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic												1.2	7	0.89	μg/L	2.93		μg/L
			EDI-NB-1 EDI-NS	Peristaltic Peristaltic												1.3	μg/L	0.86	па/І	2.56		u ~/I
			EDI-NS-1	Peristaltic												1.24	μg/L	0.00	μg/L	2.30		μg/L
W028	3.6E	SP	NB	Peristaltic												1.24	μg/L	0.92	μg/L	1.95		μg/L
	2.02	~*	NS	Peristaltic														0.94	μg/L μg/L	1.98		μg/L
W029	4.4W	SP	NB	Peristaltic														0.84	μg/L	1.73		μg/L
			NS	Peristaltic														0.88	μg/L	1.76	T	μg/L
W030	5.5E	SP	NB	Peristaltic														0.93	μg/L	1.83		μg/L
	C 4337	an.	NS	Peristaltic														0.95	μg/L	1.94		μg/L
******	6.1W	SP	NB	Peristaltic														0.95	μg/L	3.49		μg/L
W031	0.1 **			Domine-14:														1 11	/T	1 (0		
W031 W032	6.7E	SP	NS NB	Peristaltic Peristaltic														1.11 0.93	μg/L μg/L	1.68 1.63		μg/L μg/L

Table 5.4-23a. Total Copper Data Presented by Station and Sampling Event.

AWQC-HH | 1300 μg/L

AwQC-nn	1300	μg/L																							
MCL	1300	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06		Jan-	07 - Mar-0	7
		<u> </u>				Low Flow			Low Flow			Low Flow			High Flow	,		Low Flow		Storm	Water Fl	ow	H	ligh Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Qualifier	Units	Value Q	ıalifier	Units	Value Q	ualifier	Units												
W033	7.0W	SP	NB	Peristaltic																0.89		μg/L	2.14		μg/L
			NB-2	Peristaltic																0.79		μg/L	2.05		μg/L
			NS	Peristaltic																0.85		μg/L	1.69	T	μg/L
			NS-2	Peristaltic																0.82		μg/L	1.79		μg/L
W034	7.5W	SP	NB	Peristaltic																0.86		μg/L	1.71	T	μg/L
			NS	Peristaltic																0.89		μg/L	1.62		μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic																1.01		μg/L	2.21		μg/L
			NS	Peristaltic																1.14		μg/L	2.07		μg/L
W036	8.6W	SP	NB	Peristaltic																0.96		μg/L	2.71		μg/L
			NS	Peristaltic																0.9		μg/L	2.72	T	μg/L
W037	9.6W	SP	NB	Peristaltic																0.89		μg/L	2.08		μg/L
			NS	Peristaltic																0.87	T	μg/L	1.96		μg/L
W038	9.9E	SP	NB	Peristaltic																0.85	T	$\mu g/L$	1.72		μg/L
			NS	Peristaltic																0.86	T	μg/L	1.75		ug/L

Notes:

AWQC-HH - ambient water quality criteria (human health, Oregon)

MCL - maximum concentration limit (USEPA)

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom

SP - single point

T - transect VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

Reason codes for descriptors:

River Location 2.0E 2.2W 3.0W 3.7E (International Slip)	μg/L Collection Type SP SP	Collection Location	Callantian Mathad	Nov-04 Low Flow		Mar-05 Low Flow		Jul-05 Low Flow		Jan-06 High Flow		Sep-06 Low Flow		Nov-06 Storm Water F	low	Jan-07 - Mar High Flov	
2.0E 2.2W 3.0W	SP		C-11+: M-41 1														. 7
2.2W 3.0W			Collection Method	Value Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value Qualifier	
3.0W	SP	NB	Peristaltic	0.45	μg/L	0.665 T	μg/L	0.84	μg/L								-
		NB	Peristaltic	0.51	$\mu g/L$												
		NB-1	Peristaltic			0.63	μg/L	0.84	μg/L								
	an.	NB-2	Peristaltic	0.44		0.67	μg/L	0.82	μg/L								
5./E (International Slip)	SP SP	NB	Peristaltic	0.46 0.61	μg/L	0.7	μg/L	0.74 0.87	μg/L								
1,	SP	NB NB-1	Peristaltic Peristaltic	0.01	μg/L	0.95	μg/L	0.87	$\mu g/L$								
3.9 M	Т	EDI-NB	Peristaltic			0.53	μg/L					0.77	μg/L	0.57	μg/L	1.09	μg/
3.5 141	1	EDI-NS	Peristaltic									0.75	μg/L μg/L	0.56	μg/L μg/L	1.19	μg/
		EDI-VI	Peristaltic	0.7	$\mu g/L$	0.6	$\mu g/L$	0.77 J	$\mu g/L$				1.0		10		1.0
		M	Peristaltic							0.77 J	μg/L						
4.0W	SP	NB	Peristaltic	0.93	$\mu g/L$	0.62	μg/L	0.83	$\mu g/L$								
4.4E (T4/slip 1)		NB	Peristaltic		$\mu g/L$		μg/L		$\mu g/L$								
• •																	
						0.6	μg/L	0.73	μg/L								
5.7E	SP			0.5	μg/L	0.50	7	0.0 1	· ·								
6.25	T					0.59	μg/L	0.9 J	μg/L					0.40	/T	1.15	
0.3E	1											0.68	ua/I	0.49	μg/L	1.15	μg/l
												0.00	μg/L	0.51	ug/I	1.08	μg/l
												0.68	μσ/I	0.51	μg/L	1.00	μg/I
				0.45	ug/L	0.68	ug/L	0.83 J	ug/L			0.00	μ _B / L				
6.3W	SP																
6.7E	SP	NB-1	Peristaltic	0.53				0.86									
		NB-2	Peristaltic			0.59											
6.7E	SP	VI	Peristaltic	0.45		0.63		0.87	μg/L								
6.9W	SP	NB	Peristaltic	0.42		0.74		0.84 J									
7.2W	SP	NB-1	Peristaltic	0.37	μg/L	0.61	μg/L	1.12									
		NB-2	Peristaltic	0.4	$\mu g/L$												
7.5W			Peristaltic	0.46	$\mu g/L$	0.77	μg/L		$\mu g/L$								
								1.23 J 1.64 I									
				0.42	μg/L	0.00	μg/L	1.04 J	μg/L			0.61	ua/I	1 23	ug/I	0.65	цα/
	1												μg/L μg/I	0.56	μg/L μg/I		μg/I μg/I
				0.46	ug/L	0.52	ug/L	0.79 J	ug/L			0.00	µБ∕ В	0.20	μg/L	0.01	M 5/1
					r-6 -		r-6 -		r-8-	2.39 J	μg/L						
11W		VI-W	Peristaltic									0.63	μg/L	0.46	μg/L	0.63	μg/I
15.9M	T	EDI-NB	Peristaltic									0.56	μg/L	0.51 T		0.49	μg/l
		EDI-NS	Peristaltic									0.47	$\mu g/L$	0.48	μg/L	0.5	μg/l
		M								0.68 J	μg/L						
	T												μg/L				μg/I
																	μg/l
	GD.											0.78	μg/L				μg/.
2.1E	SP																μg/I
2 QW (Multnomah Channel)	т																μg/l μg/l
2.5 w (Wutifolian Chamici)	1											0.8	μσ/L	0.55	μg/L	1.20	μg/I
												0.0	μg/L	0.56	ug/L	1.15	μg/l
												0.76	ug/L		F6/2	1110	r6.
3.6E	SP	NB	Peristaltic											0.56	μg/L	0.61	μg/I
		NS	Peristaltic											0.64	μg/L	0.62	μg/I
4.4W	SP	NB	Peristaltic											0.54	μg/L	0.6	μg/I
		NS	Peristaltic											0.5	μg/L	0.59	μg/
5.5E	SP	NB	Peristaltic											0.6	$\mu g/L$	0.64	μg/
	_		Peristaltic												μg/L	0.65	μg/l
6.1W	SP														μg/L		μg/l
6.70	an.																μg/L
6./E	SP																μg/I μg/I
	4.4E (T4/slip 1) 4.6E (T4/slip 3) 5.6W 5.7E 6.3E 6.3E 6.3W 6.7E 6.7E 6.9W 7.2W 7.5W 8.3E (Swan Island Lagoon) 8.6W 9.1E (Swan Island Lagoon) 9.7W 10.9M 11E 11M 11W 15.9M 2E 2M 2W 2.1E 2.9W (Multnomah Channel)	4.4E (T4/slip 1) SP 4.6E (T4/slip 3) SP 5.6W SP 5.7E SP 6.3E T 6.3W SP 6.7E SP 6.7E SP 6.7E SP 6.7E SP 7.2W SP 7.2W SP 7.5W SP 7.5W SP 8.3E (Swan Island Lagoon) SP 8.6W SP 9.1E (Swan Island Lagoon) SP 9.7W SP 10.9M T 11E 11M 11W 15.9M T 2E T 2M 2W 2.1E SP 2.9W (Multnomah Channel) T 3.6E SP 4.4W SP 5.5E SP 6.1W SP	4.0W SP NB 4.4E (T4/slip 1) SP NB 5.6W SP NB 5.6W SP NB 5.7E SP NB 5.7E SP NB 6.3E T EDI-NB-1 EDI-NS-1	4.0W SP	4.0W SP	M	M	M	M	M	M Perisatitic M Perisa	M	March Periadic March Per	March Marc	1964 Particular 1974 Particular 1974 19	March Marc	Act Property Act

Table 5.4-23b. Dissolved Copper Data Presented by Station and Sampling Event.

AWQC-HH 1300 μg/L

AwQC-IIII	1300	μg/L																						
MCL	1300	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06]	Nov-06		Jan-07 - Mar-	-07
						Low Flow			Low Flow			Low Flow			High Flow			Low Flov	v	Storm	Water F	low	High Flow	1
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Qualifier	Units	Value Qı	ualifier	Units	Value Qualifier	Units												
W033	7.0W	SP	NB	Peristaltic																0.52		μg/L	0.87	μg/L
			NB-2	Peristaltic																0.51		μg/L	0.62	μg/L
			NS	Peristaltic																0.51		μg/L	0.89	μg/L
			NS-2	Peristaltic																0.56		μg/L	0.98	μg/L
W034	7.5W	SP	NB	Peristaltic																0.5		μg/L	0.84	μg/L
			NS	Peristaltic																0.51		μg/L	1.02	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic																0.53		μg/L	1.22	μg/L
			NS	Peristaltic																0.78		μg/L	1.22	μg/L
W036	8.6W	SP	NB	Peristaltic																0.54		μg/L	0.65	μg/L
			NS	Peristaltic																0.58		μg/L	0.68	μg/L
W037	9.6W	SP	NB	Peristaltic																0.58		μg/L	0.73	μg/L
			NS	Peristaltic																0.56	T	μg/L	0.55	μg/L
W038	9.9E	SP	NB	Peristaltic																0.5	T	μg/L	0.6	μg/L
			NS	Peristaltic																0.5	T	μg/L	0.57	μg/L

Notes

AWQC-HH - ambient water quality criteria (human health, Oregon)

MCL - maximum concentration limit (USEPA)

C - column

E - East

EDI - equal distance integrated

F - filter M - mid-channel

NB - near bottom

SP - single point

T - transect

VI - vertically integrated W - West

XAD - $\mbox{\sc hydrophobic}$ crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

WQC-HH	2100	μg/L				Nov-04		Mar-05			Jul-05		Jan-06			Sep-06			Nov-06			-07 - Mar-	
Sample	River Location	Collection Type	Collection Location	Collection Method		ow Flow ualifier	Units	Low Flow Value Qualifier	Units		Low Flow Dualifier	Units	High Flow Value Qualifier	Units		w Flow alifier	Units		n Water F ualifier	Flow Units	Value Ç	High Flow Jualifier	Uni
W001	2.0E	SP	NB	Peristaltic	1.65	Т	μg/L	2.3 T	μg/L	3.47	JT	μg/L	-										
W002	2.2W	SP	NB	Peristaltic	1.8		μg/L																
			NB-1	Peristaltic				2	μg/L	2.48	J	$\mu g \! / \! L$											
			NB-2	Peristaltic			_	2	μg/L	2.78	J	μg/L											
W003	3.0W	SP	NB	Peristaltic	1.8		μg/L	2.1	μg/L	2.94	J	μg/L											
W004	3.7E (International Slip)	SP	NB NB-1	Peristaltic	4.4		μg/L	8.8	а/Т	3.28	J	μg/L											
W005	3.9 M	T	EDI-NB	Peristaltic Peristaltic				8.8	μg/L						4.2		μg/L	3.8	U	μg/L	5.6		μg/L
***003	3.7 W	1	EDI-NS	Peristaltic											3.4		μg/L μg/L	3.6	U	μg/L μg/L	4.2		μg/L
			EDI-VI	Peristaltic	2,2		μg/L	2.2	μg/L	3.12		μg/L					F6 2	5.0	C	F 6 2			r8-
			M	Peristaltic			1.0					1.0	5.02	$\mu g/L$									
W006	4.0W	SP	NB	Peristaltic	2.5		$\mu g/L$	2.5	μg/L	3.25	JT	μg/L											
W007	4.4E (T4/slip 1)	SP	NB	Peristaltic	1.95	T	$\mu g/L$	2.25 T	μg/L	3.1	J	μg/L											
W008	4.6E (T4/slip 3)	SP	NB	Peristaltic	2.9	T	μg/L	4.8	μg/L	6.1	J	μg/L											
W009 W010	5.6W 5.7E	SP SP	NB NB	Peristaltic Peristaltic	2.3 2.1		μg/L	2.3	μg/L	3.5	J	$\mu g/L$											
WOIO	3.7E	Sr	VI	Peristaltic	2.1		μg/L	2.2	μg/L	2.8	ī	μg/L											
W011	6.3E	T	EDI-NB	Peristaltic				2,2	μg/L	2.0	J	μg/L						4	U	μg/L	3.9	Т	μg/L
	0.52	-	EDI-NB-1	Peristaltic											3.7		μg/L	•	C	F 5/ 2		-	rs -
			EDI-NS	Peristaltic													1.0	4.1	U	μg/L	4.2		μg/L
			EDI-NS-1	Peristaltic											2.6		μg/L						
			EDI-VI	Peristaltic	2.1		$\mu g/L$	2.3	μg/L	2.83		μg/L											
W012	6.3W	SP	NB	Peristaltic	2.1	T	$\mu g/L$	2.5	μg/L	4.3	J	μg/L											
W013	6.7E	SP	NB-1	Peristaltic	1.65	T	μg/L	2.3 U	μg/L	2.91	J	μg/L											
W/014		CD	NB-2	Peristaltic	1.9		μg/L	4.7	μg/L	2.2		л											
W014 W015	6.7E 6.9W	SP SP	VI NB	Peristaltic Peristaltic	2.6 2	т	μg/L μg/L	2.3 2.9	μg/L μg/L	3.2 2.9	J J	μg/L μg/L											
W015	7.2W	SP	NB-1	Peristaltic	2.1	1	μg/L μg/L	2.2	μg/L μg/L	2.6	J	μg/L μg/L											
			NB-2	Peristaltic	2		μg/L		r-6-		-	r-8 -											
W017	7.5W	SP	NB	Peristaltic	2.4		μg/L	2.6	μg/L	3.5	J	μg/L											
W018	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic	2		$\mu g/L$	2.7	μg/L	3.34		μg/L											
W019	8.6W	SP	NB	Peristaltic	2.2		μg/L	2.85 T	μg/L	3.72		μg/L											
W020 W021	9.1E (Swan Island Lagoon)	SP	VI NB	Peristaltic	3.1		μg/L	2.9	μg/L	4.56		μg/L											
W021 W022	8.7E (Swan Island Lagoon) 9.7W	SP SP	NB NB	Peristaltic Peristaltic	57.9		μg/L μg/L	2.6 5	μg/L μg/L	3.32 6.77		μg/L μg/L											
W023	10.9M	T	VI-M	Peristaltic	57.5		μуЦ	v	μдЦ	0.77		μβΙ			3.2		μg/L	2.7	U	μg/L	4.55	T	μg/L
	11E		VI-E	Peristaltic											4.5		μg/L	4	U	μg/L	4		μg/L
	11M		EDI-VI	Peristaltic	2.8		μg/L	2.2	μg/L	2.32	T	$\mu g/L$								10			10
			M	Peristaltic									6.38	$\mu g/L$									
	11W		VI-W	Peristaltic											6.1		μg/L	2.6	U	μg/L	4		μg/L
W024	15.9M	T	EDI-NB	Peristaltic											2.4	T	μg/L	4.5	UJT	μg/L	2.45	T	μg/L
			EDI-NS	Peristaltic									(20	a.	2.5		μg/L	5.4	U	μg/L	2.3	T	μg/L
W025	2E	Т	M VI-E	Peristaltic Peristaltic									6.38	μg/L	3.35	Т	ша/І	4.5	U	а/Т	3.5		а/Т
W 023	2M	1	VI-L VI-M	Peristaltic											2.6	1	μg/L μg/I	3.6	U	μg/L μg/I	1.9		μg/L
	2W		VI-W	Peristaltic											3		μg/L μg/L	3.6	U	μg/L μg/L	1.85	т	μg/L μg/L
W026	2.1E	SP	NB	Peristaltic											3		μg/L	4.9	U	μg/L μg/L	3.6	•	μg/L μg/L
020	2.12	51	NS	Peristaltic														4.3	U	μg/L	3.4		μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic														3.4	U	μg/L	6		μg/L
	· · · · · · · · · · · · · · · · · · ·		EDI-NB-1	Peristaltic											3.5		μg/L						
			EDI-NS	Peristaltic														3.3	U	μg/L	4.9		μg/L
			EDI-NS-1	Peristaltic											3.4		μg/L						
W028	3.6E	SP	NB	Peristaltic														5	U	μg/L	3.6		μg/L
*****		a-	NS	Peristaltic														7	U	μg/L	4.3		μg/L
W029	4.4W	SP	NB	Peristaltic														3.7	U	μg/L	3	T	μg/L
W020	Ę ET	CD	NS ND	Peristaltic														3.2	U	μg/L	3.2	Т	μg/L
W030	5.5E	SP	NB NS	Peristaltic Peristaltic														3.7 3.4	U U	μg/L	3.9 3.3		μg/L
W031	6.1W	SP	NB	Peristaltic														3.4 3.4	U	μg/L μg/L	3.3 8.4		μg/L μg/L
11 051	0.1 **	51	NS	Peristaltic														3.5	U	μg/L μg/L	3.5		μg/L μg/L
W032	6.7E	SP	NB	Peristaltic														3.9	U	μg/L μg/L	4.3		μg/L
W 032																			U		3.4		r. o

Table 5.4-24a. Total Zinc Data Presented by Station and Sampling Event.

AWQC-HH	2100	μg/L				Nov-04			Mar-05			Jul-05			Jan-06			Sep-06			Nov-06		Jan-0	7 - Mar-0	7
						Low Flow			Low Flow			Low Flow			High Flow			Low Flow		Storn	n Water Flo	ow	Hig	gh Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value	Qualifier	Units	Value Q	ualifier	Units	Value Qu	alifier	Units												
W033	7.0W	SP	NB	Peristaltic																4.6	U	μg/L	4.2		μg/L
			NB-2	Peristaltic																3	U	μg/L	4.5		μg/L
			NS	Peristaltic																4.4	U	μg/L	4.3	T	μg/L
			NS-2	Peristaltic																3.7	U	μg/L	3.8		μg/L
W034	7.5W	SP	NB	Peristaltic																3.9	U	μg/L	3.95	T	μg/L
			NS	Peristaltic																3.4	U	μg/L	3.5		μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic																6	U	μg/L	6.5		μg/L
			NS	Peristaltic																4.8	U	μg/L	5.6		μg/L
W036	8.6W	SP	NB	Peristaltic																4.5	U	μg/L	5.5		μg/L
			NS	Peristaltic																3.7	U	μg/L	5.55	T	μg/L
W037	9.6W	SP	NB	Peristaltic																4.7	U	μg/L	4.4		μg/L
			NS	Peristaltic																3.1	UT	μg/L	5.3		μg/L
W038	9.9E	SP	NB	Peristaltic																4.6	UT	μg/L	4.7		μg/L
			NS	Peristaltic																3	UT	μg/L	3.3		μg/L

Notes

AWQC-HH - ambient water quality criteria (human health, Oregon)

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel NB - near bottom

ND - Hear bottor

SP - single point T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

WQC-HH	2100	μg/L			Nov-04		Mar-0			Jul-05			Jan-06			Sep-06			Nov-06		Jan	07 - Mar	-07
					Low Flow		Low Flo			Low Flow			ligh Flow			Low Flow			n Water F		High F		
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value Qualifie	r Units	Value	Qualifier	Units	Value Q	ualifier	Units	Value Q	ualifier	Units	Value Ç	ualifier	Units	Value (ualifier	Uı
W001	2.0E	SP	NB	Peristaltic	1.4	$\mu g/L$	1.4 T	μg/L	1.21	UJ	$\mu g/L$												
W002	2.2W	SP	NB	Peristaltic	2.3	$\mu g/L$																	
			NB-1	Peristaltic			1.2	μg/L	1.17	UJ	μg/L												
			NB-2	Peristaltic		_	1.1	μg/L	1.46	UJ	μg/L												
W003	3.0W	SP	NB	Peristaltic	0.9	μg/L	1.8	μg/L	1.9	J	μg/L												
W004	3.7E (International Slip)	SP	NB NB 1	Peristaltic Peristaltic	2.5	μg/L	4.3		1.88	J	μg/L												
W005	3.9 M	T	NB-1 EDI-NB	Peristaltic Peristaltic			4.3	μg/L							1.9	U	ua/I	4.1	U	ua/I	2.8	U	
W003	3.9 W	1	EDI-NS	Peristaltic											2.4	U	μg/L μg/L	2.3	U	μg/L μg/L	2.3	U	μ <u>ջ</u> μ <u>ջ</u>
			EDI-NS EDI-VI	Peristaltic	1.5	μg/L	1.5	μg/L	1.79		μg/L				2.4	U	μg/L	2.3	U	μg/L	2.3	U	μg
			M	Peristaltic	1.5	μg/L	1.0	μg/L	1.//		μg/L	2.5		μg/L									
W006	4.0W	SP	NB	Peristaltic	2.8	μg/L	1.8	μg/L	2	J	μg/L	2.0		м <i>Б</i> / Б									
W007	4.4E (T4/slip 1)	SP	NB	Peristaltic	1.5	μg/L	1.7	μg/L	2.4	J	μg/L												
W008	4.6E (T4/slip 3)	SP	NB	Peristaltic	1.9	μg/L	4.2	μg/L	4.7	J	μg/L												
W009	5.6W	SP	NB	Peristaltic	1.7	μg/L	1.6	μg/L	1.8	J	μg/L												
W010	5.7E	SP	NB	Peristaltic	1.7	$\mu g/L$																	
			VI	Peristaltic			4.7	μg/L	2	J	$\mu g/L$												
W011	6.3E	T	EDI-NB	Peristaltic														1.7	U	μg/L	2.9	U	μg
			EDI-NB-1	Peristaltic											2	U	$\mu g/L$						
			EDI-NS	Peristaltic														2.2	U	μg/L	2	U	μg
			EDI-NS-1	Peristaltic											2	U	μg/L						
			EDI-VI	Peristaltic	1.5	μg/L	1.9	μg/L	1.75		$\mu g/L$												
W012	6.3W	SP	NB	Peristaltic	1.5	μg/L	1.7	μg/L	1.8	J	μg/L												
W013	6.7E	SP	NB-1	Peristaltic	0.9 J	μg/L	1.4	μg/L	1.63	UJ	μg/L												
******		a.p.	NB-2	Peristaltic	2.2 U	μg/L	1.8	μg/L															
W014 W015	6.7E 6.9W	SP SP	VI	Peristaltic	1.6	μg/L	2.1	μg/L	2.3 1.6	J	μg/L												
W015 W016	6.9 W 7.2 W	SP SP	NB NB-1	Peristaltic Peristaltic	2.2 1.4 U	μg/L	1.8 1.7	μg/L	2.15	J J	μg/L												
WUIO	7.2 W	Sr				μg/L	1.7	μg/L	2.15	J	μg/L												
W017	7.5W	SP	NB-2 NB	Peristaltic Peristaltic	<i>1.6</i> U 1.6	μg/L	1.7		10	I	a/ī												
W017 W018	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic Peristaltic	4.9	μg/L μg/L	2.3	μg/L μg/L	1.8 2.67	J	μg/L μg/L												
W019	8.6W	SP	NB	Peristaltic	1.6	μg/L μg/L	1.7	μg/L μg/L	1.74		μg/L μg/L												
W020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	2.5	μg/L μg/L	2.5	μg/L	1.79		μg/L μg/L												
W021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	3.2	μg/L	2	μg/L	1.61		μg/L												
W022	9.7W	SP	NB	Peristaltic	41.9	μg/L	3.7	μg/L	2.7		μg/L												
W023	10.9M	T	VI-M	Peristaltic											2.1	U	$\mu g/L$	2.1	U	μg/L	1.4	U	μg
	11E		VI-E	Peristaltic											2.6	U	μg/L	3.7	U	μg/L	1.7	U	μg
	11M		EDI-VI	Peristaltic	2.2	μg/L	1.4	μg/L	2.18		$\mu g/L$												
			M	Peristaltic								2.1	U	$\mu g/L$									
	11W		VI-W	Peristaltic											3.2	U	$\mu g/L$	1.9	U	μg/L	2	U	μg
W024	15.9M	T	EDI-NB	Peristaltic											2	U	$\mu g/L$	2.1	UT	μg/L	0.9	U	μg
			EDI-NS	Peristaltic											1.7	U	$\mu g/L$	2.7	U	μg/L	0.9	U	μg
			M	Peristaltic								0.67	U	$\mu g/L$									
W025	2E	T	VI-E	Peristaltic											2.2	U	$\mu g/L$	3.8	U	μg/L	0.6	U	μg
	2M		VI-M	Peristaltic											2.7	U	$\mu g/L$	5.1		μg/L	0.8	U	μg
	2W		VI-W	Peristaltic											7.4	U	$\mu g/L$	2.7	U	μg/L	0.7	U	μg
W026	2.1E	SP	NB	Peristaltic														2.4	U	μg/L	1.3	U	μg
			NS	Peristaltic														4.4	U	μg/L	1.1	U	μg
W027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic														3.2	U	μg/L	2.2	U	μg
			EDI-NB-1	Peristaltic											2	U	$\mu g/L$						
			EDI-NS	Peristaltic														4.1	U	μg/L	2.2	U	μg
			EDI-NS-1	Peristaltic											2.3	U	μg/L						
W028	3.6E	SP	NB	Peristaltic														2.2	U	μg/L	1.3	U	μg
			NS	Peristaltic														3.7	U	μg/L	1.1	U	μg
W029	4.4W	SP	NB	Peristaltic														2.8	U	μg/L	0.5	U	μg
			NS	Peristaltic														2.2	U	μg/L	0.7	U	με
W030	5.5E	SP	NB	Peristaltic														2.6	U	μg/L	2	U	με
			NS	Peristaltic														2.7	U	μg/L	1.9	U	με
*****	6.1W	SP	NB	Peristaltic														2.6	U	μg/L	2.2	U	μg
W031	U.1 W	51	112																				

Table 5.4-24b. Dissolved Zinc Data Presented by Station and Sampling Event.

AWQC-HH	2100	μg/L			Nov-04			Mar-05		Jul-0:	i		Jan-06			Sep-06			Nov-06		Jan-	07 - Mar-0)7
	•				Low Flow			Low Flow		Low Flo	w		High Flow			Low Flow		Stor	n Water Fl	ow	High F	low	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value	Qualifier	Units	Value Qualifie	r Units	Value	Qualifier	Units	Value	Qualifier	Units	Value (ualifier	Units	Value Q	ualifier	Units
W032	6.7E	SP	NB	Peristaltic														3.1	U	μg/L	1	U	μg/L
			NS	Peristaltic														3.9	U	μg/L	1.6	U	μg/L
W033	7.0W	SP	NB	Peristaltic														2.3	U	μg/L	1.8	U	μg/L
			NB-2	Peristaltic														3.4	U	μg/L	1.5	U	μg/L
			NS	Peristaltic														3.5	U	μg/L	1.9	U	μg/L
			NS-2	Peristaltic														2.6	U	μg/L	2	U	μg/L
W034	7.5W	SP	NB	Peristaltic														2.9	U	μg/L	2.2	U	μg/L
			NS	Peristaltic														6.6		μg/L	2.5	U	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic														2.4	U	μg/L	3.6	U	μg/L
			NS	Peristaltic														5.2		μg/L	3.2	U	μg/L
W036	8.6W	SP	NB	Peristaltic														4.8		μg/L	1.5	U	μg/L
			NS	Peristaltic														2.5	U	μg/L	1.9	U	μg/L
W037	9.6W	SP	NB	Peristaltic														2.8	U	μg/L	3	U	μg/L
			NS	Peristaltic														2.6	UT	μg/L	1.3	U	μg/L
W038	9.9E	SP	NB	Peristaltic														3.6	UT	μg/L	4	U	μg/L
			NS	Peristaltic														3.1	UT	μg/L	2.1	U	μg/L

Notes:

AWQC-HH - ambient water quality criteria (human health, Oregon)

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom

SP - single point

T - transect

VI - vertically integrated

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

Table 5.4-25. TBT Ion Data Presented by Station and Sampling Event.

						Nov-04 Low Flow			Mar-05 Low Flow			Jul-05 Low Flow			Jan-06 High Flow			Sep-06 Low Flow		C+	Nov-06 m Water F	OW	J	an-07 - Mar High Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method		Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units	Value	Qualifier	Units		nn water Fi Qualifier	Units	Value	Qualifier	v Units
W001	2.0E	SP	NB	Peristaltic	0.0071	U	μg/L	0.0026	U	μg/L	0.0006	U	μg/L	, arac	Quantier	Cinto	, arec	Quarrier	Cinto	, arae	Zumiliei	Cinto	, arac	Quanter	
W001 W002	2.2W	SP	NB	Peristaltic	0.0071	U	μg/L μg/L	0.0020	O	μg/L	0.0000	O	μg/L												
	··	~-	NB-1	Peristaltic	*****	-	r-8 -	0.0006	U	μg/L	0.0006	U	μg/L												
			NB-2	Peristaltic				0.0006	U	μg/L	0.0006	U	μg/L												
W003	3.0W	SP	NB	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0006	U	μg/L												
W004	3.7E (International Slip)	SP	NB	Peristaltic	0.0071	U	μg/L				0.0006	U	μg/L												
			NB-1	Peristaltic				0.0023	J	$\mu g/L$															
W005	3.9 M	T	EDI-NB	Peristaltic													0.0006	U	$\mu g/L$	0.0006	U	$\mu g/L$	0.0006	U	μg/L
			EDI-NS	Peristaltic													0.0006	UJ	$\mu g/L$	0.0006	U	$\mu g/L$	0.0006	U	μg/L
			EDI-VI	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0011	U	μg/L												
*****	4.0777	a.p.	M	Peristaltic	0.00=1		-	0.000		~	0.0044	_		0.013	U	μg/L									
W006	4.0W	SP	NB	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0011	J	μg/L												
W007	4.4E (T4/slip 1)	SP	NB	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.00099	J	μg/L												
W008	4.6E (T4/slip 3)	SP SP	NB	Peristaltic	0.0071	U U	μg/L	0.00095	IJ	μg/L	0.0012	J	μg/L												
W009	5.6W 5.7E	SP SP	NB NB	Peristaltic Peristaltic	0.0071 0.0071	U	μg/L	0.0006	U	μg/L	0.0011	J	μg/L												
W010	3./E	Sr	VI	Peristaltic Peristaltic	0.0071	U	μg/L	0.0006	U	ua/I	0.0006	U	ug/I												
W011	6.3E	T	EDI-NB	Peristaltic				0.0000	U	μg/L	0.0000	U	μg/L							0.001	T	μg/L	0.0006	U	μg/L
*******	0.3L	1	EDI-NB-1	Peristaltic													0.0006	U	μg/L	0.001	J	μg/L	0.0000	O	μg/L
			EDI-NS	Peristaltic													0.0000	C	μg/L	0.0006	UJ	μg/L	0.0006	U	μg/L
			EDI-NS-1	Peristaltic													0.0006	U	μg/L	0.0000	03	MS/L	0.0000	· ·	μуЪ
			EDI-VI	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.00091	U	μg/L				0.0000	C	rs 2						
W012	6.3W	SP	NB	Peristaltic	0.0071	Ü	μg/L	0.0006	Ü	μg/L	0.0006	Ü	μg/L												
W013	6.7E	SP	NB-1	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0006	U	μg/L												
			NB-2	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L			1.0												
W014	6.7E	SP	VI	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0006	U	$\mu g/L$												
W015	6.9W	SP	NB	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0006	U	μg/L												
W016	7.2W	SP	NB-1	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0006	U	μg/L												
			NB-2	Peristaltic	0.0071	U	μg/L																		
W017	7.5W	SP	NB	Peristaltic	0.0071	U	$\mu g/L$	0.0006	U	$\mu g/L$	0.0006	U	$\mu g/L$												
W018	8.3E (Swan Island Lagoon)	SP	NB	Peristaltic	0.0071	U	$\mu g/L$	0.0006	U	μg/L	0.0013	U	$\mu g/L$												
W019	8.6W	SP	NB	Peristaltic	0.0071	U	$\mu g/L$	0.0006	U	μg/L	0.0006	U	μg/L												
W020	9.1E (Swan Island Lagoon)	SP	VI	Peristaltic	0.0071	U	$\mu g/L$	0.0006	U	μg/L	0.0011	U	μg/L												
W021	8.7E (Swan Island Lagoon)	SP	NB	Peristaltic	0.0071	U	$\mu g/L$	0.0006	U	μg/L	0.0006	U	μg/L												
W022	9.7W	SP	NB	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0006	U	$\mu g/L$												
W023	10.9M	T	VI-M	Peristaltic													0.0006	U	μg/L	0.0006	UJ	μg/L	0.0006		μg/L
	11E		VI-E	Peristaltic	0.00=1		-	0.000		~			~				0.0006	U	μg/L	0.0006	UJ	μg/L	0.0006	U	μg/L
	11M		EDI-VI	Peristaltic	0.0071	U	μg/L	0.0006	U	μg/L	0.0007	U	μg/L	0.072		-									
	1.1377		M	Peristaltic										0.013	U	μg/L	0.000	**	77	0.000	***	7	0.000	**	
11/02/	11W	т	VI-W	Peristaltic													0.0006	U	μg/L	0.0006	UJ	μg/L	0.0006		μg/L
W024	15.9M	T	EDI-NB EDI-NS	Peristaltic Peristaltic													0.0006 0.0006	U U	μg/L	0.011 0.0006	J U	μg/L	0.0006 0.0006	U U	μg/L
			M	Peristaltic										0.013	IJ	μg/L	0.0000	U	μg/L	0.0000	U	μg/L	0.0000	U	μg/L
W025	2E	T	VI-E	Peristaltic										0.013	O	μg/L	0.0006	U	μg/L	0.0006	UJ	μg/L	0.0006	U	μg/L
11023	2M	-	VI-M	Peristaltic													0.0006	U	μg/L μg/L	0.0006	UJ	μg/L μg/L	0.0006	U	μg/L μg/L
	2W		VI-W	Peristaltic													0.0006	U	μg/L μg/L	0.0006	UJ	μg/L μg/L	0.0006	U	μg/L μg/L
W026	2.1E	SP	NB	Peristaltic													0.0000	C	rs 2	0.0006	U	μg/L	0.0006	U	μg/L
		~-	NS	Peristaltic																0.0006	Ü	μg/L	0.0006	Ü	μg/L
W027	2.9W (Multnomah Channel)	T	EDI-NB	Peristaltic																0.0006	Ü	μg/L	0.0006		μg/L
	· · · · · · · · · · · · · · · · · · ·		EDI-NB-1	Peristaltic													0.0006	U	$\mu g/L$						
			EDI-NS	Peristaltic															. 0	0.0006	U	μg/L	0.0006	U	μg/L
			EDI-NS-1	Peristaltic													0.0006	U	μg/L			. =			
W028	3.6E	SP	NB	Peristaltic																0.0006	U	μg/L	0.0006	U	μg/L
			NS	Peristaltic																0.0006	U	μg/L	0.0006	U	μg/L
W029	4.4W	SP	NB	Peristaltic																0.0006	UJ	μg/L	0.0006	U	μg/L
			NS	Peristaltic																0.0006	UJ	μg/L	0.0006	U	μg/L
		an.	NID	Peristaltic																0.0006	U	μg/L	0.0006	U	μg/L
W030	5.5E	SP	NB	renstance																0.0000	_	μgı	0.0000		

Table 5.4-25. TBT Ion Data Presented by Station and Sampling Event.

					Nov-04			Mar-05		Jul-05		Jan-06			Sep-06			Nov-06		Jan	-07 - Mar-0)7
					Low Flow			Low Flow		Low Flow		High Flow			Low Flow		Stor	n Water Fl	low	I	ligh Flow	
Sample	River Location	Collection Type	Collection Location	Collection Method	Value Qualifier	Units	Value	Qualifier	Units	Value Qualifier	Units	Value Qualifier	Units	Value	Qualifier	Units	Value (ualifier	Units	Value (Qualifier	Units
W031	6.1W	SP	NB	Peristaltic													0.0006	U	μg/L	0.0006	U	μg/L
			NS	Peristaltic													0.0006	U	μg/L	0.0006	U	μg/L
W032	6.7E	SP	NB	Peristaltic													0.0006	U	$\mu g/L$	0.0006	U	μg/L
			NS	Peristaltic													0.0006	U	$\mu g/L$	0.0006	U	μg/L
W033	7.0W	SP	NB	Peristaltic													0.0006	UJ	$\mu g/L$	0.0006	U	μg/L
			NB-2	Peristaltic													0.0006	UJ	$\mu g/L$	0.0006	U	μg/L
			NS	Peristaltic													0.0006	UJ	$\mu g/L$	0.0006	U	μg/L
			NS-2	Peristaltic													0.0013	J	$\mu g/L$	0.0006	U	μg/L
W034	7.5W	SP	NB	Peristaltic													0.0045	U	μg/L	0.0006	U	μg/L
			NS	Peristaltic													0.0006	U	μg/L	0.0006	U	μg/L
W035	8.5E (Swan Island Lagoon)	SP	NB	Peristaltic													0.0006	U	$\mu g/L$	0.0035	J	μg/L
			NS	Peristaltic													0.0014	J	$\mu g/L$	0.0021	J	μg/L
W036	8.6W	SP	NB	Peristaltic													0.0006	U	$\mu g/L$	0.0006	U	μg/L
			NS	Peristaltic													0.0006	UJ	μg/L	0.0006	U	μg/L
W037	9.6W	SP	NB	Peristaltic													0.0006	U	$\mu g/L$	0.0006	U	μg/L
			NS	Peristaltic													0.0006	U	$\mu g/L$	0.0006	U	μg/L
W038	9.9E	SP	NB	Peristaltic													0.0006	U	$\mu g/L$	0.0006	U	μg/L
			NS	Peristaltic													0.0006	U	μg/L	0.0006	U	μg/L

Notes:

C - column

E - East

EDI - equal distance integrated

F - filter

M - mid-channel

NB - near bottom

SP - single point T - transect

VI - vertically integrated

W - West

XAD - hydrophobic crosslinked polystyrene copolymer resin

Bold font indicates combined column plus filter results.

Italicized font indicates result is not detected at the concentration shown.

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Table 5.5-1. Summary Statistics for Indicator Contaminants in Transition Zone Water, Differentiated by Sample Method, Filtration, and Sample Depth.

								•		Detected Concentra	ntions		_		Detec	ted and Not Detected	Concentration	ons	
				Sample Depth						Maximum			95 th	Minimum	Maximum	Maximum	Mean	Median	95th Percentile
Analyte	Units	Sample Method	Filtration	(cm bml)	# Analyzed	l # Detected	% Detected	Minimum ^a	Maximum ^a	Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Conventionals		-																	
Total organic carbon	mg/L	GeoProbe	unfiltered	91	21	21	100	2.38	95.5	GP67	13.2	6.47	30.5	2.38	95.5	GP67	13.2	6.47	30.5
Metals																			
Arsenic	μg/L	Peeper	n/a	0-38	39	37	95	0.3 J	17.2	W04CPR	6.13	5.9 J	14.4 J	0.2 U	17.2	W04CPR	5.82	5.76 T	14.3 J
Arsenic	μg/L	Trident	filtered	0-30	60	55	92	0.55	76.8	EM03ATR	13.3	8.55	38.1	0.21 U	76.8	EM03ATR	12.2	7.97	33.3
Arsenic	μg/L	Trident	unfiltered	0-30	64	61	95	0.72	51.2 T	W12ATR	11.8	8.56	32 T	0.5 U	51.2 T	W12ATR	11.2	7.54	31.5
Arsenic	μg/L	Trident	filtered	60-150	12	12	100	0.98	77.3 T	EM03ATR	17.6	12.3	51.5	0.98	77.3 T	EM03ATR	17.6	12.3	51.5
Arsenic	μg/L	Trident	unfiltered	60-150	24	23	96	1.36	77.1	EM03ATR	16.5	9.53	70.4	0.31 U	77.1	EM03ATR	15.8	9.08	68.2
Arsenic	μg/L	GeoProbe	filtered	0-90	4	4	100	0.94	5.52	GS-B5	2.74	2.25	5.05	0.94	5.52	GS-B5	2.74	2.25	5.05
Arsenic	μg/L	GeoProbe	unfiltered	0-90	35	22	63	0.77	65.4 J	GS-D3	20	16.1 J	45.2 J	0.77	65.4 J	GS-D3	16.3	10 U	41.1 J
Chromium	μg/L	Peeper	n/a	0-38	39	17	44	0.92	31.6	CP07B	4.56	1.23	24.2	0.14 U	31.6	CP07B	2.21	0.435 U	5.12 J
Chromium	μg/L	Trident	filtered	0-30	62	34	55	0.2 J	98.3	CP07B	7.08	0.72	39.4	0.09 U	98.3	CP07B	4.07	0.44	7.32
Chromium	μg/L	Trident	unfiltered	0-30	65	45	69	0.79	122	CP07B	11.8	5.11	30.8 J	0.3 U	122	CP07B	8.4	3.36	26.4
Chromium	μg/L	Trident	filtered	60-150	13	7	54	0.36	49.6	CP07B	7.87	0.98	35.1	0.28 U	49.6	CP07B	4.34	0.39 U	20.7
Chromium	μg/L	Trident	unfiltered	60-150	25	20	80	0.8	102	CP07B	15.5	8.08	31.2	0.78 UJ	102	CP07B	12.5	6.1	27.1
Chromium	μg/L	GeoProbe	filtered	0-90	4	3	75	0.45	0.69	GS-B5	0.55	0.51 J	0.672 J	0.03 UJ	0.69	GS-B5	0.416	0.48 J	0.663 J
Chromium	μg/L	GeoProbe	unfiltered	0-90	35	35	100	2.07	537	GS-B9	104	46.3	381 J	2.07	537	GS-B9	104	46.3	381 J
Copper	μg/L	Peeper	n/a	0-38	39	5	13	1.63	22.1	CP07DPR	6.23	2.44	18.3	0.17 UJ	22.1	CP07DPR	1.58	0.585 UJ	3.08 UJ
Copper	μg/L	Trident	filtered	0-30	50	10	20	0.36 T	3.63	R2RP03TR	1.19	0.97 J	2.71	0.08 U	3.63	R2RP03TR	0.405	0.23 U	1.19
Copper	μg/L	Trident	unfiltered	0-30	53	35	66	1.54	63.1	EM02CTR	15.2	9.07	45.9 J	0.34 U	63.1	EM02CTR	10.4	4.6	41.6 J
Copper	μg/L	Trident	filtered	60-150	12	6	50	0.24	1.89 J	R2AR02TR	1	0.95 J	1.75 J	0.24	1.89 J	R2AR02TR	0.659	0.455 U	1.58 J
Copper	μg/L	Trident	unfiltered	60-150	18	13	72	1.79	43.7	SL03FTR	17.5	12.7	39	0.83 U	43.7	SL03FTR	13.7	10.9	37
Copper	μg/L	GeoProbe	filtered	0-90	4	4	100	0.28	0.79	GS-B2	0.505	0.475	0.772	0.28	0.79	GS-B2	0.505	0.475	0.772
Copper	μg/L	GeoProbe	unfiltered	0-90	35	29	83	1.01 J	555	GS-B9	139	47.5	476	1.01 J	555	GS-B9	116	18.8	472
Zinc	μg/L	Peeper	n/a	0-38	39	18	46	7.11 JT	418	R2CP01PR	48.9	10.8 J	219 J	1.51 UJ	418	R2CP01PR	23.4	2.53 UJ	104 J
Zinc	μg/L	Trident	filtered	0-30	60	32	53	0.95 T	526	R2AR01TR	20.8	3.77	12	0.75 UJ	526	R2AR01TR	11.6	2.04 J	9.97
Zinc	μg/L	Trident	unfiltered	0-30	64	39	61	7.81 J	556 T	R2AR01TR	52.4	22.9	116 J	2.28 UJ	556 T	R2AR01TR	33.4	13.4 J	105
Zinc	μg/L	Trident	filtered	60-150	12	6	50	1.87 J	9.78	R2AR02TR	4.95	4.3	9.21	1.6 U	9.78	R2AR02TR	3.1	1.93 J	8.52
Zinc	μg/L	Trident	unfiltered	60-150	24	17	71	18.6 J	161	CP07BTR	63.9	46.6	124	2.98 U	161	CP07BTR	46.3	35.4	114
Zinc	μg/L	GeoProbe	filtered	0-90	4	4	100	2.93	22.5	GS-B5	8.47	4.22	19.8	2.93	22.5	GS-B5	8.47	4.22	19.8
Zinc	μg/L	GeoProbe	unfiltered	0-90	35	34	97	8.3	3590	GS-B4	528	184	1530	8.3	3590	GS-B4	513	179	1530
PCDD/Fs Homologs Total PCDD/Fs	σ.	m:1 .	C1. 1	0.20	3		22	0.865 T	0.865 T	DD07DTD	0.065	0.065 70	0.865 T	0.065 T	10.2 UT	DD02CED	2.24	3.74 UT	4.00 11
Total PCDD/Fs Total PCDD/Fs	pg/L	Trident	filtered	0-30 0-30	3	2	33 67	0.865 T 29 T		RP07BTR	0.865 40.2	0.865 T 40.2		0.865 T 29 T		RP03CTR	3.24 63.7		
	pg/L	Trident	unfiltered	0-30	3	2	67	29 1	51.3 T	RP07BTR	40.2	40.2	50.2	29 1	222 UT	RP03CTR	63.7	51.3 T	105
PCDD/Fs TCDD TEQ (ND = 0)	ma/I	Trident	filtered	0-30	3	0	0							0.363 UT	2.48 UT	RP03CTR	0.551	0.233 UT	1.14 U
TCDD TEQ (ND = 0) $TCDD TEQ (ND = 0)$	pg/L			0-30	3	2	67	1.32 JT	 1.72 JT	RP07BTR	1.52	1.52 J	1.7 J	1.32 JT	2.48 UT 2.78 UT	RP03CTR	1.48	1.39 UT	
Pesticides	pg/L	Trident	unfiltered	0-30	3	2	07	1.52 J1	1.72 J1	KPU/DIK	1.32	1.32 J	1./ J	1.32 J1	2.76 U1	RPUSCIR	1.46	1.39 U1	1.09 J
	/1	Разман	# /0	0-38	8	2	25	0.0135 NJA	0.032 NJA	AP03B-1	0.0228	0.0228 J	0.0311 J	0.0077 UT	0.032 NJA	AP03B-1	0.0105	0.00825 UJ	0.0255 J
DDx DDx	μg/L	Peeper Trident	n/a filtered	0-38	8	5	62	0.0084 NJA	0.052 NJA 0.158 NJT	RP03CTR	0.0228	0.0228 J 0.036 JT	0.0311 J 0.134 J	0.0077 U1 0.0042 UA	0.032 NJA 0.158 NJT	RP03CTR	0.0103	0.00823 UJ 0.0233 J	0.0233 J 0.117 J
DDx	μg/L	Trident	unfiltered	0-30	10	10	100	0.0084 NJA 0.0075 JA	3.05 JT	AP03ATR	1.33	1.44 J	2.77 J	0.0042 UA 0.0075 JA	3.05 JT	AP03ATR	1.33	1.44 J	2.77 J
DDx	μg/L	Trident	filtered	60-150	10	10	100	0.0073 JA 0.179 JT	0.179 JT	RP03CTR	0.179	0.179 JT	0.179 JT	0.0073 JA 0.179 JT	0.179 JT	RP03CTR	0.179	0.179 JT	0.179 JT
DDx	μg/L	Trident		60-150	1 4	4	100	0.179 JT 0.169 JT		AP03ATR	2.42	1.89 J		0.179 JT 0.169 JT	5.73 JT	AP03ATR	2.42	1.89 J	5.41 J
PAHs	μg/L	Tridelit	unfiltered	00-130	4	4	100	0.109 JI	5.73 JT	ArusAIK	2.42	1.09 J	5.41 J	0.109 J1	3./3 J1	ArusAIR	2.42	1.09 J	3.41 J
Total PAHs	μg/L	Peeper	n/a	0-38	24	24	100	0.105 JT	300 JT	GS01BPR	40.1	8.5 J	177 J	0.105 JT	300 JT	GS01BPR	40.1	8.5 J	177 J
Total PAHs	μg/L μg/L	Trident	filtered	0-36	39	37	95	0.103 JT 0.0031 JT	1200 JT	GS02ATR	77.5	6.5 J 1.97 JT	316 J	0.0031 JT	1200 JT	GS02ATR	73.5	8.3 J 1.7 JT	205 J
Total PAHs	μg/L μg/L	Trident	unfiltered	0-30	42	39	93	0.0031 JT 0.0025 JT	3490 T	GS02ATR GS07BTR	17.3	6.01 JT	1200 J	0.0031 JT 0.0025 JT	3490 T	GS02ATR GS07BTR	165	4.55 J	1140 J
Total PAHs	μg/L μg/L	Trident	filtered	60-150	42	39 4	100	0.0023 JT 0.182 JT	15.8 JT	EM03ATR	4.34	0.69 J	13.6 J	0.0023 JT 0.182 JT	15.8 JT	EM03ATR	4.34	4.55 J 0.69 J	13.6 J
Total PAHs		Trident	unfiltered	60-150	10	10	100	0.182 J1 0.61 T	430 T	GS08DTR	90.5	0.69 J 14.9 J	346	0.182 J1 0.61 T	430 T	GS08DTR	90.5	0.69 J 14.9 J	346
Total PAHs	μg/L μg/L	GeoProbe	unfiltered	0-130	35	35	100	0.01 I 0.093 JA	450 I 15100 JA	GSU8D1R GP73	2290	14.9 J 170 T	12800 J	0.093 JA	430 I 15100 JA	GS08D1R GP73		14.9 J 170 T	12800 J
Total I Alls	μg/L	Georgo	ummered	0-30	33	رر	100	0.033 JA	13100 JA	GF / 3	2290	170 1	12000 J	0.033 JA	13100 JA	Gr /3	2290	170 1	12000 J

Notes:

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking elmediately above and below the corresponding percentile are "U" qualified.

-- data not available

PAH - polycyclic aromatic hydrocarbon

bml - below mud line DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT PCDD/F - dioxin/furan TCDD - tetrachlorodibenzo-p-dioxin

DL - detection limit

TEQ - toxicity equivalence

ND - not detected

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

Table 5.5-2. Summary Statistics for Indicator Contaminants in Seeps.

		•						Detec	ted Concentrat	tions			Detected and I	Not Detected C	oncentrations	
	T T •4	g ID	T	# A . 1	# D 1	0/ D 4 4 1		9		h	95 th	Minimum	Maximum	Mean	_	95th Percentile
Analyte	Units	Seep ID	Fraction	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	(half DL)	(half DL) ^b	(half DL) ^b
Metals	/I	WLCGND05SEEP01	total	2	1	50	1.15	1.15	1.15	1.15	1.15	1 U	1.15	0.825	0.825	1.12
Arsenic Arsenic	μg/L	WLCGND05SEEP01 WLCGND05SEEP02	total total	2	2	100	4.79	6.03	5.41	5.41	5.97	4.79	6.03	5.41	5.41	5.97
Arsenic	μg/L	WLCGND05SEEP02 WLCGND05SEEP03	total	2	2	100	1.92	46.6	24.3	24.3	3.97 44.4	1.92	46.6	24.3	24.3	3.97 44.4
Arsenic	μg/L μg/L	WLCRPI04OF22B	total	2	2	100	5.76 J	8.1 J	6.93	6.93 J	7.98 J	5.76 J	8.1 J	6.93	6.93 J	7.98 J
Arsenic	μg/L μg/L	WLCRPI04OF22C	total	4	1	25	1.14 J	1.14 J	1.14	1.14 J	1.14 J	0.964 U	1.14 J	0.651	0.491 U	1.04 J
Arsenic	μg/L μg/L	WLCRPI04OF22B	dissolved	1	1	100	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49
Arsenic	μg/L μg/L	WLCRPI04OF22C	dissolved	2	0	0	3. 4 7		J. T /	J.47 	J. 4 7	0.964 U	0.964 U	0.482	0.482 U	0.482 U
Chromium	μg/L μg/L	WLCGND05SEEP01	total	2	2	100	2.32	2.44	2.38	2.38	2.43	2.32	2.44	2.38	2.38	2.43
Chromium	μg/L μg/L	WLCGND05SEEP02	total	2	2	100	25.2	41.4	33.3	33.3	40.6	25.2	41.4	33.3	33.3	40.6
Chromium	μg/L μg/L	WLCGND05SEEP03	total	2	2	100	1.94	46.5	24.2	24.2	44.3	1.94	46.5	24.2	24.2	44.3
Chromium	μg/L μg/L	WLCRPI04OF22B	totai	2	1	50	1.22 J	1.22 J	1.22	1.22 J	1.22 J	1.22 J	1.31 U	0.938	0.938 J	1.19 J
Chromium	μg/L μg/L	WLCRPI04OF22C	total	4	2	50	0.97	3.39	2.18	2.18	3.27	0.0354 U	3.39	1.18	0.665	3.03
Chromium	μg/L	WLCRPI04OF22B	dissolved	1	0	0						0.72 U	0.72 U	0.36	0.36 U	0.36 U
Chromium	μg/L	WLCRPI04OF22C	dissolved	2	1	50	1.25	1.25	1.25	1.25	1.25	0.791 U	1.25	0.823	0.823	1.21
Copper	μg/L	WLCGND05SEEP01	total	2	2	100	32.5	140	86.3	86.3	135	32.5	140	86.3	86.3	135
Copper	μg/L	WLCGND05SEEP02	total	2	2	100	241	373	307	307	366	241	373	307	307	366
Copper	μg/L	WLCGND05SEEP03	total	2	2	100	5.44	1510	758	758	1430	5.44	1510	758	758	1430
Copper	μg/L	WLCRPI04OF22B	total	2	2	100	2.07	11.6	6.84	6.84	11.1	2.07	11.6	6.84	6.84	11.1
Copper	μg/L	WLCRPI04OF22C	total	4	4	100	0.81	45	13	3.03	38.7	0.81	45	13	3.03	38.7
Copper	μg/L	WLCRPI04OF22B	dissolved	1	0	0						0.788 U	0.788 U	0.394	0.394 U	0.394 U
Copper	μg/L	WLCRPI04OF22C	dissolved	2	2	100	1.79	2.58	2.19	2.19	2.54	1.79	2.58	2.19	2.19	2.54
Zinc	μg/L	WLCGND05SEEP01	total	2	2	100	215	573	394	394	555	215	573	394	394	555
Zinc	μg/L	WLCGND05SEEP02	total	2	2	100	1170	1450	1310	1310	1440	1170	1450	1310	1310	1440
Zinc	μg/L	WLCGND05SEEP03	total	2	2	100	787	2060	1420	1420	2000	787	2060	1420	1420	2000
Zinc	μg/L	WLCRPI04OF22B	total	2	2	100	6.82 J	24.9	15.9	15.9 J	24 J	6.82 J	24.9	15.9	15.9 J	24 J
Zinc	μg/L	WLCRPI04OF22C	total	4	3	75	2.87 J	13.9	7.88	6.87	13.2	2.87 J	13.9	6.87	5.35	12.8
Zinc	μg/L	WLCRPI04OF22B	dissolved	1	1	100	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34	2.34
Zinc	μg/L	WLCRPI04OF22C	dissolved	2	1	50	5.21	5.21	5.21	5.21	5.21	5.21	11.9 U	5.58	5.58	5.91
PCBs ^c																
Total PCBs	μg/L	WLCGND05SEEP01	total	2	0	0						1 UT	1 UT	0.5	0.5 U	0.5 U
Total PCBs	μg/L	WLCGND05SEEP02	total	2	2	100	0.602 T	0.828 T	0.715	0.715	0.817	0.602 T	0.828 T	0.715	0.715	0.817
Total PCBs	μg/L	WLCRPI04OF22B	total	1	0	0						0.5 UT	0.5 UT	0.25	0.25 UT	0.25 UT
PCDD/Fs Homologs																
Total PCDD/Fs	pg/L	WLCRPI04OF22B	total	1	1	100	177 T	177 T	177	177 T	177 T	177 T	177 T	177	177 T	177 T
Total PCDD/Fs	pg/L	WLCRPI04OF22C	total	3	2	67	186 T	243 JT	215	215 J	240 J	12 UT	243 JT	145	186 T	237 Ј
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/L	WLCRPI04OF22B	total	2	1	50	0.042 T	0.042 T	0.042	0.042 T	0.042 T	0.042 T	12 UT	3.02	3.02	5.7
TCDD TEQ ($ND = 0$)	pg/L	WLCRPI04OF22C	total	4	2	50	0.244 JT	0.355 JT	0.3	0.3 J	0.349 J	0.244 JT	12 UT	2.76	2.4 J	5.77 U
Pesticides																
Aldrin	μg/L	WLCRPI04OF22B	total	3	1	33	0.00407	0.00407	0.00407	0.00407	0.00407	0.00407	0.05 U	0.018	0.025 U	0.025 U
Aldrin	μg/L	WLCRPI04OF22C	total	4	0	0						0.00112 U	0.05 U	0.00854	0.00431 U	0.0222 U
Dieldrin	μg/L	WLCRPI04OF22B	total	3	0	0						0.00307 U	0.1 U	0.0255	0.025 U	0.0475 U
Dieldrin	μg/L	WLCRPI04OF22C	total	4	0	0						0.00295 U	0.05 U	0.00877	0.00431 U	0.0222 U
Total chlordanes	μg/L	WLCRPI04OF22B	total	1	0	0						0.05 UA	0.05 UA	0.025	0.025 UA	0.025 UA
Total chlordanes	μg/L	WLCRPI04OF22C	total	3	0	0						0.00472 UA	0.05 UA	0.0112	0.00625 UA	0.0231 U
DDx	μg/L	WLCRPI04OF22B	total	2	0	0						0.05 UA	0.1 UA	0.0375	0.0375 U	0.0488 U
DDx	μg/L	WLCRPI04OF22C	total	4	0	0						0.00472 UA	0.05 UA	0.00901	0.00435 U	0.0222 U
PAHs																
Total PAHs	μg/L	WLCGND05SEEP01	total	1	0	0						0.2 UA	0.2 UA	0.1	0.1 UA	0.1 UA
Total PAHs	μg/L	WLCGND05SEEP02	total	2	2	100	3.19 JA	4.53 JA	3.86	3.86 J	4.46 J	3.19 JA	4.53 JA	3.86	3.86 J	4.46 J
Total PAHs	μg/L	WLCRPI04OF22B	total	2	2	100	0.4 T	1.09 NJT	0.744	0.744 J	1.05 J	0.4 T	1.09 NJT	0.744	0.744 J	1.05 J
Total PAHs	μg/L	WLCRPI04OF22C	total	4	4	100	0.745 T	44.4 JT	23.2	23.8 J	42.5 J	0.745 T	44.4 JT	23.2	23.8 J	42.5 J

Table 5.5-2. Summary Statistics for Indicator Contaminants in Seeps.

<u> </u>						_		Detec	ted Concentrat	ions			Detected and	Not Detected C	oncentrations	
Analyte	Units	Seep ID	Fraction	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th Percentile (half DL) ^b
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/L	WLCGND05SEEP01	total	2	0	0						0.5 U	0.5 U	0.25	0.25 U	0.25 U
Bis(2-ethylhexyl) phthalate	μg/L	WLCGND05SEEP02	total	2	2	100	0.527	1.65	1.09	1.09	1.59	0.527	1.65	1.09	1.09	1.59
Bis(2-ethylhexyl) phthalate	μg/L	WLCGND05SEEP03	total	2	1	50	2.74	2.74	2.74	2.74	2.74	0.5 U	2.74	1.5	1.5	2.62
Bis(2-ethylhexyl) phthalate	μg/L	WLCRPI04OF22B	total	2	0	0						0.644 U	10 U	2.66	2.66 U	4.77 U
Bis(2-ethylhexyl) phthalate	μg/L	WLCRPI04OF22C	total	3	0	0						0.624 U	10 U	3.44	5 U	5 U

Notes:

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent concentration

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

5.5-1. Summary Statistics for Indicator Containing	ants in Fish Fishee, State	ay riiou (itivi i.	., 11.0).				Detected Concentration	ns				J	Detected and Not Detected Con	centrations		
Analyte	Units	# Analyzad	# Dotostad	% Detected	Minimuma	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
	Cints	# Analyzeu	# Detected	70 Detected	Millimum	Maximum	Waxiiiuiii Location(s)	Mican	Median	rercentile	(Iuli DL)	(Iuli DL)	Waximum Eocation(s)	(Hall DL)	(Hall DL)	(Hall DL)
Black crappie (fillet)																
Conventionals		4	4	100	0.99	1.0	FZ0306	1.4	1.4	1.77	0.99	1.0	FZ0306	: 14	1.4	1.77
Lipids Motols	percent	4	4	100	0.99	1.8	FZ0306	1.4	1.4	1.//	0.99	1.8	FZ0300	5 1.4	1.4	1.//
Metals	man /lea Wat	4	4	100	0.1.1	0.18 T	F70600	0.14	0.14	0.176	0.1.1	0.18 T	F70600	0.14	0.14	0.176
Arsenic Chromium	mg/kg-Wet mg/kg-Wet	4	2	100 50	0.1 J 0.14	0.18 1	FZ0609 FZ0306	0.14 0.21	0.14 0.21	0.176	0.1 J 0.06 U	0.18 1	FZ0609 FZ0300		0.14 0.085	0.176
		4	4	100				0.21		0.273					0.083	
Copper	mg/kg-Wet mg/kg-Wet	4	4	100	0.166 7.45	0.184 9.03	FZ0306; FZ0609 FZ0306	8.23	0.181 8.22	8.98	0.166 7.45	0.184 9.03	FZ0306; FZ0609 FZ0306		8.22	0.184 8.98
Zinc	mg/kg-wet	4	4	100	7.43	9.03	FZ0300	0.23	0.22	0.90	7.43	9.03	FZ0300	0.23	0.22	0.90
PCBs ^c																
Total PCBs	μg/kg-Wet	4	4	100	19.6 T	32 T	FZ0609	24.1	22.4	30.6	19.6 T	32 T	FZ0609	24.1	22.4	30.6
Pesticides																
Aldrin	μg/kg-Wet	4	0	0							1 U	1 U	FZ0306; FZ0609		0.5 U	0.5 U
Dieldrin	μg/kg-Wet	4	0	0							1 U	1 U	FZ0306; FZ0609		0.5 U	0.5 U
Total chlordanes	μg/kg-Wet	4	1	25	1.1 NJ7		FZ0306	1.1	1.1 NJT	1.1 NJ	1.1 NJT		FZ0609		0.775 U	1.06 J
DDx	μg/kg-Wet	4	4	100	8.8 JT	13.7 NJ	FZ0609	11.4	11.5 J	13.5 J	8.8 JT	13.7 NJT	FZ0609	11.4	11.5 J	13.5 J
Black crappie (whole body)																
Conventionals																
Lipids	percent	4	4	100	3.33 T	7.5 T	FZ0609	5.26	5.1	7.35	3.33 T	7.5 T	FZ0609	5.26	5.1	7.35
Metals																
Arsenic	mg/kg-Wet	4	4	100	0.185 T	0.42	FZ0609	0.279	0.255	0.401	0.185 T	0.42	FZ0609	0.279	0.255	0.401
Chromium	mg/kg-Wet	4	0	0							0.08 U	0.09 U	FZ0609	0.0413	0.04 U	0.0443 U
Copper	mg/kg-Wet	4	4	100	0.688	0.946	FZ0306	0.82	0.822	0.943	0.688	0.946	FZ0306	0.82	0.822	0.943
Zinc	mg/kg-Wet	4	4	100	14.2 T	16.8	FZ0609	15.4	15.3	16.6	14.2 T	16.8	FZ0609	15.4	15.3	16.6
PCBs ^c																
Total PCBs	μg/kg-Wet	4	4	100	103 JT	301 JT	FZ0609	164	126 J	278 Ј	103 JT	301 JT	FZ0609	164	126 J	278 Ј
PCDD/Fs Homologs	μg/kg-wet	4	4	100	103 31	301 31	12000)	104	120 J	270 3	103 31	301 31	12000	7 104	120 3	270 3
Total PCDD/Fs	pg/g-Wet	4	4	100	7.67 T	16.1 T	FZ0306	10.7	9.45	15.3	7.67 T	16.1 T	FZ0306	5 10.7	9.45	15.3
PCDD/Fs	pg/g-wet	4	4	100	7.07 1	10.1 1	120300	10.7	7.43	13.3	7.07 1	10.1 1	120300	10.7	7.43	13.3
TCDD/TS $TCDD TEQ (ND = 0)$	pg/g-Wet	4	4	100	1.1 JT	1.26 JT	FZ0306	1.18	1.18	1.25 J	1.1 JT	1.26 JT	FZ0306	1.18	1.18	1.25 J
Pesticides	pg/g-wet	4	4	100	1.1 31	1.20 31	120300	1.10	1.10	1.23 3	1.1 31	1.20 31	120300	1.10	1.10	1.23 3
Aldrin	μg/kg-Wet	4	0	0							1 UJ	1.3 U	FZ0609	0.538	0.5 U	0.628 U
Dieldrin		4	1	25	2.5 NJ	2.5 NJ	FZ0609	2.5	2.5 NJ	2.5 NJ	1.8 U	1.3 U 14 UT	FZ0609		1.73 J	6.33 J
Total chlordanes	μg/kg-Wet	4	1	100	2.5 NJ	9.2 NJ	FZ0306	6.33	7 J	9.16 J	2.1 NJT		FZ0306		7 J	9.16 J
DDx	μg/kg-Wet μg/kg-Wet	4	4	100	59.2 NJ	99.6 NJ	FZ0609	80.2	81 J	9.10 J 99.5 J	59.2 NJT		FZ0609		81 J	9.10 J 99.5 J
Brown bullhead (fillet without skin)	μg/kg-wei	4	4	100	39.2 NJ	99.0 NJ	FZ0009	80.2	01 J	99.3 J	39.2 NJ1	99.0 NJ1	FZ0003	00.2	01 J	99.J J
·																
Conventionals				100	0.02	1.2	F70206	1.00	1.04	1.20	0.02	1.2	F7020	1.00	1.04	1.20
Lipids	percent	6	6	100	0.93	1.3	FZ0306	1.08	1.04	1.28	0.93	1.3	FZ0300	5 1.08	1.04	1.28
Metals	A 117	_	_	100	0.02 1	0.02 1	F7020 (F70 (00	0.02	0.02 1	0.02 I	0.02 I	0.02 I	F70204 F70404	0.02	0.02.1	0.02 1
Arsenic	mg/kg-Wet	6	6	100	0.02 J	0.02 J	FZ0306; FZ0609	0.02	0.02 J	0.02 J	0.02 J	0.02 J	FZ0306; FZ0609		0.02 J	0.02 J
Chromium	mg/kg-Wet	6	3	50	0.05 J	0.23	FZ0306	0.12	0.08 J	0.215 J	0.05 U	0.23	FZ0306		0.04 J	0.193 J
Copper	mg/kg-Wet	6	6	100	0.203	0.292	FZ0306	0.251	0.252	0.283	0.203	0.292	FZ0306		0.252	0.283
Zinc	mg/kg-Wet	6	6	100	3.96 J	6.49 J	FZ0306	5.23	5.32 J	6.25 J	3.96 J	6.49 J	FZ0306	5.23	5.32 J	6.25 J
PCBs ^c																
Total PCBs	μg/kg-Wet	6	6	100	37 T	1300 JT	FZ0609	354	86.5	1120 J	37 T	1300 JT	FZ0609	354	86.5	1120 J
Pesticides																
Aldrin	μg/kg-Wet	6	0	0							1 U	13 UT	FZ0609	1.75	0.5 U	5.38 U
Dieldrin	μg/kg-Wet	6	1	17	2.1 NJ	2.1 NJ	FZ0306	2.1	2.1 NJ	2.1 NJ	1 U	14 UT	FZ0609	2.1	1.25 U	5.78 J
Total chlordanes	μg/kg-Wet	6	4	67	1.2 NJ	1.6 NJT	FZ0306; FZ0609	1.43	1.45 J	1.6 J	1.2 NJT		FZ0609		1.6 J	8 U
DDx	μg/kg-Wet	6	6	100	12 JT	26.5 JT	FZ0609	20.9	21.4 J	26.4 J	12 JT	26.5 JT	FZ0609		21.4 J	26.4 J
PAHs	1000															
Total PAHs	μg/kg-Wet	6	2	33	110 JT	250 T	FZ0306	180	180 J	243 J	33 UT	250 T	FZ0306	5 79	40.5 U	215 J
Phthalates	ro 6 6.1	Ü	-	20	110 01		120000	100	-00 0	2.50	22 21	-20 -	120300		.0.0	2.0 3
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	6	1	17	100 T	100 T	FZ0306	100	100 T	100 T	100 UT	220 UT	FZ0609	68.3	50 U	108
Brown bullhead (whole body)	MB/NB THOU	O .	•	- /	100 1	100 1	120300	100	100 1	100 1	100 01	220 01	12000	00.5	20 0	100
Conventionals																
Lipids	nargant	6	6	100	1.5 T	3.8	FZ0609	2.43	2.35	3.5	1.5 T	3.8	FZ0609	2.43	2.35	3.5
Lipids	percent	U	U	100	1.5 1	5.0	1.20009	4.43	۵.33	3.3	1.5 1	3.0	1.20003	2.43	۷.33	3.3

-	·		•	_			Detected Concentration	ns]	Detected and Not Detected Con-	centrations		
				·-						95 th	3.6	3.6 .			3.6.11	95 th
Analyte	Units	# Analyzed	l # Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	Percentile (half DL) ^b
Metals					11222222	11241111111111			111041411	1010011110	(1411 2 2)	(1411 2 2)		, ,	(IIIII DZ)	(11111 22)
Arsenic	mg/kg-Wet	6	6	100	0.04 J	0.08 J	FZ0609	0.0558	0.055 J	0.075 J	0.04 J	0.08 J	FZ0609	0.0558	0.055 J	0.075 J
Chromium	mg/kg-Wet		6	100	0.39	1.32	FZ0306	0.73	0.565	1.26	0.39	1.32	FZ0306		0.565	1.26
Copper	mg/kg-Wet		6	100	0.586	0.798	FZ0609	0.73	0.691	0.792	0.586	0.798	FZ0609		0.691	0.792
			6	100	12.7	15.6	FZ0609	14.1	14.3	15.4	12.7	15.6	FZ0609		14.3	15.4
Zinc	mg/kg-Wet	Ü	O	100	12.7	13.0	FZ0009	14.1	14.3	13.4	12.7	15.0	FZ0005	14.1	14.3	13.4
PCBs ^c																
Total PCBs	μg/kg-Wet	6	6	100	83.3 JT	1950 JT	FZ0609	511	251 J	1550 J	83.3 JT	1950 JT	FZ0609	511	251 J	1550 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	6	6	100	12.2 T	17.8 T	FZ0609	14.2	13.6	17.3	12.2 T	17.8 T	FZ0609	14.2	13.6	17.3
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	6	6	100	1.29 JT	2.12 JT	FZ0609	1.58	1.53	2.02 J	1.29 JT	2.12 JT	FZ0609	1.58	1.53	2.02 J
Pesticides	100															
Aldrin	μg/kg-Wet	6	0	0							1 U	13 UT	FZ0609	1.75	0.5 U	5.38 U
Dieldrin	μg/kg-Wet	6	2	33	1.2 NJ	2.6 NJ	FZ0306	1.9	1.9 J	2.53 J	1.2 NJ	14 UT	FZ0609		1.6 J	5.9 J
Total chlordanes	μg/kg-Wet	6	4	67	1.8 NJ	67 T	FZ0306	20	5.5 J	58 J	1.8 NJT	67 T	FZ0306		5.85 J	52.8
DDx	μg/kg-Wet	6	6	100	37.5 JT	141 NJ	FZ0609	85.6	92.8 J	131 J	37.5 JT	141 NJT	FZ0609		92.8 J	131 J
PAHs	μg/kg WCt	Ü	O	100	37.3 31	171 1131	120007	05.0	72.0 J	131 3	37.3 31	171 1131	12000	05.0	72.U J	131 3
Total PAHs	μg/kg-Wet	6	1	17	100 T	100 T	FZ0306	100	100 T	100 T	33 UT	100 T	FZ0306	32.8	19.8 U	81.1
Phthalates	μg/kg-wet	Ü	1	17	100 1	100 1	120300	100	100 1	100 1	33 01	100 1	120300	32.0	17.8 0	01.1
Bis(2-ethylhexyl) phthalate	ug/kg Wat	6	1	17	2700 T	2700 T	FZ0306	2700	2700 T	2700 T	98 UT	2700 T	FZ0306	491	49.5 U	2040
	μg/kg-Wet	Ü	1	1 /	2700 1	2700 1	FZ0300	2700	2700 1	2700 1	96 01	2700 1	FZ0300	491	49.5 0	2040
Carp (fillet)																
Conventionals																
Lipids	percent	12	12	100	3.3 T	9.31	CP0408	5.49	5.19	8.59	3.3 T	9.31	CP0408	5.49	5.19	8.59
Metals																
Arsenic	mg/kg-Wet		12	100	0.04 J	0.16	FZ0306	0.0825	0.0725 J	0.138 J	0.04 J	0.16	FZ0306		0.0725 J	0.138 J
Chromium	mg/kg-Wet	12	4	33	0.12 J	1.49	FZ0306	0.628	0.45	1.37	0.07 U	1.49	FZ0306		0.05 U	1.06
Copper	mg/kg-Wet	12	12	100	0.313	0.566	CP0812	0.423	0.425	0.528	0.313	0.566	CP0812	0.423	0.425	0.528
Zinc	mg/kg-Wet	12	12	100	17.4 J	31	CP0408	25	24.6 J	30.3 J	17.4 J	31	CP0408	25	24.6 J	30.3 J
Butyltins																
Tributyltin ion	μg/kg-Wet	6	5	83	3.7 J	11	CP0812	5.82	4 JT	10.1	1.8 U	11	CP0812	. 5	3.9 J	9.9
PCBs ^c																
Total PCBs	μg/kg-Wet	12	12	100	265 JT	19700 JT	CP0408	2230	566 J	9520 J	265 JT	19700 JT	CP0408	2230	566 J	9520 J
PCDD/Fs Homologs	μg/kg-wct	12	12	100	203 31	17700 31	C1 0408	2230	300 3)320 3	203 31	17700 31	C1 0400	2230	300 J)320 3
	mala Wat	6	6	100	22.1 IT	42 0 IT	CD0409	22.9	21.0.1	42.4 I	22.1 IT	42.0 IT	CD0409	22.0	21.0.1	42.4 I
Total PCDD/Fs	pg/g-Wet	6	6	100	23.1 JT	43.8 JT	CP0408	32.8	31.9 J	43.4 J	23.1 JT	43.8 JT	CP0408	32.8	31.9 J	43.4 J
PCDD/Fs	/ 337		_	100	2.05.15	4.25 IT	GP0 400	2.16	2.00.1	4.22 T	2.05 15	4 25 TE	GP0.406	216	2.00 1	4.00 7
TCDD TEQ (ND = 0)	pg/g-Wet	6	6	100	2.07 JT	4.37 JT	CP0408	3.16	3.08 J	4.33 J	2.07 JT	4.37 JT	CP0408	3.16	3.08 J	4.33 J
Pesticides																
Aldrin	μg/kg-Wet		6	50	0.0541 JT	0.119 J	CP0408	0.0946	0.103 J	0.118 J	0.0541 JT	13 UT	FZ0609		1.06 J	5.62 U
Dieldrin	μg/kg-Wet		6	50	1.29 T	2.3	CP0408	1.58	1.48	2.13	1.29 T	14 UT	FZ0609		2 UJ	
Total chlordanes	μg/kg-Wet	12	7	58	4.3 NJ	12 T	CP0408	8.91	8.74 JT	11.9 J	4.3 NJT	20 UJT	FZ0609		8.57 J	11.7 J
DDx	μg/kg-Wet	12	12	100	47.3 JT	494 T	CP0408	166	155 J	360	47.3 JT	494 T	CP0408	166	155 J	360
PAHs																
Total PAHs	μg/kg-Wet	6	6	100	11 T	140 T	CP0408	52.3	29.5	128	11 T	140 T	CP0408	52.3	29.5	128
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	6	0	0							66 U	66 U	CP0408; CP0812	33	33 U	33 U
Carp (body without fillet)	, , ,												-			
Conventionals																
Lipids	percent	6	6	100	8.86	12.8	CP0408	10.2	9.57	12.3	8.86	12.8	CP0408	10.2	9.57	12.3
Metals	percent	U	U	100	3.60	12.0	C1 0400	10.2	7.51	12.3	0.00	12.0	C1 0408	10.2	7.51	12.3
Arsenic	ma/ka Wat	6	5	83	0.086 J	0.136 JT	CP0408	0.106	0.094 J	0.134 J	0.063 U	0.136 JT	CP0408	0.0936	0.091 J	0.134 J
	mg/kg-Wet		-													
Chromium	mg/kg-Wet		6	100	0.3	1.09 T	CP0408	0.748	0.838	1.04	0.3	1.09 T	CP0408		0.838	1.04
Copper	mg/kg-Wet		6	100	1.02	1.53 T	CP0408	1.31	1.31	1.51	1.02	1.53 T	CP0408		1.31	1.51
Zinc	mg/kg-Wet	6	6	100	89.9 T	147	CP0408	115	117	142	89.9 T	147	CP0408	115	117	142
Butyltins																
Tributyltin ion	μg/kg-Wet	6	6	100	4.3 J	9.8 T	CP0812	6.4	6.2 J	9.25	4.3 J	9.8 T	CP0812	6.4	6.2 J	9.25
PCBs ^c																
Total PCBs	μg/kg-Wet	6	6	100	405 JT	27100 JT	CP0408	5230	652 J	20800 J	405 JT	27100 JT	CP0408	5230	652 J	20800 J

5.5 1. Building Statistics for Indicator Contain	,,,						Detected Concentration	ns					Detected and Not Detected Con	centrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
	Cinto	" Tillaly Zea	" Beteeteu	70 Detected	Willimum	Maximum	Waximum Education(9)	- Ivicum	Wictian	Teremine	(Iun DL)	(Iuli DL)	William Docution(9)	(Hull DL)	(nan DL)	(Hall DL)
PCDD/Fs Homologs	ma/a Wat	6	6	100	41 0 IT	100 T	CD0409	72.7	61.1	105	41 0 IT	100 T	CD0409	2 72 7	61.1	105
Total PCDD/Fs	pg/g-Wet	6	6	100	41.8 JT	108 T	CP0408	72.7	64.4	105	41.8 JT	108 T	CP0408	3 72.7	64.4	105
PCDD/Fs	/ 337 .			100	2.51 IT	6.00 IT	CD0 400	5.07	5 17 T	6 00 I	2.51 III	< 00 ITT	CD0 404		5 17 T	6 00 I
TCDD TEQ (ND = 0)	pg/g-Wet	6	6	100	3.51 JT	6.99 JT	CP0408	5.27	5.17 J	6.98 J	3.51 JT	6.99 JT	CP0408	5.27	5.17 J	6.98 J
Pesticides																
Aldrin	μg/kg-Wet		6	100	0.0839 J	0.185 J	CP0812	0.153	0.171 J	0.183 J	0.0839 J	0.185 J	CP0812		0.171 J	0.183 J
Dieldrin	μg/kg-Wet	6	6	100	2.14	3.22	CP0408	2.57	2.52	3.1	2.14	3.22	CP0408		2.52	3.1
Total chlordanes	μg/kg-Wet	6	6	100	13.5 JT	16.8 JT	CP0408	15.4	15.5 J	16.8 J	13.5 JT	16.8 JT	CP0408		15.5 J	16.8 J
DDx	μg/kg-Wet	6	6	100	83.4 JT	658 JT	CP0408	277	229 J	587 J	83.4 JT	658 JT	CP0408	3 277	229 J	587 J
PAHs																
Total PAHs	μg/kg-Wet	6	6	100	10 JT	170 A	CP0408	71.5	51.5 J	160 J	10 JT	170 A	CP0408	3 71.5	51.5 J	160 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	6	0	0							66 U	66 U	CP0408; CP0812	2 33	33 U	33 U
Carp (whole body)																
Conventionals																
Lipids	percent	6	6	100	5.6 T	13 T	FZ0609	7.88	7	11.8	5.6 T	13 T	FZ0609	7.88	7	11.8
Metals	percent	O	Ü	100	3.0 1	13 1	12000)	7.00	,	11.0	5.0 1	13 1	12000	7.00	,	11.0
	mac/lea Wat	6	6	100	0.125 JT	0.22	FZ0306	0.166	0.15 J	0.218	0.125 JT	0.22	FZ0300	0.166	0.15 I	0.218
Arsenic	mg/kg-Wet		6	100 100	0.125 J1 0.305 T	2.02		0.166	1.07	1.86	0.125 J1 0.305 T	2.02	FZ0300		0.15 J	1.86
Chromium	mg/kg-Wet		6				FZ0306	1.09							1.07	
Copper	mg/kg-Wet		6	100	1.04	1.42	FZ0306	1.16	1.1	1.39	1.04	1.42	FZ0300		1.1	1.39
Zinc	mg/kg-Wet	6	6	100	87.1	112	FZ0609	99.3	99.4	112	87.1	112	FZ0609	99.3	99.4	112
PCBs ^c																
Total PCBs	μg/kg-Wet	6	6	100	343 JT	8150 JT	FZ0306	1920	595 J	6460 J	343 JT	8150 JT	FZ0300	5 1920	595 J	6460 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	6	6	100	26.1 T	80.9 JT	FZ0609	59.1	69.6	80.6 J	26.1 T	80.9 JT	FZ0609	9 59.1	69.6	80.6 J
PCDD/Fs	100															
TCDD TEQ (ND = 0)	pg/g-Wet	6	6	100	1.98 T	8.53 T	FZ0306	4.15	3.35 J	7.71	1.98 T	8.53 T	FZ0300	5 4.15	3.35 J	7.71
Pesticides	PSSet	Ü	· ·	100	1.50 1	0.00	120000		2.22 0	7.7.1	1.70 1	0.00 1	12000		2.22 0	7.7.1
Aldrin	μg/kg-Wet	6	0	0							1 U	13 UT	FZ0300	5 2.74	2 U	6.11 U
Dieldrin	μg/kg-Wet	6	0	0							1 UJ	14 UT	FZ0300		2.85 UJ	6.49 U
Total chlordanes			3	50	3.2 NJ	13.9 NJT	FZ0306	8.47	8.3 NT	13.3 J	3.2 NJT		FZ0300		6.63	12.9 J
DDx	μg/kg-Wet		5 6	100				210	6.5 N1 171 J	370 J	3.2 NJ I 143 JT	431 JT				370 J
	μg/kg-Wet	0	0	100	143 JT	431 JT	FZ0306	210	1/1 J	3/0 J	143 J1	431 J1	FZ0300	210	171 J	370 J
PAHs	g 337 .		2	22	111 7	222 17	F70 600	1.55	1.57	216 7	22 175	222 17	F70 < 04		160 11	104.7
Total PAHs	μg/kg-Wet	6	2	33	111 T	222 JT	FZ0609	167	167 J	216 J	32 UT	222 JT	FZ0609	66.3	16.3 U	194 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	6	0	0							94 UT	99 UT	FZ0300	5 48.3	48.3 U	49.4 U
Chinook (stomach contents)																
PCBs ^c																
Total PCBs	μg/kg-Wet	5	5	100	53.8 JT	162 JT	T03	83.9	59.8 JT	147 J	53.8 JT	162 JT	T03	83.9	59.8 JT	147 J
Pesticides																
Aldrin	μg/kg-Wet	5	2	40	0.00576 J	0.0426 J	T02	0.0242	0.0242 J	0.0408 J	0.00576 J	0.0426 J	T02	2 0.0175	0.0167 U	0.0376 J
Dieldrin	μg/kg-Wet	5	5	100	0.471 J	2.92	T02	1.48	1.58	2.7	0.471 J	2.92	T02		1.58	2.7
Total chlordanes	μg/kg-Wet	5	5	100	1.08 JT	4.61 JT	T02	2.67	2.98 JT	4.36 J	1.08 JT	4.61 JT	T02		2.98 JT	4.36 J
DDx	μg/kg-Wet μg/kg-Wet	5	5	100	8.88 JT	327 NJT	T02	107	12.7 JT	297 J	8.88 JT	327 NJT	T02		12.7 JT	297 J
	μg/kg-wei	3	3	100	0.00 J1	341 INJ	102	107	14./ J1	471 J	0.00 J1	34/ INJ I	10.	10/	14./ J1	471 J
PAHs Total PAHs	/Ira WI-4	5	5	100	95.5 JT	2460 JT	T02	685	272 JT	2050 Ј	95.5 JT	2460 JT	TO	205	272 IT	2050 Ј
	μg/kg-Wet	3	3	100	95.5 JI	2400 J1	102	685	2/2 J1	2050 J	95.5 JI	∠40U J1	T02	2 685	272 JT	∠050 J
Chinook (whole body)																
Conventionals																
Lipids	percent	15	15	100	1.5	3.6	03R125	2.15	1.8	3.39	1.5	3.6	03R12	5 2.15	1.8	3.39
Metals																
Arsenic	mg/kg-Wet	15	15	100	0.0465	0.25	03R125	0.11	0.0663	0.215	0.0465	0.25	03R125	5 0.11	0.0663	0.215
Chromium	mg/kg-Wet		3	20	0.09 J	0.19	02R113	0.13	0.11	0.182	0.054 UT	0.19	02R113	0.0501	0.0296 U	0.134
Copper	mg/kg-Wet		15	100	0.755	2.15	02R102	1.13	1.07	1.93	0.755	2.15	02R102		1.07	1.93
Zinc	mg/kg-Wet		15	100	24	33.3	02R112; 02R113	29.5	29.6	33.3	24	33.3	02R112; 02R113		29.6	33.3
Butyltins				~ ~	= -		,				= -		, : -::			
Tributyltin ion	μg/kg-Wet	8	8	100	1.3 J	4.1 J	T02	2.51	2.05 J	4.1 J	1.3 J	4.1 J	T02	2.51	2.05 J	4.1 J
- 110 000 / 10111 1011	μ ₆ , κ ₆ ττοι	· ·	0	100	1.5 5	1.1 0	102	2.51	2.00 0	1.1 3	1.5 5	1.1 0	102	2.51	2.00 0	1.1 3

	,	dy Aica (Rivi 1					Detected Concentratio	ns					Detected and Not Detected Con	centrations		
Analysta	Units	# A nolygod	# Dotootod	% Detected	N:a	Ma	Maximum Location(s)	Mean	ъл. "b	95 th Percentile ^b	Minimum	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile
Analyte	Units	# Allalyzeu	# Detected	76 Detected	Minimum	Maximum ^a	Waxiiiuiii Location(s)	Mean	Median ^b	Percentile	(full DL) ^a	(Iuli DL)	Maximum Location(s)	(Hall DL)	(nail DL)	(half DL) ^b
PCBs ^c																
Total PCBs	μg/kg-Wet	15	15	100	30 JT	277 JT	T01	111	97.1 T	255 J	30 JT	277 JT	T0	111	97.1 T	255 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	9	9	100	21.3 JT	42.4 JT	T02	35.1	36.1 JT	42 J	21.3 JT	42.4 JT	T0:	2 35.1	36.1 JT	42 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	9	9	100	1.2 JT	4.37 JT	T02	2.1	1.74 JT	3.9 J	1.2 JT	4.37 JT	T0:	2.1	1.74 JT	3.9 J
Pesticides																
Aldrin	μg/kg-Wet		0	0							0.16 U	1.2 U	T0:		0.275 U	0.53 U
Dieldrin	μg/kg-Wet		6	40	0.23 J	2.6 N	03R125	1.56	1.65	2.48	0.22 U	2.7 U	02R112; 04R12		0.85 UT	2.25
Total chlordanes	μg/kg-Wet	15	12	80	0.59 NJ	7.8 NJ	03R125	3.2	2.54 J	7.69 J	0.59 NJT	19 UT	02R112; 02R111		3.92 JT	9.5 U
DDx	μg/kg-Wet	15	15	100	16.9 NJ	284 T	T02	77.4	32.5 NJT	276	16.9 NJT	284 T	T0:	2 77.4	32.5 NJT	276
PAHs																
Total PAHs	μg/kg-Wet	15	10	67	9.96 JT	33 T	02R113	16.2	14.3 J	26.2 J	9.96 JT	41 UT	02R10	2 16.7	16 UT	24.3
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	11	0	0							95 UT	860 UT	04R12	5 156	55 U	395 U
Lamprey Ammocoetes and Macropthalmia																
Conventionals																
Lipids	percent	6	6	100	3.68	9.84	LTMC1	6.55	5.78	9.84	3.68	9.84	LTMC	6.55	5.78	9.84
Metals																
Arsenic	mg/kg-Wet	4	4	100	0.05 J	0.19	LTAC2	0.118	0.115 J	0.184	0.05 J	0.19	LTAC		0.115 J	0.184
Chromium	mg/kg-Wet	4	4	100	0.13 J	0.32	LTAC2	0.248	0.27	0.313	0.13 J	0.32	LTAC	2 0.248	0.27	0.313
Copper	mg/kg-Wet	4	4	100	3.08	6.2	LTMC1	4.27	3.9	5.89	3.08	6.2	LTMC	1 4.27	3.9	5.89
Zinc	mg/kg-Wet	4	4	100	19	26.7	LTA3M2	24.4	25.9	26.7	19	26.7	LTA3M2	2 24.4	25.9	26.7
Butyltins																
Tributyltin ion	μg/kg-Wet	1	1	100	4.1	4.1	LTAC2	4.1	4.1	4.1	4.1	4.1	LTAC	2 4.1	4.1	4.1
PCBs ^c																
Total PCBs	μg/kg-Wet	6	6	100	80.6 JT	399 JT	LTAC2	242	241 J	395 J	80.6 JT	399 JT	LTAC	2 242	241 J	395 J
PCDD/Fs Homologs	P88															
Total PCDD/Fs	pg/g-Wet	6	6	100	69.1 JT	90.1 JT	LTAC2	78.9	78.7	87.8 J	69.1 JT	90.1 JT	LTAC	2 78.9	78.7	87.8 J
PCDD/Fs	188															
TCDD TEQ (ND = 0)	pg/g-Wet	6	6	100	2.36 JT	4.18 JT	LTA3M2	3.11	2.78 J	4.16 J	2.36 JT	4.18 JT	LTA3M	2 3.11	2.78 J	4.16 J
Pesticides	P8 8 11 61	Ü	· ·	100	2.50 01			3.11	2.700		2.0001		211.011.	3.11	2.700	
Aldrin	μg/kg-Wet	6	6	100	0.874	1.82	LT002	1.6	1.76	1.82	0.874	1.82	LT002	2 1.6	1.76	1.82
Dieldrin	μg/kg-Wet		6	100	0.89	6.38	LTMC1	3.24	2.55	6.15	0.89	6.38	LTMC		2.55	6.15
Total chlordanes	μg/kg-Wet		6	100	12.5 JT	29.3 JT	LT002	20.1	19.2 J	28.8 J	12.5 JT	29.3 JT	LT00:		19.2 J	28.8 J
DDx	μg/kg-Wet	6	6	100	42.3 T	121 T	LTMC1	79.1	79.7	111	42.3 T	121 T	LTMC		79.7	111
PAHs	PB/11B WOL	Ü	· ·	100	.2.0 1		Bimer	,,,,	,,,,		1210 1	121 1	21110	, ,,,,	,,.,	
Total PAHs	μg/kg-Wet	3	3	100	48 JT	270 JT	LTAC2	186	240 JT	267 J	48 JT	270 JT	LTAC	2 186	240 JT	267 J
Phthalates	PB/11B WOL		5	100	.0 01	2.001	211162	100	2.001	20, 0	.001	2,001	Birie	100	2.001	20, 0
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	1	1	100	170 J	170 J	LTAC2	170	170 J	170 J	170 J	170 J	LTAC	2 170	170 J	170 J
Largescale sucker (whole body)	P88															
Conventionals																
Lipids	percent	6	6	100	5.4 T	8.7 T	03R014	7.56	7.85	8.68	5.4 T	8.7 T	03R014	7.56	7.85	8.68
Metals	percent	Ü	Ü	100	5.1 1	0.7 1	031011	7.50	7.05	0.00	5.1 1	0.7 1	OSKOI	7.50	7.05	0.00
Arsenic	mg/kg-Wet	6	6	100	0.18	0.27	03R014; 05R006	0.233	0.228	0.27	0.18	0.27	03R014; 05R00	0.233	0.228	0.27
Chromium	mg/kg-Wet		6	100	0.38	2.77 T	08R010	1.12	0.69	2.52	0.38	2.77 T	08R01		0.69	2.52
Copper	mg/kg-Wet		6	100	0.735	1.1 T	08R010	0.901	0.907	1.05	0.735	1.1 T	08R010		0.907	1.05
Zinc	mg/kg-Wet		6	100	17.1	19.7 T	08R010	17.9	17.8	19.3	17.1	19.7 T	08R010		17.8	19.3
	mg/kg-wet	O	Ü	100	17.1	17.7 1	000010	17.5	17.0	17.3	17.1	17.7 1	OSKOT	17.5	17.0	17.3
PCBs ^c	д ххх	_		100	0.5 75	2020 77	000011	610	540	1070 1	05.75	2020 75	00500	1 010	540	1070 1
Total PCBs	μg/kg-Wet	6	6	100	95 T	2020 JT	03R014	819	540	1870 J	95 T	2020 JT	03R01	4 819	540	1870 J
Pesticides	a	_	-	-									2			# 00 T-
Aldrin	μg/kg-Wet		0	0							1 U	13 UT	07R009		2 U	5.38 U
Dieldrin	μg/kg-Wet		0	0							1 U	14 UT	03R014; 07R00		3.05 U	7 U
Total chlordanes	μg/kg-Wet		2	33	8.6 NJ	9.6 NJ	03R014	9.1	9.1 J	9.55 J	7.1 UT	20 UT	07R00		7.05 J	9.9 J
DDx	μg/kg-Wet	6	6	100	143 JT	670 T	08R010	256	177 J	557 J	143 JT	670 T	08R010	256	177 J	557 J
PAHs				_												
Total PAHs	μg/kg-Wet	6	2	33	42 JT	147 JT	07R009	94.5	94.5 J	142 J	26 UT	147 JT	07R009	9 41.1	15.8 U	121 J

5.0-1. Summary Statistics for Indicator Containing	nants in Fish Fishee, State	ay riica (1411 1	11.0).				Detected Concentration	ns					Detected and Not Detected Cor	centrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimuma	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
	Cints	" Tillaly Zea	" Detected	70 Detected	William	Maximum	Maximum Escation(3)	ivican	Median	1 el centile	(Iuli DL)	(Iuli DL)	Waximum Eccation(s)	(Hall DL)	(Hall DL)	(Hall DL)
Phthalates Bis(2-ethylhexyl) phthalate	ug/kg Wat	6	2	33	800 T	3000 JT	08R010	1900	1900 J	2890 Ј	78 UT	3000 JT	08R01	0 663	49 U	2450 Ј
	μg/kg-Wet	O	2	33	800 1	3000 11	08K010	1900	1900 J	2090 J	76 01	3000 11	08801	0 003	49 0	2430 J
Northern pikeminnow (whole body)																
Conventionals		_		100	2.2 5	0.1.70	020014			7.5	2.2 T	0.1 75	02001			5.45
Lipids	percent	6	6	100	2.3 T	8.1 T	03R014	5.25	5.2	7.65	2.3 T	8.1 T	03R01	4 5.25	5.2	7.65
Metals																
Arsenic	mg/kg-Wet		6	100	0.19	0.36	03R014	0.26	0.225	0.36	0.19	0.36	03R01		0.225	0.36
Chromium	mg/kg-Wet		5	83	0.09 J	0.67	07R009	0.402	0.55	0.656	0.08 U	0.67	07R00		0.325 J	0.653
Copper	mg/kg-Wet		6	100	0.575 T	0.89	09R006	0.661	0.6	0.848	0.575 T	0.89	09R00		0.6	0.848
Zinc	mg/kg-Wet	6	6	100	16.4	20	08R010	18	17.9	19.9	16.4	20	08R01	0 18	17.9	19.9
PCBs ^c																
Total PCBs	μg/kg-Wet	6	6	100	370 T	1800 T	07R009	833	690	1600	370 T	1800 T	07R00	9 833	690	1600
Pesticides	P-8-1-8															
Aldrin	μg/kg-Wet	6	0	0							4 UT	13 UT	07R00	9 4.23	4.93 U	6.13 U
Dieldrin	μg/kg-Wet	6	0	0							4.9 UT	14 UT	03R014; 07R00		4.98 U	7 U
Total chlordanes	μg/kg-Wet	6	0	0							11 UT	19 UT	07R00		5.5 U	8.88 U
DDx	μg/kg-Wet	6	6	100	145 T	761 T	07R009	322	261	659	145 T	761 T	07R00		261	659
	μg/kg-wet	U	U	100	143 1	/01 1	078009	344	201	039	140 1	/U1 I	07R00	, 344	201	037
Peamouth (whole body)																
Conventionals		4	4	100	6.02 T	10.7.7	050000	0.02	0.05	10.5	6.00 m	10.7.5	0.5700		0.05	10 <
Lipids	percent	4	4	100	6.93 T	10.7 T	05R006	8.93	9.05	10.6	6.93 T	10.7 T	05R00	6 8.93	9.05	10.6
Metals																
Arsenic	mg/kg-Wet		4	100	0.35	0.48	08R010	0.425	0.435	0.476	0.35	0.48	08R01		0.435	0.476
Chromium	mg/kg-Wet		3	75	0.2	0.49	03R014	0.3	0.21	0.462	0.09 U	0.49	03R01		0.205	0.448
Copper	mg/kg-Wet	4	4	100	0.73	1.61	03R014	1.21	1.25	1.59	0.73	1.61	03R01		1.25	1.59
Zinc	mg/kg-Wet	4	4	100	23.1	25.2	08R010	24.1	24.1	25.1	23.1	25.2	08R01	0 24.1	24.1	25.1
PCBs ^c																
Total PCBs	μg/kg-Wet	4	4	100	138 T	290 T	09R006	187	161	273	138 T	290 T	09R00	6 187	161	273
Pesticides	με/κε ποι	•	•	100	150 1	200 1	071000	107	101	273	150 1	2,01	0,100	0 107	101	273
Aldrin	μg/kg-Wet	4	0	0							1 UT	1.7 UT	08R01	0.613	0.55 U	0.813 U
Dieldrin			0	0							1.4 UT	3.3 UT	09R00		1.03 U	1.57 U
Total chlordanes	μg/kg-Wet		2	50	3.1 NT	3.4 NT	05R006	3.25	3.25	3.39	3.1 NT	3.5 UT 11 UT	03R01		3.25	5.19
	μg/kg-Wet	4	4													
DDx	μg/kg-Wet	4	4	100	132 JT	215 T	09R006	160	146 J	205 J	132 JT	215 T	09R00	6 160	146 J	205 J
Sculpin (whole body)																
Conventionals																
Lipids	percent	38	38	100	2.2 T	6	03R001	4.13	4.12	5.5	2.2 T	6	03R00	1 4.13	4.12	5.5
Metals																
Arsenic	mg/kg-Wet		38	100	0.13	0.35	SP10W	0.22	0.22	0.315	0.13	0.35	SP10V		0.22	0.315
Chromium	mg/kg-Wet	38	22	58	0.1 J	0.6	SP09W	0.235	0.2	0.398	0.07 U	0.6	SP09V	V 0.153	0.105 J	0.358
Copper	mg/kg-Wet	38	38	100	0.929	7.16	SP10W	1.61	1.26	3.77	0.929	7.16	SP10V	V 1.61	1.26	3.77
Zinc	mg/kg-Wet	38	38	100	11.7	18	04R002; 09R001	15	15.2	17.6	11.7	18	04R002; 09R00	1 15	15.2	17.6
Butyltins																
Tributyltin ion	μg/kg-Wet	12	4	33	2.3 J	4 J	SP08E	2.9	2.65 J	3.82 J	1.8 U	4 J	SP081	E 1.57	0.9 U	3.34 J
PCBs ^c																
Total PCBs	μg/kg-Wet	38	38	100	62 JT	8770 JT	SP11E	681	196 J	2590 J	62 JT	8770 JT	SP111	E 681	196 J	2590 J
PCDD/Fs Homologs	μg/kg-wet	36	36	100	02 31	0770 31	SITIL	001	170 3	2370 3	02 31	0770 31	51 111	L 001	170 3	2370 J
Total PCDD/Fs	ma/a Wat	21	21	100	6.19 JT	388 T	07R006	50	15.6 JT	238 T	6.19 JT	388 T	07R00	6 50	15.6 JT	238 Т
	pg/g-Wet	21	21	100	0.19 J1	300 1	07K006	30	13.0 J1	238 1	0.19 J1	300 1	07800	6 30	13.0 J1	238 1
PCDD/Fs	/ 337 /	21	21	100	0.610 IT	21.0 7	07000	2.12	1.20 IT	4.70 m	0.610 IT	21.0 75	07000	. 2.12	1 20 IT	4.70 T
TCDD TEQ (ND = 0)	pg/g-Wet	21	21	100	0.618 JT	31.8 T	07R006	3.13	1.29 JT	4.78 T	0.618 JT	31.8 T	07R00	6 3.13	1.29 JT	4.78 T
Pesticides														_		
Aldrin	μg/kg-Wet		10	26	0.00532 J	0.0348 J	SP08W	0.0155	0.0139 J	0.0297 J	0.00532 J	13 UT	03R034; 06R00		0.5 U	5.06 U
Dieldrin	μg/kg-Wet		26	68	0.867 J	24 JT	02R001	5.08	2.7 J	18 J	0.867 J	24 JT	02R00		2.8 J	15.6 J
Total chlordanes	μg/kg-Wet		26	68	2.5 NJT	16 NJT	07R006	8.91	9.02 J	13.8 J	2.5 NJT		06R00		8.57 J	12.3 J
DDx	μg/kg-Wet		38	100	12.7 JT	3060 T	07R006	157	40.1	572 J	12.7 JT	3060 T	07R00	6 157	40.1	572 J
PAHs																
Total PAHs	μg/kg-Wet	38	22	58	7.8 JT	550 T	SP06W	58.6	32 J	128	7.8 JT	550 T	SP06V	V 41.6	21	62.3
Phthalates	100															
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	38	7	18	73 J	28000 JT	08R003	5410	110 J	22400 J	66 U	28000 JT	08R00	3 1060	75 U	1750 J
_10(2 cm/men/, phaname	μ ₀ μ ₀ , τοι	30	,	10	,,,,	20000 11	001003	3.110	110 5	22 100 3	00 0	20000 51	Jokoo	_ 1000	,,,	1,50 3

				-			Detected Concentration	1S					Detected and Not Detected Con	centrations		o=th
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Smallmouth bass (fillet)					174111111111111				1,1041411	101001111	(1411 2 2)	(1411 2 2)		, ,	(Hun DE)	(11111 2 2)
Conventionals																
		22	22	100	0.22	1 40	SB09E	1.05	1.05	1 20	0.22	1.48	SB09E	E 1.05	1.05	1 20
Lipids	percent	23	23	100	0.32	1.48	3D09E	1.05	1.05	1.38	0.32	1.46	20031	1.03	1.05	1.38
Metals				400	0.44		gp.cer.	0.40=	0.40	0.000	0.44	0.04	gp.cer		0.40	0.000
Arsenic	mg/kg-Wet	23	23	100	0.14	0.34	SB02E	0.195	0.18	0.289	0.14	0.34	SB02F		0.18	0.289
Chromium	mg/kg-Wet	23	2	9	0.2 J	0.9	SB09W	0.55	0.55 J	0.865 J	0.06 U	0.9	SB09W		0.05 U	0.185 J
Copper	mg/kg-Wet	23	23	100	0.187	1.12	05R006	0.395	0.344	0.89	0.187	1.12	05R00e		0.344	0.89
Zinc	mg/kg-Wet	23	23	100	7.12	10.9 J	05R006	8.65	8.63 T	9.61 J	7.12	10.9 J	05R00e	5 8.65	8.63 T	9.61 J
Butyltins																
Tributyltin ion	μg/kg-Wet	18	4	22	0.48 J	0.92 JT	SB04E	0.68	0.66 J	0.893 J	0.35 U	0.92 JT	SB04E	E 0.287	0.175 U	0.767 J
PCBs ^c																
Total PCBs	μg/kg-Wet	23	23	100	27 JT	1480 JT	SB011E	144	65.8 JT	238 Ј	27 JT	1480 JT	SB011E	E 144	65.8 JT	238 Ј
PCDD/Fs Homologs	μg/kg-vvct	23	23	100	27 31	1400 31	SDOTTE	144	05.0 31	230 J	27 31	1400 31	350111	. 144	05.0 31	236 3
8	ma/a Wat	10	10	100	0.662 JT	56.9 JT	SB07W	4.76	1 / 1	12.3 J	0.662 JT	56.9 JT	SB07W	4.76	1.4 J	12.3 J
Total PCDD/Fs	pg/g-Wet	18	18	100	0.002 J1	56.9 J1	SB0/W	4.76	1.4 J	12.5 J	0.002 J1	36.9 J1	2B0/W	4./6	1.4 J	12.3 J
PCDD/Fs	,	4.0	4.0	400	0.40= ===	0.74.77	an anus	0.000	0.040.7		0.40= ***	0 = 4 ==	an an			
TCDD TEQ (ND = 0)	pg/g-Wet	18	18	100	0.187 JT	8.74 JT	SB07W	0.928	0.369 J	3.27 J	0.187 JT	8.74 JT	SB07W	0.928	0.369 J	3.27 J
Pesticides																
Aldrin	μg/kg-Wet	23	6	26	0.005 J	0.011 J	SB09W	0.00664	0.00589 J	0.00998 J	0.00334 U	1 U	03R014; 05R006; 06R024 08R032; 09R006	*	0.0206 U	0.5 U
Dieldrin	μg/kg-Wet	23	21	91	0.183	3.3 NJ	03R014	0.555	0.364	1.4 NJ	0.183	3.3 NJ	03R014	4 0.55	0.369	1.36 J
Total chlordanes	μg/kg-Wet	23	21	91	0.915 JT	4.1 NJ	03R014	1.75	1.51 JT	3 NJ'	0.915 JT	4.1 NJT	03R014	4 1.69	1.51 JT	2.95 J
DDx	μg/kg-Wet	23	23	100	6.41 JT	181 T	SB07W	26	15.5 JT	47.7 J	6.41 JT	181 T	SB07W	7 26	15.5 JT	47.7 J
PAHs	P88 **															
Total PAHs	μg/kg-Wet	18	18	100	0.58 JT	84 JT	SB08W	14.1	6.15 J	55.1 J	0.58 JT	84 JT	SB08W	<i>I</i> 14.1	6.15 J	55.1 J
Phthalates	με/κε πτοι	10	10	100	0.50 31	04 31	5B00 W	14.1	0.13 3	55.1 3	0.50 31	0+ 31	5500 11	14.1	0.13 3	33.1 3
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	18	3	17	69 J	130 J	SB09E	97.3	93 J	126 J	66 U	130 J	SB09F	E 43.7	33 U	98.6 J
Smallmouth bass (body without fillet) Conventionals																
Lipids	percent	18	18	100	5.35	8.93	SB09E	6.96	6.79	8.82	5.35	8.93	SB09F	E 6.96	6.79	8.82
Metals																
Arsenic	mg/kg-Wet	18	18	100	0.17	0.38	SB03W	0.252	0.24	0.346	0.17	0.38	SB03W	0.252	0.24	0.346
Chromium	mg/kg-Wet	18	8	44	0.2 J	0.2 J	SB010E; SB010W; SB03E;	0.2	0.2 J	0.2 J	0.1 U	0.2 U	SB010E; SB010W; SB02E	; 0.119	0.075 U	0.2 J
							SB04W; SB07E; SB08E; SB08W; SB09W						SB03E; SB04W; SB07E; SB08E SB08W; SB09W			
Copper	mg/kg-Wet	18	18	100	0.464	2.59	SB010E	1.15	0.948	2.17	0.464	2.59	SB010F		0.948	2.17
Zinc	mg/kg-Wet	18	18	100	11.5 T	15	SB08W	13.4	13.2	14.8	11.5 T	15	SB08W		13.2	14.8
Butyltins	mg/kg wet	10	10	100	11.5 1	13	5B00 W	13.4	13.2	14.0	11.5 1	13	5500 11	13.4	13.2	14.0
Tributyltin ion	μg/kg-Wet	18	0	0							1.8 U	6.4 U	SB08E	E 1.1	0.9 U	2.05 U
•	μg/kg-wei	10	U	U							1.6 0	0.4 0	35001	1.1	0.9 0	2.03 0
PCBs ^c																
Total PCBs	μg/kg-Wet	18	18	100	264 JT	8160 JT	SB011E	1300	677 J	3510 J	264 JT	8160 JT	SB011E	E 1300	677 J	3510 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	18	18	100	7.15 T	433 T	SB07W	40.5	17.3	105	7.15 T	433 T	SB07W	7 40.5	17.3	105
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	18	18	100	1.67 JT	64.9 JT	SB07W	7.45	3.12 J	27.5 J	1.67 JT	64.9 JT	SB07W	7.45	3.12 J	27.5 J
Pesticides	100															
Aldrin	μg/kg-Wet	18	13	72	0.0104 J	0.0566 J	SB09E	0.0282	0.025 JT	0.0537 J	0.0104 J	0.0566 J	SB09F	E 0.023	0.0209 J	0.0525 J
Dieldrin	μg/kg-Wet	18	18	100	1.76	4.17	SB09E	2.85	2.72	3.88	1.76	4.17	SB09E		2.72	3.88
Total chlordanes	μg/kg-Wet	18	18	100	9.57 JT	29.5 T	SB09E SB09W	15.5	14.8 J	20.2 J	9.57 JT	29.5 T	SB09W		14.8 J	20.2 J
DDx	μg/kg-wet μg/kg-Wet	18	18	100	43.1 JT	29.3 T 1840 T	SB09W SB07W	13.3 264	14.8 J 133	780	43.1 JT	29.5 T 1840 T	SB09W SB07W		133	780
	µg/kg-wet	18	18	100	43.1 J1	1040 1	3DU/W	204	133	/80	43.1 J1	1040 1	2B0/W	204	133	/80
PAHs	e		4.0	400	<u> </u>				22 = -	3m: -	.	225 =		· == ·		3 =
Total PAHs	μg/kg-Wet	18	18	100	5.2 JT	230 T	SB06W	57.1	33.5 J	171 J	5.2 JT	230 T	SB06W	7 57.1	33.5 J	171 J
Phthalates																
Bis(2-ethylhexyl) phthalate Smallmouth bass (whole body)	μg/kg-Wet	17	2	12	3700	4000	SB010E	3850	3850	3990	66 U	4000	SB010E	E 527	33 U	3760
Conventionals																
		14	14	100	1.5 T	7.2 T	04R023	5.44	5.75	7.07	1.5 T	7.2 T	04R023	3 5.44	5.75	7.07

	·	•	· ·				Detected Concentratio	ns					Detected and Not Detected Con-	centrations		
										95 th	Minimum	Maximum		M	Median	95 th Percentile
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Maximum Location(s)	Mean (half DL)	(half DL) ^b	(half DL) ^b
Metals											,					
Arsenic	mg/kg-Wet	14	14	100	0.17	0.39	03R014	0.264	0.26	0.358	0.17	0.39	03R014	4 0.264	0.26	0.358
Chromium	mg/kg-Wet		12	86	0.17	1.14	08R010	0.58	0.448	1.08	0.06 U	1.14	08R010		0.425	1.07
Copper	mg/kg-Wet		14	100	0.365	1.29	09R006	0.652	0.565	1.07	0.365	1.29	09R006		0.565	1.07
Zinc	mg/kg-Wet		14	100	13.4	16.3	03R014	14.7	14.5	16.1	13.4	16.3	03R014		14.5	16.1
	mg/kg-wet	14	14	100	13.4	10.5	031014	14.7	14.5	10.1	13.4	10.5	03R01-	14.7	14.5	10.1
PCBs ^c																
Total PCBs	μg/kg-Wet	14	14	100	344 JT	4530 JT	08R010	1120	606 J	3850 J	344 JT	4530 JT	08R010	1120	606 J	3850 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	14	14	100	4.74 T	48.7 T	07R009	19.6	14.6	47.9	4.74 T	48.7 T	07R009	9 19.6	14.6	47.9
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	14	14	100	1.29 JT	7.77 T	07R009	3.47	2.98 J	7.69 J	1.29 JT	7.77 T	07R009	9 3.47	2.98 J	7.69 J
Pesticides																
Aldrin	μg/kg-Wet	14	0	0							1 UT	13 UT	08R010	2.54	2 U	6.5 U
Dieldrin	μg/kg-Wet	14	1	7	7.3 JT	7.3 JT	08R032	7.3	7.3 JT	7.3 JT	4 UT	20 UT	08R010	6.35	7 U	10 U
Total chlordanes	μg/kg-Wet	14	2	14	5.4 NJ	5.6 NJ7	07R009	5.5	5.5 J	5.59 J	5.4 NJT		05R006		5.5 U	12.1 U
DDx	μg/kg-Wet	14	14	100	65 JT	408 T	07R009	205	178 J	379 J	65 JT	408 T	07R009		178 J	379 J
PAHs	ma a. 1101	± ·		-00	00 01	.00 1	0.1009	203	1,00	2.,,	00 01	.00 1	371003	203	1,00	2.,,
Total PAHs	μg/kg-Wet	14	7	50	31 JT	308 T	07R009	131	111 T	291	30 UT	308 T	07R009	73.3	23.5 J	272
Phthalates	μg/kg γιοι	• • •	,	50	31 31	300 1	0/1009	131	111 1	271	30 01	300 1	071005	73.3	23.3	2,2
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	14	2	14	32000 JT	87000 JT	04R023	59500	59500 J	84300 J	86 UT	87000 JT	04R023	3 8620	48.5 U	51300 J
Sturgeon (stomach contents)	μg/kg-wet	14	2	14	32000 J1	07000 J1	041023	37300	37300 3	0 4 300 3	00 01	07000 J1	04R023	0020	40.5 0	31300 J
9 ,																
Conventionals				400			amy vp. 0.0		0.50						0.50	
Lipids	percent	3	3	100	0.37 T	1.7	STWB03	0.953	0.79	1.61	0.37 T	1.7	STWB03	3 0.953	0.79	1.61
Metals																
Arsenic	mg/kg-Wet		3	100	0.17 T	0.82	STWB03	0.447	0.35	0.773	0.17 T	0.82	STWB03		0.35	0.773
Chromium	mg/kg-Wet	3	3	100	0.15 JT	4.1	STWB03	1.58	0.5	3.74	0.15 JT	4.1	STWB03			3.74
Copper	mg/kg-Wet	3	3	100	6.73 J	11 J	STWB01	8.51	7.8 JT	10.7 J	6.73 J	11 J	STWB01	1 8.51	7.8 JT	10.7 J
Zinc	mg/kg-Wet	3	3	100	9.56 T	19.1	STWB01	15.8	18.8	19.1	9.56 T	19.1	STWB01	1 15.8	18.8	19.1
PCBs ^c																
Total PCBs	μg/kg-Wet	1	1	100	10.6 JT	10.6 JT	STWB04	10.6	10.6 JT	10.6 JT	10.6 JT	10.6 JT	STWB04	4 10.6	10.6 JT	10.6 JT
Pesticides	F-88															
Aldrin	μg/kg-Wet	1	1	100	0.00442 J	0.00442 J	STWB04	0.00442	0.00442 J	0.00442 J	0.00442 J	0.00442 J	STWB04	4 0.00442	0.00442 J	0.00442 J
Dieldrin	μg/kg-Wet	1	1	100	0.359	0.359	STWB04	0.359	0.359	0.359	0.359	0.359	STWB04		0.359	0.359
Total chlordanes	μg/kg-Wet	1	1	100	0.914 JT	0.914 JT	STWB04	0.914	0.914 JT	0.914 JT	0.914 JT	0.914 JT	STWB04		0.914 JT	0.914 JT
DDx	μg/kg-Wet	1	1	100	3.61 JT	3.61 JT	STWB04 STWB04	3.61	3.61 JT	3.61 JT	3.61 JT	3.61 JT	STWB0 ²		3.61 JT	3.61 JT
PAHs	μg/kg-wet	1	1	100	3.01 31	5.01 11	31 W B04	5.01	3.01 31	5.01 11	5.01 11	5.01 11	31 W B0-	5.01	3.01 31	5.01 11
	// ***/	3	3	100	2.6 IT	9000 T	STWB03	3010	20 17	8100 J	2 (177	9000 T	STWDO	3 3010	38 JT	8100 J
Total PAHs	μg/kg-Wet	3	3	100	3.6 JT	9000 1	21 M D02	3010	38 JT	8100 J	3.6 JT	9000 1	STWB03	3010	36 J1	8100 J
Sturgeon (fillet without skin)																
Conventionals																
Lipids	percent	5	5	100	0.83	3.4	RM 3.5-9.2	2.03	1.6	3.32	0.83	3.4	RM 3.5-9.2	2 2.03	1.6	3.32
Metals																
Arsenic	mg/kg-Wet	5	5	100	0.157	0.538	RM 3.5-9.2	0.342	0.314	0.515	0.157	0.538	RM 3.5-9.2		0.314	0.515
Chromium	mg/kg-Wet	5	5	100	0.412	3.25	RM 3.5-9.2	1.55	1.17 T	3.07	0.412	3.25	RM 3.5-9.2			3.07
Copper	mg/kg-Wet	5	5	100	0.127	0.253	RM 3.5-9.2	0.189	0.169	0.249	0.127	0.253	RM 3.5-9.2		0.169	0.249
Zinc	mg/kg-Wet		5	100	2.08	2.93 T	RM 3.5-9.2	2.56	2.55	2.89	2.08	2.93 T	RM 3.5-9.2	2.56	2.55	2.89
PCBs ^c																
Total PCBs	μg/kg-Wet	5	5	100	84.7	964	RM 3.5-9.2	289	96.2	812	84.7	964	RM 3.5-9.2	2 289	96.2	812
PCDD/Fs Homologs	μg/kg-11 ει	3	5	100	04.7	704	KW 5.5-7.2	20)	70.2	012	04.7	<i>7</i> 0 1	Kivi 3.3-7.2	. 209	70.2	012
Total PCDD/Fs	ng/g Wat	5	5	100	1.64 T	23.2 T	RM 3.5-9.2	7.72	4.45 T	19.7	1.64 T	23.2 T	RM 3.5-9.2	2 7.72	4.45 T	19.7
	pg/g-Wet	S	3	100	1.04 1	23.2 1	KIVI 3.3-9.2	1.12	4.43 1	17.7	1.04 1	23.2 1	KW 3.3-9.2	1.12	4.43 1	19.7
PCDD/Fs	/ ***	-	-	100	0.125 %	1.22 5	D14050	0.54	0.51 < 5	1.10	0.125 5	1 22 7	D140 7 0		0.516.5	1 10
TCDD TEQ (ND = 0)	pg/g-Wet	5	5	100	0.135 T	1.33 T	RM 3.5-9.2	0.564	0.516 T	1.18	0.135 T	1.33 T	RM 3.5-9.2	2 0.564	0.516 T	1.18
Pesticides														_		
Aldrin	μg/kg-Wet	5	0	0							0.47 U	1 U	RM 3.5-9.2		0.455 UT	
Dieldrin	μg/kg-Wet	5	2	40	0.67 J	1.4 J	RM 3.5-9.2	1.04	1.04 J	1.36 J	0.67 J	1.4 J	RM 3.5-9.2		0.5 U	1.25 J
															2 14	
Total chlordanes DDx	μg/kg-Wet μg/kg-Wet		4	80 100	2.5 JA 38 JT	5.6 JA 125 JT	RM 3.5-9.2 RM 3.5-9.2	4.1 77.7	4.15 J 64 JT	5.56 J 124 J	2.5 JA 38 JT	5.6 JA 125 JT	RM 3.5-9.2 RM 3.5-9.2			

							Detected Concentration	ns					Detected and Not Detected Cond	entrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
PAHs																
Total PAHs	μg/kg-Wet	5	3	60	4 JT	23.1 T	RM 3.5-9.2	11	5.9 JT	21.4 J	4 JT	23.1 T	RM 3.5-9.2	9.6	7.5 UT	20
Sturgeon (whole body)	, , ,															
Conventionals																
Lipids	percent	15	15	100	2.59	8.45	STWB02	5.29	4.59	8.33	2.59	8.45	STWB02	5.29	4.59	8.33
Metals	•															
Arsenic	mg/kg-Wet	15	15	100	0.298 T	1.06	STWB03	0.594	0.56	0.913	0.298 T	1.06	STWB03	0.594	0.56	0.913
Chromium	mg/kg-Wet	15	2	13	0.2 J	40.2	STWB01	20.2	20.2 J	38.2 J	0.1 U	40.2	STWB01	2.74	0.05 U	12.2 J
Copper	mg/kg-Wet	15	15	100	0.544	0.959	STWB01	0.791	0.816	0.945	0.544	0.959	STWB01	0.791	0.816	0.945
Zinc	mg/kg-Wet	15	15	100	7.39	11.9	STWB02	9.53	9.61	11.8	7.39	11.9	STWB02	9.53	9.61	11.8
Butyltins																
Tributyltin ion	μg/kg-Wet	15	4	27	0.61 J	1.1	STWB05	0.775	0.695 J	1.04 J	0.35 U	1.8 U	STWB02; STWB04; STWB05	0.577	0.69 J	0.96
PCBs ^c																
Total PCBs	μg/kg-Wet	15	15	100	69.1 JT	325 JT	STWB04	114	97.4 NJT	186 J	69.1 JT	325 JT	STWB04	114	97.4 NJT	186 J
PCDD/Fs Homologs	, , ,															
Total PCDD/Fs	pg/g-Wet	15	15	100	4.32 JT	13.9 JT	STWB02	8.62	8.21 JT	12.9 J	4.32 JT	13.9 JT	STWB02	8.62	8.21 JT	12.9 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	15	15	100	0.35 JT	1.33 JT	STWB02	0.849	0.945 JT	1.22 J	0.35 JT	1.33 JT	STWB02	0.849	0.945 JT	1.22 J
Pesticides																
Aldrin	μg/kg-Wet	15	13	87	0.0103 J	0.0554 J	STWB01	0.0306	0.0273 J	0.0546 J	0.0103 J	0.0554 J	STWB01	0.0283	0.0266 J	0.0545 J
Dieldrin	μg/kg-Wet	15	15	100	1.24	3.11	STWB04	1.96	1.89 T	2.87	1.24	3.11	STWB04	1.96	1.89 T	2.87
Total chlordanes	μg/kg-Wet	15	15	100	6.22 JT	20.4 T	STWB04	9.98	9.27 JT	14.7	6.22 JT	20.4 T	STWB04	9.98	9.27 JT	14.7
DDx	μg/kg-Wet	15	15	100	77.9 T	176 JT	STWB04	118	124 T	158 J	77.9 T	176 JT	STWB04	118	124 T	158 J
PAHs																
Total PAHs	μg/kg-Wet	15	15	100	1.1 T	61 T	STWB03	9.15	6.4 JT	28.1 J	1.1 T	61 T	STWB03	9.15	6.4 JT	28.1 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	15	4	27	67 J	300	STWB04	147	110 J	276 J	66 U	300	STWB04	63.3	33 U	188 J

Notes:

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

RM - river mile

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalence

- Reason codes for qualifiers:

 J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

- A Total value based on limited number of analytes
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results ranking closest to 0.50 percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results ranking closest to 0.50 percentile is the exact result value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

5.6-2. Summary Statistics for Indicator Contaminants in Fish Tissue From Below the Study Area - Downstream Reach (RM 0 – 1.9) and Multnomah Channel.

5.0-2. Summary Statistics for indicator Contain			···· J				Detected Concentration	S				J	Detected and Not Detected Co	ncentrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Carp (fillet)		" I I I I I I I I I I I I I I I I I I I	" Dettetted	70 2000000	.viiiiiiiiiiiii	Maximum		1,10411	Wichian	rereenine	(Iun DL)	(Iun DL)	Training Education(8)	(1411 22)	(nan DL)	(nan DL)
Conventionals																
Lipids	percent	3	3	100	7.12	9.51	CP0004	8.19	7.95	9.35	7.12	9.51	CP000-	4 8.19	7.95	9.35
Metals	percent	J		100	7.12	7.51	51000.	0.17	7.50	7.00	,2	,	21 000	. 0.17	7.55	7.55
Arsenic	mg/kg-Wet	3	3	100	0.06 J	0.21	CP0004	0.153	0.19	0.208	0.06 J	0.21	CP000-	4 0.153	0.19	0.208
Chromium	mg/kg-Wet	3	0	0							0.1 U	0.2 U	CP0004		0.05 U	0.095 U
Copper	mg/kg-Wet	3	3	100	0.476	0.686	CP0004	0.602	0.643	0.682	0.476	0.686	CP0004		0.643	0.682
Zinc	mg/kg-Wet	3	3	100	24.8	30.6	CP0004	28.4	29.7	30.5	24.8	30.6	CP0004		29.7	30.5
Butyltins	8 8															
Tributyltin ion	μg/kg-Wet	3	3	100	2.6 J	7	CP0004	4.77	4.7	6.77	2.6 J	7	CP0004	4.77	4.7	6.77
PCBs ^c	100															
Total PCBs	μg/kg-Wet	3	3	100	210 JT	260 JT	CP0004	241	254 JT	259 Ј	210 JT	260 JT	CP000-	4 241	254 JT	259 Ј
PCDD/Fs Homologs	με/κς ποι	3	3	100	210 31	200 31	C1 0004	2-11	254 31	23) 3	210 31	200 31	C1 000	7 2-11	234 31	237 3
Total PCDD/Fs	pg/g-Wet	3	3	100	16.6 JT	26.5 JT	CP0004	23.2	26.4 JT	26.5 J	16.6 JT	26.5 JT	CP000-	4 23.2	26.4 JT	26.5 J
PCDD/Fs	PB/B 11 Ct	3	3	100	10.0 31	20.5 31	21 000 1	23.2	20.131	20.5 3	10.0 31	20.5 31	C1 000	. 23.2	20.1 31	20.5 5
TCDD TEQ (ND = 0)	pg/g-Wet	3	3	100	1.88 JT	2.59 JT	CP0004	2.17	2.05 JT	2.54 J	1.88 JT	2.59 JT	CP000-	4 2.17	2.05 JT	2.54 J
Pesticides	PB/B 11 Ct	3	3	100	1.00 31	2.37 01	21 000 1	2.17	2.03 31	2.3 1 3	1.00 31	2.57 31	C1 000	2.17	2.03 31	2.5 1 5
Aldrin	μg/kg-Wet	3	3	100	0.046 J	0.079 J	CP0004	0.0643	0.068 J	0.0779 J	0.046 J	0.079 J	CP000-	4 0.0643	0.068 J	0.0779 J
Dieldrin	μg/kg-Wet	3	3	100	1.66	2.03	CP0004	1.86	1.9	2.02	1.66	2.03	CP000-		1.9	2.02
Total chlordanes	μg/kg-Wet	3	3	100	7.87 JT	11.8 JT	CP0004	9.7	9.43 JT	11.6 J	7.87 JT	11.8 JT	CP000		9.43 JT	11.6 J
DDx	μg/kg-Wet	3	3	100	70 JT	113 T	CP0004	88.4	82.3 T	110	70 JT	113 T	CP000		82.3 T	110
PAHs	μβικς ποι	3	3	100	70 31	113 1	21 000 1	00.1	02.5 1	110	70 31	115 1	C1 000		02.5 1	110
Total PAHs	μg/kg-Wet	3	3	100	30 T	42 JT	CP0004	37.7	41 T	41.9 J	30 T	42 JT	CP000-	4 37.7	41 T	41.9 J
Phthalates	M8/18 // 61	J		100	50 1	.2 01	21 000 .	37.7		.1., 0	20 1	.2 01	21 000			, 0
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	3	0	0							66 U	66 U	CP0004	4 33	33 U	33 U
Carp (body without fillet)																
Conventionals																
Lipids	percent	3	3	100	9.72	11.8	CP0004	11	11.4	11.8	9.72	11.8	CP0004	4 11	11.4	11.8
Metals																
Arsenic	mg/kg-Wet	3	3	100	0.088 J	0.234	CP0004	0.161	0.162	0.227	0.088 J	0.234	CP000-		0.162	0.227
Chromium	mg/kg-Wet	3	3	100	0.47	1.91	CP0004	1.1	0.91	1.81	0.47	1.91	CP0004		0.91	1.81
Copper	mg/kg-Wet	3	3	100	1.07	1.67	CP0004	1.34	1.28	1.63	1.07	1.67	CP0004		1.28	1.63
Zinc	mg/kg-Wet	3	3	100	88	111	CP0004	97.9	94.7	109	88	111	CP0004	4 97.9	94.7	109
Butyltins																
Tributyltin ion	μg/kg-Wet	3	3	100	2.8 J	8.4	CP0004	4.9	3.5 J	7.91 J	2.8 J	8.4	CP0004	4 4.9	3.5 J	7.91 J
PCBs ^c																
Total PCBs	μg/kg-Wet	3	3	100	322 JT	417 JT	CP0004	378	395 JT	415 J	322 JT	417 JT	CP0004	4 378	395 JT	415 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	3	3	100	31.3 T	49.8 T	CP0004	41.9	44.5 T	49.3	31.3 T	49.8 T	CP0004	4 41.9	44.5 T	49.3
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	3	3	100	2.76 T	3.47 JT	CP0004	3.12	3.12 JT	3.44 J	2.76 T	3.47 JT	CP0004	4 3.12	3.12 JT	3.44 J
Pesticides																
Aldrin	μg/kg-Wet	3	3	100	0.0634 J	0.125 J	CP0004	0.0975	0.104 J	0.123 J	0.0634 J	0.125 J	CP000-		0.104 J	0.123 J
Dieldrin	μg/kg-Wet	3	3	100	2.24	2.95	CP0004	2.52	2.36	2.89	2.24	2.95	CP000-	4 2.52	2.36	2.89
Total chlordanes	μg/kg-Wet	3	3	100	10.9 JT	14.5 JT	CP0004	12.6	12.5 JT	14.3 J	10.9 JT	14.5 JT	CP000-	4 12.6	12.5 JT	14.3 J
DDx	μg/kg-Wet	3	3	100	101 T	149 T	CP0004	122	117 JT	146 J	101 T	149 T	CP000-	4 122	117 JT	146 J
PAHs																
Total PAHs	μg/kg-Wet	3	3	100	33 JT	50 T	CP0004	40.7	39 JT	48.9 J	33 JT	50 T	CP000-	4 40.7	39 JT	48.9 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	3	0	0							66 U	66 U	CP000-	4 33	33 U	33 U
Sculpin (whole body)																
Conventionals																
Lipids	percent	2	2	100	2.95	5.64	SP01W	4.3	4.3	5.51	2.95	5.64	SP01V	4.3	4.3	5.51
Metals	•															
Arsenic	mg/kg-Wet	2	2	100	0.33	0.33	SP01E; SP01W	0.33	0.33	0.33	0.33	0.33	SP01E; SP01V	0.33	0.33	0.33
Chromium	mg/kg-Wet	2	2	100	0.2 J	0.4	SP01E	0.3	0.3 J	0.39 J	0.2 J	0.4	SP011		0.3 J	0.39 J
Copper	mg/kg-Wet	2	2	100	1.25	3.77	SP01E	2.51	2.51	3.64	1.25	3.77	SP011		2.51	3.64

5.6-2. Summary Statistics for Indicator Contaminants in Fish Tissue From Below the Study Area - Downstream Reach (RM 0 - 1.9) and Multnomah Channel.

							Detected Concentration	s]	Detected and Not Detected Co	ncentrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Butyltins																
Tributyltin ion	μg/kg-Wet	2	0	0							1.8 U	1.8 U	SP01E; SP01W	0.9	0.9 U	0.9 U
PCBs ^c																
Total PCBs	μg/kg-Wet	2	2	100	80.9 JT	87.7 JT	SP01E	84.3	84.3 J	87.4 J	80.9 JT	87.7 JT	SP01E	84.3	84.3 J	87.4 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	2	2	100	5.85 JT	8.09 JT	SP01W	6.97	6.97 J	7.98 J	5.85 JT	8.09 JT	SP01W	6.97	6.97 J	7.98 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	2	2	100	0.528 JT	0.946 JT	SP01W	0.737	0.737 J	0.925 J	0.528 JT	0.946 JT	SP01W	0.737	0.737 J	0.925 J
Pesticides																
Aldrin	μg/kg-Wet	2	1	50	0.00814 J	0.00814 J	SP01W	0.00814	0.00814 J	0.00814 J	0.00723 U	0.00814 J	SP01W	0.00588	0.00588 J	0.00791 J
Dieldrin	μg/kg-Wet	2	2	100	0.89 J	1.47	SP01W	1.18	1.18 J	1.44 J	0.89 J	1.47	SP01W	1.18	1.18 J	1.44 J
Total chlordanes	μg/kg-Wet	2	2	100	5.83 JT	7.38 JT	SP01W	6.61	6.61 J	7.3 J	5.83 JT	7.38 JT	SP01W	6.61	6.61 J	7.3 J
DDx	μg/kg-Wet	2	2	100	25 JT	37.8 T	SP01W	31.4	31.4 J	37.2 J	25 JT	37.8 T	SP01W	31.4	31.4 J	37.2 J
PAHs																
Total PAHs	μg/kg-Wet	2	2	100	13 T	18 T	SP01E	15.5	15.5	17.8	13 T	18 T	SP01E	15.5	15.5	17.8
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	2	0	0							66 U	66 U	SP01E; SP01W	33	33 U	33 U

Notes:

No fish stomach contents data are available for this area.

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit ND - not detected

RM - river mile

PAH - polycyclic aromatic hydrocarbon PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalence

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

Table 5.6-3. Biota Samples Collected from Above the Study Area - the Downtown Reach (RM 11.8-15.3) and the Upriver Reach (RM 15.3-28.4) including above Willamette Falls.

	Number of	•	·		<u> </u>
Location	Samples	Species	Tissue	Reach	Study Name
Fish Tissue Samples ^a					
28R001	3	Smallmouth bass	Whole body	Upriver	Round 1 tissue samples
28R001	1	Brown bullhead	Whole body	Upriver	Round 1 tissue samples
26R111	1	Chinook	Whole body	Upriver	Round 1a tissue samples
Willamette Falls	4	Lamprey	Whole body	Upriver	ODHS/EPA/ATSDR Fish Contaminant Study
SP12E	1	Sculpin	Whole body	Downtown Reach	Round 3B biota samples
SP12WA	1	Sculpin	Whole body	Downtown Reach	Round 3B biota samples
20R001	3	Smallmouth bass	Whole body	Upriver	Round 1 tissue samples
20R001	2	Brown bullhead	Whole body	Upriver	Round 1 tissue samples
T04	1	Chinook	Stomach contents	Upriver	Round 2A tissue
T04	3	Chinook	Whole body	Upriver	Round 2A tissue
LT023b, LT023c	4	Lamprey	Whole body	Upriver	Round 3 lamprey tissue composites
Clackamas Fish Hatchery	3	Chinook	Fillet	Upriver	ODHS/EPA/ATSDR Fish Contaminant Study
Clackamas Fish Hatchery	3	Chinook	Fillet without skin	Upriver	ODHS/EPA/ATSDR Fish Contaminant Study
Clackamas Fish Hatchery	4	Chinook	Whole body	Upriver	ODHS/EPA/ATSDR Fish Contaminant Study
Invertebrate Tissue Samples	5				
CA12E	1	Clam, lab	Body without shell	Downtown Reach	Round 3B biota samples
CA12W	1	Clam, lab	Body without shell	Downtown Reach	Round 3B biota samples
CA12E	1	Clam, lab	Depurated body without shell	Downtown Reach	Round 3B biota samples
CR12E	1	Crayfish	Whole body	Downtown Reach	Round 3B biota samples
CR12W	1	Crayfish	Whole body	Downtown Reach	Round 3B biota samples

Note:

^a Two additional species collected by ODHS et al. (2003) are not included in discussions of the nature and extent of contamination because, although they were collected above Willamette Falls, they represent conditions outside of the upstream areas. These include:

⁻ Four adult lamprey tissues collected from the Willamette Falls area

⁻ Ten adult chinook samples from the Clackamas River hatchery, including 3 fillets with skin, 3 fillets without skin, and 4 whole bodies.

5.6-4. Summary Statistics for Indicator Contaminants in Fish Tissue, Downtown Reach (RM 11.8-15.3) and Upriver Reach (RM 15.3-28.4).

5.6-4. Summary Statistics for Indicator Contain	mants in Fish Fissue, Dow	vintown Reach	(ICIVI 11.0 13.3)	and Opriver is	teach (ICM 13.3 2	0.7).	Detected Concentrations					Γ	Detected and Not Detected Conc	entrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Brown bullhead (whole body)		-									(")	,				
Conventionals																
Lipids	percent	3	3	100	2.1	2.6	20R001	2.27	2.1	2.55	2.1	2.6	20R00	1 2.27	2.1	2.55
Metals	F															
Arsenic	mg/kg-Wet	3	3	100	0.07 J	0.09 JT	20R001	0.08	0.08 J	0.089 J	0.07 J	0.09 JT	20R00	1 0.08	0.08 J	0.089 J
Chromium	mg/kg-Wet	3	3	100	0.485 T	2.04	28R001	1.08	0.7	1.91	0.485 T	2.04	28R00		0.7	1.91
Copper	mg/kg-Wet	3	3	100	0.625 T	0.89	28R001	0.722	0.65	0.866	0.625 T	0.89	28R00		0.65	0.866
Zinc	mg/kg-Wet	3	3	100	13.9 T	14.5	28R001	14.3	14.4	14.5	13.9 T	14.5	28R00		14.4	14.5
	mg/kg vvec	3	3	100	13.7 1	11.5	201001	11.5	1	11.5	13.5 1	11.5	20100	1 11.5	1	11.5
PCBs ^c	A XXX	2	2	100	10.1 777	7.6.0 PT	207001	22.2	242 77	50 1 T	10.1 77	5 6 0 TT	20700		242 7	50 1 T
Total PCBs	μg/kg-Wet	3	3	100	19.1 JT	56.3 JT	20R001	33.2	24.2 JT	53.1 J	19.1 JT	56.3 JT	20R00	1 33.2	24.2 JT	53.1 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	3	3	100	3.03 T	7.45 T	20R001	5.18	5.06 T	7.21	3.03 T	7.45 T	20R00	1 5.18	5.06 T	7.21
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	3	3	100	0.451 JT	2.9 JT	20R001	1.39	0.807 JT	2.69 J	0.451 JT	2.9 JT	20R00	1 1.39	0.807 JT	2.69 J
Pesticides																
Aldrin	μg/kg-Wet	3	0	0							1 U	1 U	20R001; 28R00	1 0.5	0.5 U	0.5 U
Dieldrin	μg/kg-Wet	3	2	67	1.2 NJ	1.2 NJ	20R001; 28R001	1.2	1.2 J	1.2 J	1 UJ	1.2 NJ	20R001; 28R00	1 0.967	1.2 NJ	1.2 J
Total chlordanes	μg/kg-Wet	3	3	100	1.1 NT	3.7 NJT	20R001	2.3	2.1 NT	3.54 J	1.1 NT	3.7 NJT	20R00		2.1 NT	
DDx	μg/kg-Wet	3	3	100	18 NJT	52 NJT	20R001	30.1	20.4 NJ	48.8 J	18 NJT	52 NJT	20R00		20.4 NJT	
PAHs	με/κε ντει	3	3	100	10 1131	32 1131	201001	30.1	20.4 1131	40.0 3	10 1431	32 1131	20100	30.1	20.4 1131	40.0 3
Total PAHs	ug/kg Wat	3	0	0							33 UT	93 UT	28R00	1 26.5	16.5 UT	43.5 U
	μg/kg-Wet	3	U	U			 -				33 01	93 01	28800	1 20.3	10.5 U I	43.3 U
Phthalates Bis(2-ethylhexyl) phthalate Chinook (stomach contents)	$\mu g/kg$ -Wet	3	1	33	3000 JT	3000 JT	20R001	3000	3000 JT	3000 JT	99 UJT	3000 JT	20R00	1 1030	49.5 UJT	7 2700 Ј
PCBs ^c																
			1	100	10 C IT	10 C IT	T04	10.6	10 C IT	10 C IT	10 C IT	10 C IT	TO	1 10.6	10 C IT	10 C IT
Total PCBs	μg/kg-Wet	1	1	100	10.6 JT	10.6 JT	T04	10.6	10.6 JT	10.6 JT	10.6 JT	10.6 JT	T04	4 10.6	10.6 JT	10.6 JT
Pesticides			_													
Aldrin	μg/kg-Wet	1	0	0							0.000169 U	0.000169 U			0.0000845 U	0.0000845 U
Dieldrin	μg/kg-Wet	1	1	100	0.905	0.905	T04	0.905	0.905	0.905	0.905	0.905	T04		0.905	0.905
Total chlordanes	μg/kg-Wet	1	1	100	2.26 JT	2.26 JT	T04	2.26	2.26 JT	2.26 JT	2.26 JT	2.26 JT	T04	4 2.26	2.26 JT	2.26 JT
DDx	μg/kg-Wet	1	1	100	6.61 JT	6.61 JT	T04	6.61	6.61 JT	6.61 JT	6.61 JT	6.61 JT	T04	4 6.61	6.61 JT	6.61 JT
PAHs																
Total PAHs	μg/kg-Wet	1	1	100	87.4 JT	87.4 JT	T04	87.4	87.4 JT	87.4 JT	87.4 JT	87.4 JT	T04	4 87.4	87.4 JT	87.4 JT
Chinook (fillet without skin)																
·																
PCBs ^c	a 337	2	2	100		10.4 5	CL I FILM	10.1		10.0		10.4 5		10.1		10.0
Total PCBs	μg/kg-Wet	3	3	100	6.89	12.4 T	Clackamas Fish Hatchery	10.1	11	12.3	6.89	12.4 T	Clackamas Fish Hatcher	y 10.1	11	12.3
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	3	3	100	0.652 T	1.09 T	Clackamas Fish Hatchery	0.941	1.08 T	1.09	0.652 T	1.09 T	Clackamas Fish Hatcher	y 0.941	1.08 T	1.09
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	3	3	100	0.0506 T	0.157 T	Clackamas Fish Hatchery	0.119	0.15 T	0.156	0.0506 T	0.157 T	Clackamas Fish Hatcher	y 0.119	0.15 T	0.156
Chinook (fillet)																
Conventionals																
Lipids	percent	3	3	100	7.1	9.7	Clackamas Fish Hatchery	8.83	9.7	9.7	7.1	9.7	Clackamas Fish Hatcher	y 8.83	9.7	9.7
Metals	percent	2	J	100	***	· · ·	Charlands 1 ish 1 laterery	0.02	,.,	· · · ·	/	· · ·		, 0.02	· · · ·	· · · ·
Arsenic	mg/kg-Wet	3	3	100	0.72	1.26	Clackamas Fish Hatchery	1.03	1.11	1.25	0.72	1.26	Clackamas Fish Hatcher	y 1.03	1.11	1.25
		3			0.282	0.33	Clackamas Fish Hatchery	0.308				0.33	Clackamas Fish Hatcher		0.313	
Chromium	mg/kg-Wet		3	100			•		0.313	0.328	0.282					0.328
Copper	mg/kg-Wet	3	3	100	0.507	0.532	Clackamas Fish Hatchery	0.516	0.51	0.53	0.507	0.532	Clackamas Fish Hatcher		0.51	0.53
Zinc	mg/kg-Wet	3	3	100	4.56	4.6	Clackamas Fish Hatchery	4.58	4.57	4.6	4.56	4.6	Clackamas Fish Hatcher	y 4.58	4.57	4.6
PCBs ^c																
Total PCBs	μg/kg-Wet	3	3	100	8.71	15.3	Clackamas Fish Hatchery	12.6	13.8	15.2	8.71	15.3	Clackamas Fish Hatcher	y 12.6	13.8	15.2
PCDD/Fs Homologs	100													-		
Total PCDD/Fs	pg/g-Wet	3	3	100	1.31 T	1.71 T	Clackamas Fish Hatchery	1.48	1.42 T	1.68	1.31 T	1.71 T	Clackamas Fish Hatcher	y 1.48	1.42 T	1.68
PCDD/Fs	P5/5 **Ct	3	3	100	1.51 1	1./1 1	Chackanias i isii i iacilei y	1.70	1.72 1	1.00	1.51 1	1./1 1	Cateranias I isii Hateliei	, 1.40	1.72 1	1.00
	/~ W1-1	2	2	100	0.142 T	0.171 T	Claskames Eigh Hatal	0.156	0.152 T	0.160	0.142 T	0.171 T	Chalennas Eigh Hat the	0150	0.152 T	0.160
TCDD TEQ (ND = 0)	pg/g-Wet	3	3	100	0.143 T	0.171 T	Clackamas Fish Hatchery	0.156	0.153 T	0.169	0.143 T	0.171 T	Clackamas Fish Hatcher	y 0.156	0.153 T	0.169
Pesticides		2	^								0.04.**	0.00 ***	OI 1 P. 1	0 :==	0 155 33	0 1 2 = -
Aldrin	μg/kg-Wet	3	0	0							0.91 U	0.92 U	Clackamas Fish Hatcher		0.455 U	0.46 U
Dieldrin	μg/kg-Wet	3	1	33	2 J	2 J	Clackamas Fish Hatchery	2	2 J	2 J	1.6 U	3.6 U	Clackamas Fish Hatcher		1.8 U	1.98 J
Total chlordanes	μg/kg-Wet	3	0	0							0.91 UA	5.8 UA	Clackamas Fish Hatcher	y 1.57	1.35 UA	2.75 U
Total emordanes	μg/kg-Wet			67			Clackamas Fish Hatchery	11.5	11.5 J		3.6 UT	12 JT	Clackamas Fish Hatcher			

5.6-4. Summary Statistics for Indicator Contaminants in Fish Tissue, Downtown Reach (RM 11.8-15.3) and Upriver Reach (RM 15.3-28.4).

					Acach (RW 13.5-2		Detected Concentrations					Ι	Detected and Not Detected Conce	ntrations		
Analyte	Units	# Anal	lyzed # Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
PAHs			<u>, </u>			THE STATE OF THE S			Medium	Teremine	(run DL)	(run DL)		,	(Hull DL)	(nun DL)
Total PAHs	μg/kg-Wet	3	2	67	1.8 JT	5.4 T	Clackamas Fish Hatchery	3.6	3.6 J	5.22 J	1.8 JT	15 UT	Clackamas Fish Hatchery	4.9	5.4 T	7.29
Chinook (whole body)	P8-18						,									
Conventionals																
Lipids	percent	8	8	100	1.8	11	Clackamas Fish Hatchery	5.65	5.5	10.4	1.8	11	Clackamas Fish Hatchery	5.65	5.5	10.4
Metals							•						•			
Arsenic	mg/kg-Wet	8	8	100	0.03 J	0.979 T	Clackamas Fish Hatchery	0.473	0.43	0.96	0.03 J	0.979 T	Clackamas Fish Hatchery	0.473	0.43	0.96
Chromium	mg/kg-Wet	8	4	50	0.182	0.402	Clackamas Fish Hatchery	0.308	0.325	0.4	0.0579 U	0.402	Clackamas Fish Hatchery	0.17	0.109	0.397
Copper	mg/kg-Wet		8	100	0.879 T	1.5 T	Clackamas Fish Hatchery	1.23	1.37	1.48	0.879 T	1.5 T	Clackamas Fish Hatchery	1.23	1.37	1.48
Zinc	mg/kg-Wet	8	8	100	22	37.5	Clackamas Fish Hatchery	28.7	28.9	36.3	22	37.5	Clackamas Fish Hatchery	28.7	28.9	36.3
Butyltins																
Tributyltin ion PCBs ^c	μg/kg-Wet	3	3	100	0.37 J	0.45 J	T04	0.413	0.42 J	0.447 J	0.37 J	0.45 J	T04	0.413	0.42 J	0.447 J
Total PCBs	μg/kg-Wet	8	8	100	12.8 JT	21.6 JT	T04	15.8	15.2 J	20 J	12.8 JT	21.6 JT	T04	15.8	15.2 J	20 J
PCDD/Fs Homologs	1.0															
Total PCDD/Fs PCDD/Fs	pg/g-Wet	7	7	100	1.32 T	6.18 JT	T04	3.26	1.84 T	5.92 J	1.32 T	6.18 JT	T04	3.26	1.84 T	5.92 J
TCDD TEQ (ND = 0)	pg/g-Wet	7	7	100	0.102 T	1.12 JT	T04	0.395	0.258 T	0.936 J	0.102 T	1.12 JT	T04	0.395	0.258 T	0.936 J
Pesticides	100	·			-	•					-					
Aldrin	μg/kg-Wet	8	0	0							0.16 U	1 U	26R111	0.327	0.46 U	0.493 U
Dieldrin	μg/kg-Wet	8	7	88	0.65 J	1.6 T	Clackamas Fish Hatchery	1.12	1.1 J	1.57 J	0.65 J	1.6 T	Clackamas Fish Hatchery	1.04	0.97 J	1.57 J
Total chlordanes	μg/kg-Wet	8	4	50	1.2 JA	3.02 NJT	T04	2.12	2.13 J	2.89 J	0.96 UA	3.9 UA	Clackamas Fish Hatchery	1.6	1.68 U	2.73 J
DDx PAHs	μg/kg-Wet	8	8	100	5.4 JT	12.2 NJT	T04	8.19	8.2 J	11.2 J	5.4 JT	12.2 NJT	T04	8.19	8.2 J	11.2 J
Total PAHs	μg/kg-Wet	8	6	75	5.2 T	10.1 JT	T04	6.72	6.55 J	9.25 J	5.2 T	27 UT	26R111	7.73	6.65 J	12.3 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	4	2	50	140 J	140 J	T04	140	140 J	140 J	81 UT	140 J	T04	95.1	100 J	140 J
Lamprey Ammocoetes and Macropthalmia Conventionals																
Lipids	percent	8	8	100	3.14	17	Willamette Falls	9.73	11	16.3	3.14	17	Willamette Falls	9.73	11	16.3
Metals																
Arsenic	mg/kg-Wet	8	8	100	0.08 J	0.274	Willamette Falls	0.191	0.2	0.269	0.08 J	0.274	Willamette Falls		0.2	0.269
Chromium	mg/kg-Wet	8	7	88	0.19	0.447	Willamette Falls	0.294	0.29	0.426	0.1 U	0.447	Willamette Falls		0.275	0.422
Copper	mg/kg-Wet			100	3.92	4.8	LT023c; Willamette Falls	4.44	4.45	4.8	3.92	4.8	LT023c; Willamette Falls		4.45	4.8
Zinc	mg/kg-Wet	8	8	100	18	29.1	LT023c	23.3	22.9	29	18	29.1	LT023c	23.3	22.9	29
PCBs ^c																
Total PCBs	μg/kg-Wet	8	8	100	31.3 JT	52.8 JT	LT023c	41.2	42.1	51.3 J	31.3 JT	52.8 JT	LT023c	41.2	42.1	51.3 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	8	8	100	5.6 T	63 T	LT023c	29.6	22.3	61.1 J	5.6 T	63 T	LT023c	29.6	22.3	61.1 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	8	8	100	0.218 T	3.1 JT	LT023c	1.13	0.729 J	2.74 J	0.218 T	3.1 JT	LT023c	1.13	0.729 J	2.74 J
Pesticides		_														
Aldrin	μg/kg-Wet	8	4	50	0.65	2.72	LT023c	1.86	2.03	2.62	0.65	2.72	LT023c		0.558 J	2.49
Dieldrin	μg/kg-Wet		4	50	0.698	5.36	LT023c	2.01	0.986	4.71	0.698	6.2 UJ	Willamette Falls		2.6 UJ	4.57 J
Total chlordanes	μg/kg-Wet			50	8.71 JT	25.2 T	LT023c	15.4	13.8 J	23.5 J	6.5 UJA	25.2 T	LT023c		6.26 J	21.3 J
DDx	μg/kg-Wet	8	4	50	36.8 T	77.1 T	LT023c	54.1	51.2	73.5	23 UJT	77.1 T	LT023c	33.4	25.4 J	68.7
PAHs	/I XXI-4	8	7	00	2.6 IT	57.7 IT	William H. Falla	24.1	24 IT	5.C. 4. I	2 6 17	57.7 IT	W.H 44 - E-H.	21	22.5.1	56 2 I
Total PAHs Phthalates	μg/kg-Wet	8	/	88	3.6 JT	57.7 JT	Willamette Falls	34.1	34 JT	56.4 J	3.6 JT	57.7 JT	Willamette Falls	31	32.5 J	56.2 J
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	4	. 4	100	120 J	160 J	LT023c	138	135 J	157 J	120 J	160 J	LT023c	138	135 J	157 J
Sculpin (whole body)	µg/kg-wct	4	•	100	120 J	100 3	E1023C	136	133 3	137 3	120 J	100 J	E10230	150	133 3	137 3
Conventionals		2	2	100	2 02 T	2.70	CDIOR	2.41	2.41	2.75	2 02 T	2.70	CDIAD	2.41	2 41	275
Lipids Motols	percent	2	2	100	3.03 T	3.79	SP12E	3.41	3.41	3.75	3.03 T	3.79	SP12E	3.41	3.41	3.75
Metals Arsenic	mg/kg-Wet	2	2	100	0.2	0.2	SP12E; SP12WA	0.2	0.2	0.2	0.2	0.2	SP12E: SP12WA	0.2	0.2	0.2
Arsenic Chromium	mg/kg-wet mg/kg-Wet			100	0.2 0.15 JT	0.2 0.3	SP12E; SP12WA SP12E	0.225	0.2 0.225 J	0.2 0.293 J	0.2 0.15 JT	0.2 0.3	SP12E; SP12WA SP12E		0.2 0.225 J	0.2 0.293 J
	mg/kg-wet mg/kg-Wet			100	0.15 J1 0.856 T	2.98	SP12E SP12E	1.92	0.225 J 1.92	0.293 J 2.87	0.15 J1 0.856 T	2.98	SP12E SP12E		0.225 J 1.92	0.293 J 2.87
Copper Zinc	mg/kg-wet mg/kg-Wet			100	0.856 1	2.98 15.3 T	SP12E SP12WA	1.92	1.92	15.3	0.856 1	2.98 15.3 T	SP12E SP12WA		1.92	15.3
Butyltins	mg/kg-wet	2		100	13	15.5 1	SF12WA	13.2	13.4	15.5	13	13.3 1	SF12WA	13.2	13.4	13.3
Tributyltin ion	μg/kg-Wet	2	1	50	6.2 T	6.2 T	SP12WA	6.2	6.2 T	6.2 T	1.8 U	6.2 T	SP12WA	3.55	3.55	5.94

5.6-4. Summary Statistics for Indicator Contaminants in Fish Tissue, Downtown Reach (RM 11.8-15.3) and Upriver Reach (RM 15.3-28.4).

							Detected Concentrations					l	Detected and Not Detected Conce	ntrations		
				-												95 th
										95 th	Minimum	Maximum		Mean	Median	Percentile
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Maximum Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
PCBs ^c																
Total PCBs	μg/kg-Wet	2	2	100	55.8 JT	277 JT	SP12E	166	166 J	266 J	55.8 JT	277 JT	SP12E	166	166 J	266 J
PCDD/Fs Homologs	100															
Total PCDD/Fs	pg/g-Wet	2	2	100	5.27 JT	8.1 JT	SP12WA	6.69	6.69 J	7.96 J	5.27 JT	8.1 JT	SP12WA	6.69	6.69 J	7.96 J
PCDD/Fs	100															
TCDD TEQ ($ND = 0$)	pg/g-Wet	2	2	100	0.617 JT	0.856 JT	SP12WA	0.737	0.737 J	0.844 J	0.617 JT	0.856 JT	SP12WA	0.737	0.737 J	0.844 J
Pesticides																
Aldrin	μg/kg-Wet	2	1	50	0.0101 JT	0.0101 JT	SP12WA	0.0101	0.0101 JT	0.0101 JT	0.00614 U	0.0101 JT	SP12WA	0.00659	0.00659 J	0.00975 J
Dieldrin	μg/kg-Wet	2	2	100	1.11 T	1.26	SP12E	1.19	1.19	1.25	1.11 T	1.26	SP12E	1.19	1.19	1.25
Total chlordanes	μg/kg-Wet	2	2	100	6.28 JT	8.23 JT	SP12E	7.26	7.26 J	8.13 J	6.28 JT	8.23 JT	SP12E	7.26	7.26 J	8.13 J
DDx	μg/kg-Wet	2	2	100	13.5 JT	15 JT	SP12E	14.3	14.3 J	14.9 J	13.5 JT	15 JT	SP12E	14.3	14.3 J	14.9 J
PAHs																
Total PAHs	μg/kg-Wet	2	2	100	9.2 JT	31 JT	SP12WA	20.1	20.1 J	29.9 J	9.2 JT	31 JT	SP12WA	20.1	20.1 J	29.9 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	2	0	0							66 U	66 U	SP12E; SP12WA	33	33 U	33 U
Smallmouth bass (whole body)																
Conventionals																
Lipids	percent	6	6	100	4.1	6.9	20R001	5.37	5.3	6.7	4.1	6.9	20R001	5.37	5.3	6.7
Metals																
Arsenic	mg/kg-Wet	6	6	100	0.1 J	0.36	20R001	0.233	0.235	0.353	0.1 J	0.36	20R001	0.233	0.235	0.353
Chromium	mg/kg-Wet	6	6	100	0.16	2.79	20R001	1.3	1.23	2.65	0.16	2.79	20R001	1.3	1.23	2.65
Copper	mg/kg-Wet	6	6	100	0.37	0.54	20R001	0.452	0.445	0.533	0.37	0.54	20R001	0.452	0.445	0.533
Zinc	mg/kg-Wet	6	6	100	12.8	16.8	28R001	14.7	14.7	16.4	12.8	16.8	28R001	14.7	14.7	16.4
PCBs ^c																
Total PCBs	μg/kg-Wet	6	6	100	78.1 JT	317 JT	20R001	169	117 J	307 J	78.1 JT	317 JT	20R001	169	117 J	307 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	6	6	100	3.99 T	10.5 T	20R001	6.66	5.55	10.3	3.99 T	10.5 T	20R001	6.66	5.55	10.3
PCDD/Fs																
TCDD TEQ ($ND = 0$)	pg/g-Wet	6	6	100	0.905 JT	2.45 JT	20R001	1.46	1.38 J	2.26 J	0.905 JT	2.45 JT	20R001	1.46	1.38 J	2.26 J
Pesticides																
Aldrin	μg/kg-Wet	6	0	0							1 U	3 U	20R001	0.683	0.5 U	1.28 U
Dieldrin	μg/kg-Wet	6	6	100	1.9 NJ	4.5 NJ	20R001	2.83	2.5 J	4.28 J	1.9 NJ	4.5 NJ	20R001	2.83	2.5 J	4.28 J
Total chlordanes	μg/kg-Wet	6	6	100	4.5 NJT	15 NJT	20R001	8.13	6.25 J	14 J	4.5 NJT	15 NJT	20R001		6.25 J	14 J
DDx	μg/kg-Wet	6	6	100	56.9 NJT	120 NJT	20R001	84.8	83.4 J	116 J	56.9 NJT	120 NJT	20R001	84.8	83.4 J	116 J
PAHs																
Total PAHs	μg/kg-Wet	6	0	0							33 UT	93 UT	28R001	27.9	25.8 U	44 U
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	6	1	17	4800 T	4800 T	20R001	4800	4800 T	4800 T	99 UJT	4800 T	20R001	898	108 UJ	3670 J

Notes:

Total PCBs are total PCB congeners whenever available and total Aroclors if not.
 data not available.
 ND - not detected.

ND - not detected RM - river mile

PCB - polychlorinated biphenyl PCDD/F - dioxin/furan TEQ - toxicity equivalence

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT DL - detection limit

PAH - polycyclic aromatic hydrocarbon

carbon TCDD - tetrachlorodibenzo-p-dioxin

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results ranking closest to 0.50 percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results ranking closest to 0.50 percentile is the exact median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

5.6-5. Summary Statistics for Indicator Contaminants		,,	(,-			Detected Concentration	ıs					Detected and Not Detected Conc	entrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Clam (Corbicula spp. – body without shell)							``				(" /	, , , , , , , , , , , , , , , , , , ,	.,,		/ /	/
Conventionals																
Lipids	percent	41	41	100	0.837 T	4.63	FC028	2.22	2.16	3.38	0.837 T	4.63	FC028	2.22	2.16	3.38
Metals	percent			100	0.037 1	1.05	1 0020	2.22	2.10	3.50	0.057 1	1.05	1 0020	2.22	2.10	3.30
Arsenic	mg/kg-Wet	37	37	100	0.654	1.25	FC002	0.905	0.909	1.06	0.654	1.25	FC002	0.905	0.909	1.06
Chromium	mg/kg-Wet	37	37	100	0.4	1.05 T	FC0061	0.619	0.62	0.924	0.054	1.05 T	FC002	0.619	0.62	0.924
	mg/kg-Wet	37	37	100	5.99	13.5	FC023	9.17	9.26	11.6	5.99	13.5	FC023	9.17	9.26	11.6
Copper Zinc	mg/kg-Wet	37	37	100	19.6	54	FC023	33.6	32.5	47.1	19.6	54	FC023	33.6	32.5	47.1
Butyltins	mg/kg-wet	31	31	100	19.0	34	1-C023	33.0	32.3	47.1	19.0	34	1 C023	33.0	32.3	47.1
	/ 337 - 4	22	21	64	2.5	530	FC023	35.3	67	62	1.8 U	530	FC023	22.1	4	45
Tributyltin ion	μg/kg-Wet	33	21	04	2.5	330	FC023	33.3	6.7	63	1.8 U	330	FC023	23.1	4	45
PCBs ^c																
Total PCBs	μg/kg-Wet	40	40	100	50.1 JT	2650 JT	FC016	237	105 J	530	50.1 JT	2650 JT	FC016	237	105 J	530
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	35	35	100	25.3 JT	189 T	FC019	76.1	56.1 JT	175	25.3 JT	189 T	FC019	76.1	56.1 JT	175
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	35	35	100	0.12 JT	5.45 JT	FC018	0.865	0.506 JT	3.37 J	0.12 JT	5.45 JT	FC018	0.865	0.506 JT	3.37 J
Pesticides																
Aldrin	μg/kg-Wet	40	36	90	0.126 J	5.07	FC028	0.384	0.234 J	0.431	0.0901 U	5.07	FC028	0.386	0.245 J	0.529
Dieldrin	μg/kg-Wet	40	37	92	0.338 J	2.62	FC028	0.85	0.801	1.21	0.338 J	2.62	FC028		0.749	1.2
Total chlordanes	μg/kg-Wet	40	40	100	1.1 NJ	16 JT	FC028	3.85	3.27 J	6.49 J	1.1 NJT	16 JT	FC028		3.27 J	6.49 J
DDx	μg/kg-Wet	40	40	100	7.44 JT	463 JT	07R006	52	25	187	7.44 JT	463 JT	07R006	52	25	187
PAHs	μg/kg-wci	40	40	100	7.44 31	403 31	07K000	32	23	107	7.44 31	403 31	07 K 000	32	23	107
Total PAHs	ualka Wat	20	38	100	23 JT	4090 T	EC015	508	204 J	1720	23 JT	4980 T	EC015	508	204 J	1720
	μg/kg-Wet	38	30	100	23 J1	4980 T	FC015	308	204 J	1720	23 J1	4980 1	FC015	308	204 J	1720
Phthalates	Д XXI	27		1.0	77.1	150 I	CAOSWA	110	110.1	140.1	52.11	240 117	07000	52.1	22.11	140.1
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	37	6	16	77 J	150 J	CA05W	112	110 J	148 J	53 U	340 UT	07R006	53.1	33 U	142 J
Clam (Corbicula spp. – depurated w/o shell)																
Conventionals																
Lipids	percent	3	3	100	1	2.14	CA02W	1.7	1.96	2.12	1	2.14	CA02W	1.7	1.96	2.12
Metals																
Arsenic	mg/kg-Wet	3	3	100	0.798	1.35	CA02W	0.989	0.819	1.3	0.798	1.35	CA02W	0.989	0.819	1.3
Chromium	mg/kg-Wet	3	3	100	0.4	0.5	CA02W; CA10W	0.467	0.5	0.5	0.4	0.5	CA02W; CA10W	0.467	0.5	0.5
Copper	mg/kg-Wet	3	3	100	6.85	9.03	CA02W	7.64	7.05	8.83	6.85	9.03	CA02W	7.64	7.05	8.83
Zinc	mg/kg-Wet	3	3	100	19.3	27.9	CA10W	23.2	22.4	27.4	19.3	27.9	CA10W	23.2	22.4	27.4
Butyltins	0 0															
Tributyltin ion	μg/kg-Wet	2	0	0							4.1 U	14 U	CA02W	4.53	4.53 U	6.75 U
PCBs ^c	15 11 g 11 g 11	-	Ü	Ü							0	1.0	6110211			0.75
	Д XXI	2	2	100	00 C III	400 TD	CALLE	220	155 M	4.40	02 (17	400 T	CALLE	220	1.5.5 TD	440
Total PCBs	μg/kg-Wet	3	3	100	82.6 JT	480 T	CA11E	239	155 T	448	82.6 JT	480 T	CA11E	239	155 T	448
PCDD/Fs Homologs				400	242.77	40 F T	G. 40***			44.0.7	242 7		G. 40**			
Total PCDD/Fs	pg/g-Wet	3	3	100	24.3 JT	42.5 JT	CA10W	32.5	30.8 T	41.3 J	24.3 JT	42.5 JT	CA10W	32.5	30.8 T	41.3 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	3	3	100	0.139 JT	0.367 JT	CA02W	0.244	0.227 JT	0.353 J	0.139 JT	0.367 JT	CA02W	0.244	0.227 JT	0.353 J
Pesticides																
Aldrin	μg/kg-Wet	3	2	67	0.173 J	0.278 J	CA02W	0.226	0.226 J	0.273 J	0.0679 U	0.278 J	CA02W		0.173 J	0.268 J
Dieldrin	μg/kg-Wet	3	3	100	0.339 J	0.593 J	CA02W	0.507	0.589 J	0.593 J	0.339 J	0.593 J	CA02W	0.507	0.589 J	0.593 J
Total chlordanes	μg/kg-Wet	3	3	100	1.35 JT	3.11 JT	CA02W	2.31	2.46 JT	3.05 J	1.35 JT	3.11 JT	CA02W	2.31	2.46 JT	3.05 J
DDx	μg/kg-Wet	3	3	100	6.04 JT	27.8 T	CA02W	15.1	11.4 JT	26.2 J	6.04 JT	27.8 T	CA02W		11.4 JT	26.2 J
PAHs																
Total PAHs	μg/kg-Wet	3	3	100	30 JT	220 JT	CA02W	93.3	30 JT	201 J	30 JT	220 JT	CA02W	93.3	30 JT	201 J
Phthalates	P-88															
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	2	0	0							66 U	74 U	CA02W	35	35 U	36.8 U
Crayfish (whole body)	με/ κε- 11 ει	2	U	Ü		-			-		00 0	74 0	CAU2 W	33	33 0	30.0 0
Conventionals																
		22	22	100	0.17	1.2	000001	0.770	0.705	1.17	0.16	1.2	000001	0.770	0.705	1.15
Lipids	percent	32	32	100	0.16	1.3	08R001	0.779	0.785	1.15	0.16	1.3	08R001	0.779	0.785	1.15
Metals			_	_								_				
Arsenic	mg/kg-Wet		31	97	0.235 T	0.5 J	07R004	0.346	0.35 J	0.43 J	0.235 T	0.5 J	07R004	0.34	0.35 J	0.428 J
Chromium	mg/kg-Wet	32	32	100	0.09 J	0.9	02R001; 05R003; 06R001;	0.443	0.4	0.9	0.09 J	0.9	02R001; 05R003; 06R001;	0.443	0.4	0.9
Copper	mg/kg-Wet	32	32	100	10.4	20.2 T	CR11E	14.6	14.8 J	17.7	10.4	20.2 T	CR11E		14.8 J	17.7
	mg/kg-Wet	32	32	100	13.7 J	20.3 J	06R004	17	17	19.8	13.7 J	20.3 J	06R004	17	17	19.8

5.6-5. Summary Statistics for Indicator Contaminan	its in invertebrate 1 iss	suc, Study 2	Arca (RW 1.5-11.	3).			Detected Concentration	ns]	Detected and Not Detected Con	centrations		
Analyte	Units	# Analy:	zed # Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Butyltins												,				
Tributyltin ion	μg/kg-Wet	5	3	60	0.56 J	2.3	CR06W	1.19	0.7 J	2.14 J	0.35 U	2.3	CR06V	W 0.782	0.56 J	1.98 J
PCBs ^c	1.0															
Total PCBs	μg/kg-Wet	32	22	69	10.1 JT	1190 JT	CR11E	99.7	41.7 J	201 J	1.7 UT	1190 JT	CR11	E 69.2	27.9 Ј	139 J
PCDD/Fs Homologs	μg/kg-wct	32	22	0)	10.1 31	1170 31	CKITE	77.1	41.7 3	201 3	1.7 01	1170 31	CKII	L 07.2	21.7 3	137 3
Total PCDD/Fs	pg/g-Wet	15	15	100	12.1 JT	281 T	07R006	59.2	42 JT	164	12.1 JT	281 T	07R00	6 59.2	42 JT	164
PCDD/Fs	pg/g-wet	13	13	100	12.1 11	201 1	078000	39.2	42 J1	104	12.1 J1	201 1	07800	39.2	42 J1	104
TCDD TEO (ND = 0)	ng/g Wet	15	15	100	0.203 JT	18.2 T	07R006	1.91	0.61 JT	6.76	0.203 JT	18.2 T	07R00	6 1.91	0.61 JT	6.76
Pesticides	pg/g-Wet	13	13	100	0.203 31	16.2 1	07K000	1.71	0.01 11	0.70	0.203 11	16.2 1	07800	0 1.91	0.01 11	0.70
Aldrin	μg/kg-Wet	32	1	3	0.037 J	0.037 J	CR08W	0.037	0.037 J	0.037 J	0.00171 UT	2 U	07R00	3 0.439	0.5 U	0.5 U
Dieldrin	μg/kg-Wet	32	5	16	0.00943 JT	0.0471 J	CR08W	0.0202	0.037 J	0.0407 J	0.00943 JT	2 UJ	07R00		0.5 U	0.5 U
Total chlordanes	μg/kg-Wet μg/kg-Wet	32	10	31	0.164 JT	2.7 NJ	04R004	0.0202	0.78 J	2.34 J	0.164 JT	2.7 NJT	04R00		0.5 UJ	1.57 J
DDx	μg/kg-Wet	32	32	100	1.12 JT	84.9 NJ	07R006	10.2	6.95 J	25.9 J	1.12 JT	84.9 NJT	07R00		6.95 J	25.9 J
PAHs	μg/kg-wei	32	32	100	1.12 11	04.9 NJ	078000	10.2	0.93 3	23.9 3	1.12 11	04.9 NJ1	07800	10.2	0.93 3	23.9 3
Total PAHs	μg/kg-Wet	32	8	25	1.2 JT	477 JT	06R004	106	48.4 J	370 J	1.2 JT	477 JT	06R00	48.6	30.5 U	130 J
Phthalates	μg/kg-wei	32	0	23	1.2 11	4// 31	001004	100	40.4 J	370 3	1.2 11	4// 31	OOKOO	4 40.0	30.3 0	150 3
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	32	0	0							66 U	270 UJT	07R00	60	50 UJ	107 U
	μg/kg-wei	32	U	U							00 0	270 031	07800	00	30 03	107 0
Epibenthic invertebrates (whole body)																
Metals	/I XV4	2	2	100	0.240	0.45	MITOO1	0.4	0.4	0.445	0.240	0.45	MITOO	1 04	0.4	0.445
Arsenic	mg/kg-Wet		2	100	0.349	0.45 1.73	MIT001	0.4 1.19	0.4 1.19	0.445 1.68	0.349	0.45 1.73	MIT00		0.4 1.19	0.445 1.68
Chromium	mg/kg-Wet	2	2	100	0.64		MIT009				0.64		MIT00			
Copper	mg/kg-Wet	2	2	100	3.01 J	6 J	MIT001	4.51	4.51 J	5.85 J	3.01 J	6 J	MIT00		4.51 J	5.85 J
Zinc	mg/kg-Wet	2	2	100	12.6 J	24.8 J	MIT009	18.7	18.7 J	24.2 J	12.6 J	24.8 J	MIT00	9 18.7	18.7 J	24.2 J
PCBs ^c																
Total PCBs	μg/kg-Wet	7	7	100	33.1 JT	498 T	MIT004	112	45.6 T	372	33.1 JT	498 T	MIT00	4 112	45.6 T	372
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	7	7	100	49.1 T	213 T	MIT009	119	108 T	205 J	49.1 T	213 T	MIT00	9 119	108 T	205 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	7	7	100	0.275 JT	3.34 JT	MIT356	0.88	0.449 JT	2.56 J	0.275 JT	3.34 JT	MIT35	6 0.88	0.449 JT	2.56 J
Pesticides																
Aldrin	μg/kg-Wet	7	6	86	0.00926 J	0.0872	MIT810	0.0464	0.0382 J	0.0861	0.00926 J	0.0872	MIT81		0.025 J	0.0859
Dieldrin	μg/kg-Wet	7	7	100	0.098	0.396	MIT356	0.238	0.228	0.386	0.098	0.396	MIT35		0.228	0.386
Total chlordanes	μg/kg-Wet	7	7	100	0.313 JT	2.06 JT	MIT356	1.1	0.852 JT	1.96 J	0.313 JT	2.06 JT	MIT35	6 1.1	0.852 JT	1.96 J
DDx	μg/kg-Wet	7	7	100	2.67 T	94.8 T	MIT356	18.4	4.73 JT	69.9	2.67 T	94.8 T	MIT35	6 18.4	4.73 JT	69.9
Lab-exposed clam (Corbicula fluminea – body wi	thout shell)															
Conventionals																
Lipids	percent	34	34	100	0.527	2.29	BT024	1.01	0.874	2.01	0.527	2.29	BT02	4 1.01	0.874	2.01
Metals																
Arsenic	mg/kg-Wet	34	34	100	0.303 JT	0.548	BT023	0.426	0.417 J	0.543	0.303 JT	0.548	BT02	3 0.426	0.417 J	0.543
Chromium	mg/kg-Wet	34	34	100	0.14	0.49	BT033	0.223	0.21	0.379	0.14	0.49	BT03	3 0.223	0.21	0.379
Copper	mg/kg-Wet	34	34	100	2.64 T	5.94 J	BT023	3.82	3.74 J	4.67 J	2.64 T	5.94 J	BT02	3.82	3.74 J	4.67 J
Zinc	mg/kg-Wet	34	34	100	10.8 T	16.8	BT030	13.6	13.8	15.9	10.8 T	16.8	BT03	0 13.6	13.8	15.9
Butyltins																
Tributyltin ion	μg/kg-Wet	34	9	26	1.1	680	BT023	84.1	4.6	422	0.89 U	680	BT02	22.8	0.85 U	22.3
PCBs ^c																
Total PCBs	μg/kg-Wet	34	34	100	19.1 JT	189 T	BT028	43.8	28.4 J	112 J	19.1 JT	189 T	BT02	8 43.8	28.4 J	112 J
PCDD/Fs Homologs	1.0 0															
Total PCDD/Fs	pg/g-Wet	34	34	100	4.48 JT	696 JT	BT017	43.1	12.5 J	111 J	4.48 JT	696 JT	BT01	7 43.1	12.5 J	111 J
PCDD/Fs	188															
TCDD TEQ (ND = 0)	pg/g-Wet	34	34	100	0.00911 JT	40.5 JT	BT017	1.44	0.124 J	1.46 J	0.00911 JT	40.5 JT	BT01	7 1.44	0.124 J	1.46 J
Pesticides	100			~~			_101/						2101			
Aldrin	μg/kg-Wet	34	27	79	0.0119 J	2.14	BT028	0.105	0.0232 J	0.0567 J	0.0119 J	2.14	BT02	8 0.0856	0.02 J	0.053 J
Dieldrin	μg/kg-Wet	34	34	100	0.139 J	4.14	BT028	0.363	0.193	0.659	0.139 J	4.14	BT02		0.193	0.659
Total chlordanes	μg/kg-Wet	34	34	100	1.61 JT	7.7 JT	BT017	3	2.43 J	6.21 J	1.61 JT	7.7 JT	BT01		2.43 J	6.21 J
DDx	μg/kg-Wet	34	34	100	1.13 JT	1040 T	BT018	37	1.97 J	52.2 J	1.13 JT	1040 T	BT01		1.97 J	52.2 J
PAHs	MB/MB (10t	31	51	-00	1.15 51	1010 1	21010	57	2.27	32.2 3	1.15 51	1010 1	B101	_ 57	2.77	J 2.2 3
Total PAHs	μg/kg-Wet	34	34	100	18.2 JT	1320 T	BT012	141	45.1 J	790 J	18.2 JT	1320 T	BT01	2 141	45.1 J	790 J
Phthalates	MB 17 Ct	<i>5</i> r	51	100	10.2 31	1020 1	21012	1.1	15.1 5	,,,,,,	10.2 31	1020 1	B101		.5.1 5	1,70 8
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	34	26	76	53 J	8600	BT028	416	83.5 J	155 J	53 U	8600	BT02	8 324	74.5 J	147 J
= 15(2 cm/men/1) philiatae	MB/NB 1701	31	20	. 0	<i>33 3</i>	2300	21020	110	33.3 0	155 3	33 0	0000	B102	327	, 1.5 0	11/ 5

		-					Detected Concentration	ıs					Detected and Not Detected Cond	entrations		
										а.						95 th
										95 th	Minimum	Maximum		Mean	Median	Percentile
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	(full DL) ^a	Maximum Location(s)	(half DL)	(half DL) ^b	(half DL) ^b
Lab-exposed worm (Lumbriculus variegatus -	- whole body)															
Conventionals																
Lipids	percent	34	34	100	1.35	3.46	BT023	2.39	2.36	2.93	1.35	3.46	BT023	3 2.39	2.36	2.93
Metals																
Arsenic	mg/kg-Wet	34	34	100	0.285	3.04	BT019	1.21	1.17	2	0.285	3.04	BT019	1.21	1.17	2
Chromium	mg/kg-Wet	34	34	100	0.14	0.89	BT025	0.514	0.495	0.794	0.14	0.89	BT025	0.514	0.495	0.794
Copper	mg/kg-Wet	34	34	100	1.83 T	20.2	BT023	2.93	2.32	3.36	1.83 T	20.2	BT023	3 2.93	2.32	3.36
Zinc	mg/kg-Wet	34	34	100	18.2 T	31.5	BT007	26.2	25.9	30.8	18.2 T	31.5	BT007	26.2	25.9	30.8
Butyltins																
Tributyltin ion	μg/kg-Wet	34	14	41	2.1	1700	BT023	131	4.4	627	0.44 U	1700	BT023	54.5	1.2 U	31.5
PCBs ^c	100															
Total PCBs	μg/kg-Wet	34	34	100	44.8 JT	4310 JT	BT028	628	170 J	3300	44.8 JT	4310 JT	BT028	628	170 J	3300
PCDD/Fs Homologs	με κε πτι	31	51	100	11.0 31	1510 51	D 1020	020	1703	3300	11.0 31	1310 31	B1020	020	1703	3300
Total PCDD/Fs	pg/g-Wet	34	34	100	51 JT	6440 T	BT017	369	118	588	51 JT	6440 T	BT017	369	118	588
PCDD/Fs	PS/S Wet	34	34	100	31 31	0440 1	B 1017	307	110	300	31 31	0440 1	BIOL	307	110	300
TCDD TEQ (ND = 0)	pg/g-Wet	34	34	100	0.743 JT	448 JT	BT017	17	2.32 J	18.6 J	0.743 JT	448 JT	BT017	17	2.32 J	18.6 J
Pesticides	PS/S Wet	34	34	100	0.743 31	770 31	B1017	1,	2.32 3	10.0 3	0.743 31	440 31	BIOL	17	2.32 3	10.0 3
Aldrin	μg/kg-Wet	34	33	97	0.043 J	37	BT028	1.55	0.429 J	0.941	0.043 J	37	BT028	3 1.51	0.428 J	0.935
Dieldrin	μg/kg-Wet μg/kg-Wet	34	34	100	0.127 J	26.7	BT028	1.33	0.429 3	1.06	0.043 J 0.127 J	26.7	BT028		0.367	1.06
Total chlordanes	μg/kg-Wet μg/kg-Wet	34	34	100	2.43 JT	71.9 T	BT028	6.65	3.55 J	13.3 J	2.43 JT	71.9 T	BT028		3.55 J	13.3 J
DDx	μg/kg-Wet μg/kg-Wet	34	34	100	14.5 JT	1490 T	BT017	124	40.9 J	542 J	2.43 JT 14.5 JT	1490 T	BT017		40.9 J	542 J
PAHs	μg/kg-wet	34	34	100	14.5 J1	1490 1	B1017	124	40.9 J	342 J	14.3 J1	1490 1	БТОТ	124	40.9 J	342 J
Total PAHs	ualra Wat	34	34	100	92 Т	37300 T	BT014	3200	612 I	19700	83 T	27200 T	DT01	3200	612 I	19700
	μg/kg-Wet	34	34	100	83 T	3/300 1	B1014	3200	612 J	19700	83 1	37300 T	BT014	3200	612 J	19700
Phthalates	/ 337 - 4	34	19	56	69 J	220. I	DT010, DT022	142	120 1	220. I	52 H	220. I	PT010, PT020	02.6	100 I	207 J
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	34	19	30	09 J	220 J	BT010; BT023	142	130 J	220 J	53 U	220 J	BT010; BT023	93.6	100 J	207 J
Mussel (body without shell)																
Conventionals		7	7	100	0.10	0.64	F) 4025	0.401	0.4	0.601	0.10	0.64	EM024	0.401	0.4	0.601
Lipids	percent	/	/	100	0.18	0.64	FM025	0.401	0.4	0.601	0.18	0.64	FM025	0.401	0.4	0.601
Metals		_	_	100		0.44	T			0.7.0	0.004	0.444	T7 500			0.540
Arsenic	mg/kg-Wet	7	7	100	0.224	0.616	FM021	0.385	0.35	0.563	0.224	0.616	FM021		0.35	0.563
Chromium	mg/kg-Wet		3	43	0.21	0.28	FM006	0.248	0.255 JT	0.278 J	0.13 U	0.34 U	FM025		0.17 U	0.273 J
Copper	mg/kg-Wet	7	7	100	1.01	1.82	FM006	1.39	1.37 T	1.78	1.01	1.82	FM006		1.37 T	1.78
Zinc	mg/kg-Wet	7	7	100	15.7	41.5	FM021	27	27.4	39.1	15.7	41.5	FM021	27	27.4	39.1
Butyltins		_	_													
Tributyltin ion	μg/kg-Wet	7	7	100	2.2 J	16 J	FM006	5.8	4.1 J	13 J	2.2 J	16 J	FM006	5.8	4.1 J	13 J
PCBs ^c																
Total PCBs	μg/kg-Wet	7	7	100	5.75 JT	108 JT	FM006	25.7	12.5 JT	82.2 J	5.75 JT	108 JT	FM006	5 25.7	12.5 JT	82.2 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	7	7	100	14.4 JT	66.2 JT	FM006	38.7	40.1 T	63.1 J	14.4 JT	66.2 JT	FM006	38.7	40.1 T	63.1 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	7	7	100	0.0704 JT	0.446 JT	FM006	0.231	0.176 JT	0.428 J	0.0704 JT	0.446 JT	FM006	0.231	0.176 JT	0.428 J
Pesticides																
Aldrin	μg/kg-Wet	7	4	57	0.007 J	0.067 J	FM025	0.023	0.009 J	0.0585 J	0.005 UJ	0.067 J	FM025	0.0143	0.007 J	0.0499 J
Dieldrin	μg/kg-Wet	7	7	100	0.0742 J	0.186 J	FM025	0.136	0.143 J	0.177 J	0.0742 J	0.186 J	FM025	0.136	0.143 J	0.177 J
Total chlordanes	μg/kg-Wet	7	7	100	0.191 JT	0.866 JT	FM025	0.451	0.434 JT	0.763 J	0.191 JT	0.866 JT	FM025	0.451	0.434 JT	0.763 J
DDx	μg/kg-Wet	7	7	100	0.979 JT	4.44 JT	FM025	2.47	2.62 JT	4.05 J	0.979 JT	4.44 JT	FM025	2.47	2.62 JT	4.05 J

				_			Detected Concentration	IS					Detected and Not Detected Cor	centrations		
				_						95 th	Minimum	Maximum		Mean	Median	95 th Percentile
Analyte	Units	# Analyzed	l # Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	Percentile ^b	(full DL) ^a	$(full DL)^a$	Maximum Location(s)	(half DL)	$(half DL)^b$	(half DL) ^b
PAHs																
Total PAHs	μg/kg-Wet	7	7	100	16 JT	150 JT	FM006	44	24 JT	116 J	16 JT	150 JT	FM00	6 44	24 JT	116 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	7	4	57	54 J	120 J	FM006	90.5	94 J	117 J	49 UJ	120 J	FM00	65.7	54 J	114 J

Notes:

a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact mesult value of the 0.95 ranking result. When the ascending list of all results ranking closest to 0.50 percentile is the exact mesult value of the 0.95 ranking result. When the ascending list of all results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

RM - river mile

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalence

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

5.6-6. Summary Statistics for Indicator Contaminants in Invertebrate Tissue from Below the Study Area - Downstream Reach (RM 0 - 1.9) and Multnomah Channel.

							Detected Concentration	ıs					Detected and Not Detected Con	centrations		95 th
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	Percentile (half DL) ^b
Clam (Corbicula spp. – body without shell)	Cints	" Tillary Zeca	" Beteeted	70 Detected	William	Maximum	Maniful Education(b)	171cuii	Median	Tercentile	(Iun DL)	(Iuli DL)	Maximum Location(b)	(Hull DL)	(Hall DL)	(Hall DL)
Conventionals																
Lipids	percent	2	2	100	1.57	2.06 T	CA01E	1.82	1.82	2.04	1.57	2.06 T	CA01H	1.82	1.82	2.04
Metals	percent	2	2	100	1.57	2.00 1	CAUIE	1.62	1.62	2.04	1.57	2.00 1	CAUII	1.02	1.62	2.04
Arsenic	ma/ka Wat	2	2	100	1.03	1.07 T	CA01E	1.05	1.05	1.07	1.03	1.07 T	CA01H	1.05	1.05	1.07
Chromium	mg/kg-Wet mg/kg-Wet	2	2	100	0.5 T	0.62	FC003	0.56	0.56	0.614	0.5 T	0.62	FC003		0.56	0.614
Copper	mg/kg-Wet	2	2	100	8.23 T	9.35	FC003	8.79	8.79	9.29	8.23 T	9.35	FC003		8.79	9.29
Zinc		2	2	100	25.4 T	30.5	FC003	28	28	30.2	25.4 T	30.5	FC003		28	30.2
Butyltins	mg/kg-Wet	2	2	100	23.4 1	30.3	FC003	20	20	30.2	23.4 1	30.3	FC00.	20	20	30.2
Tributyltin ion	μg/kg-Wet	2	1	50	4.7	4.7	FC003	4.7	4.7	4.7	3.5 UT	4.7	FC003	3.23	3.23	4.55
•	μg/kg-wei	2	1	30	4.7	4.7	1003	4.7	4.7	4.7	3.5 01	4.7	100.	3.23	3.23	4.55
PCBs ^c		_	_													
Total PCBs	μg/kg-Wet	2	2	100	70.4 JT	127 T	CA01E	98.7	98.7 J	124 J	70.4 JT	127 T	CA01H	98.7	98.7 J	124 J
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	2	2	100	33.2 JT	39 T	FC003	36.1	36.1 J	38.7 J	33.2 JT	39 T	FC003	36.1	36.1 J	38.7 J
PCDD/Fs														_		
TCDD TEQ (ND = 0)	pg/g-Wet	2	2	100	0.0963 JT	0.379 JT	CA01E	0.238	0.238 J	0.365 J	0.0963 JT	0.379 JT	CA01E	0.238	0.238 J	0.365 J
Pesticides																
Aldrin	μg/kg-Wet	2	2	100	0.144 J	0.23 JT	CA01E	0.187	0.187 J	0.226 J	0.144 J	0.23 JT	CA01I		0.187 J	0.226 J
Dieldrin	μg/kg-Wet	2	2	100	0.591 JT	0.609	FC003	0.6	0.6 J	0.608 J	0.591 JT	0.609	FC003		0.6 J	0.608 J
Total chlordanes	μg/kg-Wet	2	2	100	2.41 JT	3.02 JT	CA01E	2.72	2.72 J	2.99 J	2.41 JT	3.02 JT	CA01E	E 2.72	2.72 J	2.99 J
DDx	μg/kg-Wet	2	2	100	22.8 T	28.5 T	CA01E	25.7	25.7	28.2	22.8 T	28.5 T	CA01E	E 25.7	25.7	28.2
PAHs																
Total PAHs	μg/kg-Wet	2	2	100	95 JT	551 T	FC003	323	323 J	528 J	95 JT	551 T	FC003	323	323 J	528 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	2	0	0							53 U	66 UT	CA01H	E 29.8	29.8 U	32.7 U
Clam (Corbicula spp. – depurated w/o shell)																
Conventionals																
Lipids	percent	1	1	100	1.62	1.62	CA01E	1.62	1.62	1.62	1.62	1.62	CA01H	1.62	1.62	1.62
Metals	•															
Arsenic	mg/kg-Wet	1	1	100	1.02	1.02	CA01E	1.02	1.02	1.02	1.02	1.02	CA01H	1.02	1.02	1.02
Chromium	mg/kg-Wet	1	1	100	0.4	0.4	CA01E	0.4	0.4	0.4	0.4	0.4	CA01H		0.4	0.4
Copper	mg/kg-Wet	1	1	100	7.59	7.59	CA01E	7.59	7.59	7.59	7.59	7.59	CA01I		7.59	7.59
Zinc	mg/kg-Wet	1	1	100	21.3	21.3	CA01E	21.3	21.3	21.3	21.3	21.3	CA01H		21.3	21.3
Butyltins	<i>c c</i>															
Tributyltin ion	μg/kg-Wet	1	0	0							4.1 U	4.1 U	CA01E	E 2.05	2.05 U	2.05 U
PCBs ^c	P-88	_	_	-												
Total PCBs	ug/kg Wat	1	1	100	110 IT	110 JT	CA01E	110	110 IT	110 IT	110 JT	110 JT	CA01H	2 110	110 JT	110 IT
	μg/kg-Wet	1	1	100	110 JT	110 J1	CAUIE	110	110 JT	110 JT	110 11	110 11	CAUIT	E 110	110 11	110 JT
PCDD/Fs Homologs	ma/a Wat	1	1	100	20.2 IT	20.2 IT	CAOIE	20.2	20.2 IT	20.2 IT	20.2 IT	20.2 IT	CAOII	20.2	20.2 IT	20.2 IT
Total PCDD/Fs	pg/g-Wet	1	1	100	29.3 JT	29.3 JT	CA01E	29.3	29.3 JT	29.3 JT	29.3 JT	29.3 JT	CA01E	29.3	29.3 JT	29.3 JT
PCDD/Fs	ma/a Wat	1	1	100	0.102 IT	0.102 IT	CAOIE	0.102	0.102 IT	0.102 IT	0.102 IT	0.102 IT	CAOII	0.102	0.102 IT	0.102 IT
TCDD TEQ (ND = 0)	pg/g-Wet	1	1	100	0.192 JT	0.192 JT	CA01E	0.192	0.192 JT	0.192 JT	0.192 JT	0.192 JT	CA01F	0.192	0.192 JT	0.192 JT
Pesticides	/I XXI .			100	0.107.1	0.107.1	CAOIE	0.107	0.107.1	0.107.1	0.107.1	0.107.1	CAOI	0.107	0.107.1	0.107.1
Aldrin	μg/kg-Wet	1	1	100	0.187 J	0.187 J	CA01E	0.187	0.187 J	0.187 J	0.187 J	0.187 J	CA01F		0.187 J	0.187 J
Dieldrin	μg/kg-Wet	1	1	100	0.504 J	0.504 J	CA01E	0.504	0.504 J	0.504 J	0.504 J	0.504 J	CA01F		0.504 J	0.504 J
Total chlordanes	μg/kg-Wet	1	1	100	2.46 JT	2.46 JT	CA01E	2.46	2.46 JT	2.46 JT	2.46 JT	2.46 JT	CA01H		2.46 JT	2.46 JT
DDx	μg/kg-Wet	1	1	100	23.1 T	23.1 T	CA01E	23.1	23.1 T	23.1 T	23.1 T	23.1 T	CA01E	23.1	23.1 T	23.1 T
PAHs																
Total PAHs	μg/kg-Wet	1	1	100	76 JT	76 JT	CA01E	76	76 JT	76 JT	76 JT	76 JT	CA01E	E 76	76 JT	76 JT
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	1	1	100	89 J	89 J	CA01E	89	89 J	89 J	89 J	89 J	CA01E	E 89	89 J	89 J
Crayfish (whole body)																
Conventionals																
Lipids	percent	2	2	100	1.06	1.08	CR01EA	1.07	1.07	1.08	1.06	1.08	CR01EA	1.07	1.07	1.08
Metals																
Arsenic	mg/kg-Wet	2	2	100	0.34	0.4 T	CR01W	0.37	0.37	0.397	0.34	0.4 T	CR01W	0.37	0.37	0.397
Chromium	mg/kg-Wet	2	2	100	0.2 J	0.4 T	CR01W	0.3	0.3 J	0.39 J	0.2 J	0.4 T	CR01W	0.3	0.3 J	0.39 J
Copper	mg/kg-Wet	2	2	100	14.3 T	15.5	CR01EA	14.9	14.9	15.4	14.3 T	15.5	CR01EA		14.9	15.4
Zinc	mg/kg-Wet	2	2	100	15.3	15.9 T	CR01W	15.6	15.6	15.9	15.3	15.9 T	CR01W	15.6	15.6	15.9

5.6-6. Summary Statistics for Indicator Contaminants in Invertebrate Tissue from Below the Study Area - Downstream Reach (RM 0 - 1.9) and Multnomah Channel.

							Detected Concentration	ıs					Detected and Not Detected Cone	centrations		95 th
Analyte	Units	# Analvzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	Percentile (half DL) ^b
Butyltins				,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	тиминин			Median	Tercentite	(Iun DL)	(run DL)		()	(Hull DL)	(Hull DL)
Tributyltin ion	μg/kg-Wet	2	1	50	1.3 J	1.3 J	CR01EA	1.3	1.3 J	1.3 J	0.35 U	1.3 J	CR01EA	0.738	0.738 J	1.24 J
PCBs ^c	PB8	_	_													
Total PCBs	ua/ka Wat	2	2	100	7.14 JT	7.16 JT	CR01EA	7.15	7.15 J	7.16 J	7.14 JT	7.16 JT	CR01EA	7.15	7.15 J	7.16 J
PCDD/Fs Homologs	μg/kg-Wet	2	2	100	7.14 J1	7.10 J1	CKUIEA	7.13	7.13 J	7.10 J	7.14 J1	7.10 J1	CRUIEA	7.13	7.13 J	7.10 J
Total PCDD/Fs	na/a Wat	2	2	100	11.3 T	12.4 T	CR01W	11.9	11.9	12.3	11.3 T	12.4 T	CR01W	11.9	11.9	12.3
PCDD/Fs	pg/g-Wet	2	2	100	11.5 1	12.4 1	CKUIW	11.9	11.9	12.3	11.5 1	12.4 1	CKUIW	11.9	11.9	12.3
TCDD TEQ (ND = 0)	ng/g Wet	2	2	100	0.21 JT	0.321 JT	CR01W	0.266	0.266 J	0.315 J	0.21 JT	0.321 JT	CR01W	0.266	0.266 J	0.315 J
Pesticides	pg/g-Wet	2	2	100	0.21 11	0.521 11	CROTW	0.200	0.200 J	0.313 3	0.21 31	0.521 31	CKOIW	0.200	0.200 3	0.313 3
Aldrin	μg/kg-Wet	2	0	0							0.00184 U	0.00199 U	CR01W	0.000958	0.000958 U	0.000991 U
Dieldrin	μg/kg-Wet	2	1	50	0.0134 J	0.0134 J	CR01W	0.0134	0.0134 J	0.0134 J	0.0134 J	0.00199 U	CR01EA		0.0102 J	0.0131 J
Total chlordanes	μg/kg-Wet μg/kg-Wet	2	2	100	0.0134 J 0.2 JT	0.207 JT	CR01W	0.204	0.204 J	0.207 J	0.0134 J 0.2 JT	0.207 JT	CR01W		0.204 J	0.207 J
DDx	μg/kg-Wet μg/kg-Wet	2	2	100	2.62 JT	3.17 JT	CR01EA	2.9	2.9 J	3.14 J	2.62 JT	3.17 JT	CR01EA		2.9 J	3.14 J
PAHs	μg/kg-wet	2	2	100	2.02 31	5.17 51	CROILA	2.7	2.7 3	J.14 J	2.02 31	5.17 31	CKOILA	2.7	2.7 3	3.14 3
Total PAHs	μg/kg-Wet	2	2	100	0.99 JT	3.5 JT	CR01EA	2.25	2.25 J	3.37 J	0.99 JT	3.5 JT	CR01EA	2.25	2.25 J	3.37 J
Phthalates	μg/kg wet	2	2	100	0.55 31	3.3 31	CROILI	2.23	2.23 3	3.37 3	0.55 31	3.3 31	CROTE	2.23	2.23	3.37 3
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	2	0	0							66 U	66 U	CR01EA; CR01W	33	33 U	33 U
Lab-exposed clam (Corbicula fluminea – body without s		2	3	3							00 0	00 0	Citorini, Citor W	33	33 0	33 0
Conventionals	incu)															
Lipids	percent	1	1	100	0.77	0.77	BT003	0.77	0.77	0.77	0.77	0.77	BT003	0.77	0.77	0.77
Metals	percent	1	1	100	0.77	0.77	B 1003	0.77	0.77	0.77	0.77	0.77	B 1003	0.77	0.77	0.77
Arsenic	mg/kg-Wet	1	1	100	0.411	0.411	BT003	0.411	0.411	0.411	0.411	0.411	BT003	0.411	0.411	0.411
Chromium	mg/kg-Wet		1	100	0.17	0.17	BT003	0.411	0.17	0.17	0.17	0.17	BT003		0.17	0.17
Copper	mg/kg-Wet	1	1	100	3.67 J	3.67 J	BT003	3.67	3.67 J	3.67 J	3.67 J	3.67 J	BT003		3.67 J	3.67 J
Zinc	mg/kg-Wet	1	1	100	12.2	12.2	BT003	12.2	12.2	12.2	12.2	12.2	BT003		12.2	12.2
Butyltins	mg/kg-vvct	1	1	100	12.2	12.2	B 1003	12.2	12,2	12.2	12.2	12.2	B 1003	12.2	12.2	12.2
Tributyltin ion	μg/kg-Wet	1	0	0							1 U	1 U	BT003	0.5	0.5 U	0.5 U
PCBs ^c	μg/kg wet		O	Ü							1 0	1 0	D 1003	0.5	0.5 0	0.5 C
	/ 33/-4	1		100	10.1 IT	10.1 IT	PT002	10.1	10.1 IT	10.1 IT	10.1 IT	10.1 IT	DT002	10.1	10.1 IT	10.1 IT
Total PCBs	μg/kg-Wet	1	1	100	19.1 JT	19.1 JT	BT003	19.1	19.1 JT	19.1 JT	19.1 JT	19.1 JT	BT003	19.1	19.1 JT	19.1 JT
PCDD/Fs Homologs	/- W/-+	1		100	4.92 T	4.02 T	PT002	4.02	4 02 T	4.02 T	4.02 T	4.02 T	DT002	4.02	4.02 T	4 02 T
Total PCDD/Fs PCDD/Fs	pg/g-Wet	1	1	100	4.83 T	4.83 T	BT003	4.83	4.83 T	4.83 T	4.83 T	4.83 T	BT003	4.83	4.83 T	4.83 T
	ma/a Wat	1	1	100	0.000714 T	0.000714 T	PT002	0.000714	0.000714 T	0.000714 T	0.000714.T	0.000714 T	BT003	0.000714	0.000714 T	0.000714 T
TCDD TEQ (ND = 0)	pg/g-Wet	1	1	100	0.000714 1	0.000/14 1	BT003	0.000714	0.000714 T	0.000714 T	0.000714 T	0.000714 T	Б1003	0.000714	0.000714 T	0.000714 1
Pesticides Aldrin	μg/kg-Wet	1	1	100	0.0118 J	0.0118 J	BT003	0.0118	0.0118 J	0.0118 J	0.0118 J	0.0118 J	BT003	0.0118	0.0118 J	0.0118 J
Dieldrin	μg/kg-Wet μg/kg-Wet	1	1	100	0.0118 J 0.155 J	0.0118 J 0.155 J	BT003	0.0118	0.0118 J 0.155 J	0.155 J	0.118 J	0.0118 J 0.155 J	BT003		0.0118 J 0.155 J	0.0118 J 0.155 J
Total chlordanes	μg/kg-Wet μg/kg-Wet	1	1	100	1.92 JT	1.92 JT	BT003	1.92	1.92 JT	1.92 JT	1.92 JT	1.92 JT	BT003		1.92 JT	1.92 JT
DDx		1	1	100	1.92 JT 1.23 JT	1.92 JT 1.23 JT	BT003	1.92	1.92 JT 1.23 JT	1.92 JT 1.23 JT	1.92 JT 1.23 JT	1.92 JT 1.23 JT	BT003		1.92 JT 1.23 JT	1.23 JT
PAHs	μg/kg-Wet	1	1	100	1.23 11	1.23 J1	B1003	1.23	1.23 11	1.23 11	1.23 11	1.23 11	B1003	1.23	1.23 11	1.23 11
Total PAHs	μg/kg-Wet	1	1	100	27.5 JT	27.5 JT	BT003	27.5	27.5 JT	27.5 JT	27.5 JT	27.5 JT	BT003	27.5	27.5 JT	27.5 JT
Phthalates	μg/kg-wet	1	1	100	27.3 31	27.3 31	B 1003	27.3	27.3 31	27.3 31	27.3 31	27.3 31	B 1003	21.3	27.3 31	27.3 31
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	1	1	100	120 J	120 J	BT003	120	120 J	120 J	120 J	120 J	BT003	120	120 J	120 J
Lab-exposed worm (Lumbriculus variegatus – whole bo			•	100	120 3	120 3	D 1003	120	120 3	120 3	120 3	120 3	D 1003	120	120 3	120 3
Conventionals	uy)															
Lipids	percent	1	1	100	2.07	2.07	BT003	2.07	2.07	2.07	2.07	2.07	BT003	2.07	2.07	2.07
Metals	percent	1	1	100	2.07	2.07	B1003	2.07	2.07	2.07	2.07	2.07	B1003	2.07	2.07	2.07
Arsenic	mg/kg-Wet	1	1	100	0.469	0.469	BT003	0.469	0.469	0.469	0.469	0.469	BT003	0.469	0.469	0.469
Chromium	mg/kg-Wet		1	100	0.409	0.35	BT003	0.409	0.409	0.35	0.35	0.469	BT003		0.409	0.35
Copper	mg/kg-Wet		1	100	2.88	2.88	BT003	2.88	2.88	2.88	2.88	2.88	BT003		2.88	2.88
Zinc	mg/kg-Wet		1	100	26.1	26.1	BT003	26.1	26.1	26.1	26.1	26.1	BT003		26.1	26.1
Butyltins	1116/116 1161	1	1	100	20.1	20.1	D 1003	20.1	20.1	20.1	20.1	20.1	B1003	20.1	20.1	20.1
Tributyltin ion	μg/kg-Wet	1	1	100	2.6	2.6	BT003	2.6	2.6	2.6	2.6	2.6	BT003	2.6	2.6	2.6
	μ ₅ / κg- 11 Cl	1	1	100	2.0	2.0	D 1003	2.0	2.0	2.0	2.0	2.0	B1003	2.0	2.0	2.0
PCBs ^c	/1. \$\$7.			100	40.0 5	40.0 T	DECC	40.0	40.0 5	40.0 75	40.0 75	40.0 75	ржоос	40.0	40.0 75	40.0 70
Total PCBs	μg/kg-Wet	1	1	100	48.9 T	48.9 T	BT003	48.9	48.9 T	48.9 T	48.9 T	48.9 T	BT003	48.9	48.9 T	48.9 T
PCDD/Fs Homologs	/ 337 :			100	60.1 IT	60.1 III	DECC	60.1	60.1 TE	60.1 IT	(0.1 TT	(0.1 TT	ржоос	ZO 1	(0.1 ITT	60.1 TE
Total PCDD/Fs	pg/g-Wet	1	1	100	68.1 JT	68.1 JT	BT003	68.1	68.1 JT	68.1 JT	68.1 JT	68.1 JT	BT003	68.1	68.1 JT	68.1 JT
PCDD/Fs	m ~ / - XX / - ·	1	1	100	104 17	1.24 IT	DECOS	1.24	1 2 4 TE	104 17	1 24 17	1 24 17	ржоод	1.04	1 04 17	1 24 IT
TCDD TEQ (ND = 0)	pg/g-Wet	1	1	100	1.24 JT	1.24 JT	BT003	1.24	1.24 JT	1.24 JT	1.24 JT	1.24 JT	BT003	1.24	1.24 JT	1.24 JT

5.6-6. Summary Statistics for Indicator Contaminants in Invertebrate Tissue from Below the Study Area - Downstream Reach (RM 0 – 1.9) and Multnomah Channel.

							Detected Concentration	ıs					Detected and Not Detected Cond	centrations		
Analyte	Units	# Analyzed	l # Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Pesticides																
Aldrin	μg/kg-Wet	1	1	100	0.073 J	0.073 J	BT003	0.073	0.073 J	0.073 J	0.073 J	0.073 J	BT003	0.073	0.073 J	0.073 J
Dieldrin	μg/kg-Wet	1	1	100	0.499	0.499	BT003	0.499	0.499	0.499	0.499	0.499	BT003	0.499	0.499	0.499
Total chlordanes	μg/kg-Wet		1	100	1.89 JT	1.89 JT	BT003	1.89	1.89 JT	1.89 JT	1.89 JT	1.89 JT	BT003	1.89	1.89 JT	1.89 JT
DDx	μg/kg-Wet	1	1	100	24.4 JT	24.4 JT	BT003	24.4	24.4 JT	24.4 JT	24.4 JT	24.4 JT	BT003	24.4	24.4 JT	24.4 JT
PAHs																
Total PAHs	μg/kg-Wet	1	1	100	517 JT	517 JT	BT003	517	517 JT	517 JT	517 JT	517 JT	BT003	517	517 JT	517 JT
Phthalates	,,,,															
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	1	1	100	130 J	130 J	BT003	130	130 J	130 J	130 J	130 J	BT003	130	130 J	130 J

Notes:

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

ND - not detected

RM - river mile

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalence

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

T - The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

5.6-7. Summary Statistics for Indicator Contaminants in Invertebrate Tissue, Downtown Reach (RM 11.8-15.3) and Upriver Reach (RM 15.3-28.4).

5.0-7. Summary Statistics for Indicator Contaminant		,	ricuen (ruir r	110 1010) unu	opriver reason (1	2011)1	Detected Concentration	ns					Detected and Not Detected Con-	centrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Clam (Corbicula spp. – body without shell)	Cinto	" Tinaiy Zea	" Beteeted	70 Beteeted	141111111111111	Waxiiiuiii	William Education(5)	- Ivicuii	Mculan	Tercentife	(Iuli DL)	(Iuli DL)	Waxiidii Docuton(3)	(Hull DL)	(Hall DL)	(nan DL)
Conventionals																
Lipids	percent	2	2	100	1.78	2.06	CA12E	1.92	1.92	2.05	1.78	2.06	CA12E	1.92	1.92	2.05
Metals	percent	-	2	100	1.70	2.00	CHIZE	1.,2	1.72	2.03	1.70	2.00	0/1121	1.,,2	1.72	2.03
Arsenic	mg/kg-Wet	2	2	100	0.615	0.799	CA12E	0.707	0.707	0.79	0.615	0.799	CA12E	0.707	0.707	0.79
Chromium	mg/kg-Wet	2	2	100	0.5	0.7	CA12E	0.6	0.6	0.69	0.5	0.7	CA12E		0.6	0.69
Copper	mg/kg-Wet	2	2	100	4.57	6.97	CA12E	5.77	5.77	6.85	4.57	6.97	CA12E		5.77	6.85
Zinc	mg/kg-Wet	2	2	100	27.8	30.4	CA12E	29.1	29.1	30.3	27.8	30.4	CA12E		29.1	30.3
Butyltins	mg/kg //ct	-	2	100	27.0	30.1	CHIZE	27.1	27.1	30.5	27.0	30.1	C/1121	2).1	27.1	30.5
Tributyltin ion	μg/kg-Wet	2	0	0							3.8 U	4 U	CA12E	1.95	1.95 U	2 U
•	μg/kg wet	2	O	O							3.0 0	4 0	CATZI	1.75	1.75 0	2 0
PCBs ^c	4 337	ā		100	20 1 III	141 77	GLIAF	00.1	00.1.1	106 1	20.1 77	141 77	G. 125		00.1.1	106 7
Total PCBs	μg/kg-Wet	2	2	100	39.1 JT	141 JT	CA12E	90.1	90.1 J	136 J	39.1 JT	141 JT	CA12E	90.1	90.1 J	136 J
PCDD/Fs Homologs		_	_													
Total PCDD/Fs	pg/g-Wet	2	2	100	33.4 JT	36.6 JT	CA12E	35	35 J	36.4 J	33.4 JT	36.6 JT	CA12E	35	35 J	36.4 J
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	2	2	100	0.215 JT	0.318 JT	CA12E	0.267	0.267 J	0.313 J	0.215 JT	0.318 JT	CA12E	0.267	0.267 J	0.313 J
Pesticides																
Aldrin	μg/kg-Wet	2	2	100	0.11 J	0.13 J	CA12W	0.12	0.12 J	0.129 J	0.11 J	0.13 J	CA12W		0.12 J	0.129 J
Dieldrin	μg/kg-Wet	2	2	100	0.495 J	0.61 J	CA12E	0.553	0.553 J	0.604 J	0.495 J	0.61 J	CA12E	0.553	0.553 J	0.604 J
Total chlordanes	μg/kg-Wet	2	2	100	1.99 JT	2.52 JT	CA12E	2.26	2.26 J	2.49 J	1.99 JT	2.52 JT	CA12E	2.26	2.26 J	2.49 J
DDx	μg/kg-Wet	2	2	100	8.65 JT	9.35 JT	CA12E	9	9 J	9.32 J	8.65 JT	9.35 JT	CA12E	9	9 J	9.32 J
PAHs																
Total PAHs	μg/kg-Wet	2	2	100	22 JT	110 JT	CA12E	66	66 J	106 J	22 JT	110 JT	CA12E	66	66 J	106 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	2	1	50	150 J	150 J	CA12E	150	150 J	150 J	66 U	150 J	CA12E	91.5	91.5 J	144 J
Clam (Corbicula spp. – depurated w/o shell)																
Conventionals																
Lipids	percent	1	1	100	1.43	1.43	CA12E	1.43	1.43	1.43	1.43	1.43	CA12E	1.43	1.43	1.43
Metals	percent	•	•	100	1	11.15	0.1122	1	1	15	11.10	11.0	0.1121	11.15	11.10	11.15
Arsenic	mg/kg-Wet	1	1	100	0.76	0.76	CA12E	0.76	0.76	0.76	0.76	0.76	CA12E	0.76	0.76	0.76
Chromium	mg/kg-Wet	1	1	100	0.5	0.5	CA12E	0.5	0.5	0.5	0.5	0.5	CA12E		0.5	0.5
Copper	mg/kg-Wet	1	1	100	7.62	7.62	CA12E	7.62	7.62	7.62	7.62	7.62	CA12E		7.62	7.62
Zinc	mg/kg-Wet	1	1	100	23.7	23.7	CA12E	23.7	23.7	23.7	23.7	23.7	CA12E		23.7	23.7
Butyltins	mg/kg-wet	1	1	100	23.1	23.1	CAIZE	23.1	23.1	23.1	23.1	23.1	CAIZI	23.1	23.1	23.1
· ·	allra Wat	1	0	0							4 U	4 U	CA 12E	2	2 11	2.11
Tributyltin ion	μg/kg-Wet	1	U	U							4 0	4 U	CA12E	2	2 U	2 U
PCBs ^c																
Total PCBs	μg/kg-Wet	1	1	100	87.2 JT	87.2 JT	CA12E	87.2	87.2 JT	87.2 JT	87.2 JT	87.2 JT	CA12E	87.2	87.2 JT	87.2 JT
PCDD/Fs Homologs																
Total PCDD/Fs	pg/g-Wet	1	1	100	25.9 JT	25.9 JT	CA12E	25.9	25.9 JT	25.9 JT	25.9 JT	25.9 JT	CA12E	25.9	25.9 JT	25.9 JT
PCDD/Fs																
TCDD TEQ (ND = 0)	pg/g-Wet	1	1	100	0.22 JT	0.22 JT	CA12E	0.22	0.22 JT	0.22 JT	0.22 JT	0.22 JT	CA12E	0.22	0.22 JT	0.22 JT
Pesticides																
Aldrin	μg/kg-Wet	1	0	0							0.0766 U	0.0766 U	CA12E	0.0383	0.0383 U	0.0383 U
Dieldrin	μg/kg-Wet	1	1	100	0.425 J	0.425 J	CA12E	0.425	0.425 J	0.425 J	0.425 J	0.425 J	CA12E	0.425	0.425 J	0.425 J
Total chlordanes	μg/kg-Wet	1	1	100	1.9 JT	1.9 JT	CA12E	1.9	1.9 JT	1.9 JT	1.9 JT	1.9 JT	CA12E	1.9	1.9 JT	1.9 JT
DDx	μg/kg-Wet	1	1	100	7.01 JT	7.01 JT	CA12E	7.01	7.01 JT	7.01 JT	7.01 JT	7.01 JT	CA12E	7.01	7.01 JT	7.01 JT
PAHs																
Total PAHs	μg/kg-Wet	1	1	100	23 JT	23 JT	CA12E	23	23 JT	23 JT	23 JT	23 JT	CA12E	23	23 JT	23 JT
Phthalates	100															
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	1	1	100	190 J	190 J	CA12E	190	190 J	190 J	190 J	190 J	CA12E	190	190 J	190 J
Crayfish (whole body)	100															
Conventionals																
Lipids	percent	2	2	100	1.02	1.12	CR12E	1.07	1.07	1.12	1.02	1.12	CR12E	1.07	1.07	1.12
Metals	percent	2	2	100	1.02	1.12	CRIZE	1.07	1.07	1.12	1.02	1.12	CK12L	1.07	1.07	1.12
	madea Wat	2	2	100	0.20	0.29	CR12E; CR12W	0.29	0.29	0.29	0.20	0.29	CR12E; CR12W	0.29	0.29	0.29
Arsenic Chromium	mg/kg-Wet	2	2	100	0.29 0.3 J	0.29	CR12E; CR12W	0.29	0.29 0.35 J	0.29 0.395 J	0.29 0.3 J	0.29	· · · · · · · · · · · · · · · · · · ·		0.29 0.35 J	
	mg/kg-Wet	2											CR12E			0.395 J
Copper	mg/kg-Wet	2	2	100	17	18	CR12W	17.5	17.5	18	17	18	CR12W		17.5	18
Zinc	mg/kg-Wet	2	2	100	18.9	19.4	CR12W	19.2	19.2	19.4	18.9	19.4	CR12W	19.2	19.2	19.4

5.6-7. Summary Statistics for Indicator Contaminants in Invertebrate Tissue, Downtown Reach (RM 11.8-15.3) and Upriver Reach (RM 15.3-28.4).

							Detected Concentration	S					Detected and Not Detected Cond	entrations		
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Maximum Location(s)	Mean	Median ^b	95 th Percentile ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Maximum Location(s)	Mean (half DL)	Median (half DL) ^b	95 th Percentile (half DL) ^b
Butyltins																
Tributyltin ion	μg/kg-Wet	2	1	50	1.6	1.6	CR12W	1.6	1.6	1.6	0.35 U	1.6	CR12W	0.888	0.888	1.53
PCBs ^c																
Total PCBs	μg/kg-Wet	2	2	100	7.41 JT	19.4 JT	CR12E	13.4	13.4 J	18.8 J	7.41 JT	19.4 JT	CR12E	13.4	13.4 J	18.8 J
PCDD/Fs Homologs	100															
Total PCDD/Fs	pg/g-Wet	2	2	100	9.46 T	14 T	CR12E	11.7	11.7	13.8	9.46 T	14 T	CR12E	11.7	11.7	13.8
PCDD/Fs	100															
TCDD TEQ (ND = 0)	pg/g-Wet	2	2	100	0.283 JT	0.485 JT	CR12E	0.384	0.384 J	0.475 J	0.283 JT	0.485 JT	CR12E	0.384	0.384 J	0.475 J
Pesticides																
Aldrin	μg/kg-Wet	2	0	0							0.00205 U	0.00337 U	CR12W	0.00136	0.00136 U	0.00165 U
Dieldrin	μg/kg-Wet	2	2	100	0.0105 J	0.0164 J	CR12W	0.0135	0.0135 J	0.0161 J	0.0105 J	0.0164 J	CR12W	0.0135	0.0135 J	0.0161 J
Total chlordanes	μg/kg-Wet	2	2	100	0.226 JT	0.382 JT	CR12E	0.304	0.304 J	0.374 J	0.226 JT	0.382 JT	CR12E	0.304	0.304 J	0.374 J
DDx	μg/kg-Wet	2	2	100	1.75 JT	2.47 JT	CR12E	2.11	2.11 J	2.43 J	1.75 JT	2.47 JT	CR12E	2.11	2.11 J	2.43 J
PAHs																
Total PAHs	μg/kg-Wet	2	2	100	1.3 JT	1.7 JT	CR12E	1.5	1.5 J	1.68 J	1.3 JT	1.7 JT	CR12E	1.5	1.5 J	1.68 J
Phthalates																
Bis(2-ethylhexyl) phthalate	μg/kg-Wet	2	0	0							84 U	120 U	CR12W	51	51 U	59.1 U

Notes:

^c Total PCBs are total PCB congeners whenever available and total Aroclors if not.

-- data not available.

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit ND - not detected

RM - river mile

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxicity equivalence

Reason codes for qualifiers:

J - The associated numerical value is an estimated quantity.

U - The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

Reason codes for descriptors:

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified.

Table 5.6-8. Biota Composite Samples Not Part of the Study Area Data Set.

River Mile	Species	Tissue	Sample ID
RM 1-2	Clam	Body without shell	LW3-CA01E-C01
RM 1-2	Clam	Depurated body without shell	LW3-CA01E-C00D
RM 1-2	Crayfish	Whole body	LW3-CR01E-ALT-C00
RM 1-2	Crayfish	Whole body	LW3-CR01W-C00
RM 1-2	Sculpin	Whole body	LW3-SP01E-C00
RM 1-2	Sculpin	Whole body	LW3-SP01W-C00
RM 11.8-12.2	Clam	Body without shell	LW3-CA12W-C00
RM 11.8-12.2	Clam	Body without shell	LW3-CA12E-C00
RM 11.8-12.2	Clam	Depurated body without shell	LW3-CA12E-C00D
RM 11.8-12.2	Crayfish	Whole body	LW3-CR12W-C00
RM 11.8-12.2	Crayfish	Whole body	LW3-CR12E-C00
RM 11.8-12.2	Sculpin	Whole body	LW3-SP12W-ALT-C01
RM 11.8-12.2	Sculpin	Whole body	LW3-SP12E-C00
Multnomah Channel	Clam	Body without shell	LW2-BTFC003
Multnomah Channel	Clam, lab	Body without shell	LW2-BTLC003
Multnomah Channel	Lumbriculus variegatus	Whole body	LW2-BTLW003

Table 6.0-1. Indicator Contaminant Lists for External Loading Analyses.

	Upstream Surface Water Loading	Stormwater Loading	Atmospheric Deposition Loading	Upland Groundwater Plume Loading	Advective Loading from Sediment (Surface and Subsurface)
Analyte	Loading	Loauing	Loaunig	Trume Loading	Subsurface)
Metals	X	X	X	X	X
Arsenic	Λ	Λ	Λ		Λ
Barium				X	
Cadmium	X	X	X	X	
Chromium	X X	X X	X X	X	X
Copper	X	X	X X	X	X
Lead Manganese	Λ	Λ	Λ	X	Λ
Mercury	X	X	X	X	X
Nickel	X	X	X X	X	Λ
Zinc	X	X	X	X	
	Λ	Λ	Λ	Λ	
Butyltins					
Tributyltin ion	X		X		X
PCBs					
PCB077	X	X	X		X
PCB081	X	X	X		X
PCB105	X	X	X		X
PCB118 ^a	X	X	X		X
PCB118 PCB126		X	X		
	X				X
PCB156 & PCB157 b	X	X	X		
PCB169	X	X	X		X
Total PCB Congeners	X				
Total PCBs ^c	X	X	X		X
PCB TEQ (ND=0) d	X	X	X		
PCDD/Fs					
Total PCDD/Fs	X		X		X
TCDD TEQ (ND=0) d	X		X		
DDx Pesticides					
4,4'-DDD	X	X	X	X	X
4,4'-DDT	X	X	X	X	X
Total DDE	X	X	X	X	X
Total DDD	X	X	X	X	X
Total DDT	X	X	X	X	X
DDx	X	X	X	X	X
Non-DDx Pesticides					
Total chlordanes ^e	X	X	X		X
γ-Hexachlorocyclohexane (Lindane)	X	X	X		X
Aldrin	X	X	X		X
Dieldrin	X	X	X		X
Polycyclic Aromatic Hydrocarbons					
Naphthalene	X	X	X	X	X
Benzo(a)pyrene	X	X	X	X	X
Total cPAHs ^f					
	X	X	X	X	X
Total cPAHs BaPEq ^g	X	X	X	X	X
Total HPAHs				X	
Total LPAHs				X	
Total PAHs	X	X	X	X	X

Table 6.0-1. Indicator Contaminant Lists for External Loading Analyses.

Analysis	Upstream Surface Water Loading	Stormwater Loading	Atmospheric Deposition Loading	Upland Groundwater Plume Loading	Advective Loading from Sediment (Surface and Subsurface)
Analyte	Loaunig	Loading	Loading	Trume Loading	Subsurface)
Semivolatile Organic Compounds					
Bis(2-ethylhexyl)phthalate	X	X			X
1,2-Dichlorobenzene				X	
Pentachlorophenol	X^h		X		
Hexachlorobenzene	X	X	X		
Volatile Organic Compounds					
1,2-Dichloroethane				X	
1,1,2-Trichloroethane				X	
1,2,4-Trimethylbenzene				X	
Benzene				X	
Carbon disulfide				X	
Chlorobenzene				X	
Chloroethane				X	
Chloroform				X	
cis-1,2-Dichloroethene				X	
Methylene Chloride				X	
Ethylbenzene				X	
Toluene				X	
Trichloroethene				X	
Vinyl Chloride				X	
Total Xylenes				X	
Petroleum					
Total Petroleum Hydrocarbons (Gasoline)					
Total Petroleum Hydrocarbons (Diesel)			X		
Total Petroleum Hydrocarbons (Residual)			X		
Total Petroleum Hydrocarbons			X		

g cPAH BaPEq

Analyte	PEF	CAS
Benzo(a)anthracene	0.1	56-55-3
Benzo(a)pyrene	1	50-32-8
Benzo(b)fluoranthene	0.1	205-99-2
Benzo(k)fluoranthene	0.01	207-08-9
Chrysene	0.001	218-01-9
Dibenzo(a,h)anthracene	1	53-70-3
Indeno(1,2,3-cd)pyrene	0.1	193-39-5

^h Due to low detection frequency, pentachlorophenol loads were not calculated for surface water.

BaPEq - benzo(a)pyrene equivalent PCDD/F - dioxin/furan

cPAH - carcinogenic polycyclic aromatic hydrocarbon TEF - toxicity equivalency factor

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

PCB - polychlorinated biphenyl

TEQ - toxic equivalent concentration

WHO - World Health Organization

^a PCB118 includes PCB106 for co-eluted samples.

^b PCB156 & PCB157 summations were used in loading calculations for samples which were not co-eluted.

^c Total PCB loads were generated using PCB congener data; PCB Aroclor data were used where congener data were not available.

^d Toxic equivalency factors (TEFs) for dioxin-like compounds, mammalian WHO 2005 TEFs.

^e Total chlordanes includes the sum of: α-chlordane, γ-chlordane, oxychlordane, cis-nonachlor, trans-nonachlor.

^f Total cPAHs includes the sum of: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene.

Table 6.1-1. Surface Water Upstream (RM 11.8) Estimated Annual Loading Summary.

Table 6.1-1. Surface Water Opstream		Annual Upstream Loa	
-	Upper Loading	Central Loading	Lower Loading
Analyte	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)
Metals			
Arsenic	14400	9490	4110
Chromium	33500	21100	11500
Copper	68100	46500	27200
Lead	15600	9380	4060
Mercury	875	232	0
Nickel	41300	26100	6280
Zinc	159000	92400	35400
Butyltins			
Tributyltin Ion	76.8	11	0
•			
PCBs PCB077	0.01587	0.00931	0.00519
	0.00141	0.000360	
PCB105			0 0.0252
PCB105	0.0808	0.0525	
PCB118 PCB126	0.213	0.135	0.0607
	0.000732	0.000275	0 0.00596
PCB156 & PCB157	0.03037	0.0173	
PCB169	0.00041	0.0000721	0
Total PCB Congeners	7.39	4.71	2.94
PCB TEQ (ND=0)	0.0000847	0.0000376	0.0000035
PCDD/Fs			
Total PCDD/Fs	0.913	0.599	0.204
TCDD TEQ (ND=0)	0.00239	0.00145	0.000575
Pesticides			
4,4'-DDD	1.82	1.06	0.58
4,4'-DDT	5.12	3.25	1.04
Total DDE	3.37	2.5	0.83
Total DDD	2.29	1.33	0.763
Total DDT	5.49	3.7	1.31
DDx	10	7.53	3.01
Total chlordanes	1.62	1.22	0.686
γ-Hexachlorocyclohexane (Lindane	0.771	0.577	0.286
Aldrin	0.0896	0.0664	0.0441
Dieldrin	5.97	3.49	1.5
PAHs			
Naphthalene	262	96.6	0
Benzo(a)pyrene	10.8	5.09	0
Total cPAHs	60.1	35.9	8.28
cPAH BaPEq	13.8	6.87	0.7
Total PAHs	662	380	159
	002	300	137
SVOCs	1.000	7540	•
Bis(2-ethylhexyl)phthalate	16700	7540	0
Hexachlorobenzene	1.7	1.02	0.574

BaPEq - benzo(a)pyrene equivalent

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

SVOC - semivolatile organic compound

TEQ - toxic equivalent concentration

^a Upstream loading estimates were generated based on the combined data sets from surface water sampling transects located at RM 11 and 16.

Table 6.1-2. Annual Total Estimated Stormwater Loads.

		Composite Study A FT01-FT	rea		Sedir Study FT01-	Area		
Analyte	Geomean Loading Estimate (kg/yr)	Basin Weighted Mean Loading Estimate (kg/yr)	Upper Loading	Lower Loading Estimate (kg/yr)	Geomean Loading Estimate (kg/yr)	Basin Weighted Mean Loading Estimate (kg/yr)	Upper Loading Estimate (kg/yr)	Lower Loading Estimate (kg/yr)
Metals								
Arsenic	1.08E+01	2.91E+01	4.98E+01	3.67E+00	4.20E+00	6.77E+00	1.61E+01	1.57E+00
Chromium	7.44E+01	8.30E+01	1.18E+02	5.43E+01	4.65E+01	4.19E+01	8.77E+01	3.75E+01
Copper	2.82E+02	3.73E+02	5.21E+02	1.68E+02	2.98E+02	3.10E+02	4.01E+02	2.77E+02
Lead	2.26E+02	3.24E+02	5.04E+02	1.42E+02	1.13E+02	1.17E+02	2.72E+02	7.10E+01
Mercury	4.40E-01	5.00E-01	7.75E-01	3.29E-01	9.34E-02	1.12E-01	1.49E-01	7.35E-02
Nickel	5.06E+01	6.19E+01	9.02E+01	3.09E+01	1.77E+01	1.62E+01	4.19E+01	1.03E+01
Zinc	2.18E+03	2.66E+03	3.63E+03	1.44E+03	4.80E+02	5.97E+02	7.61E+02	3.15E+02
PCBs								
PCB077	2.51E-03	4.08E-03	8.64E-03	1.76E-03	7.04E-04	8.97E-04	1.78E-03	4.62E-04
PCB081	1.08E-04	1.28E-04	2.19E-04	8.89E-05	9.45E-05	1.28E-04	2.21E-04	7.10E-05
PCB105	1.93E-02	2.91E-02	6.48E-02	1.43E-02	5.63E-03	7.28E-03	1.31E-02	4.18E-03
PCB118	4.52E-02	6.83E-02	1.40E-01	3.38E-02	1.16E-02	1.57E-02	3.03E-02	8.32E-03
PCB126	3.92E-04	5.74E-04	1.71E-03	2.35E-04	1.10E-04	1.28E-04	3.37E-04	7.49E-05
PCB156 & PCB157	7.63E-03	1.13E-02	2.52E-02	5.55E-03	1.92E-03	2.48E-03	5.05E-03	1.40E-03
PCB169	4.75E-05	5.42E-05	2.45E-04	3.14E-05	6.53E-06	6.69E-06	2.42E-05	3.93E-06
Total PCBs	1.36E+00	2.03E+00	4.07E+00	1.02E+00	3.37E-01	4.34E-01	7.59E-01	2.45E-01
PCB TEQ	2.91E-05	5.49E-05	1.67E-04	2.06E-05	8.22E-06	1.31E-05	3.52E-05	5.54E-06
Pesticides								
4,4'-DDD	4.07E-02	4.17E-02	4.70E-02	3.76E-02	3.37E-02	3.46E-02	4.30E-02	3.23E-02
4,4'-DDT	1.60E-01	1.66E-01	1.82E-01	1.47E-01	1.40E-01	1.44E-01	2.15E-01	1.29E-01
Total DDE	9.08E-02	9.34E-02	1.02E-01	8.64E-02	8.69E-02	8.73E-02	9.73E-02	8.44E-02
Total DDD	5.77E-02	6.39E-02	8.36E-02	5.05E-02	5.00E-02	5.00E-02	6.23E-02	4.68E-02
Total DDT	2.24E-01	2.38E-01	2.62E-01	2.09E-01	2.19E-01	2.29E-01	3.70E-01	2.04E-01
DDx	3.84E-01	3.95E-01	4.20E-01	3.59E-01	3.59E-01	3.66E-01	5.11E-01	3.38E-01
Total Chlordanes	3.85E-02	4.08E-02	5.64E-02	2.15E-02	8.50E-03	1.28E-02	1.66E-02	5.93E-03
γ-Hexachlorocyclohexane (Lindane)	1.16E-02	1.26E-02	2.09E-02	6.15E-03	1.57E-03	2.01E-03	6.22E-03	5.63E-04
Hexachlorobenzene	4.59E-03	1.12E-01	4.39E-01	2.91E-04	1.39E-03	1.53E-03	4.44E-03	5.54E-04
Aldrin	6.93E-03	6.90E-03	1.32E-02	3.89E-03	1.67E-03	2.18E-03	9.52E-03	1.03E-03
Dieldrin	1.23E-02	1.46E-02	2.18E-02	8.87E-03	7.61E-03	7.60E-03	1.06E-02	6.75E-03

Table 6.1-2. Annual Total Estimated Stormwater Loads.

		Sediment										
		Study A FT01-F7			Study Area							
		Basin Weighted Mean	FT01-FT44 Basin Weighted									
	Geomean Loading	Loading Estimate	Upper Loading	Geomean Loading	Mean Loading	Upper Loading	Lower Loading					
Analyte	Estimate (kg/yr)	(kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)				
PAHs												
Naphthalene	3.12E-01	5.71E-01	8.56E-01	1.37E-01	3.69E-02	1.42E-01	1.41E+00	1.80E-02				
Benzo(a)pyrene	5.80E-01	7.53E-01	1.53E+00	3.86E-01	7.17E-01	8.66E-01	1.86E+00	4.90E-01				
Total cPAHs BaPEq	9.47E-01	1.25E+00	2.50E+00	6.21E-01	1.06E+00	1.34E+00	2.86E+00	7.27E-01				
Total PAHs	1.24E+01	1.51E+01	3.23E+01	6.52E+00	1.27E+01	1.52E+01	1.43E+02	5.82E+00				
Phthalates												
Bis(2-ethylhexyl)phthalate	1.68E+01	2.08E+01	2.79E+01	1.10E+01	5.26E+00	5.30E+00	2.61E+01	2.63E+00				

The values presented in these tables represent calculations made for the 2009 Draft RI report and may not reflect final stormwater loading and fate and transport modeling methodologies.

BaPEq - benzo(a)pyrene equivalent

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

EPA - U.S. Environmental Protection Agency

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

TEQ - toxic equivalent concentration

Table 6.1-3a. Percentage of Stormwater Composite Water Loading by Land Use and Non-Representative Location.

	Representative Land Use Types Non-Representative Outfalls																		
Analyte	Heavy Industrial	Light Industrial	Parks/Open Space	Residential/C	Major Transportation	Total of Representative Land Uses	Basin L	Basin R	OF22B	WR107	WR123	WR14	WR142/145	WR147	WR161	WR22	WR384	WR96	Total of Non- Representative Outfalls
Metals																			
Arsenic	63.73%	11.12%	3.35%	4.67%	5.09%	87.96%												12.04%	12.04%
Chromium	32.57%	10.76%	3.98%	4.49%	5.49%	57.30%		4.62%			0.20%					23.46%	14.42%		42.70%
Copper	49.61%	7.79%	1.07%	4.91%	6.93%	70.30%		1.91%					8.26%	2.95%	4.35%		12.22%		29.70%
Lead	37.57%	11.82%	0.62%	4.51%	3.66%	58.17%		7.91%	1.91%					1.57%			30.45%		41.83%
Mercury	29.44%	10.00%	5.89%	6.20%	1.64%	53.18%		1.66%	3.38%								36.49%	5.30%	46.82%
Nickel	61.31%	8.96%	4.93%	5.25%	5.66%	86.11%		2.31%									11.58%		13.89%
Zinc	55.07%	8.71%	0.67%	3.72%	4.39%	72.56%		3.84%					13.15%		2.12%		8.33%		27.44%
PCBs																			
PCB077	30.12%	3.55%	0.18%	1.03%	1.62%	36.49%											63.51%		63.51%
PCB081	16.19%	5.42%	1.59%	8.47%	2.23%	33.90%											66.10%		66.10%
PCB105	26.70%	2.01%	0.10%	0.68%	0.95%	30.44%											69.56%		69.56%
PCB118	25.84%	2.02%	0.11%	0.69%	0.95%	29.61%											70.39%		70.39%
PCB126	42.32%	5.40%	1.29%	3.14%	1.30%	53.45%											46.55%		46.55%
PCB156 & 157	28.49%	2.00%	0.11%	0.69%	0.87%	32.16%											67.84%		67.84%
PCB169	56.87%	12.14%	6.09%	21.24%	3.66%	100.00%													0.00%
Total PCBs	25.45%	2.47%	0.04%	0.60%	1.03%	29.59%											70.41%		70.41%
PCB TEQ	28.31%	3.64%	0.00%	0.12%	1.44%	33.51%											66.49%		66.49%
Pesticides																			
4,4'-DDD	23.64%	0.35%	0.02%	0.53%	0.21%	24.75%			9.46%									65.79%	75.25%
4,4'-DDT	19.92%	0.21%	0.03%	1.46%	0.15%	21.78%												78.22%	78.22%
Total DDE	7.08%	0.44%	0.08%	0.91%	0.16%	8.66%			1.84%									89.51%	91.34%
Total DDD	20.71%	0.43%	0.01%	0.80%	0.15%	22.11%			6.78%									71.11%	77.89%
Total DDT	9.38%	0.16%	0.03%	1.15%	0.11%	10.83%			0.27%									88.90%	89.17%
DDx	13.11%	0.16%	0.04%	1.02%	0.04%	14.36%			1.43%									84.21%	85.64%
Total chlordanes	86.30%	2.04%	0.02%	1.48%	0.99%	90.83%			7.52%					1.66%					9.17%
γ-Hexachlorocyclohexane (Lindane)	95.53%	3.23%	0.02%	1.06%	0.16%	100.00%													0.00%
Hexachlorobenzene	86.88%	4.27%	0.05%	7.66%	1.13%	100.00%													0.00%
Aldrin	86.56%	2.20%	0.06%	0.76%	0.34%	89.92%			10.08%										10.08%
Dieldrin	44.99%	2.18%	0.06%	2.57%	0.70%	50.50%			49.50%										49.50%
PAHs																			
Naphthalene	58.14%	20.44%	5.55%	5.03%	10.85%	100.00%													0.00%
Benzo(a)pyrene	38.70%	12.95%	0.67%	2.52%	8.52%	63.36%	15.16%			1.67%		0.35%					19.45%		36.64%
Total cPAHs BaPEq	35.17%	13.18%	0.30%	2.20%	8.60%	59.46%	14.84%			1.56%		0.45%					23.70%		40.54%
Total PAHs	48.98%	12.72%	0.17%	2.12%	8.23%	72.21%	7.38%										20.40%		27.79%
Phthalates																			
Bis(2-ethylhexyl) phthalate	52.26%	23.09%	3.16%	17.28%	0.00%	95.79%	1.69%						2.53%						4.21%

Percentages are based on the geomean of the site averaged loads in kilograms.

BaPEq - benzo(a)pyrene equivalent

cPAH - careinogenic polycyclic aromatic hydrocarbon DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl TEQ - toxic equivalent concentration

Table 6.1-3b. Percentage of Stormwater Sediment Loading by Land Use and Non-Representative Location.

	presentative Land Use Types								N	on-Representativ	ve Outfalls								
	Heavy Industrial	Light Industrial	Parks/Open Space	Residential/C ommercial	Major Transportation	Total of Representative Land Uses	Basin L	Basin R	OF22B	WR107	WR123	WR14	WR142/145	WR147	WR161	WR22	WR384	WR96	Total of Non- Representative Outfalls
Metals																			
Arsenic	84.72%	6.20%	1.24%	4.36%	3.48%	100.00%													0.00%
Chromium	27.88%	20.19%	1.34%	3.97%	4.92%	58.30%					0.16%					37.09%	4.45%		41.70%
Copper	11.08%	1.51%	0.14%	1.08%	2.15%	15.96%									82.11%		1.93%		84.04%
Lead	44.27%	33.12%	0.27%	4.82%	4.27%	86.74%											13.26%		13.26%
Mercury	45.02%	10.24%	1.19%	6.62%	2.83%	65.90%											34.10%		34.10%
Nickel	70.56%	10.50%	1.78%	5.51%	8.09%	96.45%											3.55%		3.55%
Zinc	57.34%	6.68%	0.35%	4.49%	7.21%	76.07%									17.44%		6.49%		23.93%
PCBs																			
PCB077	38.54%	3.47%	0.03%	1.86%	3.24%	47.14%											52.86%		52.86%
PCB081	27.31%	2.20%	0.23%	1.06%	1.52%	32.31%											67.69%		67.69%
PCB105	29.88%	2.63%	0.07%	2.29%	1.79%	36.65%											63.35%		63.35%
PCB118	33.85%	2.83%	0.08%	2.70%	2.03%	41.48%											58.52%		58.52%
PCB126	47.62%	4.35%	0.16%	2.23%	2.58%	56.95%											43.05%		43.05%
PCB156 & 157	34.86%	2.59%	0.05%	2.14%	1.97%	41.60%											58.40%		58.40%
PCB169	72.77%	10.90%	8.11%	2.94%	5.28%	100.00%													0.00%
Total PCBs	33.65%	2.82%	0.04%	1.89%	2.29%	40.69%											59.31%		59.31%
PCB TEQ	30.33%	1.93%	0.00%	3.07%	3.54%	38.88%											61.12%		61.12%
Pesticides																			
4,4'-DDD	7.45%	0.43%	0.02%	0.64%	0.26%	8.79%			11.57%									79.64%	91.21%
4,4'-DDT	7.78%	0.24%	0.04%	1.68%	0.17%	9.91%												90.09%	90.09%
Total DDE	2.86%	0.46%	0.08%	0.95%	0.17%	4.51%			1.95%									93.54%	95.49%
Total DDD	8.26%	0.50%	0.01%	0.92%	0.17%	9.87%			7.93%									82.21%	90.13%
Total DDT	7.11%	0.17%	0.03%	1.18%	0.11%	8.59%			0.30%									91.11%	91.41%
DDx	6.84%	0.17%	0.04%	1.09%	0.04%	8.17%			1.58%									90.25%	91.83%
Total chlordanes	31.40%	9.23%	0.08%	6.72%	4.49%	51.92%			36.66%					11.42%					48.08%
γ-Hexachlorocyclohexane (Lindane)	67.03%	23.82%	0.14%	7.82%	1.19%	100.00%													0.00%
Hexachlorobenzene	56.57%	14.15%	0.18%	25.35%	3.75%	100.00%													0.00%
Aldrin	42.15%	9.09%	0.25%	3.14%	1.42%	56.05%			43.95%										43.95%
Dieldrin	10.34%	3.53%	0.09%	4.17%	1.14%	19.27%			80.73%										80.73%
PAHs																			
Naphthalene	49.49%	20.07%	0.21%	4.37%	25.86%	100.00%													0.00%
Benzo(a)pyrene	32.19%	13.90%	0.14%	4.67%	4.11%	55.01%	26.83%			4.49%		0.57%					13.11%		44.99%
Total cPAHs BaPEq	27.89%	15.49%	0.12%	4.59%	3.80%	51.89%	26.73%			4.29%		0.69%					16.39%		48.11%
Total PAHs	57.42%	9.91%	0.08%	2.62%	3.84%	73.87%	13.48%										12.65%		26.13%
Phthalates																			
Bis(2-ethylhexyl) phthalate	49.79%	22.85%	0.01%	6.29%	15.67%	94.60%	5.40%												5.40%

Percentage are based on the geomean of the site averaged loads in kilograms.

BaPEq - benzo(a)pyrene equivalent

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT PAH - polycyclic aromatic hydrocarbon PCB - polychlorinated biphenyl

TEQ - toxic equivalent concentration

Table 6.1-4. Direct Permitted Dischargers Estimated Annual Loading.^a

		Study A	Area All Direct D	ischarges
			RM 1.8 - 11.8	
Analyte	Units	Upper	Central	Lower
Cyanide	kg/yr	0.0423	0.0423	0.0423
Arsenic (Pentavalent)	kg/yr	0.0550	0.0550	0.0550
Arsenic (Trivalent)	kg/yr	0.0633	0.0381	0.0129
Cadmium	kg/yr	0.420	0.420	0.420
Chromium (hexavalent)	kg/yr	0	0	0
Chromium (total)	kg/yr	0.513	0.465	0.417
Copper	kg/yr	96.6	64.5	32.4
Lead	kg/yr	123	78.9	34.8
Mercury	kg/yr	0.000275	0.000275	0.000275
Zinc	kg/yr	549	449	350
DDT	kg/yr	0	0	0
Benzo(a)pyrene	kg/yr	0.0532	0.0532	0.0532
Total PAHs	kg/yr	1.24	1.24	1.24
1,1,2-Trichloroethane	kg/yr	0	0	0
Benzene	kg/yr	3.19	3.19	3.19
Chloroethane	kg/yr	0	0	0
Chloroform	kg/yr	0	0	0
Trichloroethene	kg/yr	0	0	0
Vinyl Chloride	kg/yr	0	0	0
Total Petroleum Hydrocarbons	kg/yr	15.9	15.9	15.9

- ^a The following NPDES-permitted sites were not included in this loading analysis:
 - (1) Ash Grove, RM 2.8, NPDES OR0001601 IW-B16, OR-SIS 3690 (no discharge reported)
 - (2) Columbia River Sand and Gravel (Linnton Sand Distribution), RM 4.7, NPDES OR0039896 IW-B16, OR-SIS 50872 (no chemical data reported)
 - (3) Vigor Industrial LLC, RM 8.3, NPDES OR0022942 IW-B15, OR-DEQ 316 (no discharge reported)
 - (4) Metropolitan Condomium Complex, RM 11.5, NPDES OR0038229 IW-B16, OR-SIS 92369 (no discharge reported)

NPDES - National Pollutant Discharge Elimination System

PAH - polycyclic aromatic hydrocarbon

RM - river mile

Table 6.1-5. Annual Load Estimates for Atmospheric Deposition to the Study Area River Surface.

	Total Deposition (kg/yr)								
Analyte	Lower	Central	Upper						
Metals									
Arsenic	2.62E-02	7.32E+00	2.10E+02						
Chromium	3.06E-02	6.10E+00	1.43E+02						
Copper	1.06E-01	3.06E+01	5.59E+02						
Lead	2.27E-01	1.69E+01	7.49E+02						
Mercury	1.08E-01	2.89E+01	8.84E+01						
Nickel	1.98E-02	8.79E+00	2.85E+02						
Zinc	2.94E-01	7.88E+01	1.05E+03						
PCBs									
Total PCBs	5.28E-01	6.25E-01	7.23E-01						
PCB TEQ (ND=0)	2.77E-06	8.53E-06	1.43E-05						
PCDD/Fs									
TCDD TEQ (ND=0)	1.66E-05	3.20E-05	4.57E-05						
DDx Pesticides									
4,4'-DDE	8.73E-02	1.27E-01	1.65E-01						
4,4'-DDT	2.91E-02	4.02E-02	4.85E-02						
DDx ^a	6.79E-03	1.67E-01	2.13E-01						
PAHs									
Naphthalene	2.08E-01	2.83E+00	3.21E+01						
Benzo(a)pyrene	2.08E-01	8.10E-01	3.47E+00						
Total cPAHs		3.65E+00							
cPAH BaPEq ^b		8.10E-01							
Total PAHs c		7.18E+00	1.17E+01						
Petroleum									
Diesel-Range Hydrocarbons	2.87E+03	3.60E+03	4.34E+03						
Semivolatile Organic Compounds									
Hexachlorobenzene		1.29E-01							
Pesticides (non-DDx)									
Total Chlordanes		1.00E-02							
Aldrin		3.19E-04							
Dieldrin		2.63E-03							

-- Estimate not available

BaPEq - benzo(a)pyrene equivalent

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

LWG - Lower Willamette Group

NJADN - New Jersey Atmospheric Deposition Network

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TEQ - toxic equivalent concentration

^a Central and upper DDx estimates calculated as the sum of the 4,4'-DDE and 4,4'-DDT loads.

^b The benzo(a)pyrene loading estimate is reported here due to the lack of site-specific dry deposition estimate for BaPEq.

^c Central estimates for total PAH atmospheric loads are based on the sum of the 13 site PAHs which were included in the NJADN data set, while the upper estimates are based on the sum all 36 PAHs included in the NJADN data set. The NJADN data set does not include the following individual PAHs generally used in summation of total PAHs for the LWG project: naphthalene, 2-methylnaphthalene, acenaphthene, and acenaphthylene.

Table 6.1-6. Estimated Upland Groundwater Plume Loading to the Water Column for the Study Area (kg/yr).

		Filtered ^a			Unfiltered ^b	
	Upper Loading		_		Central Loading	
Analyte	Estimate	Estimate	Estimate	Estimate	Estimate	Estimate
Metals	•••					
Arsenic	38.4	27.0	18.2	43.3	30.3	19.9
Barium	432	243	137	803	492	285
Cadmium	0.511	0.227	0.105	1.06	0.621	0.357
Copper	1.06	0.665	0.420	78.6	57.2	37.2
Lead	0.401	0.260	0.184	44.5	31.3	19.9
Manganese	12722	7962	4580	13775	8528	4759
Mercury	0.042	0.024	0.010	0.159	0.101	0.058
Nickel	16.3	10.0	5.8	52.0	34.3	20.0
Zinc	15.6	6.52	2.84	285	201	128
DDx Pesticides						
4,4'-DDD	6.80E-04	2.00E-04	1.51E-05	6.11E-02	1.89E-02	1.64E-03
4,4'-DDT	1.71E-05	1.71E-05	1.71E-05	9.28E-02	2.67E-02	1.48E-03
Total DDE	6.93E-06	6.93E-06	6.93E-06	9.49E-03	3.63E-03	4.27E-04
Total DDD	4.05E-02	2.05E-02	3.24E-03	1.39E-01	5.17E-02	6.14E-03
Total DDT	2.01E-03	1.05E-03	1.83E-04	9.87E-02	2.89E-02	1.73E-03
DDx	4.25E-02	2.16E-02	3.44E-03	2.47E-01	8.43E-02	8.31E-03
PAHs						
Naphthalene	192	125	57.3	1035	772	473
Benzo(a)pyrene	0.014	0.009	0.004	5.49	3.57	1.70
Total cPAHs	0.127	0.083	0.040	27.2	17.6	8.20
Total HPAHs	1.89	1.35	0.830	72.6	47.5	22.9
Total LPAHs	243	164	83.6	1160	863	528
Total PAHs	245	166	84.7	1234	911	551
cPAH BaPEq	0.020	0.013	0.0062	7.37	4.79	2.27
SVOCs						
1,2-Dichlorobenzene	n/a	n/a	n/a	67.5	35.5	6.45
VOCs						
1,2-Dichloroethane	n/a	n/a	n/a	4.02	1.25	0.153
1,1,2-Trichloroethane	n/a	n/a	n/a	1.88	0.588	0.076
1,2,4-Trimethylbenzene	n/a	n/a	n/a	6.49	4.48	2.43
Benzene	n/a	n/a	n/a	80.8	51.7	18.0
Carbon disulfide	n/a	n/a	n/a	1.38	0.691	0.686
Chlorobenzene	n/a	n/a	n/a	140	67.2	32.8
Chloroethane	n/a	n/a	n/a	1.73	1.70	1.68
Chloroform	n/a	n/a	n/a	2770	3.28	0.279
cis-1,2-Dichloroethene c	n/a	n/a	n/a	384	347	305
Methylene chloride	n/a	n/a	n/a	2679	821	86.4
Ethylbenzene	n/a	n/a	n/a	13.6	9.00	3.70
Toluene	n/a	n/a	n/a	5.70	3.74	2.03
Trichloroethene c	n/a	n/a	n/a	280	4.45	1.051
Vinyl chloride ^c	n/a	n/a	n/a	57.3	50.1	42.7
Total xylenes	n/a	n/a	n/a	15.6	9.63	2.95

Table 6.1-6. Estimated Upland Groundwater Plume Loading to the Water Column for the Study Area (kg/yr).

		Filtered ^a		Unfiltered ^b				
	Upper Loading	Central Loading	Lower Loading	Upper Loading	Central Loading	Lower Loading		
Analyte	Estimate	Estimate	Estimate	Estimate	Estimate	Estimate		

Notes:

cis-1,2-Dichloroethene - central: 3.47E+02 kg/yr, lower: 3.05E+02, upper: 3.84E+02 Trichloroethene - central: 2.34E+02 kg/yr, lower: 1.88E+02, upper: 2.80E+02 Vinyl chloride - central: 5.01E+01 kg/yr, lower: 4.27E+01, upper: 5.73E+01

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

n/a - Indicates that filtered data were not available. Per sampling protocols, filtered samples were not collected for VOCs or naphthalene.

BaPEq - benzo(a)pyrene equivalent

cPAH - carcinogenic polycyclic aromatic hydrocarbon

PAH - polycyclic aromatic hydrocarbon SVOC - semivolatile organic compound VOC - volatile organic compound

^a Filtered loads were calculated using analytical data collected with filtered Push Probe (Trident or GeoProbe) samplers and with peeper samplers. Due to sample volume limitations, filtered Push Probe samples were not collected at all sample locations. To calculate loading rate estimates at these sample locations, the average of the filtered push-probe contaminant concentrations within the same flow zone were used.

b Unfiltered loads were calculated using analytical data collected with unfiltered Push Probe (Trident or GeoProbe) samplers and with peeper samplers.

^c Station GP-67 is located in Area 2 of the Siltronic site, which is understood to be an area impacted by a direct discharge of trichloroethene. Concentrations of trichloroethene and related degradation-chain chemicals (cis-1,2-Dichloroethene and vinyl chloride) measured at GP-67 are not representative of the upland groundwater plume; therefore, GP-67 was not included in loading calculations for these three contaminants for the Siltronic site or the entire Study Area. For comparison purposes, entire Study Area loads were also calculated for these three contaminants including station GP-67. These comparative loading results are as follows:

Table 6.1-7. Estimated Upland Groundwater Plume Loading to the Water Column, by Upland Site.

				ARCO	Ari	kema	EXX	onMobil		Gasco	Gur	derson
Analyte	Load Estimate	Units	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b
Metals		CIIICS										
Arsenic	Central	kg/yr	5.04E-01	5.67E-01	3.40E-01	3.74E-01	6.48E-01	6.54E-01	1.11E+00	3.34E+00	3.08E-01	3.17E-01
Arsenic	Lower	kg/yr	4.41E-01	4.93E-01	5.32E-02	5.37E-02	3.27E-01	3.30E-01	3.26E-01	1.12E+00	2.10E-01	2.19E-01
Arsenic	Upper	kg/yr	7.58E-01	8.64E-01	1.09E+00	1.21E+00	1.09E+00	1.10E+00	1.88E+00	5.58E+00	9.46E-01	9.55E-01
Barium	Central	kg/yr	3.84E+00	7.87E+00	4.31E+01	5.08E+01	3.89E+00	6.20E+00	2.27E+01	1.06E+02	7.43E+00	8.57E+00
Barium	Lower	kg/yr	3.30E+00	7.07E+00	1.01E+01	1.06E+01	2.21E+00	3.12E+00	6.67E+00	3.91E+01	4.67E+00	5.80E+00
Barium	Upper	kg/yr	6.00E+00	1.11E+01	1.28E+02	1.54E+02	6.32E+00	1.05E+01	3.85E+01	1.78E+02	2.54E+01	2.65E+01
Cadmium	Central	kg/yr	2.92E-04	8.95E-03	9.40E-02	9.38E-02	1.75E-03	5.49E-03	1.81E-03	1.01E-01	6.73E-03	8.33E-03
Cadmium	Lower	kg/yr	2.30E-04	8.44E-03	9.86E-03	9.84E-03	9.62E-04	2.00E-03	5.41E-04	4.19E-02	4.09E-03	5.68E-03
Cadmium	Upper	kg/yr	5.38E-04	1.10E-02	3.07E-01	3.06E-01	2.88E-03	9.92E-03	3.07E-03	1.70E-01	2.40E-02	2.55E-02
Copper	Central	kg/yr	9.68E-03	1.14E+00	8.36E-02	8.36E-02	4.82E-03	2.98E-01	7.08E-02	1.79E+01	0.00E+00	1.97E-01
Copper	Lower	kg/yr	4.84E-03	1.04E+00	8.80E-03	8.80E-03	1.74E-03	7.50E-02	2.08E-02	6.82E+00	0.00E+00	1.97E-01
Copper	Upper	kg/yr	2.90E-02	1.52E+00	2.73E-01	2.73E-01	8.82E-03	5.74E-01	1.20E-01	3.00E+01	0.00E+00	1.97E-01
Lead	Central	kg/yr	3.01E-02	1.20E+00	1.28E-02	3.11E-01	8.23E-03	3.80E-01	4.41E-02	1.01E+01	0.00E+00	2.36E-01
Lead	Lower	kg/yr	1.51E-02	1.04E+00	1.20E-03	1.95E-02	2.18E-03	1.22E-01	1.29E-02	3.87E+00	0.00E+00	2.36E-01
Lead	Upper	kg/yr	9.03E-02	1.84E+00	4.25E-02	1.07E+00	1.58E-02	7.07E-01	7.46E-02	1.70E+01	0.00E+00	2.36E-01
Manganese	Central	kg/yr	1.31E+02	1.48E+02	4.35E+02	4.54E+02	1.43E+02	1.51E+02	8.78E+02	1.31E+03	1.58E+02	1.67E+02
Manganese	Lower	kg/yr	1.17E+02	1.29E+02	1.04E+02	1.04E+02	6.92E+01	7.43E+01	2.59E+02	4.17E+02	1.03E+02	1.12E+02
Manganese	Upper	kg/yr	1.88E+02	2.24E+02	1.28E+03	1.36E+03	2.42E+02	2.56E+02	1.49E+03	2.22E+03	5.12E+02	5.21E+02
Mercury	Central	kg/yr	0.00E+00	1.15E-03	3.31E-03	6.44E-03	0.00E+00	7.04E-04	1.42E-02	3.71E-02	0.00E+00	0.00E+00
Mercury	Lower	kg/yr	0.00E+00	1.03E-03	2.14E-04	3.88E-04	0.00E+00	1.17E-04	4.12E-03	1.68E-02	0.00E+00	0.00E+00
Mercury	Upper	kg/yr	0.00E+00	1.62E-03	1.14E-02	2.22E-02	0.00E+00	1.41E-03	2.39E-02	6.31E-02	0.00E+00	0.00E+00
Nickel	Central	kg/yr	1.44E-01	5.57E-01	1.04E+00	1.22E+00	1.25E-01	2.40E-01	1.25E+00	1.17E+01	1.57E-01	2.41E-01
Nickel	Lower	kg/yr	1.25E-01	5.19E-01	1.65E-01	1.73E-01	6.39E-02	8.85E-02	3.64E-01	4.33E+00	1.08E-01	1.92E-01
Nickel	Upper	kg/yr	2.22E-01	7.08E-01	3.28E+00	3.94E+00	2.12E-01	4.37E-01	2.11E+00	1.96E+01	4.80E-01	5.64E-01
Zinc	Central	kg/yr	1.56E+00	3.89E+00	1.74E+00	2.03E+00	2.15E-01	1.13E+00	1.19E+00	6.82E+01	2.12E-01	1.39E+00
Zinc	Lower	kg/yr	8.57E-01	3.03E+00	2.21E-01	2.44E-01	1.12E-01	3.08E-01	3.54E-01	2.73E+01	1.18E-01	1.30E+00
Zinc Pesticides	Upper	kg/yr	4.36E+00	7.32E+00	5.60E+00	6.57E+00	3.61E-01	2.16E+00	2.02E+00	1.15E+02	8.24E-01	2.00E+00
4,4'-DDD	Central	kg/yr			2.00E-04	1.70E-02						
4,4'-DDD 4,4'-DDD	Lower		 		1.51E-05	1.70E-02 1.32E-03						
4,4'-DDD	Upper	kg/yr kg/yr			6.80E-04	5.73E-02		 		 		
4,4'-DDT	Central	kg/yr			1.71E-05	2.67E-02						
4,4'-DDT	Lower	kg/yr		 	1.71E-05	1.48E-03			 			
4,4'-DDT	Upper	kg/yr			1.71E-05	9.28E-02	 					
Total DDE	Central	kg/yr			6.93E-06	1.65E-03						
Total DDE	Lower	kg/yr			6.93E-06	1.07E-04						
Total DDE	Upper	kg/yr		<u></u>	6.93E-06	5.67E-03						
Total DDD	Central	kg/yr			6.43E-04	2.73E-02						
Total DDD	Lower	kg/yr		 	4.16E-05	2.20E-03						
Total DDD	Upper	kg/yr			2.21E-03	9.19E-02						
Total DDT	Central	kg/yr			1.71E-05	2.77E-02						
Total DDT	Lower	kg/yr			1.71E-05	1.52E-03						
Total DDT	Upper	kg/yr			1.71E-05	9.62E-02						
DDx	Central	kg/yr			6.67E-04	5.66E-02						
DDx	Lower	kg/yr			6.56E-05	3.83E-03						
DDx	Upper	kg/yr			2.23E-03	1.94E-01						
PAHs	••											
Naphthalene	Central	kg/yr	3.14E-03	8.59E-03	1.45E-01	1.45E-01	1.56E-03	5.70E-03	9.05E+01	2.18E+02		
Naphthalene	Lower	kg/yr	2.99E-03	7.95E-03	7.46E-03	7.45E-03	9.21E-04	2.99E-03	2.68E+01	2.22E+01		
Naphthalene	Upper	kg/yr	3.77E-03	1.12E-02	5.07E-01	5.07E-01	2.54E-03	9.60E-03	1.53E+02	3.91E+02		
Benzo(a)pyrene	Central	kg/yr	1.48E-05	1.20E-03			0.00E+00	3.42E-03	6.75E-03	2.65E+00		
Benzo(a)pyrene	Lower	kg/yr	7.42E-06	1.11E-03			0.00E+00	1.82E-03	2.04E-03	9.43E-01		
Benzo(a)pyrene	Upper	kg/yr	4.45E-05	1.57E-03			0.00E+00	5.54E-03	1.15E-02	4.42E+00		
Total cPAHs	Central	kg/yr	1.57E-04	4.22E-03			1.16E-03	1.91E-02	5.69E-02	1.33E+01		
Total cPAHs	Lower	kg/yr	7.84E-05	3.64E-03			7.12E-04	1.00E-02	1.71E-02	4.76E+00		
Total cPAHs	Upper	kg/yr	4.70E-04	6.55E-03			1.84E-03	3.11E-02	9.66E-02	2.23E+01		

				ARCO	A	rkema	Exx	onMobil		Gasco	Gui	nderson
Analyte	Load Estimate		Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b
сРАН ВаРЕq	Central	kg/yr	2.26E-05	1.71E-03			6.14E-05	4.50E-03	9.31E-03	3.56E+00		
cPAH BaPEq	Lower	kg/yr	1.13E-05	1.57E-03			3.76E-05	2.39E-03	2.81E-03	1.27E+00		
сРАН BaPEq	Upper	kg/yr	6.78E-05	2.30E-03			9.77E-05	7.30E-03	1.58E-02	5.94E+00		
Total HPAHs	Central	kg/yr	7.79E-03	2.37E-02			1.99E-02	1.19E-01	6.26E-01	3.38E+01		
Total HPAHs	Lower	kg/yr	4.38E-03	2.01E-02			1.37E-02	7.58E-02	1.89E-01	1.16E+01		==
Total HPAHs Total LPAHs	Upper Central	kg/yr kg/yr	2.14E-02 6.28E-02	3.84E-02 8.79E-02	 		2.90E-02 2.68E-01	1.79E-01 5.41E-01	1.06E+00 1.05E+02	5.68E+01 2.56E+02		
Total LPAHs	Lower	kg/yr	4.27E-02	6.75E-02	 	 	1.76E-01	3.65E-01	3.10E+01	3.05E+02	 	
Total LPAHs	Upper	kg/yr	1.43E-01	1.69E-01			4.04E-01	8.11E-01	1.77E+02	4.56E+02		
Total PAHs	Central	kg/yr	7.06E-02	1.11E-01		==	2.88E-01	6.61E-01	1.06E+02	2.90E+02	==	
Total PAHs	Lower	kg/yr	4.71E-02	8.75E-02			1.90E-01	4.41E-01	3.13E+01	4.22E+01		
Total PAHs	Upper	kg/yr	1.65E-01	2.07E-01			4.34E-01	9.91E-01	1.79E+02	5.13E+02		
SVOCs												
1,2-Dichlorobenzene	Central	kg/yr	n/a	1.79E-03	n/a	1.96E-03	n/a	0.00E+00	n/a	2.06E-02	n/a	0.00E+00
1,2-Dichlorobenzene	Lower	kg/yr	n/a	8.96E-04	n/a	1.33E-04	n/a	0.00E+00	n/a	7.26E-03	n/a	0.00E+00
1,2-Dichlorobenzene	Upper	kg/yr	n/a	5.38E-03	n/a	6.73E-03	n/a	0.00E+00	n/a	3.39E-02	n/a	0.00E+00
VOCs												
1,2-Dichloroethane	Central	kg/yr	n/a	5.48E-04	n/a	1.22E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	2.37E-02
1,2-Dichloroethane	Lower	kg/yr	n/a	2.74E-04	n/a	1.29E-01	n/a	0.00E+00	n/a	0.00E+00	n/a	2.37E-02
1,2-Dichloroethane	Upper	kg/yr	n/a	1.64E-03	n/a	3.99E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	2.37E-02
1,1,2-Trichloroethane	Central	kg/yr	n/a	0.00E+00	n/a	5.68E-01	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00
1,1,2-Trichloroethane	Lower	kg/yr	n/a	0.00E+00	n/a	5.98E-02	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00
1,1,2-Trichloroethane 1,2,4-Trimethylbenzene	Upper	kg/yr	n/a	0.00E+00	n/a	1.85E+00	n/a	0.00E+00	n/a	0.00E+00 2.72E+00	n/a	0.00E+00
1,2,4-Trimethylbenzene	Central	kg/yr	n/a n/a	 	n/a n/a		n/a		n/a	9.60E-01	n/a n/a	
1,2,4-Trimethylbenzene	Lower Upper	kg/yr kg/yr	n/a n/a		n/a n/a		n/a n/a		n/a n/a	4.48E+00	n/a n/a	
Benzene	Central	kg/yr	n/a	0.00E+00	n/a	3.62E+00	n/a	0.00E+00	n/a	3.27E+01	n/a	2.64E-03
Benzene	Lower	kg/yr	n/a	0.00E+00	n/a	3.54E+00	n/a	0.00E+00	n/a n/a	1.82E+00	n/a n/a	2.64E-03
Benzene	Upper	kg/yr	n/a	0.00E+00	n/a	3.82E+00	n/a	0.00E+00	n/a	5.92E+01	n/a	2.64E-03
Carbon disulfide	Central	kg/yr	n/a	0.00E+00	n/a	3.60E-03	n/a	0.00E+00	n/a	6.79E-01	n/a	0.00E+00
Carbon disulfide	Lower	kg/yr	n/a	0.00E+00	n/a	5.79E-04	n/a	0.00E+00	n/a	6.79E-01	n/a	0.00E+00
Carbon disulfide	Upper	kg/yr	n/a	0.00E+00	n/a	1.14E-02	n/a	0.00E+00	n/a	1.36E+00	n/a	0.00E+00
Chlorobenzene	Central	kg/yr	n/a	0.00E+00	n/a	5.35E+01	n/a	0.00E+00	n/a	8.04E-02	n/a	4.80E-03
Chlorobenzene	Lower	kg/yr	n/a	0.00E+00	n/a	2.93E+01	n/a	0.00E+00	n/a	2.33E-02	n/a	4.80E-03
Chlorobenzene	Upper	kg/yr	n/a	0.00E+00	n/a	1.15E+02	n/a	0.00E+00	n/a	1.35E-01	n/a	4.80E-03
Chloroethane	Central	kg/yr	n/a	0.00E+00	n/a	6.84E-03	n/a	0.00E+00	n/a	0.00E+00	n/a	1.63E+00
Chloroethane	Lower	kg/yr	n/a	0.00E+00	n/a	7.20E-04	n/a	0.00E+00	n/a	0.00E+00	n/a	1.63E+00
Chloroethane	Upper	kg/yr	n/a	0.00E+00	n/a	2.23E-02	n/a	0.00E+00	n/a	0.00E+00	n/a	1.63E+00
Chloroform	Central	kg/yr	n/a	0.00E+00	n/a	3.28E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00
Chloroform	Lower	kg/yr	n/a	0.00E+00	n/a	2.79E-01	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00
Chloroform	Upper	kg/yr	n/a	0.00E+00	n/a	2.77E+03	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00
cis-1,2-Dichloroethene c	Central	kg/yr	n/a	0.00E+00	n/a	8.79E-02	n/a	2.40E-03	n/a	2.75E-02	n/a	3.33E-03
cis-1,2-Dichloroethene c	Lower	kg/yr	n/a	0.00E+00	n/a	8.37E-03	n/a	4.00E-04	n/a	9.72E-03	n/a	3.33E-03
cis-1,2-Dichloroethene c	Upper	kg/yr	n/a	0.00E+00	n/a	2.91E-01	n/a	4.80E-03	n/a	4.54E-02	n/a	3.33E-03
Methylene Chloride	Central	kg/yr	n/a	0.00E+00	n/a	8.21E+02	n/a	0.00E+00	n/a	4.69E-04	n/a	0.00E+00
Methylene Chloride Methylene Chloride	Lower	kg/yr	n/a	0.00E+00	n/a	8.64E+01	n/a	0.00E+00	n/a	4.69E-04	n/a	0.00E+00
	Upper	kg/yr	n/a	0.00E+00	n/a	2.68E+03	n/a	0.00E+00	n/a	9.37E-04	n/a	0.00E+00
Ethylbenzene Ethylbenzene	Central	kg/yr	n/a	0.00E+00 0.00E+00	n/a	2.37E-02 1.59E-03	n/a	0.00E+00 0.00E+00	n/a	4.94E+00 3.78E-01	n/a	8.81E-03 8.81E-03
Ethylbenzene	Lower Upper	kg/yr kg/yr	n/a n/a	0.00E+00 0.00E+00	n/a n/a	8.15E-02	n/a n/a	0.00E+00 0.00E+00	n/a n/a	8.91E+00	n/a n/a	8.81E-03
Toluene	Central	kg/yr	n/a	6.21E-03	n/a	1.97E-01	n/a	8.96E-03	n/a	1.66E+00	n/a	2.29E-02
Toluene	Lower	kg/yr	n/a	3.10E-03	n/a n/a	1.81E-02	n/a	5.33E-03	n/a	4.29E-01	n/a n/a	2.05E-02
Toluene	Upper	kg/yr	n/a	1.86E-02	n/a n/a	6.56E-01	n/a	1.43E-02	n/a	2.86E+00	n/a	3.82E-02
Trichloroethene ^c	**											
	Central	kg/yr	n/a	5.73E-04	n/a	3.71E+00	n/a	0.00E+00	n/a	2.70E-03	n/a	0.00E+00
Trichloroethene ^c	Lower	kg/yr	n/a	2.87E-04	n/a	3.90E-01	n/a	0.00E+00	n/a	9.53E-04	n/a	0.00E+00
Trichloroethene c	Upper	kg/yr	n/a	1.72E-03	n/a	1.21E+01	n/a	0.00E+00	n/a	4.45E-03	n/a	0.00E+00

Table 6.1-7. Estimated Upland Groundwater Plume Loading to the Water Column, by Upland Site.

				ARCO	Ar	kema	Exxo	onMobil		Jasco	Guno	lerson
			Peepers and Filtered	Peepers and Unfiltered								
Analyte	Load Estimate	Units	Push Probe ^a	Push Probe ^b								
Vinyl chloride ^c	Central	kg/yr	n/a	0.00E+00	n/a	4.48E-01	n/a	0.00E+00	n/a	6.27E-03	n/a	2.59E-02
Vinyl chloride ^c	Lower	kg/yr	n/a	0.00E+00	n/a	4.67E-02	n/a	0.00E+00	n/a	2.21E-03	n/a	2.57E-02
Vinyl chloride ^c	Upper	kg/yr	n/a	0.00E+00	n/a	1.46E+00	n/a	0.00E+00	n/a	1.03E-02	n/a	2.71E-02
Total Xylenes	Central	kg/yr	n/a	3.01E-03	n/a	1.22E-01	n/a	3.04E-03	n/a	6.39E+00	n/a	2.95E-02
Total Xylenes	Lower	kg/yr	n/a	1.51E-03	n/a	7.65E-03	n/a	1.20E-03	n/a	3.69E-01	n/a	2.95E-02
Total Xylenes	Upper	kg/yr	n/a	9.04E-03	n/a	4.20E-01	n/a	5.46E-03	n/a	1.16E+01	n/a	2.95E-02

Table 6.1-7. Estimated Upland Groundwater Plume Loading to the Water Column, by Upland Site.

			Kinde	er Morgan	Rhone	Poulenc	S	iltronic	Willi	bridge	Entire	Study Area
			Peepers and Filtered	Peepers and Unfiltered	Peepers and Filtered	Peepers and Unfiltered	Peepers and Filtered	Peepers and Unfiltered	Peepers and Filtered	Peepers and Unfiltered	Peepers and Filtered	Peepers and Unfiltered
Analyte	Load Estimate	Units	Push Probe ^a	Push Probe ^b	Push Probe ^a	Push Probe ^b	Push Probe ^a	Push Probe ^b	Push Probe ^a	Push Probe ^b	Push Probe ^a	Push Probe ^b
Metals												
Arsenic	Central	kg/yr	1.27E-01	1.26E-01	3.23E+00	3.63E+00	3.14E+00	3.78E+00	1.76E+01	1.75E+01	2.70E+01	3.03E+01
Arsenic	Lower	kg/yr	1.16E-01	1.16E-01	1.36E+00	1.60E+00	2.69E+00	3.43E+00	1.27E+01	1.26E+01	1.82E+01	1.99E+01
Arsenic	Upper	kg/yr	2.38E-01	2.38E-01	5.69E+00	6.30E+00	3.55E+00	4.10E+00	2.31E+01	2.29E+01	3.84E+01	4.33E+01
Barium	Central	kg/yr	8.06E-01	9.53E-01	7.24E+01	1.02E+02	3.71E+01	1.38E+02	5.18E+01	7.22E+01	2.43E+02	4.92E+02
Barium	Lower	kg/yr	6.75E-01	8.22E-01	3.81E+01	5.08E+01	3.25E+01	1.15E+02	3.86E+01	5.24E+01	1.37E+02	2.85E+02
Barium	Upper	kg/yr	2.21E+00	2.36E+00	1.17E+02	1.65E+02	4.14E+01	1.57E+02	6.81E+01	9.76E+01	4.32E+02	8.03E+02
Cadmium	Central	kg/yr	2.08E-03	3.12E-03	8.59E-02	1.46E-01	9.49E-03	2.09E-01	2.54E-02	4.56E-02	2.27E-01	6.21E-01
Cadmium	Lower	kg/yr	1.37E-03	2.42E-03 1.06E-02	6.16E-02	8.29E-02	8.76E-03	1.73E-01	1.74E-02	3.11E-02	1.05E-01	3.57E-01
Cannar	Upper Central	kg/yr kg/yr	9.60E-03 1.36E-03	1.90E-02 1.90E-02	1.21E-01 4.09E-01	2.23E-01 5.82E+00	1.02E-02 2.67E-02	2.40E-01 2.82E+01	3.36E-02 5.96E-02	6.17E-02 3.54E+00	5.11E-01 6.65E-01	1.06E+00 5.72E+01
Copper			1.36E-03	1.90E-02 1.90E-02	3.18E-01	3.53E+00	2.37E-02 2.37E-02	2.31E+01	4.04E-02	2.41E+00	4.20E-01	3.72E+01 3.72E+01
Copper Copper	Lower Upper	kg/yr kg/yr	1.36E-03	1.90E-02 1.90E-02	5.11E-01	8.36E+00	2.94E-02	3.27E+01	8.56E-02	4.97E+00	1.06E+00	7.86E+01
Lead	Central	kg/yr	5.30E-04	1.81E-02	1.36E-01	4.49E+00	1.65E-02	1.36E+01	1.21E-02	1.06E+00	2.60E-01	3.13E+01
Lead	Lower	kg/yr	5.30E-04	1.81E-02	1.30E-01	2.77E+00	1.46E-02	1.11E+01	8.23E-03	7.17E-01	1.84E-01	1.99E+01
Lead	Upper	kg/yr	5.30E-04	1.81E-02	1.42E-01	6.39E+00	1.81E-02	1.57E+01	1.67E-02	1.51E+00	4.01E-01	4.45E+01
Manganese	Central	kg/yr	6.40E+01	7.17E+01	1.80E+03	1.97E+03	1.76E+03	1.62E+03	2.59E+03	2.63E+03	7.96E+03	8.53E+03
Manganese	Lower	kg/yr	5.86E+01	6.63E+01	4.40E+02	5.11E+02	1.50E+03	1.39E+03	1.93E+03	1.95E+03	4.58E+03	4.76E+03
Manganese	Upper	kg/yr	1.22E+02	1.29E+02	3.49E+03	3.77E+03	1.99E+03	1.84E+03	3.41E+03	3.47E+03	1.27E+04	1.38E+04
Mercury	Central	kg/yr	0.00E+00	0.00E+00	0.00E+00	7.75E-03	6.31E-03	4.78E-02	0.00E+00	0.00E+00	2.38E-02	1.01E-01
Mercury	Lower	kg/yr	0.00E+00	0.00E+00	0.00E+00	1.25E-03	5.49E-03	3.89E-02	0.00E+00	0.00E+00	9.82E-03	5.85E-02
Mercury	Upper	kg/yr	0.00E+00	0.00E+00	0.00E+00	1.49E-02	7.03E-03	5.56E-02	0.00E+00	0.00E+00	4.23E-02	1.59E-01
Nickel	Central	kg/yr	2.47E-02	3.39E-02	2.31E+00	4.62E+00	1.11E+00	1.07E+01	3.81E+00	5.01E+00	9.97E+00	3.43E+01
Nickel	Lower	kg/yr	1.76E-02	2.68E-02	1.24E+00	2.26E+00	9.66E-01	8.82E+00	2.76E+00	3.57E+00	5.81E+00	2.00E+01
Nickel	Upper	kg/yr	1.00E-01	1.09E-01	3.69E+00	7.46E+00	1.24E+00	1.24E+01	5.01E+00	6.80E+00	1.63E+01	5.20E+01
Zinc	Central	kg/yr	1.16E-01	1.12E-01	0.00E+00	1.43E+01	4.48E-01	1.03E+02	1.04E+00	6.79E+00	6.52E+00	2.01E+02
Zinc	Lower	kg/yr	7.37E-02	7.01E-02	0.00E+00	6.80E+00	3.98E-01	8.47E+01	7.12E-01	4.60E+00	2.84E+00	1.28E+02
Zinc	Upper	kg/yr	5.64E-01	5.61E-01	0.00E+00	2.26E+01	4.92E-01	1.20E+02	1.40E+00	9.62E+00	1.56E+01	2.85E+02
Pesticides												
4,4'-DDD	Central	kg/yr			0.00E+00	1.98E-03					2.00E-04	1.89E-02
4,4'-DDD	Lower	kg/yr			0.00E+00	3.20E-04					1.51E-05	1.64E-03
4,4'-DDD	Upper	kg/yr			0.00E+00	3.83E-03					6.80E-04	6.11E-02
4,4'-DDT	Central	kg/yr			0.00E+00	0.00E+00					1.71E-05	2.67E-02
4,4'-DDT	Lower	kg/yr			0.00E+00	0.00E+00			==		1.71E-05	1.48E-03
4,4'-DDT	Upper	kg/yr			0.00E+00	0.00E+00			==		1.71E-05	9.28E-02
Total DDE	Central	kg/yr		==	0.00E+00	1.98E-03		==	==		6.93E-06	3.63E-03
Total DDE	Lower	kg/yr			0.00E+00 0.00E+00	3.20E-04 3.83E-03					6.93E-06 6.93E-06	4.27E-04 9.49E-03
Total DDE Total DDD	Upper Central	kg/yr			1.98E-02	2.45E-02	 				2.05E-02	5.17E-02
Total DDD	Lower	kg/yr kg/yr		 	3.20E-03	3.95E-03	 	 		 	3.24E-03	6.14E-03
Total DDD	Upper	kg/yr	 	 	3.83E-02	4.72E-02		 		 	4.05E-02	1.39E-01
Total DDT	Central	kg/yr			1.03E-03	1.30E-03					1.05E-03	2.89E-02
Total DDT	Lower	kg/yr	<u></u>		1.66E-04	2.09E-04					1.83E-04	1.73E-03
Total DDT	Upper	kg/yr			1.99E-03	2.50E-03					2.01E-03	9.87E-02
DDx	Central	kg/yr			2.09E-02	2.78E-02					2.16E-02	8.43E-02
DDx	Lower	kg/yr			3.37E-03	4.48E-03					3.44E-03	8.31E-03
DDx	Upper	kg/yr			4.03E-02	5.36E-02					4.25E-02	2.47E-01
PAHs	2 11 12 1	8)-			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,0,00						_,,,,_,,,
Naphthalene	Central	kg/yr	0.00E+00	0.00E+00	1.03E-01	1.03E-01	3.42E+01	5.53E+02	1.60E-02	1.60E-02	1.25E+02	7.72E+02
Naphthalene	Lower	kg/yr	0.00E+00	0.00E+00	7.05E-02	7.05E-02	3.04E+01	4.50E+02	1.29E-02	1.29E-02	5.73E+01	4.73E+02
Naphthalene	Upper	kg/yr	0.00E+00	0.00E+00	1.40E-01	1.40E-01	3.76E+01	6.43E+02	2.17E-02	2.17E-02	1.92E+02	1.03E+03
Benzo(a)pyrene	Central	kg/yr	0.00E+00	0.00E+00			2.60E-03	9.18E-01	0.00E+00	0.00E+00	9.36E-03	3.57E+00
Benzo(a)pyrene	Lower	kg/yr	0.00E+00	0.00E+00			2.30E-03	7.50E-01	0.00E+00	0.00E+00	4.34E-03	1.70E+00
Benzo(a)pyrene	Upper	kg/yr	0.00E+00	0.00E+00			2.86E-03	1.07E+00	0.00E+00	0.00E+00	1.44E-02	5.49E+00
Total cPAHs	Central	kg/yr	1.19E-05	6.56E-04			2.51E-02	4.20E+00	0.00E+00	0.00E+00	8.34E-02	1.76E+01
Total cPAHs	Lower	kg/yr	7.41E-06	6.51E-04			2.20E-02	3.43E+00	0.00E+00	0.00E+00	3.99E-02	8.20E+00
Total cPAHs	Upper	kg/yr	5.93E-05	7.03E-04			2.79E-02	4.88E+00	0.00E+00	0.00E+00	1.27E-01	2.72E+01

Table 6.1-7. Estimated Upland Groundwater Plume Loading to the Water Column, by Upland Site.

			Kinde	r Morgan	Rhone	Poulenc	Si	iltronic	Will	bridge	Entire	Study Area
Analyte	Load Estimate		Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b	Peepers and Filtered Push Probe ^a	Peepers and Unfiltered Push Probe ^b
cPAH BaPEq	Central	kg/yr	5.67E-06	3.22E-05			3.74E-03	1.22E+00	0.00E+00	0.00E+00	1.31E-02	4.79E+00
cPAH BaPEq	Lower	kg/yr	3.55E-06	3.01E-05			3.30E-03	9.97E-01	0.00E+00	0.00E+00	6.16E-03	2.27E+00
cPAH BaPEq	Upper	kg/yr	2.84E-05	5.49E-05			4.12E-03	1.42E+00	0.00E+00	0.00E+00	2.01E-02	7.37E+00
Total HPAHs	Central	kg/yr	3.20E-03	1.57E-02			6.78E-01	1.35E+01	1.72E-02	3.02E-02	1.35E+00	4.75E+01
Total HPAHs	Lower	kg/yr	2.60E-03	1.51E-02			6.06E-01	1.12E+01	1.43E-02	2.32E-02	8.30E-01	2.29E+01
Total HPAHs	Upper	kg/yr	9.66E-03	2.21E-02			7.43E-01	1.55E+01	2.26E-02	3.97E-02	1.89E+00	7.26E+01
Total LPAHs	Central	kg/yr	5.37E-02	7.65E-02			5.86E+01	6.06E+02	2.95E-01	3.54E-01	1.64E+02	8.63E+02
Total LPAHs	Lower	kg/yr	5.05E-02	7.32E-02			5.21E+01	4.97E+02	2.36E-01	2.76E-01	8.36E+01	5.28E+02
Total LPAHs	Upper	kg/yr	8.86E-02	1.11E-01			6.43E+01	7.02E+02	3.94E-01	4.71E-01	2.43E+02	1.16E+03
Total PAHs	Central	kg/yr	5.72E-02	9.20E-02			5.94E+01	6.20E+02	3.13E-01	3.85E-01	1.66E+02	9.11E+02
Total PAHs	Lower	kg/yr	5.34E-02	8.82E-02			5.29E+01	5.08E+02	2.50E-01	3.00E-01	8.47E+01	5.51E+02
Total PAHs	Upper	kg/yr	9.85E-02	1.33E-01			6.52E+01	7.19E+02	4.16E-01	5.11E-01	2.45E+02	1.23E+03
SVOCs												
1,2-Dichlorobenzene	Central	kg/yr	n/a	0.00E+00	n/a	3.55E+01	n/a	2.06E-03	n/a	0.00E+00	n/a	3.55E+01
1,2-Dichlorobenzene	Lower	kg/yr	n/a	0.00E+00	n/a	6.44E+00	n/a	1.68E-03	n/a	0.00E+00	n/a	6.45E+00
1,2-Dichlorobenzene	Upper	kg/yr	n/a	0.00E+00	n/a	6.74E+01	n/a	2.40E-03	n/a	0.00E+00	n/a	6.75E+01
VOCs												
1,2-Dichloroethane	Central	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	1.25E+00
1,2-Dichloroethane	Lower	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	1.53E-01
1,2-Dichloroethane	Upper	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	4.02E+00
1,1,2-Trichloroethane	Central	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	1.98E-02	n/a	0.00E+00	n/a	5.88E-01
1,1,2-Trichloroethane	Lower	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	1.61E-02	n/a	0.00E+00	n/a	7.60E-02
1,1,2-Trichloroethane	Upper	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	2.31E-02	n/a	0.00E+00	n/a	1.88E+00
1,2,4-Trimethylbenzene	Central	kg/yr	n/a		n/a		n/a	1.76E+00	n/a		n/a	4.48E+00
1,2,4-Trimethylbenzene	Lower	kg/yr	n/a		n/a		n/a	1.47E+00	n/a		n/a	2.43E+00
1,2,4-Trimethylbenzene	Upper	kg/yr	n/a		n/a		n/a	2.01E+00	n/a		n/a	6.49E+00
Benzene	Central	kg/yr	n/a	0.00E+00	n/a	1.61E-01	n/a	1.52E+01	n/a	0.00E+00	n/a	5.17E+01
Benzene	Lower	kg/yr	n/a	0.00E+00	n/a	3.45E-02	n/a	1.26E+01	n/a	0.00E+00	n/a	1.80E+01
Benzene	Upper	kg/yr	n/a	0.00E+00	n/a	3.01E-01	n/a	1.75E+01	n/a	0.00E+00	n/a	8.08E+01
Carbon disulfide	Central	kg/yr	n/a	6.13E-04	n/a	0.00E+00	n/a	8.06E-03	n/a	0.00E+00	n/a	6.91E-01
Carbon disulfide	Lower	kg/yr	n/a	3.83E-04	n/a	0.00E+00	n/a	6.56E-03	n/a	0.00E+00	n/a	6.86E-01
Carbon disulfide	Upper	kg/yr	n/a	3.06E-03	n/a	0.00E+00	n/a	9.38E-03	n/a	0.00E+00	n/a	1.38E+00
Chlorobenzene	Central	kg/yr	n/a	0.00E+00	n/a	1.36E+01	n/a	4.39E-03	n/a	0.00E+00	n/a	6.72E+01
Chlorobenzene	Lower	kg/yr	n/a	0.00E+00	n/a	3.45E+00	n/a	3.54E-03	n/a	0.00E+00	n/a	3.28E+01
Chlorobenzene	Upper	kg/yr	n/a	0.00E+00	n/a	2.48E+01	n/a	5.20E-03	n/a	0.00E+00	n/a	1.40E+02
Chloroethane	Central	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	8.94E-03	n/a	5.31E-02	n/a	1.70E+00
Chloroethane	Lower	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	7.28E-03	n/a	4.46E-02	n/a	1.68E+00
Chloroethane	Upper	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	1.04E-02	n/a	6.84E-02	n/a	1.73E+00
Chloroform	Central	kg/yr	n/a	1.30E-04	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	3.28E+00
Chloroform	Lower	kg/yr	n/a	8.11E-05	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	2.79E-01
Chloroform	Upper	kg/yr	n/a	6.49E-04	n/a	0.00E+00	n/a	0.00E+00	n/a	0.00E+00	n/a	2.77E+03
cis-1,2-Dichloroethene c	Central	kg/yr	n/a	0.00E+00	n/a	8.90E-01	n/a	3.46E+02	n/a	0.00E+00	n/a	3.47E+02
cis-1,2-Dichloroethene c	Lower	kg/yr	n/a	0.00E+00	n/a	1.61E-01	n/a	3.05E+02	n/a	0.00E+00	n/a	3.05E+02
cis-1,2-Dichloroethene c	Upper	kg/yr	n/a	0.00E+00	n/a	1.70E+00	n/a	3.82E+02	n/a	0.00E+00	n/a	3.84E+02
Methylene Chloride	Central	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	3.71E-03	n/a	0.00E+00	n/a	8.21E+02
Methylene Chloride	Lower	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	3.02E-03	n/a	0.00E+00	n/a	8.64E+01
Methylene Chloride	Upper	kg/yr	n/a	0.00E+00	n/a	0.00E+00	n/a	4.32E-03	n/a	0.00E+00	n/a	2.68E+03
Ethylbenzene	Central	kg/yr	n/a	0.00E+00	n/a	7.79E-03	n/a	4.01E+00	n/a	0.00E+00	n/a	9.00E+00
Ethylbenzene	Lower	kg/yr	n/a	0.00E+00	n/a	1.26E-03	n/a	3.31E+00	n/a	0.00E+00	n/a	3.70E+00
Ethylbenzene	Upper	kg/yr	n/a	0.00E+00	n/a	1.52E-02	n/a	4.63E+00	n/a	0.00E+00	n/a	1.36E+01
Toluene	Central	kg/yr	n/a	2.13E-04	n/a	0.00E+00	n/a	1.79E+00	n/a	5.95E-02	n/a	3.74E+00
Toluene	Lower	kg/yr	n/a	1.33E-04	n/a	0.00E+00	n/a	1.51E+00	n/a	4.81E-02	n/a	2.03E+00
Toluene	Upper	kg/yr	n/a	1.07E-03	n/a	0.00E+00	n/a	2.03E+00	n/a	8.08E-02	n/a	5.70E+00
Trichloroethene c	Central	kg/yr	n/a	0.00E+00	n/a	2.94E-02	n/a	7.09E-01	n/a	0.00E+00	n/a	4.45E+00
Trichloroethene ^c	Lower	kg/yr	n/a	0.00E+00	n/a	4.76E-03	n/a	6.55E-01	n/a	0.00E+00	n/a	1.05E+00
Trichloroethene ^c	Upper	kg/yr	n/a	0.00E+00	n/a	5.73E-02	n/a	2.67E+02	n/a	0.00E+00	n/a	2.80E+02

Table 6.1-7. Estimated Upland Groundwater Plume Loading to the Water Column, by Upland Site.

			Kinder Morgan		Rhone	Rhone Poulenc		Siltronic		bridge	Entire Study Area	
			Peepers and Filtered	Peepers and Unfiltered								
Analyte	Load Estimate	Units	Push Probe ^a	Push Probe ^b								
Vinyl chloride ^c	Central	kg/yr	n/a	0.00E+00	n/a	6.41E-01	n/a	4.90E+01	n/a	0.00E+00	n/a	5.01E+01
Vinyl chloride c	Lower	kg/yr	n/a	0.00E+00	n/a	1.50E-01	n/a	4.25E+01	n/a	0.00E+00	n/a	4.27E+01
Vinyl chloride ^c	Upper	kg/yr	n/a	0.00E+00	n/a	1.19E+00	n/a	5.46E+01	n/a	0.00E+00	n/a	5.73E+01
Total Xylenes	Central	kg/yr	n/a	0.00E+00	n/a	5.71E-02	n/a	3.01E+00	n/a	2.10E-02	n/a	9.63E+00
Total Xylenes	Lower	kg/yr	n/a	0.00E+00	n/a	2.52E-02	n/a	2.50E+00	n/a	1.58E-02	n/a	2.95E+00
Total Xylenes	Upper	kg/yr	n/a	0.00E+00	n/a	9.29E-02	n/a	3.45E+00	n/a	2.81E-02	n/a	1.56E+01

Notes:

cis-1,2-Dichloroethene - central: 3.47E+02 kg/yr, lower: 3.05E+02, upper: 3.84E+02

Trichloroethene - central: 2.34E+02 kg/yr, lower: 1.88E+02, upper: 2.80E+02

Vinyl chloride - central: 5.01E+01 kg/yr, lower: 4.27E+01, upper: 5.73E+01

-- Analyte not sampled.

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

HPAH - high molecular weight polycyclic aromatic hydrocarbon

LPAH - low molecular weight polycyclic aromatic hydrocarbon

n/a - Indicates that filtered data was not available. Per sampling protocols filtered samples were not collected for VOCs or naphthalene.

PAH - polycyclic aromatic hydrocarbon

SVOC - semivolatile organic compound

VOC - volatile organic compound

^a Push Probe refers to samples collected by either Trident or GeoProbe samplers.

^b Due to sample volume limitations, filtered Push Probe samples were not collected at all sample locations. To calculate loading rate estimates at these sample locations, the average of the filtered push-probe contaminant concentrations within the same flow zone were used.

c Station GP-67 is located in Area 2 of the Siltronic site, which is understood to be an area impacted by a direct discharge of trichloroethene. Concentrations of trichloroethene and related degradation-chain chemicals (cis-1,2-Dichloroethene and vinyl chloride) measured at GP-67 are not representative of the upland groundwater plume; therefore, GP-67 was not included in loading calculations for these three contaminants for the Siltronic site or the entire Study Area. For comparison purposes, entire Study Area loads were also calculated for these three contaminants including station GP-67. These comparative loading results are as follows:

Table 6.1-8. Summary of Central Estimates of Annual Loading to the Study Area for Indicator Continuants (kg/yr).^a

				, 0, ,	Central Estimate	of Annual Loadi	ng	
				External Loads	to Study Area			Internal Load within Study Area
Analyte	Total Combined Estimated External Load	Surface Water at RM 11.8 ^b	Direct Permitted Non-Stormwater Discharges	Stormwater Runoff	Atmospheric Deposition to Water Surface	Upland Groundwater Plumes	Subsurface Sediment Advection	Surface Sediment Advection
PCBs								
PCB077	1.35E-02	9.31E-03	-	4.08E-03	-	-	1.42E-04	5.48E-05
PCB081	1.82E-04	3.60E-05	-	1.28E-04	-	-	1.81E-05	5.20E-06
PCB105	8.22E-02	5.25E-02	-	2.91E-02	-	-	5.85E-04	1.77E-04
PCB118	2.05E-01	1.35E-01	-	6.83E-02	-	-	1.61E-03	7.01E-04
PCB126	8.60E-04	2.75E-04	-	5.74E-04	-	-	1.06E-05	3.76E-06
PCB156 & PCB157	2.87E-02	1.73E-02	-	1.13E-02	-	-	-	-
PCB169	1.26E-04	7.21E-05	-	5.42E-05	-	-	2.70E-08	8.87E-09
Total PCB Congeners	4.71E+00	4.71E+00	-	-	-	-	-	1.16E-01
Total PCBs	7.44E+00	4.71E+00	-	2.03E+00	6.25E-01	-	7.80E-02	1.16E-01
PCB TEQ (ND=0)	1.01E-04	3.76E-05	-	5.49E-05	8.53E-06	-	-	-
PCDD/Fs								
Total PCDD/Fs	5.99E-01	5.99E-01	-	-	-	-	5.60-06	1.41E-05
TCDD TEQ (ND=0)	1.48E-03	1.45E-03	-	-	3.20E-05	-	-	-
Pesticides								
4,4'-DDD	1.12E+00	1.06E+00	-	4.17E-02	-	2.00E-04	1.42E-02	5.19E-03
4,4'-DDE	1.27E-01	-	-	-	1.27E-01	-	-	-
4,4'-DDT	3.46E+00	3.25E+00	-	1.66E-01	4.02E-02	1.71E-05	5.20E-03	3.60E-03
Total DDE	2.59E+00	2.50E+00	-	9.34E-02	-	6.93E-06	6.41E-04	5.64E-04
Total DDD	1.43E+00	1.33E+00	-	6.39E-02	-	2.05E-02	1.73E-02	8.16E-03
Total DDT	3.95E+00	3.70E+00	-	2.38E-01	-	1.05E-03	6.10E-03	4.32E-03
DDx	7.97E+00	7.53E+00	_	3.95E-01	1.67E-01 ^c	2.16E-02	2.41E-02	1.30E-02
Total chlordanes	1.27E+00	1.22E+00	-	4.08E-02	1.00E-02	_	8.17E-04	3.31E-04
γ-Hexachlorocyclohexane (Lindane)	6.48E-01	5.77E-01	-	1.26E-02	-	_	5.86E-02	9.38E-02
Aldrin	7.37E-02	6.64E-02	-	6.90E-03	3.19E-04	-	8.88E-05	1.00E-04
Dieldrin	3.51E+00	3.49E+00	-	1.46E-02	2.63E-03	-	7.61E-04	6.65E-04
PAHs								
Total PAHs	1.13E+03	3.80E+02	1.24E+00	1.51E+01	7.18E+00	1.66E+02	5.62E+02	1.96E+02
Benzo(a)pyrene	7.19E+00	5.09E+00	5.30E-02	7.53E-01	8.10E-01	9.36E-03	4.72E-01	7.04E-01
Naphthalene	6.24E+02	9.66E+01	_	5.71E-01	2.83E+00	1.25E+02 d	3.99E+02	3.16E+01
Total cPAHs	4.34E+01	3.59E+01	_	1.25E+00	3.65E+00	8.34E-02	2.48E+00	3.64E+00
cPAH BaPEq	8.15E+00	6.87E+00	-	-	6.92E-01	1.31E-02	5.74E-01	8.62E-01
Total HPAHs	9.72E+01	9.59E+01	_	-	-	1.35E+00	-	-
Total LPAHs	4.37E+02	2.73E+02	_	-	-	1.64E+02	-	-

Table 6.1-8. Summary of Central Estimates of Annual Loading to the Study Area for Indicator Continuants (kg/yr).^a

					Central Estimate	of Annual Loadi	ng	
				External Loads	to Study Area			Internal Load within Study Area
Analyte	Total Combined Estimated External Load	Surface Water at RM 11.8 ^b	Direct Permitted Non-Stormwater Discharges	Stormwater Runoff	Atmospheric Deposition to Water Surface	Upland Groundwater Plumes	Subsurface Sediment Advection	Surface Sediment Advection
Petroleum Hydrocarbons Total Petroleum Hydrocarbons (Diesel)	3.60E+03	_	-	-	3.60E+03	-	_	-
Metals								
Arsenic	9.64E+03	9.49E+03	9.30E-02	2.91E+01	7.32E+00	2.70E+01	8.92E+01	1.98E+02
Barium	2.43E+02	-	-	-	-	2.43E+02	-	-
Cadmium	6.47E-01	-	4.20E-01	-	-	2.27E-01	-	-
Chromium	2.12E+04	2.11E+04	4.65E-01	8.30E+01	6.10E+00	3.16E+00	2.14E+00	4.58E+00
Copper	4.71E+04	4.65E+04	6.45E+01	3.73E+02	3.06E+01	6.65E-01	1.37E+02	1.78E+02
Lead	9.81E+03	9.38E+03	7.89E+01	3.24E+02	1.69E+01	2.60E-01	6.30E+00	6.91E+00
Manganese	7.96E+03	-	-	-	-	7.96E+03	-	-
Mercury	2.61E+02	2.32E+02	2.75E-04	5.00E-01	2.89E+01	2.38E-02	1.53E-02	1.36E-02
Nickel	2.62E+04	2.61E+04	4 405 - 02	6.19E+01	8.79E+00	9.97E+00	1.155.00	-
Zinc	9.57E+04	9.24E+04	4.49E+02	2.66E+03	7.88E+01	6.52E+00	1.17E+02	1.17E+02
VOCs								
1,2-Dichloroethane	1.25E+00	-	-	-	-	1.25E+00 d	-	-
1,1,2-Trichloroethane	5.88E-01	-	-	-	-	5.88E-01 d	-	-
1,2,4-Trimethylbenzene	4.48E+00	-	-	-	-	4.48E+00 d	-	-
Benzene	5.49E+01	-	3.19E+00	-	-	5.17E+01 d	-	-
Carbon disulfide	6.91E-01	-	-	-	_	6.91E-01 d	_	-
Chlorobenzene	6.72E+01	-	-	-	_	6.72E+01 d	-	-
Chloroethane	1.70E+00	-	-	-	_	1.70E+00 d	_	-
Chloroform	3.28E+00	-	-	-	_	3.28E+00 d	-	-
cis-1,2-Dichloroethene	3.47E+02	-	-	-	_	3.47E+02 d	-	-
Methylene chloride	8.21E+02	-	-	-	_	8.21E+02 d	-	-
Ethylbenzene	9.00E+00	-	-	-	_	9.00E+00 d	-	-
Toluene	3.74E+00	-	-	-	_	3.74E+00 d	-	-
Trichloroethene	4.45E+00	-	-	-	-	4.45E+00 d	-	-
Vinyl chloride	5.01E+01	-	-	-	_	5.01E+01 d	-	-
Total Xylenes	9.63E+00	_	-	-	_	9.63E+00 d	_	-
~	J.052 03							

Table 6.1-8. Summary of Central Estimates of Annual Loading to the Study Area for Indicator Contminants (kg/yr).

]	External Loads	to Study Area			Internal Load within Study Area
Analyte	Total Combined Estimated External Load	Surface Water at RM 11.8 ^b	Direct Permitted Non-Stormwater Discharges	Stormwater Runoff	Atmospheric Deposition to Water Surface	Upland Groundwater Plumes	Subsurface Sediment Advection	Surface Sediment Advection
SVOCs	External Load		Discharges		***************************************	Tiumes	114,00001	
Bis(2-ethylhexyl)phthalate	7.56E+03	7.54E+03	-	2.08E+01	-	-	4.40E-03	8.50E-03
Hexachlorobenzene	1.26E+00	1.02E+00	-	1.12E-01	1.29E-01	-	-	-
1,2-Dichlorobenzene	3.55E+01	-	-	-	-	3.55E+01 d	-	-
Butyltins								
Tributyltin Ion	4.74E+01	1.10E+01	-	-	-	-	3.64E+01	9.76E+00

- Indicates that no load was estimated.

Bold font indicates the maximum loading term for each contaminant.

BaPEq - benzo(a)pyrene equivalent

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

HPAH - high molecular weight polycyclic aromatic hydrocarbon

IC - indicator contaminant

LPAH - low molecular weight polycyclic aromatic hydrocarbon

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

SVOC - semivolatile organic compound

TEQ - toxic equivalent concentration

VOC - volatile organic compound

^a Loads are presented for only those contaminants which are on the contaminant lists specific to individual loading terms (see Table 6.0-1).

^b Upstream (RM 11.8) surface water load estimated based on combined data from RM 16 and RM 11, with RM 11 outlying data values excluded.

^c Sum of 4,4'-DDE and 4,4'-DDT.

d Transition zone water samples for volatile chemicals were not filtered due to potential losses from the filtration process. The central load estimates shown here are based on peeper and unfiltered push probe data.

Table 6.2-1. Summary of Modeled Fluxes of Water and Total Sediment Load in Portland Harbor for a Range of Flow Conditions.^a

	Total Sediment Load	Yearly Average Flow ^c
Flow Regime/Year ^b	(Kg/yr)	(m^3/s)
Total Sediment fluxes at RM 11.8		Flow Rate at RM 11.8
95th Percentile/1997	4.33E+09	1522.1
75th Percentile/1995	1.32E+09	1077.5
50th Percentile/1986	1.06E+09	877.9
25th Percentile/1981	8.29E+08	787.4
5th Percentile/2001	1.34E+08	453.5
Average	1.53E+09	943.7
Total Sediment fluxes at RM 1.2		Flow Rate at RM 1.2
95th Percentile/1997	-2.70E+09	-798.4
75th Percentile/1995	-8.16E+08	-615.7
50th Percentile/1986	-5.99E+08	-381.4
25th Percentile/1981	-4.43E+08	-307.1
5th Percentile/2001	-2.50E+07	-164.6
Average	-9.17E+08	-453.4
Total Sediment fluxes in MC		Flow Rate in MC
95th Percentile/1997	-9.48E+08	-723.9
75th Percentile/1995	-2.60E+08	-462.0
50th Percentile/1986	-2.65E+08	-496.3
25th Percentile/1981	-2.04E+08	-480.7
5th Percentile/2001	-1.96E+07	-288.9
Average	-3.40E+08	-490.4
Combined RM1.2 and MC Sediment fluxes		Combined RM 1.2 and MC Flow Rate
95th Percentile/1997	-3.65E+09	-1522.3
75th Percentile/1995	-1.08E+09	-1077.71
50th Percentile/1986	-8.64E+08	-877.7
25th Percentile/1981	-6.47E+08	-787.8
5th Percentile/2001	-4.45E+07	-453.5
Average	-1.26E+09	-943.8
Average Annual Mass (Flow) Remaining in Harbor	2.77E+08	-0.122
Percentage of Mass (Flow) Exiting to Mass Entering Harbor	81.9%	100.0%

Yearly flow and sediment loads were calculated based on USGS water year.

MC - Multnomah Channel

RM - river mile

USGS - U.S. Geological Survey

^a Positive loading values represent fluxes into the study area. Negative loading values represent fluxes out of the study area.

^b Flow regime was defined by the yearly average flow during USGS water year as follows.

⁵th Percentile (Flow Year 2001) – mean flow 454 cubic meters per second (m³/sec)

²⁵th Percentile (Flow Year 1981) – mean flow 787 m³/sec

⁵⁰th Percentile (Flow Year 1986) – mean flow 878 m³/sec

⁷⁵th Percentile (Flow Year 1995) -- mean flow 1,078 m³/sec

⁹⁵th Percentile (Flow Year 1997)- mean flow 1,522 m³/sec

^c Anchor QEA calculated yearly average flow rate at upstream of Willamette River, and based on the daily average flow rates recorded by USGS 14211720 Willamette River at Portland, OR.

Table 6.2-2. Subsurface and Surface Sediment Advective Annual Loads in the Study Area RM 1.9 - 11.8 (kg/yr).

	Subsi	urface Advective L	oading	Surf	ace Advective Loa	ding
	Primary Loading	Upper Loading	Lower Loading	Primary Loading	Upper Loading	Lower Loading
Analyte	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)	Estimate (kg/yr)
Metals						
Arsenic	8.92E+01	5.54E+02	1.13E+00	1.98E+02	1.22E+03	2.50E+00
Copper	1.37E+02	7.44E+04	2.74E-01	1.78E+02	9.25E+04	3.55E-01
Lead	6.30E+00	2.49E+03	2.51E-02	6.91E+00	2.73E+03	2.75E-02
Mercury	1.53E-02	1.92E-01	1.21E-03	1.36E-02	1.71E-01	1.08E-03
Butyltins						
Tributyltin Ion	3.64E+01	1.86E+03	2.29E-02	9.76E+00	5.47E+02	6.12E-03
PCBs						
PCB077	1.42E-04	1.04E-03	7.70E-05	5.48E-05	4.02E-04	2.98E-05
PCB081	1.81E-05	3.83E-05	8.22E-06	5.20E-06	1.10E-05	2.36E-06
PCB105	5.85E-04	1.31E-03	2.50E-04	1.77E-04	3.95E-04	7.57E-05
PCB118	1.61E-03	5.79E-03	4.01E-04	7.01E-04	2.51E-03	1.74E-04
PCB126	1.06E-05	2.11E-05	5.17E-06	3.76E-06	7.47E-06	1.84E-06
PCB169	2.70E-08	3.52E-08	2.09E-08	8.87E-09	1.16E-08	6.87E-09
Total PCBs	7.80E-02	9.27E-01	2.86E-02	1.16E-01	6.36E-01	2.85E-02
PCDD/Fs						
Total PCDD/Fs	5.60E-06	4.63E-05	2.55E-06	1.41E-05	4.86E-05	8.71E-06
DDx						
4,4'-DDD	1.42E-02	9.93E-02	7.53E-03	5.19E-03	3.63E-02	2.75E-03
4,4'-DDT	5.20E-03	3.27E-01	3.35E-03	3.60E-03	2.26E-01	2.32E-03
Total DDE	6.41E-04	1.77E-02	5.55E-04	5.64E-04	1.55E-02	4.86E-04
Total DDD	1.73E-02	1.16E-01	8.80E-03	8.16E-03	5.22E-02	3.95E-03
Total DDT	6.10E-03	3.68E-01	3.77E-03	4.32E-03	2.58E-01	2.65E-03
DDx	2.41E-02	5.01E-01	1.31E-02	1.30E-02	3.26E-01	7.09E-03
Pesticides (non-DDx)						
Total chlordanes	8.17E-04	2.88E-02	8.17E-04	3.31E-04	9.17E-03	3.31E-04
gamma-Hexachlorocyclohexane (Lindane)	5.86E-02	1.64E-01	4.03E-02	9.38E-02	2.69E-01	6.42E-02
Aldrin	8.88E-05	8.54E-04	7.20E-06	1.00E-04	9.63E-04	8.12E-06
Dieldrin	7.61E-04	8.17E-03	1.16E-04	6.65E-04	7.14E-03	1.02E-04
PAHs						
Naphthalene	3.99E+02	6.09E+02	2.38E+02	3.16E+01	4.80E+01	1.89E+01
Benzo(a)pyrene	4.72E-01	9.96E-01	1.04E-01	7.04E-01	1.49E+00	1.55E-01
Total cPAHs	2.48E+00	6.15E+00	1.57E+00	3.64E+00	9.13E+00	2.33E+00
сРАН ВаРЕq	5.74E-01	1.31E+00	1.78E-01	8.62E-01	1.99E+00	2.71E-01
Total PAHs	5.62E+02	8.83E+02	3.57E+02	1.96E+02	3.81E+02	1.39E+02
SVOCs						
Bis(2-ethylhexyl)phthalate	4.40E-03	3.11E+01	3.54E-05	8.50E-03	6.64E+01	6.85E-05

BaPEq - benzo(a)pyrene equivalent

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - 2,4'- and 4,4'-DDD, DDE, and DDT

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

RM - river mile

SVOC - semivolatile organic compound

Table 6.3-1. Summary Statistics for All Depositional Cores Combined.

Table 0.5-1. Summary Statistics for All Deposi		· comom cu				Dete	ected Concentra	ntions			Detected an	d Nondetected (Concentrations	
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
Grain Size														
Fines	percent	28	28	100	4.99 T	83.8 T	57.2	64.5	78.1	4.99 T	83.8 T	57.2	64.5	78.1
Conventionals														
Total organic carbon	percent	29	29	100	0.4	4.16	2.27	2.37	3.33	0.4	4.16	2.27	2.37	3.33
Metals														
Arsenic	mg/kg	29	29	100	3.12	7.77 J	5.27	5.25	6.77	3.12	7.77 J	5.27	5.25	6.77
Cadmium	mg/kg	29	29	100	0.12	0.31	0.227	0.23	0.29	0.12	0.31	0.227	0.23	0.29
Chromium	mg/kg	29	29	100	24.2	44.7	35.8	37.6	41.4	24.2	44.7	35.8	37.6	41.4
Copper	mg/kg	29	29	100	21.1	71.6	40.4	40.5	59.4	21.1	71.6	40.4	40.5	59.4
Lead	mg/kg	29	29	100	8.2 J	17	13.2	13.6	16	8.2 J	17	13.2	13.6	16
Mercury	mg/kg	29	29	100	0.023	0.107 J	0.0604	0.0565	0.0966	0.023	0.107 J	0.0604	0.0565	0.0966
Nickel	mg/kg	29	29	100	19.7 J	35.8 J	30.6	30.1	35.5	19.7 J	35.8 J	30.6	30.1	35.5
Zinc	mg/kg	29	29	100	58	106	88	90.6	101	58	106	88	90.6	101
PCB Aroclors														
Aroclors	μg/kg	29	10	34	11 JT	22 T	15.3	15	21.6	2.5 UT	22 T	6.9	3.6	19.8
Pesticides														
Aldrin	μg/kg	29	10	34	0.26 J	0.81 J	0.507	0.48	0.77	0.22 U	0.81 J	0.275	0.155	0.712
Dieldrin	μg/kg	29	0	0						0.42 U	0.78 U	0.274	0.27	0.338
gamma-Hexachlorocyclohexane (Lindane)	μg/kg	29	0	0						0.22 U	1.7 U	0.201	0.15	0.498
Total chlordanes	μg/kg	29	26	90	0.18 JT	1.1 JT	0.608	0.555	1	0.18 JT	1.1 JT	0.576	0.53	1
Total DDD	μg/kg	29	28	97	0.21 JT	2.8 JT	0.903	0.75	1.87	0.21 JT	2.8 JT	0.877	0.73	1.86
DDx	μg/kg	29	29	100	0.24 JT	11 JT	3.86	3.8	6.42	0.24 JT	11 JT	3.86	3.8	6.42
Total DDE	μg/kg	29	29	100	0.24 JT	2.2 JT	1.36	1.4	2.06	0.24 JT	2.2 JT	1.36	1.4	2.06
Total DDT	μg/kg	29	24	83	0.29 JT	7.6 JT	1.96	1.65	3.5	0.23 UT	7.6 JT	1.68	1.6	3.32
Polycyclic Aromatic Hydrocarbons														
Benzo(a)pyrene	μg/kg	29	29	100	6.3	50	15.8	13	30.4	6.3	50	15.8	13	30.4
Total HPAHs	μg/kg	29	29	100	65 JT	370 T	181	160	338	65 JT	370 T	181	160	338
Total LPAHs	μg/kg	29	29	100	10 JT	140 T	47.8	39	118	10 JT	140 T	47.8	39	118
Naphthalene	μg/kg	29	19	66	8.9	19	13	12	18.1	0.58 U	19	8.61	10	17.6
Phenanthrene	$\mu g/kg$	29	29	100	5.3	81	23.6	20	64	5.3	81	23.6	20	64
Total cPAHs	μg/kg	29	29	100	35 JT	240 T	90.8	85	156	35 JT	240 T	90.8	85	156
Total PAHs	μg/kg	29	29	100	75 JT	510 T	229	210	434	75 JT	510 T	229	210	434
Phthalates														
Bis(2-ethylhexyl) phthalate	μg/kg	29	28	97	21	330	105	73.5	250	21	330	102	73	248
Butylbenzyl phthalate	μg/kg	29	1	3.4	210	210	210	210		2.2 U	210	9.59	1.5	8.1

Table 6.3-1. Summary Statistics for All Depositional Cores Combined.

				_		Dete	cted Concentra	tions			Detected an	d Nondetected (Concentrations	
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
Semivolatile Organic Compounds Hexachlorobenzene	μg/kg	29	1	3.4	0.62 J	0.62 J	0.62	0.62		0.12 U	5.1 U	0.429	0.08	2.1
Phenols Pentachlorophenol	μg/kg	29	13	45	0.36 J	2.8 J	0.973	0.8	1.96	0.2 U	3 U	0.618	0.42	1.46
Petroleum Total Petroleum Hydrocarbons (Diesel) Total Petroleum Hydrocarbons (Residual) Total Petroleum Hydrocarbons	mg/kg mg/kg mg/kg	29 29 29	29 29 29	100 100 100	5.3 J 73 J 82 JT	110 J 1000 J 1100 JT	51 518 571	47 520 570	91.6 968 1060	5.3 J 73 J 82 JT	110 J 1000 J 1100 JT	51 518 571	47 520 570	91.6 968 1060
PCDD/Fs Total PCDD/Fs TCDD TEQ	pg/g pg/g	29 29	29 29	100 100	12.64 JT 0.0161 JT	4083 JT 5.78 JT	299 0.536	91.3 0.175	675 1.62	12.64 JT 0.0161 JT	4083 JT 5.78 JT	299 0.536	91.3 0.175	675 1.62

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

HPAH - high molecular weight polycyclic aromatic hydrocarbon

LPAH - low molecular weight polycyclic aromatic hydrocarbon

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TEQ - toxic equivalent concentration

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

Table 6.3-2. Summary Statistics for RC483.

•				_		Dete	ected Concentra	tions			Detected an	d Nondetected (Concentrations	
				_						Minimum	Maximum	Mean	Median	95th
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	(half DL)	(half DL) ^b	(half DL) ^b
Grain Size														
Fines	percent	10	10	100	44.3 T	75.1 T	66.7	69.6	74.2	44.3 T	75.1 T	66.7	69.6	74.2
Conventionals														
Total organic carbon	percent	10	10	100	1.77	3.14	2.54	2.71	3.08	1.77	3.14	2.54	2.71	3.08
Metals														
Arsenic	mg/kg	10	10	100	4.58 T	6.62 J	5.86	5.89	6.58	4.58 T	6.62 J	5.86	5.89	6.58
Cadmium	mg/kg	10	10	100	0.205 T	0.27	0.248	0.26	0.27	0.205 T	0.27	0.248	0.26	0.27
Chromium	mg/kg	10	10	100	24.2	44.7	37.3	38.1	43.4	24.2	44.7	37.3	38.1	43.4
Copper	mg/kg	10	10	100	24.6	71.6	45	42.7	66.2	24.6	71.6	45	42.7	66.2
Lead	mg/kg	10	10	100	12 J	15.2 J	13.7	13.8	15.1	12 J	15.2 J	13.7	13.8	15.1
Mercury	mg/kg	10	10	100	0.047	0.094	0.0653	0.0595	0.0936	0.047	0.094	0.0653	0.0595	0.0936
Nickel	mg/kg	10	10	100	27.8 T	35.8 J	32.7	32.7	35.7	27.8 T	35.8 J	32.7	32.7	35.7
Zinc	mg/kg	10	10	100	58	99.1	88.5	92	98.7	58	99.1	88.5	92	98.7
PCB Aroclors														
Aroclors	μg/kg	10	2	20	11 T	11 T	11	11	11	4 UT	11 T	4.51	3.28	11
Pesticides														
Aldrin	μg/kg	10	6	60	0.32 J	0.55 J	0.43	0.42	0.543	0.27 U	0.66 U	0.334	0.34	0.537
Dieldrin	μg/kg	10	0	0						0.48 U	0.7 U	0.288	0.283	0.337
gamma-Hexachlorocyclohexane (Lindane)	μg/kg	10	0	0						0.27 U	1 U	0.189	0.153	0.356
Total chlordanes	μg/kg	10	9	90	0.42 JT	1.1 JT	0.706	0.62	1.06	0.42 JT	1.1 JT	0.671	0.575	1.06
Total DDD	μg/kg	10	10	100	0.48 JT	1.8 JT	0.963	0.87	1.62	0.48 JT	1.8 JT	0.963	0.87	1.62
DDx	μg/kg	10	10	100	2.2 JT	11 JT	4.59	4.15	8.43	2.2 JT	11 JT	4.59	4.15	8.43
Total DDE	μg/kg	10	10	100	1.1 T	2.1 T	1.53	1.5	2.06	1.1 T	2.1 T	1.53	1.5	2.06
Total DDT	μg/kg	10	8	80	1.2 JT	7.6 JT	2.58	1.75	5.96	1 UT	7.6 JT	2.18	1.55	5.48
Polycyclic Aromatic Hydrocarbons														
Benzo(a)pyrene	μg/kg	10	10	100	13	21	16.1	15.5	21	13	21	16.1	15.5	21
Total HPAHs	μg/kg	10	10	100	140 JT	240 JT	192	200	236	140 JT	240 JT	192	200	236
Total LPAHs	μg/kg	10	10	100	29 JT	59 T	47.3	49.5	58.1	29 JT	59 T	47.3	49.5	58.1
Naphthalene	μg/kg	10	9	90	8.9	17	12.1	12	15.8	0.76 U	17	11	11	15.7
Phenanthrene	μg/kg	10	10	100	15	28	21.7	21.5	27.6	15	28	21.7	21.5	27.6
Total cPAHs	μg/kg	10	10	100	75 JT	130 JT	96.5	92.5	126	75 JT	130 JT	96.5	92.5	126
Total PAHs	μg/kg	10	10	100	180 JT	270 JT	238	255	270	180 JT	270 JT	238	255	270
Phthalates														
Bis(2-ethylhexyl) phthalate	μg/kg	10	10	100	53	170	88.2	74	152	53	170	88.2	74	152
Butylbenzyl phthalate	μg/kg	10	0	0						2.5 U	12 U	2.52	1.58	5.78

Table 6.3-2. Summary Statistics for RC483.

				_		Dete	cted Concentra	tions			Detected an	d Nondetected (Concentrations	
				_						Minimum	Maximum	Mean	Median	95th
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	(half DL)	(half DL) ^b	(half DL) ^b
Semivolatile Organic Compounds														
Hexachlorobenzene	$\mu g/kg$	10	1	10	0.62 J	0.62 J	0.62	0.62		0.14 U	5.1 U	0.379	0.0775	1.68
Phenols														
Pentachlorophenol	μg/kg	10	2	20	0.36 J	1 J	0.68	0.68	0.968	0.33 U	1 J	0.335	0.24	0.743
Petroleum														
Total Petroleum Hydrocarbons (Diesel)	mg/kg	10	10	100	36 J	78 J	54.7	47	77.1	36 J	78 J	54.7	47	77.1
Total Petroleum Hydrocarbons (Residual)	mg/kg	10	10	100	370 J	780 J	578	560	776	370 J	780 J	578	560	776
Total Petroleum Hydrocarbons	mg/kg	10	10	100	410 JT	860 JT	636	620	851	410 JT	860 JT	636	620	851
PCDD/Fs														
Total PCDD/Fs	pg/g	10	10	100	12.64 JT	253.3 T	95.8	63.6	224	12.64 JT	253.3 T	95.8	63.6	224
TCDD TEQ	pg/g	10	10	100	0.0161 JT	0.63 JT	0.181	0.103	0.5	0.0161 JT	0.63 JT	0.181	0.103	0.5

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

HPAH - high molecular weight polycyclic aromatic hydrocarbon

LPAH - low molecular weight polycyclic aromatic hydrocarbon

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TEQ - toxic equivalent concentration

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

Table 6.3-3. Summary Statistics for RC01.

				_		Dete	cted Concentra	tions			Detected an	d Nondetected (Concentrations	
									L	Minimum	Maximum	Mean	Median	95th
Analyte	Units	# Analyzed	d # Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	(full DL) ^a	(full DL) ^a	(half DL)	(half DL) ^b	(half DL) ^b
Grain Size														
Fines	percent	8	8	100	4.99 T	83.8 T	45.5	47.8	78	4.99 T	83.8 T	45.5	47.8	78
Conventionals														
Total organic carbon	percent	9	9	100	0.4	4.16	2.53	2.94	3.83	0.4	4.16	2.53	2.94	3.83
Metals	•													
Arsenic	mg/kg	9	9	100	3.39 J	7.77 J	5.66	5.25	7.39	3.39 J	7.77 J	5.66	5.25	7.39
Cadmium	mg/kg	9	9	100	0.12	0.31	0.225	0.21	0.306	0.12	0.31	0.225	0.21	0.306
Chromium	mg/kg	9	9	100	25.7	40.3	35.5	38.1	40	25.7	40.3	35.5	38.1	40
Copper	mg/kg	9	9	100	21.1	47.5	36.2	36.4	46.5	21.1	47.5	36.2	36.4	46.5
Lead	mg/kg	9	9	100	8.2 J	15.7 J	12.6	11.8	15.7	8.2 J	15.7 J	12.6	11.8	15.7
Mercury	mg/kg	9	9	100	0.023	0.06	0.0487	0.055	0.0592	0.023	0.06	0.0487	0.055	0.0592
Nickel	mg/kg	9	9	100	25.6 J	35.5 J	31.4	30.1	35.1	25.6 J	35.5 J	31.4	30.1	35.1
Zinc	mg/kg	9	9	100	72.6	102	88.5	90.6	100	72.6	102	88.5	90.6	100
PCB Aroclors														
Aroclors	μg/kg	9	1	11	11 JT	11 JT	11	11		2.5 UT	11 JT	3.41	2.3	8.12
Pesticides														
Aldrin	μg/kg	9	4	44	0.26 J	0.81 J	0.623	0.71	0.797	0.22 U	0.81 J	0.363	0.2	0.774
Dieldrin	μg/kg	9	0	0						0.42 U	0.78 U	0.281	0.275	0.362
gamma-Hexachlorocyclohexane (Lindane)	μg/kg	9	0	0						0.22 U	0.99 U	0.194	0.15	0.393
Total chlordanes	μg/kg	9	8	89	0.3 JT	1 JT	0.621	0.59	1	0.3 JT	1 JT	0.582	0.58	1
Total DDD	μg/kg	9	8	89	0.21 JT	1.4 JT	0.72	0.665	1.26	0.21 JT	1.4 JT	0.657	0.6	1.24
DDx	μg/kg	9	9	100	0.24 JT	5.7 JT	3.03	3.5	5.34	0.24 JT	5.7 JT	3.03	3.5	5.34
Total DDE	μg/kg	9	9	100	0.24 JT	2 T	1.17	1.1	1.92	0.24 JT	2 T	1.17	1.1	1.92
Total DDT	μg/kg	9	6	67	0.48 JT	3.6 JT	1.81	1.7	3.35	0.23 UT	3.6 JT	1.29	0.75	3.2
Polycyclic Aromatic Hydrocarbons														
Benzo(a)pyrene	μg/kg	9	9	100	6.3	50	17	12	43.6	6.3	50	17	12	43.6
Total HPAHs	μg/kg	9	9	100	65 JT	350 T	165	130	338	65 JT	350 T	165	130	338
Total LPAHs	μg/kg	9	9	100	10 JT	130 T	44.4	36	99.6	10 JT	130 T	44.4	36	99.6
Naphthalene	μg/kg	9	6	67	10	19	14.3	13.5	18.8	0.58 U	19	9.66	12	18.6
Phenanthrene	μg/kg	9	9	100	5.3	70	19.9	13	50.4	5.3	70	19.9	13	50.4
Total cPAHs	μg/kg	9	9	100	35 JT	240 T	90.6	65	208	35 JT	240 T	90.6	65	208
Total PAHs	μg/kg	9	9	100	75 JT	450 T	212	170	422	75 JT	450 T	212	170	422
Phthalates														
Bis(2-ethylhexyl) phthalate	μg/kg	9	8	89	51	140	82.5	72	140	41 U	140	75.6	71	140
Butylbenzyl phthalate	μg/kg	9	0	0						2.2 U	19 U	2.99	1.5	7.56

Table 6.3-3. Summary Statistics for RC01.

				_		Dete	cted Concentra	ations			Detected an	d Nondetected C	Concentrations	
Analyte	Units	# Analyz	ed # Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
Semivolatile Organic Compounds	Circs	" THIMIJE	Tea II Beteeted	70 Detected						,	,		,	,
Hexachlorobenzene	μg/kg	9	0	0						0.12 U	4.4 U	0.409	0.08	1.54
Phenols														
Pentachlorophenol	μg/kg	9	3	33	0.42 J	1.2 J	0.843	0.91	1.17	0.2 U	3 U	0.554	0.375	1.38
Petroleum														
Total Petroleum Hydrocarbons (Diesel)	mg/kg	9	9	100	5.3 J	110 J	56.5	54	104	5.3 J	110 J	56.5	54	104
Total Petroleum Hydrocarbons (Residual)	mg/kg	9	9	100	91 J	1000 J	583	560	1000	91 J	1000 J	583	560	1000
Total Petroleum Hydrocarbons	mg/kg	9	9	100	96 JT	1100 JT	641	620	1100	96 JT	1100 JT	641	620	1100
PCDD/Fs														
Total PCDD/Fs	pg/g	9	9	100	41.01 JT	4083 JT	596	167	2560	41.01 JT	4083 JT	596	167	2560
TCDD TEQ	pg/g	9	9	100	0.0758 JT	5.78 JT	0.969	0.387	3.72	0.0758 JT	5.78 JT	0.969	0.387	3.72

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

HPAH - high molecular weight polycyclic aromatic hydrocarbon

LPAH - low molecular weight polycyclic aromatic hydrocarbon

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TEQ - toxic equivalent concentration

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

Table 6.3-4. Summary Statistics for RC02.

Part	-				_		Dete	ected Concentra	itions			Detected an	d Nondetected (Concentrations	
Fine	Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b					
Fine	Grain Size														
Total organic enhance Present 10		percent	10	10	100	26.6 T	79.6 T	57	61.7	77.7	26.6 T	79.6 T	57	61.7	77.7
Total copanie carbon	Conventionals														
Metals		percent	10	10	100	0.5	2.9	1.77	1.82	2.68	0.5	2.9	1.77	1.82	2.68
Assencic	-	•													
Cadimism		mg/kg	10	10	100	3.12	5.68	4.32	4.5	5.32	3.12	5.68	4.32	4.5	5.32
Chromium															
Copper			10	10											
Lead mg/kg 10 10 100 8.48 17 13.2 14.1 16.6 8.48 17 13.2 14.1 16.6 Mercury mg/kg 10 10 100 0.028 0.107 J 0.0661 0.059 0.103 0.058	Copper		10	10	100	26.8 T	59.3	39.6	35.6	58.7	26.8 T	59.3	39.6	35.6	58.7
Mercury mg/kg 10 10 100 100 107 33.5 27.9 28.2 31.7 19.7 33.5 27.9 38.2 31.7 26.6 10.3 31.7 26.6 10.3 31.7 26.7 27.0 28.2 31.7 29.1 33.5 27.9 38.2 31.7 27.0 28.2 31.7 29.1 29.2 29			10	10	100	8.48	17	13.2	14.1	16.6	8.48	17	13.2	14.1	16.6
PCB Arcolors	Mercury		10	10	100	0.028	0.107 J	0.0661	0.059	0.103	0.028	0.107 J	0.0661	0.059	0.103
PCB Arcolors μg/kg 10 07 70 12 JT 22 T 17.1 17 21.7 25 UT 22 UT 12.4 15 21.6 Psticides μg/kg 10 00 00 0.0	Nickel	mg/kg	10	10	100	19.7 J	33.5	27.9	28.2	31.7	19.7 J	33.5	27.9	28.2	31.7
Accolors μg/kg 10 7 70 12 JT 22 T 17.1 17 21.7 22.5 UT 22.5 UT 22.5 UT 12.4 15 21.6	Zinc	mg/kg	10	10	100	70.1	106	87.1	86.6	103	70.1	106	87.1	86.6	103
Pesticides	PCB Aroclors														
Addrin	Aroclors	$\mu g/kg$	10	7	70	12 JT	22 T	17.1	17	21.7	2.5 UT	22 T	12.4	15	21.6
Dieldrin μg/kg 10 0 0 0 0 0 0 0 0	Pesticides														
gamma-Hexachlorocyclohexane (Lindane) μg/kg 10 0 <td>Aldrin</td> <td>μg/kg</td> <td>10</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.41 U</td> <td>0.138</td> <td></td> <td></td>	Aldrin	μg/kg	10	0	0							0.41 U	0.138		
Total chlordanes μg/kg 10 9 90 0.18 JT 0.76 JT 0.499 0.5 0.748 0.18 JT 0.76 JT 0.476 0.475 0.747 Total DDD μg/kg 10 10 100 0.25 JT 2.8 JT 0.988 0.73 2.4 0.25 JT 2.8 JT 0.988 0.73 2.4 DDX μg/kg 10 10 10 100 1.JT 6.9 JT 3.89 4.05 6.27 Total DDE μg/kg 10 10 10 100 0.49 JT 2.2 JT 1.37 1.45 2.11 0.49 JT 2.2 JT 1.37 1.45 2.11 Total DDE μg/kg 10 10 10 100 0.49 JT 2.2 JT 1.37 1.45 2.11 0.49 JT 2.2 JT 1.37 1.45 2.11 Total DDT μg/kg 10 10 10 100 0.49 JT 2.2 JT 1.55 1.65 2.51 0.29 JT 2.6 JT 1.55 1.65 2.51 Polycyclic Aromatic Hydrocarbons Benzo(a) pyrene μg/kg 10 10 10 100 73 JT 370 T 184 120 348 73 JT 370 T 184 120 348 Total LPAHs μg/kg 10 10 10 100 13 JT 140 T 51.3 31.5 122 13 JT 140 T 51.3 31.5 122 Naphthalene μg/kg 10 4 4 40 11 16 12.8 12 154 0.58 U 16 5.31 0.398 142 Phenanthrene μg/kg 10 10 10 100 8 8 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 Total PAHs μg/kg 10 10 10 100 39 JT 150 T 85.3 63 150 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 μg/kg 10 10 100 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 μg/kg 10 10 100 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 μg/kg 10 10 100 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 μg/kg 10 10 100 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 μg/kg 10 10 100 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 μg/kg 10 10 100 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 μg/kg 10 10 100 87 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 μg/kg μ		μg/kg		0	0										
Total DDD μg/kg 10 10 100 0.25 JT 2.8 JT 0.988 0.73 2.4 0.25 JT 2.8 JT 0.988 0.73 2.4 DDx μg/kg 10 10 10 100 1 JT 6.9 JT 3.89 4.05 6.27 1 JT 6.9 JT 3.89 4.05 6.27 Total DDE μg/kg 10 10 10 100 0.49 JT 2.2 JT 1.37 1.45 2.11 0.49 JT 2.2 JT 1.55 1.65 2.51 Total DDT μg/kg 10 10 10 100 0.29 JT 2.6 JT 1.55 1.65 2.51 0.29 JT 2.6 JT 1.55 1.65 2.51 DDyyclic Aromatic Hydrocarbons Polycyclic Aromatic Hydrocarbons Benzo(a) pyrene μg/kg 10 10 10 100 6.4 2.5 14.3 11.5 23.2 6.4 2.5 14.3 11.5 23.2 Total HPAHs μg/kg 10 10 100 73 JT 370 T 184 120 348 73 JT 370 T 184 120 348 T3 JT 370 T 383 31.5 122 T3 JT 370 T 383 31.5 322 T3 JT 370 T 383 31.5 328 T3 JT 370 T 370 T 383 31.5 328 T3 JT 370 T 370 T 383 31.5 328 T3 JT 370 T 37		μg/kg	10	0	•										
DDx		μg/kg	10												
Total DDE μg/kg 10 10 10 100 0.49 JT 2.2 JT 1.37 1.45 2.11 0.49 JT 2.2 JT 1.37 1.45 2.11 Total DDT μg/kg 10 10 10 100 0.29 JT 2.6 JT 1.55 1.65 2.51 0.29 JT 2.6 JT 1.55 1.65 2.51 Polycyclic Aromatic Hydrocarbons Benzo(a)pyrene μg/kg 10 10 10 100 6.4 2.5 14.3 11.5 23.2 6.4 2.5 14.3 11.5 23.2 Total HPAHs μg/kg 10 10 100 73 JT 370 T 184 120 348 73 JT 370 T 184 11.5 23.2 Total HPAHs μg/kg 10 10 10 100 13 JT 140 T 51.3 31.5 122 13 JT 140 T 51.3 31.5 122 Naphthalene μg/kg 10 4 4 40 11 16 12.8 12 15.4 0.58 U 16 5.31 0.398 14.2 Phenanthrene μg/kg 10 10 10 100 8 8 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 Total CPAHs μg/kg 10 10 10 100 39 JT 150 T 85.3 63 150 465 87 JT 510 T 2.36 150 465 87 JT 510		μg/kg	10												
Total DDT μg/kg 10 10 100 0.29 JT 2.6 JT 1.55 1.65 2.51 Polycyclic Aromatic Hydrocarbons Benzo(a)pyrene μg/kg 10 10 100 6.4 25 14.3 11.5 23.2 6.4 25 14.3 11.5 23.2 Total HPAHs μg/kg 10 10 100 73 JT 370 T 184 120 348 122 13 JT		μg/kg													
Polycyclic Aromatic Hydrocarbons Benzo(a)pyrene μg/kg 10 10 100 6.4 25 14.3 11.5 23.2 6.4 25 14.3 11.5 23.2 Total HPAHs μg/kg 10 10 100 73 JT 370 T 184 120 348 73 JT 140 T 51.3 348 122 13 JT 140 T 51.3 31.5 122 13 JT 140 T 51.3 31.5 122 13 JT 140 T 51.3 31.5 122 15.4 0.58 U 16 5.31 0.398 14.2 14.3 11.2 <td></td>															
Benzo(a)pyrene μg/kg 10 10 100 6.4 25 14.3 11.5 23.2 6.4 25 14.3 11.5 23.2 Total HPAHs μg/kg 10 10 100 73 JT 370 T 184 120 348 73 JT 370 T 184 120 348 Total LPAHs μg/kg 10 10 100 13 JT 140 T 51.3 31.5 122 13 JT 140 T 51.3 31.5 122 Naphthalene μg/kg 10 4 40 11 16 12.8 12 15.4 0.58 U 16 5.31 0.398 14.2 Phenanthrene μg/kg 10 10 8 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 8 81 150 T 85.3 63 150 <td>Total DDT</td> <td>μg/kg</td> <td>10</td> <td>10</td> <td>100</td> <td>0.29 JT</td> <td>2.6 JT</td> <td>1.55</td> <td>1.65</td> <td>2.51</td> <td>0.29 JT</td> <td>2.6 JT</td> <td>1.55</td> <td>1.65</td> <td>2.51</td>	Total DDT	μg/kg	10	10	100	0.29 JT	2.6 JT	1.55	1.65	2.51	0.29 JT	2.6 JT	1.55	1.65	2.51
Total HPAHs μg/kg 10 10 100 73 JT 370 T 184 120 348 Total LPAHs μg/kg 10 10 100 13 JT 140 T 51.3 31.5 122 13 JT 140 T 51.3 31.5 122 Naphthalene μg/kg 10 4 40 11 16 12.8 12 15.4 0.58 U 16 5.31 0.398 14.2 Phenanthrene μg/kg 10 10 10 100 8 81 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 Total cPAHs μg/kg 10 10 10 100 39 JT 150 T 85.3 63 150 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 10 10 100 87 JT 510 T 236 150 465 87 JT 510 T 236 150 465 Phthalates Bis(2-ethylhexyl) phthalate μg/kg 10 10 10 100 21 330 139 135 299	Polycyclic Aromatic Hydrocarbons														
Total LPAHs μg/kg 10 10 100 13 JT 140 T 51.3 31.5 122 13 JT 140 T 51.3 31.5 122 Naphthalene μg/kg 10 4 40 11 16 12.8 12 15.4 0.58 U 16 5.31 0.398 14.2 Phenanthrene μg/kg 10 10 100 8 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 Total cPAHs μg/kg 10 10 10 100 39 JT 150 T 85.3 63 150 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 10 10 100 87 JT 510 T 236 150 465 87 JT 510 T 236 150 465 Phthalates Bis(2-ethylhexyl) phthalate μg/kg 10 10 10 100 21 330 139 135 299 21 330 139 135 299		μg/kg	10												
Naphthalene μg/kg 10 4 40 11 16 12.8 12 15.4 0.58 U 16 5.31 0.398 14.2 Phenanthrene μg/kg 10 10 100 8 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 Total cPAHs μg/kg 10 10 100 39 JT 150 T 85.3 63 150 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 10 100 87 JT 510 T 236 150 465 87 JT 510 T 236 150 465 Phthalates Bis(2-ethylhexyl) phthalate μg/kg 10 10 21 330 139 135 299 21 330 139 135 299	Total HPAHs	μg/kg	10	10	100	73 JT	370 T	184	120	348	73 JT	370 T	184	120	348
Phenanthrene μg/kg 10 10 100 8 81 28.8 19.5 69.3 8 81 28.8 19.5 69.3 Total cPAHs μg/kg 10 10 100 39 JT 150 T 39 JT 150 T 85.3 63 150 Total PAHs μg/kg 10 10 100 87 JT 510 T 236 150 465 Phthalates Bis(2-ethylhexyl) phthalate μg/kg 10 10 21 330 139 135 299 21 330 139 135 299	Total LPAHs	μg/kg	10	10	100	13 JT	140 T	51.3	31.5	122		140 T	51.3		122
Total cPAHs μg/kg 10 10 100 39 JT 150 T 85.3 63 150 39 JT 150 T 85.3 63 150 Total PAHs Total PAHs μg/kg 10 10 100 87 JT 510 T 236 150 465 87 JT 510 T 236 150 465 Phthalates Bis(2-ethylhexyl) phthalate μg/kg 10 10 10 100 21 330 139 135 299 21 330 139 135 299	Naphthalene	μg/kg	10	4	40	11	16		12		0.58 U	16			
Total PAHs μg/kg 10 10 100 87 JT 510 T 236 150 465 87 JT 510 T 236 150 465 Phthalates Bis(2-ethylhexyl) phthalate μg/kg 10 10 100 21 330 139 135 299 21 330 139 135 299	Phenanthrene	μg/kg	10	10	100	8	81	28.8	19.5		8	81	28.8	19.5	
Phthalates Bis(2-ethylhexyl) phthalate μg/kg 10 10 100 21 330 139 135 299 21 330 139 135 299															
Bis(2-ethylhexyl) phthalate μ g/kg 10 10 100 21 330 139 135 299 21 330 139 135 299	Total PAHs	$\mu g/kg$	10	10	100	87 JT	510 T	236	150	465	87 JT	510 T	236	150	465
	Phthalates														
	Bis(2-ethylhexyl) phthalate	μg/kg		10	100					299					
	Butylbenzyl phthalate	$\mu g/kg$	10	1	10	210	210	210	210		2.4 U	210	22.6	1.48	117

Table 6.3-4. Summary Statistics for RC02.

				_		Dete	ected Concentra	ntions			Detected an	d Nondetected (Concentrations	
Analyte	Units	# Analyzed	# Detected	% Detected	Minimum ^a	Maximum ^a	Mean	Median ^b	95th ^b	Minimum (full DL) ^a	Maximum (full DL) ^a	Mean (half DL)	Median (half DL) ^b	95th (half DL) ^b
Semivolatile Organic Compounds Hexachlorobenzene	μg/kg	10	0	0						0.12 U	3.9 U	0.498	0.095	1.93
Phenols Pentachlorophenol	μg/kg	10	8	80	0.45 J	2.8 J	1.1	0.79	2.31	0.23 U	2.8 J	0.958	0.74	2.17
Petroleum														
Total Petroleum Hydrocarbons (Diesel)	mg/kg	10	10	100	9.2 J	75 J	42.4	44.5	68.3	9.2 J	75 J	42.4	44.5	68.3
Total Petroleum Hydrocarbons (Residual)	mg/kg	10	10	100	73 J	740 J	399	400	655	73 J	740 J	399	400	655
Total Petroleum Hydrocarbons	mg/kg	10	10	100	82 JT	820 JT	443	450	726	82 JT	820 JT	443	450	726
PCDD/Fs														
Total PCDD/Fs	pg/g	10	10	100	32.9 JT	720.4 T	235	75.5	670	32.9 JT	720.4 T	235	75.5	670
TCDD TEQ	pg/g	10	10	100	0.0502 JT	1.85 JT	0.503	0.14	1.59	0.0502 JT	1.85 JT	0.503	0.14	1.59

cPAH - carcinogenic polycyclic aromatic hydrocarbon

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

DL - detection limit

HPAH - high molecular weight polycyclic aromatic hydrocarbon

LPAH - low molecular weight polycyclic aromatic hydrocarbon

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

TEQ - toxic equivalent concentration

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Whenever several result values match maximum or minimum value, qualifier and descriptor preference has been given in the following order: U over J over A over N over T over no qualification.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

Table 6.3-5. Summary Statistics in the Upstream Study Area Depositional Cores.

		Total P	CBs ^a (μg	/kg)			TCD	D TEQ (p	g/g)			DD	x (μg/kg)				Total P	AHs (μg/	kg)	
Location	# Analyzed	# Detected	Mean	Median ^b	95th ^b	# Analyzed #	Detected	Mean	Median ^b	95th ^b	# Analyzed	# Detected	Mean	Median ^b	95th ^b	# Analyzed	# Detected	Mean	Median ^b	95th ^b
Study Area Depositional C All Upstream Depositional Area Core - Combined	29	10	6.9	3.6	19.8	29	29	0.536	0.175	1.62	29	29	3.86	3.8	6.42	29	29	229	210	434
RC02 - Borrow Pit @ RM 10.9	10	7	12.4	15	21.6	10	10	0.503	0.14	1.59	10	10	3.89	4.05	6.27	10	10	236	150	465
RC01 - Borrow Pit @ RM 10.5	9	1	3.41	2.3	na	9	9	0.969	0.387	3.72	9	9	3.03	3.5	5.34	9	9	212	170	422
RC483 - Shoal @ RM 9.5	5 10	2	4.51	3.28	11	10	10	0.181	0.103	0.5	10	10	4.59	4.15	8.43	10	10	238	255	270

DDx - total of 2,4' and 4,4'-DDD, -DDE, -DDT

na - not applicable

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

RM - river mile

TEQ - toxic equivalent concentration

TOC - total organic carbon

Reason codes for qualifiers:

- J The associated numerical value is an estimated quantity.
- N Presumptive evidence of presence of material; identification of the compound is not definitive.
- U The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

- A Total value based on limited number of analytes.
- T The associated numerical value was mathematically derived (e.g., from summing multiple analyte results such as Aroclors, or calculating the average of multiple results for a single analyte). Also indicates all results that are selected for reporting in preference to other available results (e.g., for parameters reported by multiple methods) for the Round 2 data.

^a Total PCBs are based on Aroclors, congeners were not analyzed in these cores samples.

b Median is the exact result value ranking as the 0.50 percentile in an ascending list of all results, and 95th percentile is the exact result value of the 0.95 ranking result. When the ascending list of all results doesn't produce an exact match to the corresponding percentile rank, average of two adjacent results ranking closest to 0.50 percentile is the median, and an interpolated value is the 95th percentile. Such median or 95th percentile value is not qualified. It is qualified with "U" if both results ranking immediately above and below the corresponding percentile are "U" qualified, and with "J" if at least one of the results is "J" qualified.

Table 7.2-1. Upriver Surface Sediment Summary Statistics, Dry Weight Concentrations, All Data.

				Samp	le Counts			Data Su	mmary	
			~ •			Detection	•		.	
	T T •4	High Biasing	Sample	D 4 4	Non-	Frequency	Non-d Minimum	etects Maximum	Minimum Det	ects Maximum
Analyte	Units	Non-detects	Count	Detects	detects	(%)	1			
Aldrin a,b	µg/kg	0	48	6	42	13	0.03	0.91	0.24	0.55
Arsenic	mg/kg	0	71	71	0	100	0.00	0.00	1.90	5.29
Bis(2-ethylhexyl) phthalate	µg/kg	0	67	52	15	78	3.20	31.00	4.20	2100.00
Total chlordanes a	μg/kg	0	48	33	15	69	0.04	0.91	0.12	1.18
Chromium	mg/kg	0	65	65	0	100			11.90	38.10
Copper	mg/kg	0	67	67	0	100			10.50	47.20
DDx ^a	μg/kg	0	48	47	1	98	0.18	1.80	0.20	6.70
Dieldrin a,b	μg/kg	1	47	7	40	15	0.03	1.80	0.11	0.39
Mercury	mg/kg	0	61	52	9	85	0.02	0.04	0.01	0.06
Total PAHs	μg/kg	0	71	60	11	85	1.50	10.00	6.12	464.48
Total PCBs (Aroclors) a	μg/kg	0	48	23	25	48	1.30	18.00	4.95	53.45
Total PCBs (Congeners)	μg/kg	0	33	33	0	100			0.60	47.98
Total PCDD/Fs	μg/kg	0	33	33	0	100			0.01	0.31
Tributyltin Ion	μg/kg	0	3	2	1	67	0.09	0.09	0.72	1.10
Zinc	mg/kg	0	67	67	0	100			40.40	165.00

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

^a Indicates data analyzed by Method SOM01.2 were excluded

^b Indicates data has a detection frequency of less than ~ 50%

Table 7.3-1. Summary of Background Results, Dry Weight and OC-Equivalent Concentrations

			All Data							Outliers Ren	noved			
			95% UPI	Ĺ	95% UCL	1		95%	% UPL		95%	UCL	•	
Туре	Units	Distribution	Туре	UPL	Туре	UCL	No. of Outliers removed	Туре	UPL	UPL - OC Equivalent	Туре	UCL	UCL – OC Equivalent	
Aldrin ^a	μg/kg	No background calculated, insufficient dete	ections											
Arsenic	μg/kg	Approx. Gamma	Log-t	4.0	Gamma	3.0	3	Normal-t	3.6		Normal Student's-t	2.9		Data are approximate normal with 3 outliers removed
Bis(2-ethylhexyl) phthalate	μg/kg	Lognormal	Log ROS-t	189	KM-Chebyshev	208	4	Hawkins-Wixley	103	158	Gamma-ROS	40.3	62	Data are not normal with outliers removed
Chlordanes a	μg/kg	Approx. Gamma	Hawkins-Wixley	0.9	KM-t	0.4	2	Normal KM-t	0.7	1	Normal KM-t	0.3	0.5	2 outliers
Chromium	mg/kg	Normal	Normal-t	32.2	Normal Student's-t	23.8	0							No outliers
Copper	mg/kg	Approx. Normal	Normal-t	37.4	Normal Student's-t	25.9	0							No outliers
DDx ^a	μg/kg	Approx. Normal	Normal KM-t	4.0	Normal KM-t	2.3	2	Normal KM-t	3.3	5.1	Normal KM-t	2	3.1	
Dieldrin ^a	μg/kg	No background calculated, insufficient dete	ections											
Mercury	mg/kg	Normal	Normal KM-t	0.05	Normal KM-t	0.03	0							No outliers
Total PAHs	μg/kg	Gamma	Hawkins-Wixley	353	Gamma ROS	106	3	Normal KM-t	148	228	Normal KM-t	73.3	113	Data are approximate normal with 3 outliers removed
PCBs (Aroclors) a	μg/kg	None	None	39.3	KM-t	10.5	5	Hawkins-Wixley	12	19	Gamma KM	5.6	9	Data are not normal with outliers removed
PCBs (Congeners)	μg/kg	Lognormal	Log-t	20.5	H-UCL	9.3	4	Hawkins-Wixley	7.7	11.9	Gamma	4.2	6.4	Data are not normal with outliers removed
Total PCDD/Fs	μg/kg	Gamma	Hawkins-Wixley	0.2	Gamma	0.09	1	Hawkins-Wixley	0.2	0.3	Gamma	0.08	0.1	Data are not normal with outlier removed
Tributyltin	μg/kg	No background calculated, insufficient dete	ections											
Zinc	mg/kg	Approx. Normal	Normal-t	111	Normal Student's-t	79	1	Normal-t	104		Normal Student's-t	77		1 outlier

Notes:

The OC-equivalent values were calculated by multiplying the dry weight values by the ratio of the Study Area average total organic carbon content (1.71%) and the average total organic carbon content of the background data set (1.11%) (1.71/1.11 or 1.54).

GROS - gamma regression on order statistics

KM - Kaplan-Meier

OC - organic carbon

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

PCDD/F - dioxin/furan

UCL - upper confidence limit

UPL - upper prediction limit

^a Indicates data analyzed by Method SOM01.2 were excluded

Table 8.4-1. Summary of Human Health Risks, Reasonable Maximum Exposures.

	tuman ricatui Kisks, Keasonaole Maximum Expost							Expos	ure Area					
Receptor	Exposure Medium Scenario	Endpoint	RM 2	RM 3	RM 4	RM 5	RM 6	RM 7	RM 8	Swan Island Lagoon	RM 9	RM 10	RM 11	Study-Area Wide
Dockside Workers	Beach sediment	Cancer Risk	7.E-07 (B002) 2.E-06 (B004)			6.E-07 (05B019)	9.E-05 (06B025) 1.E-06 (06B029)	5.E-07 (07B022)	5.E-07 (08B032)					
			6.E-07 (B006) 0.01 (B002)			0.004	0.005 (06B025)	0.003	0.004					
		Hazard Index	0.07 (B004) 0.004 (B006)			(05B019)	0.002 (06B029)	(07B022)	(08B032)					
		Breastfeeding Infant Hazard Index	0.1 (B002) 1 (B004) 0.01 (B006)				0.03 (06B025)		0.01 (08B032)					
			9.E-08 (2W) 3.E-07 (2E)	2.E-07 (3W) 1.E-07 (3E)	2.E-07 (4W) 5.E-07 (4E)	7.E-07 (5W) 2.E-07 (5E)	9.E-06 (6W) 4.E-07 (6E)	2.E-05 (7W) 4.E-07 (7E)	3.E-07 (8W) 3.E-07 (8E)		3.E-07 (9W) 1.E-07 (9E)	6.E-07 (10W) 1.E-07 (10E)	1.E-07 (11W) 3.E-07 (11E)	
In-Water Workers	In-water sediment	Cancer Risk	2.E-07 (2.5W) 8.E-07 (2.5E)	6.E-07 (3.5W) 6.E-07 (3.5E)	4.E-07 (4.5W) 2.E-06 (4.5E)	8.E-07 (5.5W) 3.E-07 (5.5E)	7.E-07 (6.5W) 3.E-07 (6.5E)	1.E-07 (7.5W) 9.E-08 (7.5E)	1.E-06 (8.5W) 2.E-07 (8.5E)	4.E-07	2.E-07 (9.5W) 8.E-08 (9.5E)	1.E-07 (10E) 1.E-07 (10.5W)	7.E-08 (11.5W)	2.E-06
			0.001 (2W)	0.1 (3W)	0.1 (4W)	0.1 (5W)	0.1 (6W)	9.E-08 (7.3E) 1 (7W)	0.1 (8W)		0.1 (9W)	0.01 (10W)	` ,	
		Hazard Index	0.02 (2E)	0.1 (3E)	0.1 (4E)	0.1 (5E)	0.1 (6E)	0.1 (7E)	0.1 (8E)	0.2	0.002 (9E)	0.001 (10E)	0.001 (11W) 0.03 (11E)	0.2
		nazaru muex	0.002 (2.5W)	0.1 (3.5W)	0.1 (4.5W)	0.1 (5.5W)	0.2 (6.5W)	0.1 (7.5W)	0.2 (8.5W)	0.2	0.005 (9.5W)	0.002 (10.5W)	0.001 (11.5W)	0.2
			0.002 (2.5E) 0.003 (2W)	0.2 (3.5E) 0.003 (3W)	0.1 (4.5E) 0.005 (4W)	0.1 (5.5E) 0.01 (5W)	0.2 (6.5E) 0.01 (6W)	0.1 (7.5E) 2 (7W)	0.1 (8.5E) 0.06 (8W)		0.002 (9.5E) 0.3 (9W)	0.002 (10.5E) 0.07 (10W)	******	
			0.2 (2E)	0.003 (3W) 0.004 (3E)	0.005 (4E)	0.004 (5E)	0.01 (6W) 0.03 (6E)	0.02 (7E)	0.09 (8E)		0.01 (9E)	0.07 (10W) 0.01 (10E)	0.005 (11W)	
		Breastfeeding Infant Hazard Index	0.003 (2.5W)	0.004 (3.5W)	0.01 (4.5W)	0.01 (5.5W)	0.03 (6.5W)	0.04 (7.5W)	1 (8.5W)	0.1	0.05 (9.5W)	0.01 (10.5W)	0.6 (11E)	0.2
			0.01 (2.5E)	0.3 (3.5E)	0.01 (4.5E)	0.03 (5.5E)	0.2 (6.5E)	0.01 (7.5E)	0.01 (8.5E)		0.01 (9.5E)	0.02 (10.5E)	0.004 (11.5W)	
Transients	Beach sediment	Cancer Risk		3.E-07 (03B030)			4.E-07 (06B022)	3.E-07 (07B024)		1.E-07 (07B023)	4.E-07 (09B026)			
		Hazard Index	-	0.06 (03B030) 0.1 (03B031)			0.08 (06B022)	0.06 (07B024)		0.04 (07B023)	0.06 (09B026) 0.08 (09B027)			
	Surface water Groundwater seep	Cancer Risk	7.E-07 (W025)		6.E-07 (W005)		6.E-07 (W014) 9.E-07 (W011)						6.E-07 (W023)	9.E-07
		Hazard Index	0.06 (W025)		0.3 (W005)		0.05 (W014) 0.05 (W011)						0.3 (W023)	0.3
		Cancer Risk Hazard Index					3.E-09 (OF22B) 0.006 (OF22B)							
-		Hazard Index	1.E-07 (2W)	5.E-07 (3W)	4.E-07 (4W)	2.E-06 (5W)	3.E-05 (6W)	3.E-05 (7W)	6.E-07 (8W)		7.E-07 (9W)	9.E-07 (10W)	2.E-07 (11W)	
Diviero (Wet Cuit)	In victor or diment	Comeon Biols	1.E-06 (2E)	2.E-07 (3E)	2.E-06 (4E)	4.E-07 (5E)	1.E-06 (6E)	8.E-07 (7E)	7.E-07 (8E)	1 E 06	1.E-07 (9E)	3.E-07 (10E)	8.E-07 (11E)	4 E 06
Divers (Wet Suit)	In-water sediment	Cancer Risk	4.E-07 (2.5W)	2.E-06 (3.5W)	1.E-06 (4.5W)	2.E-06 (5.5W)	1.E-06 (6.5W)	3.E-07 (7.5W)	3.E-06 (8.5W)	1.E-06	4.E-07 (9.5W)	1.E-07	9.E-08	4.E-06
			3.E-06 (2.5E)	2.E-06 (3.5E)	5.E-06 (4.5E)	7.E-07 (5.5E)	6.E-07 (6.5E)	1.E-07 (7.5E)	3.E-07 (8.5E)		1.E-07 (9.5E)	(10.5W)	(11.5W)	
			0.001 (2W) 0.03 (2E)	0.01 (3W)	0.02 (4W) 0.02 (4E)	0.02 (5W)	0.02 (6W) 0.02 (6E)	0.6 (7W)	0.02 (8W) 0.03 (8E)		0.04 (9W) 0.002 (9E)	0.01 (10W) 0.001 (10E)	0.001 (11W)	
		Hazard Index	0.03 (2E) 0.001 (2.5W)	0.02 (3E) 0.02 (3.5W)	0.02 (4E) 0.02 (4.5W)	0.02 (5E) 0.02 (5.5W)	0.02 (6E) 0.03 (6.5W)	0.02 (7E) 0.02 (7.5W)	0.03 (8E) 0.1 (8.5W)	0.05	0.002 (9E) 0.005 (9.5W)	0.001 (10E) 0.001 (10.5W)	0.04 (11E)	0.1
			0.001 (2.5K) 0.002 (2.5E)	0.02 (3.5 W) 0.1 (3.5E)	0.02 (4.5E)	0.02 (5.5E)	0.03 (6.5E)	0.02 (7.5E)	0.02 (8.5E)		0.003 (9.5K) 0.001 (9.5E)	0.001 (10.5W) 0.002 (10.5E)	0.001 (11.5W)	
			0.004 (2W)	0.004 (3W)	0.01 (4W)	0.01 (5W)	0.01 (6W)	1 (7W)	0.1 (8W)		0.5 (9W)	0.1 (10W)	0.01 (1100)	
		Breastfeeding Infant Hazard Index	0.3 (2E)	0.005 (3E)	0.1 (4E)	0.01 (5E)	0.04 (6E)	0.02 (7E)	0.1 (8E)	0.1	0.02 (9E)	0.01 (10E)	0.01 (11W) 0.8 (11E)	0.1
		Breastreeding finant Hazard Index	0.004 (2.5W)	0.01 (3.5W)	0.01 (4.5W)	0.01 (5.5W)	0.03 (6.5W)	0.05 (7.5W)	2 (8.5W)	0.1	0.1 (9.5W)	0.01 (10.5W)	0.005 (11.5W)	0.1
			0.02 (2.5E)	0.4 (3.5E)	0.01 (4.5E)	0.04 (5.5E)	0.3 (6.5E)	0.009 (7.5E)	0.01 (8.5E)		0.01 (9.5E)	0.03 (10.5E)	0.005 (11.5)	
			2.E-08 (2W)	2.E-07 (3W)	3.E-08 (4W) 3.E-07 (4E)	3.E-08 (5.5W)	1.E-05 (6W) 6.E-07 (6.5W)	3.E-07 (7W)			7.E-07 (9.5W)			
	Surface water	Cancer Risk	2.E-08 (2E)	1.E-07 (3.5E)	1.E-06 (4.5E)	2.E-08 (5.5E)	2.E-07 (6.5E)	2.E-08 (7.5W)	4.E-08 (8.5W)	4.E-07	1.E-08 (9.5E)		1.E-07 (W023)	
			7.E-08 (W025)	,	1.E-07 (W005)	, , ,	1.E-07 (W011)	, , ,			,			
			0.0001 (2W)		0.0001 (4W)		0.0001 (6W)							
		Hazard Index	0.002 (2E)	0.0001 (3W)	0.0001 (4E)	0.0001 (5.5W)	0.0001 (6.5W)	0.003 (7W)	0.0001 (8.5W)	0.006	0.0001 (9.5W)		0.003 (W023)	
			0.0001 (W025)	0.0001 (3.5E)	0.0001 (4.5E) 0.003 (W005)	0.0001 (5.5E)	0.0002 (6.5E) 0.0001 (W011)	0.0001 (7.5W)			0.0001 (9.5E)			
			4.E-08 (2W)	1.E-07 (3W)	1.E-07 (4W)	5.E-07 (5W)	6.E-06 (6W)	1.E-05 (7W)	1.E-07 (8W)		2.E-07 (9W)	3.E-07 (10W)	5.E-08 (11W)	
			2.E-07 (2E)	6.E-08 (3E)	3.E-07 (4E)	8.E-08 (5E)	3.E-07 (6E)	2.E-07 (7E)	2.E-07 (8E)		4.E-08 (9E)	7.E-08 (10E)	2.E-07 (11E)	
Divers (Dry Suit)	Ory Suit) In-water sediment	Cancer Risk	9.E-08 (2.5W)	3.E-07 (3.5W)	3.E-07 (4.5W)	5.E-07 (5.5W)	3.E-07 (6.5W)	7.E-08 (7.5W)	7.E-07 (8.5W)	3.E-07	1.E-07 (9.5W)	4.E-08	3.E-08	9.E-07
		<u> </u>	5.E-07 (2.5E)	3.E-07 (3.5E)	1.E-06 (4.5E)	2.E-07 (5.5E)	2.E-07 (6.5E)	4.E-08 (7.5E)	8.E-08 (8.5E)		3.E-08 (9.5E)	(10.5W)	(11.5W)	
			0.0003 (2W)	0.01 (3W)	0.02 (4W)	0.01 (5W)	0.02 (6W)	0.2 (7W)	0.02 (8W)		0.02 (9W)	0.002 (10W)	0.0002 (11W)	
		Hazard Index	0.01 (2E)	0.02 (3E)	0.02 (4E)	0.02 (5E)	0.01 (6E)	0.02 (7E)	0.02 (8E)	0.02	0.0004 (9E)	0.0003 (10E)	0.007 (11E)	0.03
			0.0003 (2.5W) 0.0005 (2.5E)	0.01 (3.5W) 0.02 (3.5E)	0.02 (4.5W) 0.02 (4.5E)	0.02 (5.5W) 0.01 (5.5E)	0.02 (6.5W) 0.02 (6.5E)	0.02 (7.5W) 0.02 (7.5E)	0.04 (8.5W) 0.02 (8.5E)		0.001 (9.5W) 0.0003 (9.5E)	0.0003 (10.5W)	0.0002 (11.5W)	
		-	0.0003 (2.3E) 0.001 (2W)	0.02 (3.3E) 0.001 (3W)	0.02 (4.3E) 0.001 (4W)	0.01 (5.3E) 0.001 (5W)	0.02 (6.3E) 0.003 (6W)	0.02 (7.3E) 0.4 (7W)	0.02 (8.3E) 0.02 (8W)		0.0003 (9.3E) 0.1 (9W)	0.02 (10W)		
		Described in Tubert II I	0.1 (2E)	0.001 (3E)	0.01 (4E)	0.001 (5E)	0.01 (6E)	0.004 (7E)	0.02 (8E)	0.02	0.004 (9E)	0.002 (10E)	0.001 (11W)	0.02
		Breastfeeding Infant Hazard Index	0.001 (2.5W)	0.001 (3.5W)	0.002 (4.5W)	0.002 (5.5W)	0.01 (6.5W)	0.01 (7.5W)	0.3 (8.5W)	0.03	0.01 (9.5W)	0.002 (10.5W)	0.1 (11E) 0.001 (11.5W)	0.03
	-		0.003 (2.5E)	0.1 (3.5E)	0.002 (4.5E)	0.01 (5.5E)	0.1 (6.5E)	0.002 (7.5E)	0.003 (8.5E)		0.002 (9.5E)	0.006 (10.5E)	0.001 (11.5 W)	
			2.E-08 (2W)	4 E 00 (2W)	1.E-08 (4W)	1 E 00 /5 5W	2.E-06 (6W)	5 E 00 (7W)			1 E 07 (0 5W)			
	Surface water	Cancer Risk	1.E-08 (2E)	4.E-08 (3W) 3.E-08 (3.5E)	5.E-08 (4E) 1.E-07 (4.5E)	1.E-08 (5.5W) 1.E-08 (5.5E)	9.E-08 (6.5W) 3.E-08 (6.5E)	5.E-08 (7W) 1.E-08 (7.5W)	2.E-08 (8.5W)	6.E-08	1.E-07 (9.5W) 1.E-08 (9.5E)		2.E-08 (W023)	
	Surface water		2.E-08 (W025)	J.E-00 (J.JE)	3.E-08 (W005)	1.L-00 (J.JE)	3.E-08 (W011)	1.L-00 (7.3W)			1.12-00 (9.312)			
					J.L-00 (W00J)		J.L-00 (WUII)							

Table 8.4-1. Summary of Human Health Risks, Reasonable Maximum Exposures.

-									Expos	ure Area					
D 4	E W. !!	g .	F 1	D) (4	DM 2	DM 4	DM 5	DM (DM 5	D3.4.0	Swan Island	DMA	DM 10	DM 11	C4 1 4 XXV-1
Receptor	Exposure Mediun	n Scenario	Endpoint	RM 2	RM 3	RM 4	RM 5	RM 6	RM 7	RM 8	Lagoon	RM 9	RM 10	RM 11	Study-Area Wid
				0.0001 (2W)	0.0001 (3W)	0.0001 (4W) 0.0001 (4E)	0.0001 (5.5W)	0.0001 (6W) 0.0001 (6.5W)	0.001 (7W)			0.0001 (9.5W)			
			Hazard Index	0.0005 (2E)	0.0001 (3W) 0.0001 (3.5E)	0.0001 (4E) 0.0001 (4.5E)	0.0001 (5.5E)	0.0001 (6.5E)	0.001 (7.5W)	0.0001 (8.5W)	0.002	0.0001 (9.5K) 0.0001 (9.5E)		0.0007 (W023)	
				0.0001 (W025)	0.0001 (3.3L)	0.0001 (4.5L) 0.0008 (W005)	0.0001 (3.3L)	0.0001 (W011)	0.0001 (7.5 11)			0.0001 (7.3L)			
				5.E-06 (B001)	1.E-05	9.E-06		4.E-06 (06B022)			2.E-06	3.E-06			
Recreational Beach Users	Beach sediment		Cancer Risk	4.E-05 (B003)	(03B031)	(04B023)	.E-05 (05B018)	3.E-06 (06B026)			(09B028)	(09B026)			
				2.E-05 (B005)	6.E-06	5.E-05		2.E-05 (06B030)			3.E-06	3.E-06			
				0.1 (B001)	0.2 (03B031)	0.1 (04B023)		0.1 (06B022)			0.1 (09B028)	0.1 (09B026)			
			Hazard Index	0.1 (B003)	0.2 (03B033)	0.3 (04B024)	0.1 (05B018)	0.1 (06B026)			0.1 (09B024)	0.1 (09B027)			
	C		Common Dista	0.1 (B005)			7 E 00 (W010)	0.4 (06B030)			<u> </u>				7 E 00
	Surface water		Cancer Risk Hazard Index		 		7.E-08 (W010) 0.001 (W010)	6.E-08 (W014) 0.001 (W014)			6.E-08 (W020) 0.001 (W020)				7.E-08 0.001
			Hazaru muex	1.E-06 (B001)	1.E-06	2.E-06	0.001 (W010)	2.E-06 (06B022)			5.E-07	1.E-06			0.001
Recreational/Subsistence Fishers	Beach sediment	High-frequency	Cancer Risk	4.E-06 (B003)	(03B030)	(04B023)	.E-06 (05B018)	1.E-06 (06B026)	1.E-06		(07B023)	(09B026)			
		8 1 1 1 1 1		3.E-06 (B005)	2.E-06	6.E-06	, , , , , , , , , , , , , , , , , , , ,	6.E-06 (06B030)	(07B024)		8.E-07	9.E-07			
				0.02 (B001)	0.01 (03B030)	0.02 (04B023)		0.02 (06B022)			0.01 (07B023)	0.01 (09B026)			
			Hazard Index	0.03 (B003)	0.02 (03B031)	0.02 (04B023) 0.05 (04B024)	0.02 (05B018)	0.01 (06B026)	0.01 (07B024)		0.01 (09B028)	0.01 (09B026) 0.02 (09B027)			
				0.03 (B005)	0.02 (03B033)			0.05 (06B030)			0.01 (09B024)	<u> </u>			
				1.E-06 (B001)	8.E-07	1.E-06		1.E-06 (06B022)	9.E-07		4.E-07	1.E-06			
		Low-frequency	Cancer Risk	3.E-06 (B003)	(03B030)	(04B023)	.E-06 (05B018)	7.E-07 (06B026)	(07B024)		(07B023)	(09B026)			
				2.E-06 (B005)	2.E-06	4.E-06		4.E-06 (06B030)			5.E-07	6.E-07			
			Hazard Index	0.01 (B001) 0.03 (B003)	0.01 (03B030) 0.02 (03B031)	0.01 (04B023)	0.01 (05B018)	0.01 (06B022) 0.01 (06B026)	0.01 (07B024)		0.01 (07B023) 0.01 (09B028)	0.01 (09B026)			
			Hazaru Ilidex	0.03 (B005)	0.02 (03B031) 0.01 (03B033)	0.03 (04B024)	0.01 (03B016)	0.01 (06B020) 0.03 (06B030)	0.01 (07B024)		0.01 (09B028) 0.01 (09B024)	0.01 (09B027)			
	-			4.E-07 (2W)	9.E-07 (3W)	8.E-07 (4W)	4.E-06 (5W)	5.E-05 (6W)	8.E-05 (7W)	1.E-06 (8W)	0.01 (09B024)	1.E-06 (9W)	2.E-06 (10W)	4.E-07 (11W)	
			~ ~	2.E-06 (2E)	5.E-07 (3E)	3.E-06 (4E)	7.E-07 (5E)	2.E-06 (6E)	2.E-06 (7E)	1.E-06 (8E)		4.E-07 (9E)	6.E-07 (10E)	1.E-06 (11E)	
	In-water sediment	High-frequency	Cancer Risk	8.E-07 (2.5W)	3.E-06 (3.5W)	2.E-06 (4.5W)	4.E-06 (5.5W)	3.E-06 (6.5W)	6.E-07 (7.5W)	5.E-06 (8.5W)	2.E-06	9.E-07 (9.5W)	4.E-07	3.E-07	7.E-06
				4.E-06 (2.5E)	3.E-06 (3.5E)	9.E-06 (4.5E)	1.E-06 (5.5E)	1.E-06 (6.5E)	3.E-07 (7.5E)	7.E-07 (8.5E)		3.E-07 (9.5E)	(10.5W)	(11.5W)	
			-	0.002 (2W)	0.1 (3W)	0.1 (4W)	0.1 (5W)	0.1 (6W)	2 (7W)	0.1 (8W)		0.2 (9W)	0.02 (10W)	0.002 (11W)	
			Hazard Index	0.03 (2E)	0.1 (3E)	0.1 (4E)	0.1 (5E)	0.1 (6E)	0.1 (7E)	0.1 (8E)	0.2	0.003 (9E)	0.002 (10E)	0.05 (11E)	0.2
			The and Thock	0.002 (2.5W)	0.1 (3.5W)	0.1 (4.5W)	0.1 (5.5W)	0.2 (6.5W)	0.1 (7.5W)	0.3 (8.5W)	0.2	0.007 (9.5W)	0.002 (10.5W)	0.002 (11.5W)	0.2
				0.003 (2.5E)	0.2 (3.5E)	0.1 (4.5E)	0.1 (5.5E)	0.2 (6.5E)	0.1 (7.5E)	0.1 (8.5E)		0.002 (9.5E)	0.003 (10.5E)	*****	
				0.01 (2W)	0.01 (3W)	0.01 (4W)	0.01 (5W)	0.02 (6W)	3 (7W)	0.1 (8W)		0.6 (9W)	0.1 (10W)	0.01 (11W)	
			Breastfeeding Infant Hazard Index	0.4 (2E) 0.01 (2.5W)	0.01 (3E) 0.007 (3.5W)	0.1 (4E) 0.01 (4.5W)	0.01 (5E) 0.01 (5.5W)	0.05 (6E) 0.05 (6.5W)	0.03 (7E) 0.1 (7.5W)	0.2 (8E) 2 (8.5W)	0.2	0.03 (9E) 0.1 (9.5W)	0.01 (10E)	1 (11E)	0.2
				0.01 (2.5W) 0.02 (2.5E)	0.007 (3.5W) 0.5 (3.5E)	0.01 (4.5W) 0.01 (4.5E)	0.01 (5.5W) 0.05 (5.5E)	0.03 (6.5W) 0.4 (6.5E)	0.1 (7.5W) 0.01 (7.5E)	0.02 (8.5E)		0.1 (9.5W) 0.01 (9.5E)	0.01 (10.5W) 0.04 (10.5E)	0.01 (11.5W)	
				2.E-07 (2W)	6.E-07 (3W)	6.E-07 (4W)	3.E-06 (5W)	3.E-05 (6W)	6.E-05 (7W)	8.E-07 (8W)		9.E-07 (9W)	2.E-06 (10W)	3.E-07 (11W)	
			~ ~	1.E-06 (2E)	3.E-07 (3E)	2.E-06 (4E)	5.E-07 (5E)	1.E-06 (6E)	1.E-06 (7E)	9.E-07 (8E)	1.500	2.E-07 (9E)	4.E-07 (10E)	9.E-07 (11E)	5 T 05
		Low-frequency	Cancer Risk	5.E-07 (2.5W)	2.E-06 (3.5W)	1.E-06 (4.5W)	3.E-06 (5.5W)	2.E-06 (6.5W)	4.E-07 (7.5W)	4.E-06 (8.5W)	1.E-06	6.E-07 (9.5W)	2.E-07	2.E-07	5.E-06
				3.E-06 (2.5E)	2.E-06 (3.5E)	6.E-06 (4.5E)	9.E-07 (5.5E)	9.E-07 (6.5E)	2.E-07 (7.5E)	5.E-07 (8.5E)		2.E-07 (9.5E)	(10.5W)	(11.5W)	
				0.001 (2W)	0.1 (3W)	0.1 (4W)	0.1 (5W)	0.1 (6W)	1 (7W)	0.1 (8W)		0.1 (9W)	0.01 (10W)	0.001 (11W)	
			Hazard Index	0.02 (2E)	0.1 (3E)	0.1 (4E)	0.1 (5E)	0.1 (6E)	0.1 (7E)	0.1 (8E)	0.1	0.002 (9E)	0.001 (10E)	0.03 (11E)	0.1
				0.001 (2.5W)	0.1 (3.5W)	0.1 (4.5W)	0.1 (5.5W)	0.1 (6.5W)	0.1 (7.5W)	0.2 (8.5W)	***	0.005 (9.5W)	0.001 (10.5W)	0.001 (11.5W)	***
				0.002 (2.5E)	0.1 (3.5E)	0.1 (4.5E)	0.1 (5.5E)	0.1 (6.5E)	0.1 (7.5E)	0.1 (8.5E)		0.001 (9.5E)	0.002 (10.5E)		
				0.003 (2W)	0.003 (3W) 0.005 (3E)	0.005 (4W) 0.06 (4E)	0.01 (5W)	0.01 (6W) 0.03 (6E)	2 (7W)	0.07 (8W)		0.4 (9W) 0.02 (9E)	0.1 (10W) 0.01 (10E)	0.01 (11W)	
			Breastfeeding Infant Hazard Index	0.3 (2E) 0.004 (2.5W)	0.005 (3.5W)	0.00 (4E) 0.01 (4.5W)	0.004 (5E) 0.01 (5.5W)	0.03 (6.5W)	0.02 (7E) 0.04 (7.5W)	0.1 (8E) 2 (8.5W)	0.1	0.02 (9E) 0.1 (9.5W)	0.01 (10E) 0.01 (10.5W)	0.7 (11E)	0.2
				0.004 (2.5E)	0.003 (3.5W) 0.3 (3.5E)	0.01 (4.5W) 0.01 (4.5E)	0.01 (5.5W) 0.03 (5.5E)	0.03 (6.5W) 0.2 (6.5E)	0.04 (7.5W) 0.01 (7.5E)	0.01 (8.5E)		0.1 (9.5W) 0.01 (9.5E)	0.01 (10.5W) 0.03 (10.5E)	0.004 (11.5W)	
	Fish tissue	Subsistence	Cancer Risk	0.01 (2.3E)	0.3 (3.3E) 	0.01 (4.3E)	0.03 (3.3E)	0.2 (0.3E)	0.01 (7.3E)	0.01 (8.3E)		0.01 (9.3E)	0.03 (10.3E)		1.E-02
		• •	Hazard Index												1000
			Breastfeeding Infant Hazard Index												10000
		Recreational	Cancer Risk	2.E-04	1.E-04	3.E-04	9.E-05	1.E-04	6.E-04	1.E-04	6.E-04	2.E-04	1.E-04	1.E-03	4.E-03
			Hazard Index	10	7	20	6	9	20	7	50	10	10	100	300
			Breastfeeding Infant Hazard Index	200	30	200	30	70	200	40 5 F 05 (0F)	600	80 5 E 05 (0E)	100	1000	4000
	Shellfish tissue	Clam consumption	Cancer Risk	2.E-04 (2E)	2.E-04 (3E)	1.E-04 (4E)	9.E-05 (5E)	7.E-04 (6E)	7.E-05 (7E)	5.E-05 (8E)	2.E-04	5.E-05 (9E)	4.E-05 (10W)	2.E-04 (11E)	4.E-04
		•		8.E-05 (2W)	7.E-05 (3W)	1.E-04 (4W)	6.E-04 (5W)	7.E-04 (6W)	2.E-04 (7W)	2.E-04 (8W)		2.E-04 (9W)		4.E-05 (11W)	
			Hazard Index	5 (2E) 2 (2W)	8 (3E) 2 (3W)	3 (4E) 3 (4W)	3 (5E) 2 (5W)	30 (6E) 3 (6W)	2 (7E) 3 (7W)	3 (8E) 7 (8W)	6	1 (9E) 8 (9W)	2 (10W)	10 (11E) 1 (11W)	9
				100 (2E)	2 (3W) 200 (3E)	30 (4E)	50 (5E)	800 (6E)	30 (7E)	30 (8E)		20 (9E)		300 (11E)	
			Breastfeeding Infant Hazard Index	30 (2E)	30 (3W)	40 (4W)	20 (5W)	30 (6W)	30 (7E) 30 (7W)	100 (8W)	100	100 (9W)	30 (10W)	10 (11W)	200
		-		30 (211)	6.E-06	7.E-06	6.E-06	30 (0 14)	1.E-05	2.E-05		100 (211)		10 (11 11)	
				7.E-05	(03R001)	(04R002)	(05R001)		(07R003)	(08R001)	4.E-05				
		Constitution of	Company Diele	(02R001)	7.E-06	7.E-06	1.E-05	6.E-06 (06R001)	9.E-06	8.E-06	(08R003)	E 05 (00B000)	E OF (CD 10M)	1 E 04 (CB11E)	2561
		Crayfish consumption	Cancer Risk	1.E-05	(03R002)	(04R003)	(05R003)	4.E-05 (06R004)	(07R004)	(08R002)	2.E-05	.E-05 (09R002)	.E-05 (CR10W)	3.E-04 (CR11E)	3.E-04
				(02R015)	5.E-05	7.E-06	1.E-05	4.E-05 (CR06W)	3.E-04	2.E-05	(09R001)				
					(03R003)	(04R004)	(CR05W)		(07R006)	(CR08W)					
			· · · · · · · · · · · · · · · · · · ·			·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		·

Table 8.4-1. Summary of Human Health Risks, Reasonable Maximum Exposures.

		m Scenario	Endpoint	Exposure Area											
Receptor	Exposure Mediur			RM 2	RM 3	RM 4	RM 5	RM 6	RM 7	RM 8	Swan Island Lagoon	RM 9	RM 10	RM 11	Study-Area Wide
			Hazard Index	2 (02R001) 0.9 (02R015)	0.5 (03R001) 0.5 (03R002) 2 (03R003) 1 (03R004) 4 (03R005) 0.5 (03R032)	0.5 (04R002) 0.5 (04R003) 0.6 (04R004)	0.5 (05R001) 0.9 (05R003) 0.7 (CR05W)	0.5 (06R001) 1 (06R004) 2 (CR06W)	1 (07R003) 0.7 (07R004) 6 (07R006)	1 (08R001) 0.7 (08R002) 1 (CR08W)	1 (08R003) 1 (09R001)	2 (09R002)	1 (CR10W)	10 (CR11E)	10
			Breastfeeding Infant Hazard Index	10 (02R001) 9 (02R015)	0.008 (03R001) 0.01 (03R002) 20 (03R003) 9 (03R004) 60 (03R005)	0.01 (04R002) 0.02 (04R003) 0.01 (04R004)	0.01 (05R001) 9 (05R003) 3 (CR05W)	0.01 (06R001) 6 (06R004) 10 (CR06W)	10 (07R003) 0.01 (07R004) 20 (07R006)	20 (08R001) 5 (08R002) 9 (CR08W)	10 (08R003) 20 (09R001)	30 (09R002)	10 (CR10W)	400 (CR11E)	200
Tribal Fishers	Beach sediment		Cancer Risk	6.E-06 (B001) 2.E-05 (B003) 1.E-05 (B005)	5.E-06 (03B030) 9.E-06	8.E-06 (04B023) 2.E-05	.E-06 (05B018)	6.E-06 (06B022) 4.E-06 (06B026) 2.E-05 (06B030)	5.E-06 (07B024)		2.E-06 (07B023) 3.E-06	6.E-06 (09B026) 4.E-06			
			Hazard Index	0.03 (B001) 0.03 (B003) 0.03 (B005)	0.02 (03B030) 0.04 (03B031) 0.04 (03B033)	0.03 (04B023) 0.08 (04B024)	0.03 (05B018)	0.03 (06B022) 0.02 (06B026) 0.08 (06B030)	0.02 (07B024)		0.02 (07B023) 0.02 (09B028) 0.02 (09B024)	0.02 (09B026) 0.03 (09B027)			
	In-water sedimen	ıt	Cancer Risk	1.E-06 (2W) 6.E-06 (2E) 3.E-06 (2.5W) 2.E-05 (2.5E)	3.E-06 (3W) 2.E-06 (3E) 1.E-05 (3.5W) 1.E-05 (3.5E)	3.E-06 (4W) 1.E-05 (4E) 8.E-06 (4.5W) 3.E-05 (4.5E)	1.E-05 (5W) 3.E-06 (5E) 2.E-05 (5.5W) 5.E-06 (5.5E)	2.E-04 (6W) 8.E-06 (6E) 1.E-05 (6.5W) 6.E-06 (6.5E)	3.E-04 (7W) 7.E-06 (7E) 2.E-06 (7.5W) 1.E-06 (7.5E)	5.E-06 (8W) 5.E-06 (8E) 2.E-05 (8.5W) 3.E-06 (8.5E)	8.E-06	5.E-06 (9W) 1.E-06 (9E) 3.E-06 (9.5W) 1.E-06 (9.5E)	9.E-06 (10W) 2.E-06 (10E) 1.E-06 (10.5W)	2.E-06 (11W) 5.E-06 (11E) 1.E-06 (11.5W)	3.E-05
			Hazard Index	0.003 (2W) 0.06 (2E) 0.003 (2.5W) 0.006 (2.5E)	0.2 (3W) 0.2 (3E) 0.2 (3.5W) 0.3 (3.5E)	0.2 (4W) 0.2 (4E) 0.2 (4.5W) 0.2 (4.5E)	0.2 (5W) 0.2 (5E) 0.2 (5.5W) 0.2 (5.5E)	0.2 (6W) 0.2 (6E) 0.3 (6.5W) 0.3 (6.5E)	3 (7W) 0.2 (7E) 0.2 (7.5W) 0.2 (7.5E)	0.2 (8W) 0.2 (8E) 0.4 (8.5W) 0.2 (8.5E)	0.3	0.3 (9W) 0.005 (9E) 0.01 (9.5W) 0.004 (9.5E)	0.03 (10W) 0.003 (10E) 0.004 (10.5W) 0.005 (10.5E)	0.003 (11W) 0.08 (11E) 0.003 (11.5W)	0.4
			Breastfeeding Infant Hazard Index	0.01 (2W) 0.7 (2E) 0.01 (2.5W) 0.04 (2.5E)	0.01 (3W) 0.01 (3E) 0.01 (3.5W) 0.8 (3.5E)	0.01 (4W) 0.2 (4E) 0.02 (4.5W) 0.02 (4.5E)	0.01 (5W) 0.01 (5E) 0.02 (5.5W) 0.1 (5.5E)	0.03 (6W) 0.1 (6E) 0.1 (6.5W) 0.6 (6.5E)	5 (7W) 0.04 (7E) 0.1 (7.5W) 0.02 (7.5E)	0.2 (8W) 0.3 (8E) 4 (8.5W) 0.03 (8.5E)	0.3	1 (9W) 0.04 (9E) 0.1 (9.5W) 0.02 (9.5E)	0.2 (10W) 0.02 (10E) 0.02 (10.5W) 0.1 (10.5E)	0.01 (11W) 2 (11E) 0.01 (11.5W)	0.4
	Fish tissue	Fillet consumption	Cancer Risk												1.E-02
		*	Hazard Index												600
			Breastfeeding Infant Hazard Index												8000
		Whole body consumption	Cancer Risk												2.E-02
			Hazard Index												800
			Breastfeeding Infant Hazard Index					2 F 05 (W011)							9000
Domestic Water Use	Surface water		Cancer Risk	2.E-05 (W025) 1.E-05 (W026)	1.E-05 (W028) 3.E-05 (W005)	9.E-06 (W029)	1.E-05 (W030) 1.E-05 (W010)	3.E-05 (W011) 9.E-04 (W031) 1.E-05 (W014) 2.E-05 (W032)	7.E-05 (W033) 1.E-05 (W034)	2.E-05 (W036)	6.E-05 (W035) 1.E-05 (W020)	1.E-05 (W037) 1.E-05 (W038)		2.E-05 (W023)	8.E-05
			Hazard Index	0.2 (W025) 0.7 (W026)	0.1 (W028) 1 (W005)	0.1 (W029)	0.2 (W030) 0.2 (W010)	0.1 (W011) 0.1 (W031) 0.2 (W014) 0.1 (W032)	0.8 (W033) 0.2 (W034)	0.1 (W036)	2 (W035) 0.2 (W020)	0.2 (W037) 0.2 (W038)		1 (W023)	0.9

Notes: RM - river mile

Table 8.4-2. Summary of Human Health Risks, Central Tendency.

									Expos	ure Area					
Receptor	Exposure Medium Sc	enario	Endpoint	RM 2	RM 3	RM 4	RM 5	RM 6	RM 7	RM 8	Swan Island Lagoon	RM 9	RM 10	RM 11	Study-Area Wid
*	*		*	5.E-08 (B002)			5.E-08	6.E-06 (06B025)	4.E-08	4.E-08					-
Dockside Workers	Beach sediment		Cancer Risk	2.E-07 (B004)			(05B019)	7.E-08 (06B029)	4.E-08 (07B022)	(08B032)					
				4.E-08 (B006)			(03B01))	7.E 00 (00B027)	(07B022)	(00B032)					
			Hazard Index	0.002 (B002) 0.01 (B004)			0.001 (05B019)	0.001 (06B025)	0.001 (07B022)	0.001 (08B032)					
			Hazard Index	0.01 (B004) 0.001 (B006)			0.001 (036019)	0.001 (06B029)	0.001 (076022)	0.001 (086032)					
				0.02 (B002)											
			Breastfeeding Infant Hazard Index	0.2 (B004)				0.01 (06B025)		0.002 (08B032)					
				0.002 (B006)				, ,		, ,					
				7.E-09 (2W)	1.E-08 (3W)	1.E-08 (4W)	2.E-08 (5W)	4.E-07 (6W)	3.E-07 (7W)	1.E-08 (8W)		1.E-08 (9W)	2.E-08 (10W)	7.E-09 (11W)	
In-Water Workers	In-water sediment		Cancer Risk	1.E-08 (2E)	9.E-09 (3E)	2.E-08 (4E)	1.E-08 (5E)	2.E-08 (6E)	2.E-08 (7E)	1.E-08 (8E)	2.E-08	7.E-09 (9E)	8.E-09 (10E)	1.E-08 (11E)	5.E-08
				1.E-08 (2.5W)	2.E-08 (3.5W) 1.E-08 (3.5E)	2.E-08 (4.5W) 6.E-08 (4.5E)	3.E-08 (5.5W) 2.E-08 (5.5E)	3.E-08 (6.5W)	8.E-09 (7.5W) 6.E-09 (7.5E)	2.E-08 (8.5W)		1.E-08 (9.5W)	8.E-09 (10.5W)	5.E-09 (11.5W)	
				1.E-08 (2.5E) 0.0003 (2W)	0.02 (3W)	0.E-08 (4.5E) 0.03 (4W)	0.03 (5W)	1.E-08 (6.5E) 0.03 (6W)	0.06 (7W)	9.E-09 (8.5E) 0.03 (8W)		6.E-09 (9.5E) 0.03 (9W)	6.E-09 (10.5E) 0.001 (10W)	0.0003 (11W)	
				0.001 (2E)	0.03 (3E)	0.03 (4E)	0.03 (5E)	0.03 (6E)	0.03 (7E)	0.03 (8E)		0.0003 (9E)	0.0003 (10E)	0.002 (11E)	
			Hazard Index	0.0003 (2.5W)	0.03 (3.5W)	0.03 (4.5W)	0.03 (5.5W)	0.03 (6.5W)	0.03 (7.5W)	0.03 (8.5W)	0.03	0.0008 (9.5W)	0.0003	0.0002	0.03
				0.0004 (2.5E)	0.03 (3.5E)	0.03 (4.5E)	0.02 (5.5E)	0.03 (6.5E)	0.03 (7.5E)	0.03 (8.5E)		0.0003 (9.5E)	(10.5W)	(11.5W)	
				0.0004 (2W)	0.0004 (3W)	0.001 (4W)	0.001 (5W)	0.001 (6W)	0.1 (7W)	0.004 (8W)		0.01 (9W)	0.01 (10W)	0.001 (11W)	
			Breastfeeding Infant Hazard Index	0.01 (2E)	0.001 (3E)	0.005 (4E)	0.001 (5E)	0.002 (6E)	0.002 (7E)	0.01 (8E)	0.009	0.002 (9E)	0.001 (10E)	0.03 (11E)	0.01
				0.0003 (2.5W)	0.001 (3.5W)	0.001 (4.5W)	0.001 (5.5W)	0.003 (6.5W)	0.003 (7.5W)	0.04 (8.5W)		0.01 (9.5W)	0.001 (10.5W)	0.0004	
				0.002 (2.5E)	0.01 (3.5E) 2.E-08	0.001 (4.5E)	0.003 (5.5E)	0.01 (6.5E)	0.001 (7.5E) 2.E-08	0.001 (8.5E)	8.E-09	0.001 (9.5E) 2.E-08	0.002 (10.5E)	(11.5W)	
Transients	Beach sediment		Cancer Risk		(03B030)			3.E-08 (06B022)	(07B024)		(07B023)	(09B026)			
			** .* .		0.007 (03B030)			0.01 (0.50000)			` ` `	0.008 (09B026)			
			Hazard Index		0.01 (03B031)			0.01 (06B022)	0.008 (07B024)		0.006 (07B023)	0.009 (09B027)			
	Surface water		Cancer Risk	7.E-08 (W025)		1.E-07 (W005)		9.E-08 (W014)						9.E-08 (W023)	1.E-07
	Surface water		Cancer Risk	7.E-08 (W023)		1.E-07 (W003)		1.E-07 (W011)						9.E-08 (W023)	1.E-07
			Hazard Index	0.01 (W025)		0.06 (W005)		0.01 (W014)						0.06 (W023)	0.06
	Carrent de la ca		Commun Dist					0.01 (W011)							
	Groundwater seep		Cancer Risk Hazard Index					4.E-10 (OF22B) 0.001 (OF22B)							
			Hazaru mucx	5.E-09 (2W)	1.E-08 (3W)	1.E-08 (4W)	2.E-08 (5W)	6.E-07 (6W)	2.E-07 (7W)	9.E-09 (8W)		1.E-08 (9W)	1.E-08 (10W)		
D: 077 - 0 - 10			a	1.E-08 (2E)	6.E-09 (3E)	2.E-08 (4E)	9.E-09 (5E)	2.E-08 (6E)	1.E-08 (7E)	1.E-08 (8E)	1.7.00	4.E-09 (9E)	6.E-09 (10E)	5.E-09 (11W)	5 T 00
Divers (Wet Suit)	In-water sediment		Cancer Risk	1.E-08 (2.5W)	1.E-08 (3.5W)	2.E-08 (4.5W)	4.E-08 (5.5W)	3.E-08 (6.5W)	6.E-09 (7.5W)	2.E-08 (8.5W)	1.E-08	1.E-08 (9.5W)	5.E-09 (10.5W)	1.E-08 (11E)	5.E-08
				1.E-08 (2.5E)	2.E-08 (3.5E)	9.E-08 (4.5E)	2.E-08 (5.5E)	9.E-09 (6.5E)	4.E-09 (7.5E)	6.E-09 (8.5E)		4.E-09 (9.5E)	4.E-09 (10.5E)	3.E-09 (11.5W)	
				0.0001 (2W)	0.002 (3W)	0.003 (4W)	0.003 (5W)	0.003 (6W)	0.01 (7W)	0.003 (8W)		0.004 (9W)	0.0004 (10W)	0.0001 (11W)	
			Hazard Index	0.0006 (2E)	0.003 (3E)	0.003 (4E)	0.003 (5E)	0.003 (6E)	0.003 (7E)	0.003 (8E)	0.004	0.0001 (9E)	0.0001 (10E)	0.001 (11E)	0.004
				0.0001 (2.5W)	0.003 (3.5W)	0.003 (4.5W)	0.003 (5.5W)	0.004 (6.5W)	0.003 (7.5W)	0.005 (8.5W)		0.0003 (9.5W)	0.0001	0.0001	
				0.0001 (2.5E) 0.0003 (2W)	0.003 (3.5E) 0.0002 (3W)	0.003 (4.5E)	0.003 (5.5E)	0.003 (6.5E)	0.003 (7.5E)	0.003 (8.5E)		0.0001 (9.5E) 0.01 (9W)	(10.5W) 0.004 (10W)	(11.5W)	
				0.0003 (2W) 0.01 (2E)	0.0002 (3W) 0.0004 (3E)	0.0005 (4W) 0.003 (4E)	0.0004 (5W) 0.0004 (5E)	0.001 (6W) 0.002 (6E)	0.02 (7W) 0.001 (7E)	0.002 (8W) 0.004 (8E)		0.01 (9W) 0.001 (9E)	0.004 (10W) 0.001 (10E)	0.001 (11W) 0.02 (11E)	
			Breastfeeding Infant Hazard Index	0.0002 (2.5W)	0.0004 (3E) 0.0005 (3.5W)	0.003 (4L) 0.001 (4.5W)	0.0004 (3E) 0.001 (5.5W)	0.002 (6.5W)	0.001 (7E) 0.002 (7.5W)	0.03 (8.5W)	0.01	0.001 (9L) 0.004 (9.5W)	0.001 (10E) 0.001 (10.5W)	0.0003	0.005
				0.001 (2.5E)	0.01 (3.5E)	0.001 (4.5E)	0.002 (5.5E)	0.004 (6.5E)	0.001 (7.5E)	0.001 (8.5E)		0.001 (9.5E)	0.001 (10.5E)	(11.5W)	
				1.E-09 (2W)	, , ,	2.E-09 (4W)	, , ,	5.E-07 (6W)	, , ,	,		, , ,	,		
	Surface water		Cancer Risk	9.E-10 (2E)	2.E-08 (3W)	2.E-08 (4E)	2.E-09 (5.5W)	3.E-08 (6.5W)	2.E-08 (7W)	3.E-09 (8.5W)	2.E-08	3.E-08 (9.5W)		6.E-09 (W023)	
	Surface water		Cancer Risk	4.E-09 (W025)	7.E-09 (3.5E)	6.E-08 (4.5E)	9.E-10 (5.5E)	7.E-09 (6.5E)	1.E-09 (7.5W)	3.E-09 (6.3 W)	2.E-08	8.E-10 (9.5E)		0.E-09 (W023)	
						9.E-09 (W005)		9.E-09 (W011)							
				0.00002 (2W)	0.00002 (211)	0.00001 (4W)	0.00002	0.00002 (6W)	0.0005 (7W)	0.00002		0.00002			
			Hazard Index	0.0005 (2E) 0.00001	0.00002 (3W) 0.00002 (3.5E)	0.00002 (4E) 0.00002 (4.5E)	(5.5W)	0.00002 (6.5W) 0.00003 (6.5E)	0.00002	0.00002 (8.5W)	0.0007	(9.5W)		0.0004 (W023)	
				(W025)	0.00002 (3.3E)	0.00002 (4.3E) 0.0004 (W005)	0.00002 (5.5E)	0.00003 (0.3L)	(7.5W)	(6.5 W)		0.00001 (9.5E)			
				4.E-07 (B001)	7.E-07	6.E-07		3.E-07 (06B022)			2.E-07	3.E-07			
Recreational Beach Users	Beach sediment		Cancer Risk	2.E-06 (B003)	(03B031)	(04B023)	3.E-07 (05B018)	2.E-07 (06B026)			(09B028)	(09B026)			
				1.E-06 (B005)	5.E-07	2.E-06		2.E-06 (06B030)			2.E-07	2.E-07			
				0.02 (B001)	0.02 (03B031)	0.02 (04B023)		0.02 (06B022)			0.01 (09B028)	0.01 (09B026)			
			Hazard Index	0.02 (B003)	0.02 (03B031) 0.02 (03B033)	0.05 (04B024)	0.02 (05B018)	0.01 (06B026)			0.01 (09B024)	0.01 (09B020) 0.02 (09B027)			
	G 6		C P: 1	0.02 (B005)			1 E 00 (WO10)	0.05 (06B030)							1.000
	Surface water		Cancer Risk				1.E-08 (W010)	1.E-08 (W014)			9.E-09 (W020)				1.E-08
			Hazard Index	6.E-08 (B001)	5.E-08	8.E-08	0.0002 (W010)	0.0002 (W014) 6.E-08 (06B022)			0.0002 (W020) 2.E-08	6.E-08			0.0002
Recreational/Subsistence Fishers	Beach sediment His	gh-frequency	Cancer Risk	2.E-07 (B003)	(03B030)	(04B023)	3.E-08 (05B018)	4.E-08 (06B022)	5.E-08		(07B023)	(09B026)			
Indicate Substitution I inflore	Seath seament III	o nequency		1.E-07 (B005)	9.E-08	2.E-07	00 (00 D 010)	3.E-07 (06B030)	(07B024)		3.E-08	3.E-08			
				0.003 (B001)	0.002 (03B030)			0.003 (06B022)			0.002 (07B023)				
			Hazard Index	0.03 (B003)	0.004 (03B031)	0.003 (04B023) 0.01 (04B024)	0.003 (05B018)	0.002 (06B026)	0.002 (07B024)		0.002 (09B028)	0.002 (09B026) 0.003 (09B027)			
	_			0.03 (B005)	0.003 (03B033)	U.U1 (U4DU24)		0.01 (06B030)			0.002 (09B024)	U.UU3 (U3DU2/)			

Table 8.4-2. Summary of Human Health Risks, Central Tendency.

									Exposu	ıre Area					
Receptor	Exposure Mediun	1 Scenario	Endpoint	RM 2	RM 3	RM 4	RM 5	RM 6	RM 7	RM 8	Swan Island Lagoon	RM 9	RM 10	RM 11	Study-Area Wide
				3.E-08 (B001)	2.E-08	4.E-08		3.E-08 (06B022)	3.E-08		1.E-08	3.E-08			
		Low-frequency	Cancer Risk	8.E-08 (B003)	(03B030) 5.E-08	(04B023) 1.E-07	I.E-08 (05B018)	2.E-08 (06B026) 1.E-07 (06B030)	(07B024)		(07B023)	(09B026)			
				6.E-08 (B005) 0.001 (B001)	0.001 (03B030)			0.001 (06B022)			2.E-08 0.001 (07B023)	2.E-08			
			Hazard Index	0.03 (B003)	0.002 (03B031)	0.001 (04B023) 0.004 (04B024)	0.002 (05B018)	0.001 (06B026)	0.001 (07B024)		0.001 (09B028)	0.001 (09B026) 0.001 (09B027)			
				0.03 (B005)	0.002 (03B033)			0.004 (06B030)			0.001 (09B024)				
				1.E-08 (2W) 2.E-08 (2E)	2.E-08 (3W) 2.E-08 (3E)	2.E-08 (4W) 4.E-08 (4E)	3.E-08 (5W) 2.E-08 (5E)	9.E-07 (6W) 3.E-08 (6E)	4.E-07 (7W) 4.E-08 (7E)	2.E-08 (8W) 3.E-08 (8E)		2.E-08 (9W) 1.E-08 (9E)	4.E-08 (10W) 1.E-08 (10E)	1.E-08 (11W)	
	In-water sediment	High-frequency	Cancer Risk	2.E-08 (2.5W)	3.E-08 (3.5W)	3.E-08 (4.5W)	6.E-08 (5.5W)	5.E-08 (6.5W)	1.E-08 (7.5W)	4.E-08 (8.5W)	3.E-08	2.E-08 (9.5W)	1.E-08 (10.5W)	2.E-08 (11E)	9.E-08
				3.E-08 (2.5E)	3.E-08 (3.5E)	1.E-07 (4.5E)	4.E-08 (5.5E)	2.E-08 (6.5E)	1.E-08 (7.5E)	2.E-08 (8.5E)		1.E-08 (9.5E)	1.E-08 (10.5E)	9.E-09 (11.5W)	
				0.0002 (2W)	0.02 (3W)	0.02 (4W)	0.02 (5W)	0.02 (6W)	0.04 (7W)	0.02 (8W)		0.02 (9W)	0.001 (10W)	0.0002 (11W)	
			Hazard Index	0.001 (2E) 0.0002 (2.5W)	0.02 (3E) 0.02 (3.5W)	0.02 (4E) 0.02 (4.5W)	0.02 (5E) 0.02 (5.5W)	0.02 (6E) 0.02 (6.5W)	0.02 (7E) 0.02 (7.5W)	0.02 (8E) 0.02 (8.5W)	0.02	0.0003 (9E) 0.0006 (9.5W)	0.0002 (10E) 0.0003	0.002 (11E) 0.0002	0.02
				0.0002 (2.5W) 0.0003 (2.5E)	0.02 (3.5E)	0.02 (4.5E)	0.02 (5.5E)	0.02 (6.5E)	0.02 (7.5E)	0.02 (8.5W) 0.02 (8.5E)		0.0008 (9.5W) 0.0002 (9.5E)	(10.5W)	(11.5W)	
				0.0004 (2W)	0.0004 (3W)	0.001 (4W)	0.001 (5W)	0.001 (6W)	0.05 (7W)	0.004 (8W)		0.01 (9W)	0.01 (10W)	0.001 (11W)	
			Breastfeeding Infant Hazard Index	0.01 (2E)	0.001 (3E)	0.004 (4E)	0.001 (5E)	0.002 (6E)	0.002 (7E)	0.005 (8E)	0.01	0.002 (9E)	0.001 (10E)	0.03 (11E)	0.01
				0.0003 (2.5W)	0.001 (3.5W)	0.001 (4.5W)	0.001 (5.5W)	0.002 (6.5W)	0.002 (7.5W)	0.04 (8.5W)	****	0.006 (9.5W)	0.001 (10.5W)	0.0004	****
				0.002 (2.5E) 6.E-09 (2W)	0.01 (3.5E) 1.E-08 (3W)	0.001 (4.5E) 1.E-08 (4W)	0.003 (5.5E) 2.E-08 (5W)	0.01 (6.5E) 4.E-07 (6W)	0.001 (7.5E) 2.E-07 (7W)	0.001 (8.5E) 1.E-08 (8W)		0.001 (9.5E) 1.E-08 (9W)	0.001 (10.5E) 2.E-08 (10W)	(11.5W)	
		I C	G P: I	1.E-08 (2E)	8.E-09 (3E)	2.E-08 (4E)	9.E-09 (5E)	2.E-08 (6E)	2.E-08 (7E)	1.E-08 (8E)	1 E 00	6.E-09 (9E)	7.E-09 (10E)	6.E-09 (11W)	5 F 00
		Low-frequency	Cancer Risk	1.E-08 (2.5W)	1.E-08 (3.5W)	2.E-08 (4.5W)	3.E-08 (5.5W)	3.E-08 (6.5W)	7.E-09 (7.5W)	2.E-08 (8.5W)	1.E-08	1.E-08 (9.5W)	6.E-09 (10.5W)	1.E-08 (11E) 5.E-09 (11.5W)	5.E-08
				1.E-08 (2.5E)	1.E-08 (3.5E)	7.E-08 (4.5E)	2.E-08 (5.5E)	1.E-08 (6.5E)	5.E-09 (7.5E)	8.E-09 (8.5E)		5.E-09 (9.5E)	5.E-09 (10.5E)		
				0.0001 (2W) 0.0005 (2E)	0.01 (3W) 0.01 (3E)	0.01 (4W) 0.01 (4E)	0.01 (5W) 0.01 (5E)	0.01 (6W) 0.01 (6E)	0.02 (7W) 0.01 (7E)	0.01 (8W) 0.01 (8E)		0.01 (9W) 0.0001 (9E)	0.0004 (10W) 0.0001 (10E)	0.0001 (11W) 0.001 (11E)	
			Hazard Index	0.0003 (2E) 0.0001 (2.5W)	0.01 (3.5W)	0.01 (4.5W)	0.01 (5L)	0.01 (6.5W)	0.01 (7.5W)	0.01 (8.5W)	0.01	0.0001 (9E) 0.0003 (9.5W)	0.0001	0.001 (112)	0.01
				0.0002 (2.5E)	0.01 (3.5E)	0.01 (4.5E)	0.01 (5.5E)	0.01 (6.5E)	0.01 (7.5E)	0.01 (8.5E)		0.0001 (9.5E)	(10.5W)	(11.5W)	
				0.0002 (2W)	0.0002 (3W)	0.0003 (4W)	0.0003 (5W)	0.001 (6W)	0.03 (7W)	0.002 (8W)		0.007 (9W)	0.003 (10W)	0.0004 (11W)	
			Breastfeeding Infant Hazard Index	0.01 (2E)	0.0003 (3E)	0.002 (4E)	0.0003 (5E)	0.001 (6E)	0.001 (7E)	0.003 (8E)	0.004	0.001 (9E)	0.001 (10E)	0.02 (11E)	0.004
			-	0.0002 (2.5W) 0.001 (2.5E)	0.0003 (3.5W) 0.01 (3.5E)	0.0004 (4.5W) 0.0005 (4.5E)	0.0005 (5.5W) 0.002 (5.5E)	0.001 (6.5W) 0.003 (6.5E)	0.001 (7.5W) 0.0004 (7.5E)	0.02 (8.5W) 0.001 (8.5E)		0.003 (9.5W) 0.001 (9.5E)	0.0005 (10.5W)	0.0002 (11.5W)	
	Fish tissue	Recreational	Cancer Risk	9.E-05	4.E-05	9.E-05	3.E-05	4.E-05	2.E-04	5.E-05	2.E-04	6.E-05	5.E-05	4.E-04	1.E-03
			Hazard Index	5	2	7	2	3	10	2	20	5	4	30	100
	-		Breastfeeding Infant Hazard Index	3.E-05 (2E)	4.E-05 (3E)	70 2.E-05 (4E)	2.E-05 (5E)	20 1.E-04 (6E)	60 1.E-05 (7E)	9.E-06 (8E)	200	30 1.E-05 (9E)	40	500 4.E-05 (11E)	2000
	Shellfish tissue	Clam consumption	Cancer Risk	1.E-05 (2W)	1.E-05 (3W)	2.E-05 (4E) 2.E-05 (4W)	1.E-04 (5W)	1.E-04 (6W)	3.E-05 (7E)	4.E-05 (8W)	3.E-05	4.E-05 (9E)	8.E-06 (10W)	6.E-06 (11W)	7.E-05
			Hazard Index	1 (2E)	1 (3E)	0.5 (4E)	0.5 (5E)	7 (6E)	0.4 (7E)	0.5 (8E)	1	0.3 (9E)	0.3 (10W)	2 (11E)	2
			Hazard fildex	0.3 (2W)	0.4 (3W)	0.5 (4W)	0.4 (5W)	0.6 (6W)	0.6 (7W)	1 (8W)	1	1 (9W)	0.5 (10W)	0.2 (11W)	2
			Breastfeeding Infant Hazard Index	20 (2E) 5 (2W)	30 (3E)	6 (4E)	9 (5E)	200 (6E)	6 (7E)	5 (8E)	20	3 (9E) 30 (9W)	5 (10W)	50 (11E)	30
				5 (2W)	6 (3W) 1.E-06	7 (4W) 1.E-06	5 (5W) 1.E-06	7 (6W)	6 (7W) 3.E-06	20 (8W) 4.E-06		30 (9W)		2 (11W)	
				1.E-05	(03R001)	(04R002)	(05R001)	1 E 06 (06B001)	(07R003)	(08R001)	8.E-06				
		Crayfish consumption	Cancer Risk	(02R001)	1.E-06	1.E-06	2.E-06	1.E-06 (06R001) 8.E-06 (06R004)	2.E-06	2.E-06	(08R003)).E-06 (09R002)	.E-06 (CR10W)	6.E-05 (CR11E)	6.E-05
		Crayrish Consumption	Cancer Risk	2.E-06	(03R002)	(04R003)	(05R003)	7.E-06 (CR06W)	(07R004)	(08R002)	3.E-06	7.L-00 (09K002)	.E-00 (CK10W)	0.L-03 (CK11L)	0.E-03
				(02R015)	9.E-06 (03R003)	1.E-06 (04R004)	3.E-06 (CR05W)	(,	5.E-05 (07R006)	4.E-06 (CR08W)	(09R001)				
					0.09 (03R001)	(04R004)	(CROSW)		(U/RUU6)	(CRU8W)					
					0.1 (03R002)	0.00 (04B002)	0.09 (050001)	0.09 (06R001)	0.2 (07R003)	0.2 (09B001)					
			Hazard Index	0.4 (02R001)	0.4 (03R003)	0.09 (04R002) 0.08 (04R003)	0.08 (05R001) 0.2 (05R003)	0.09 (06R001) 0.2 (06R004)	0.2 (07R003) 0.1 (07R004)	0.2 (08R001) 0.1 (08R002)	0.2 (08R003)	0.4 (09R002)	0.2 (CR10W)	3 (CR11E)	2
			Table Index	0.2 (02R015)	0.2 (03R004)	0.1 (04R004)	0.1 (CR05W)	0.3 (CR06W)	1 (07R006)	0.2 (CR08W)	0.2 (09R001)	0 (0,11002)	0.2 (0.110 11)	3 (01112)	-
					0.7 (03R005) 0.09 (03R032)										
					0.002 (03R001)										
					0.001 (03R002)	0.001 (04R002)	0.001 (05R001)	0.001 (06R001)	2 (07R003)	3 (08R001)					
			Breastfeeding Infant Hazard Index	3 (02R001)	4 (03R003)	0.001 (04R002) 0.004 (04R003)	2 (05R003)	1 (06R004)	0.002 (07R004)	1 (08R002)	2 (08R003)	5 (09R002)	3 (CR10W)	70 (CR11E)	40
			6	2 (02R015)	2 (03R004)	0.002 (04R004)	0.5 (CR05W)	3 (CR06W)	3 (07R006)	2 (CR08W)	3 (09R001)	,		,	
					10 (03R005) 0.001 (03R032)										
-				4.E-07 (B001)	3.E-07	5.E-07		4.E-07 (06B022)	2 E 07		1.E-07	4.E-07			
Tribal Fishers	Beach sediment		Cancer Risk	1.E-06 (B003)	(03B030)	(04B023)	5.E-07 (05B018)	3.E-07 (06B026)	3.E-07 (07B024)		(07B023)	(09B026)			
				8.E-07 (B005)	6.E-07	1.E-06		2.E-06 (06B030)	(0/10024)		2.E-07	2.E-07			
			Hazard Index	0.005 (B001) 0.03 (B003)	0.004 (03B030)	0.005 (04B023)	0.006 (05B018)	0.006 (06B022)	0.005 (07D024)		0.003 (07B023) 0.004 (09B028)	0.004 (09B026)			
			Hazaiu iliuca	0.03 (B003) 0.03 (B005)	0.007 (03B031) 0.006 (03B033)	0.02 (04B024)	0.000 (030018)	0.004 (06B026) 0.01 (06B030)	0.005 (07B024)		0.004 (09B028) 0.004 (09B024)	0.005 (09B027)			
	-			8.E-08 (2W)	2.E-07 (3W)	1.E-07 (4W)	2.E-07 (5W)	6.E-06 (6W)	3.E-06 (7W)	1.E-07 (8W)	0.00H (02B02H)	2.E-07 (9W)	2.E-07 (10W)	0 E 00 (11W)	
	In-water sediment		Cancer Risk	1.E-07 (2E)	1.E-07 (3E)	3.E-07 (4E)	1.E-07 (5E)	2.E-07 (6E)	3.E-07 (7E)	2.E-07 (8E)	2.E-07	8.E-08 (9E)	9.E-08 (10E)	8.E-08 (11W) 1.E-07 (11E)	6.E-07
	m-water semillent	•	Curior Mor	1.E-07 (2.5W)	2.E-07 (3.5W)	2.E-07 (4.5W)	4.E-07 (5.5W)	4.E-07 (6.5W)	9.E-08 (7.5W)	3.E-07 (8.5W)	2.12-07	1.E-07 (9.5W)	8.E-08 (10.5W)	6.E-08 (11.5W)	0.E-07
			-	2.E-07 (2.5E)	2.E-07 (3.5E)	9.E-07 (4.5E)	2.E-07 (5.5E)	1.E-07 (6.5E)	7.E-08 (7.5E)	1.E-07 (8.5E)		7.E-08 (9.5E)	7.E-08 (10.5E)	(*****)	

Table 8.4-2. Summary of Human Health Risks, Central Tendency.

								Expos	ure Area					
										Swan Island				
Receptor	Exposure Medium Scenario	Endpoint	RM 2	RM 3	RM 4	RM 5	RM 6	RM 7	RM 8	Lagoon	RM 9	RM 10	RM 11	Study-Area Wide
			0.0004 (2W)	0.03 (3W)	0.04 (4W)	0.04 (5W)	0.04 (6W)	0.09 (7W)	0.04 (8W)		0.04 (9W)	0.002 (10W)	0.0004 (11W)	
		Hazard Index	0.002 (2E)	0.03 (3E)	0.04 (4E)	0.04 (5E)	0.03 (6E)	0.04 (7E)	0.04 (8E)	0.04	0.0005 (9E)	0.0004 (10E)	0.003 (11E)	0.04
		nazard fildex	0.0005 (2.5W)	0.04 (3.5W)	0.04 (4.5W)	0.03 (5.5W)	0.05 (6.5W)	0.04 (7.5W)	0.04 (8.5W)	0.04	0.001 (9.5W)	0.0005	0.0003	0.04
			0.0006 (2.5E)	0.04 (3.5E)	0.04 (4.5E)	0.03 (5.5E)	0.04 (6.5E)	0.04 (7.5E)	0.04 (8.5E)		0.0005 (9.5E)	(10.5W)	(11.5W)	
			0.0008 (2W)	0.001 (3W)	0.001 (4W)	0.001 (5W)	0.003 (6W)	0.1 (7W)	0.007 (8W)		0.03 (9W)	0.01 (10W)	0.002 (11W)	
		Breastfeeding Infant Hazard Index	0.03 (2E)	0.001 (3E)	0.01 (4E)	0.001 (5E)	0.005 (6E)	0.003 (7E)	0.01 (8E)	0.02	0.003 (9E)	0.002 (10E)	0.002 (11W) 0.1 (11E)	0.02
		Breastreeding finant Hazard fidex	0.0006 (2.5W)	0.001 (3.5W)	0.002 (4.5W)	0.002 (5.5W)	0.005 (6.5W)	0.005 (7.5W)	0.1 (8.5W)	0.02	0.01 (9.5W)	0.002 (10.5W)		0.02
			0.003 (2.5E)	0.02 (3.5E)	0.002 (4.5E)	0.01 (5.5E)	0.01 (6.5E)	0.002 (7.5E)	0.003 (8.5E)		0.002 (9.5E)	0.003 (10.5E)	0.001 (11.5W)	
							2.E-05 (W011)							
Domestic Water Use	Surface water	Cancer Risk	2.E-05 (W025)	4.E-06 (W028)	3.E-06 (W029)	4.E-06 (W030)	2.E-04 (W031)	2.E-05 (W033)	6.E-06 (W036)	2.E-05 (W035)	4.E-06 (W037)		1.E-05 (W023)	3.E-05
Domestic Water Use S	Surface water	Cancer Risk	4.E-06 (W026)	1.E-05 (W005)	3.E-00 (W029)	5.E-06 (W010)	5.E-06 (W014)	5.E-06 (W034)	0.E-00 (W030)	4.E-06 (W020)	4.E-06 (W038)		1.E-03 (W023)	3.L=03
							2.E-05 (W032)							
							0.07 (W011)							
		Horond Indov	0.07 (W025) 0.4 (W026)	0.07 (W028)	0.05 (37/020)	0.08 (W030)	0.08 (W031)	0.3 (W033)	0.08 (W036)	0.8 (W035)	0.08 (W037)		0.5 (W023)	0.6
		Hazard Index		0.5 (W005)		0.09 (W010)	0.08 (W014)	0.09 (W034)	0.08 (W036)	0.08 (W020)	0.08 (W038)		0.5 (W025)	0.0
							0.06 (W032)							

RM - river mile

Table 8.4-3. Chemicals Potentially Posing Unacceptable Risks for Human Health

			В	Beach Sedim	ent					Surface Wat	ter			1		1	1	In-Water	Sediment	1						1	Fish Tissu	e		She	ellfish
Chemical of Concern	Recreational Beach User	Dockside Worker	Low-Frequency Fisher	High-Frequency Fisher	Tribal Fisher	Transients	Ingestion of Human Milk (Dockside Worker)	Recreational Beach User	Transients	Diver in Wet Suit	Diver in Dry Suit	Potential Future Domestic Water Use	In-Water Worker	Low Frequency Fisher	High Frequency Fisher	Tribal Fisher	Diver in Wet Suit	Diver in Dry Suit	Ingestion of Human Milk (In-Water Worker)	Ingestion of Human Milk (Low Frequency Fisher)	Ingestion of Human Milk (High Frequency Fisher)	Ingestion of Human Milk (Tribal Fisher)	Ingestion of Human Milk (Diver in Wet Suit)	Ingestion of Human Milk (Diver in Dry Suit)	Fish Consumption, River Mile Basis	Fish Consumption, Study Area-Wide	Tribal Fish Consumption	Ingestion of Human Milk (Non-tribal Consumption)	Ingestion of Human Milk (Tribal Consumption)	Adult Consumption	Ingestion of Human Milk (Non-tribal Consumption)
Metals																															
Antimony																											+				
Arsenic	X ^b		X ^b	X ^b	0							X			Xab	X ^b									0	0	#			0	
Chromium, hexavalent												Xª																			
Lead ^d																											X				
Mercury																									+	+	+				
PAHs																															
Benzo(a)anthracene	X ^{ab}	Xab										0		Xab	X ^{ab}	X ^{ab}	X ^{ab}								X ^{ab}					0	
Benzo(a)pyrene	Op	Oa		X ^{ab}	X ^b					Xab		#	X ^{ab}	Op	Op	О	Op	Xab							О	X ^c	X			#	
Benzo(b)fluoranthene	X ^{ab}	X ^{ab}										0		X ^{ab}	X ^{ab}	X ^{ab}	X ^{ab}													О	
Benzo(k)fluoranthene																														X ^a	
Dibenzo(a,h)anthracene	X ^b	X ^{ab}										0		X ^{ab}	X ^{ab}	X ^{ab}	X ^{ab}								X ^{ab}	X ^c	X			0	
Indeno(1,2,3-cd)pyrene	X ^{ab}	X ^{ab}										0		X ^{ab}	X ^{ab}	X ^{ab}	Xab													X	
Total Carcinogenic PAHs	0	O ^a	Xab	X ^{ab}	X ^b					X ^{ab}	Xab	#	X^{ab}	Op	Op	#	Op	Xab							О	X	X			#	
Phthalates																															
Bis(2-ethylhexyl)phthalate																											0				
SVOCs																															
Hexachlorobenzene																										О	0				
Phenols																															
Pentachlorophenol																														X ^a	
Polychlorinated Biphenyls																															
Total PCBs														Xab	X ^{ab}	Op	X ^{ab}				+ ^{ab}	+ ^{ab}	+ ^{ab}		#	#	#	+	+	#	+
Total PCB TEQ														Xab	X ^{ab}	X ^b	X ^{ab}								0	#	#	+ ^b	+	0	+ ^b
Dioxin/Furan																															
Total Dioxin TEQ													Oab	Oab	Oab	#	Oab	Xab	+ ^{ab}	+ ^{ab}	+ ^{ab}	+ ^{ab}			#	#	#	+	+	#	+ ^b
Pesticides																															
Aldrin																														X ^a	<u> </u>
Dieldrin																									0	0	0			X	
Total Chlordane																										X ^c	X				

Table 8.4-3. Chemicals Potentially Posing Unacceptable Risks for Human Health

			R	each Sedim	ent			1		Surface Wat	ter		Ι					In-Water	r Sediment								Fish Tissu	ie .		SI	nellfish
Chemical of Concern	Recreational Beach User	Dockside Worker	Low-Frequency Fisher	High-Frequency Fisher	Tribal Fisher	Transients	Ingestion of Human Milk (Dockside Worker)	Recreational Beach User	Transients	Diver in Wet Suit	Diver in Dry Suit	Potential Future Domestic Water Use	In-Water Worker	Low Frequency Fisher	High Frequency Fisher	Tribal Fisher	Diver in Wet Suit	Diver in Dry Suit	Ingestion of Human Milk (In-Water Worker)	Ingestion of Human Milk (Low Frequency Fisher)	Ingestion of Human Milk (High Frequency Fisher)	Ingestion of Human Milk (Tribal Fisher)	Ingestion of Human Milk (Diver in Wet Suit)	Ingestion of Human Milk (Diver in Dry Suit)	Fish Consumption, River Mile Basis	Fish Consumption, Study Area-Wide	Tribal Fish Consumption	Ingestion of Human Milk (Non-tribal Consumption)	Ingestion of Human Milk (Tribal Consumption)	Adult Consumption	Ingestion of Human Milk (Non-tribal Consumption)
Total DDD																									X ^a	X	О			X	
Total DDE																									X	X	О			X	
Total DDT																									X	X	О			Xª	
Total DDX																															
Herbicides																															
MCPP												+ ^{ab}																			
Polybrominated Diphenyl Ethers																												+ab			

Groundwater seep exposure resulted in no cancer or noncancer exceedances of target risk levels.

Abbreviations:

- X Chemical exceeds cancer risk of 10⁻⁶ or a hazard quotient of 1 for at least one BHHRA scenario.
- O Chemical exceeds cancer risk of 10⁻⁵ or a hazard quotient of 1 for at least one BHHRA scenario.
- # Chemical exceeds cancer risk of 10⁻⁴ or a hazard quotient of 1 for at least one BHHRA scenario.
- + Chemical exceeds a hazard quotient of 1 for at least one BHHRA scenario, but does not exceed a cancer risk of 10⁻⁶.
- a Status is result of target risk or hazard exceedance for two or fewer exposure points.
- b Status is result of target risk or hazard exceedance for RME scenario only.
- c Status is result of target risk or hazard exceedance only for subsistence fish consumption.
 d Status for lead is based on results of predicted blood lead levels.

Shading indicates an exceedance of a hazard quotient of 1 for at least one BHHRA scenario.

Table 9.4-1. Numbers of Samples Chemically Analyzed During the Portland Harbor BERA.

		Sediment	Fish and Invertebrate		Surface	Transition
Location	Sediment	Toxicity Tests	Tissue	Bird Eggs	Water	Zone Water
Study Area (RM 1.9 – RM 11.8)	1,469	269	315	5	313	192
Downstream reach (RM 0 – RM 1.9)	21	0	5	0	0	0
Multnomah Channel	7	0	0	0	0	0
Downtown reach (RM 11.8 – RM 15.3)	17	2	6	0	0	0
Upstream (RM 15.3 – RM 28.4)	22	22	18	5	0	0

BERA - baseline ecological risk assessment

RM - river mile

Table 9.6-1. Number of COPCs Evaluated in the BERA.

Medium or Diet	No. of COPCs	No. of Chemicals without Screening-Level TRVs
Sediment	67	106
Invertebrate tissue	18	23
Fish tissue	16	8
Fish dietary dose	9	11
Bird dietary dose	23	19
Mammal dietary dose	12	11
Bird egg tissue	5	0
Surface water	14	19
TZW	58	14

BERA - baseline ecological risk assessment

COPC - contaminant of potential concern

TRV - toxicity reference value

TZW - transition zone water

Table 9.6-2. COPCs Forwarded to the BERA after Screening.

Receptor Group	Media Evaluated	Number of COPCs	COPCs
Benthic invertebrates, bivalves, decapods	Surface water, TZW, sediment, tissue	104	20 metals, 2 butyltins, 21 individual PAHs or PAH sums, 4 phthalates, 12 SVOCs, 6 phenols, 16 pesticide or pesticide
bivaives, decapods	tissue		sums, total PCBs, 2,3,7,8-TCDD (dioxin), 16 VOCs, 3 total
			TPH fractions, cyanide, perchlorate
Fish	Surface water, TZW, sediment,	74	19 metals, 4 butyltins, 17 individual PAHs or PAH sums,
	diet, tissue		BEHP, 3 SVOCs, total PCBs, dioxin TEQ, total TEQ,
			7 pesticide or pesticide sums, 18 VOCs, cyanide, perchlorate
Birds and mammals	Diet (birds and mammals), bird	23 (birds)	11 metals, 3 individual PAHs or PAH sums, 2 phthalates,
	eggs	12 (mammals)	total PCBs, dioxin TEQ, PCB TEQ, total TEQ, 3 pesticide or pesticide sums
Aquatic plants, amphibians	Surface water, TZW	64	15 metals, monobutyltin, 16 individual PAHs, BEHP, 3
			SVOCs, total PCBs, 6 pesticide or pesticide sums, 18 VOCs, gasoline-range hydrocarbons, cyanide, perchlorate

BEHP - bis(2-ethylhexyl) phthalate

BERA - baseline ecological risk assessment

COPC - contaminant of potential concern

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

SVOC - semivolatile organic compound

TCDD - tetrachlorodibenzo-p-dioxin

TEQ - toxic equivalent

TPH - total petroleum hydrocarbons

TZW - transition zone water

VOC - volatile organic compound

Table 9.10-1. Sediment Toxicity Test Results.

	Level 0	Level 1	Level 2	Level 3
Test	(No Toxicity)	(Low Toxicity)	(Moderate Toxicity)	(Severe Toxicity)
Chironomus survival	210 of 256	12 of 256	9 of 256	25 of 256
Chironomus biomass	190 of 256	24 of 256	7 of 256	35 of 256
Hyalella survival	224 of 256	15 of 256	2 of 256	15 of 256
Hyalella biomass	143 of 256	47 of 256	42 of 256	24 of 256

Table 9.10-2. COPCs Posing Potentially Unacceptable Ecological Risks within the Portland Harbor Study Area.

Assessment Endpoint	Exposure Pathway	COPCs with HQ ≥ 1.0	Section of the BERA with Additional Details
Aquatic plants, amphibians	Surface water	Benzo(a)anthracene, benzo(a)pyrene, BEHP, naphthalene, DDx, total PCBs, a zinc	Sections 9-1 (amphibians) and 10-1 (aquatic plants)
	TZW	1,2,4-trimethylbenzene, 1,2-dichlorobenzene, 2-methylnaphthalene, 4,4'-DDT, acenaphthene, anthracene, barium, benzo(a)anthracene, benzo(a)pyrene, cadmium, carbon disulfide, chlorobenzene, chloroethane, chloroform, copper, cyanide, ethylbenzene, fluorene, gasoline fraction (aliphatic) C4 – C6, gasoline fraction (aliphatic) C10 – C12, iron, isopropylbenzene, lead, magnesium, manganese, naphthalene, nickel, perchlorate, phenanthrene, potassium, sodium, toluene, DDx, zinc	Sections 9-2 (amphibians) and 10-1 (aquatic plants)
Benthic invertebrates, bivalves, decapods	Sediment	2,4'-DDD, 2-methylnaphthalene, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, 4-methylphenol, acenaphthene, acenaphthylene, ammonia, anthracene, Aroclor 1254, arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, benzyl alcohol, cadmium, carbazole, chlordane (cis and trans), chromium, chrysene, cis-chlordane, copper, dibenzo(a,h)anthracene, dibenzofuran, dibutyl phthalate, dieldrin, diesel-range petroleum hydrocarbons, endrin, endrin ketone, fluoranthene, fluorene, gasoline-range hydrocarbons, heptachlor epoxide, indeno(1,2,3-cd)pyrene, lead, lindane (γ-HCH), mercury, naphthalene, nickel, phenanthrene, phenol, pyrene, residual-range hydrocarbons, silver, sulfide, sum DDD, sum DDE, sum DDT, total chlordane, DDX, total endosulfan, total HPAH, total LPAH, total PAH, total PCBs, TBT, zinc, hehCH, behCH	Sections 6-2 and 6-3
	Surface water	4,4'-DDT, a benzo(a)anthracene, benzo(a)pyrene, BEHP, ethylbenzene, naphthalene, DDx, total PCBs, trichloroethene, zinc	Section 6-5

Table 9.10-2. COPCs Posing Potentially Unacceptable Ecological Risks within the Portland Harbor Study Area.

			Section of the BERA with
Assessment Endpoint	Exposure Pathway	COPCs with $HQ \ge 1.0$	Additional Details
	TZW	1,1-Dichloroethene, 1,2,4-trimethylbenzene, 1,2-dichlorobenzene,	Section 6-6
		1,3,5-trimethylbenzene, 1,4-dichlorobenzene, 2-methylnaphthalene,	
		4,4'-DDT, acenaphthene, anthracene, barium, benzene,	
		benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene,	
		benzo(g,h,i)perylene, benzo(k)fluoranthene, beryllium, cadmium,	
		carbon disulfide, chlorobenzene, chloroethane, chloroform,	
		chrysene, cis-1,2-dichloroethene, cobalt, copper, cyanide,	
		dibenzo(a,h)anthracene, dibenzofuran, ethylbenzene, fluoranthene,	
		fluorene, gasoline fraction (aliphatic) C4 - C6, gasoline fraction	
		(aliphatic) C6 – C8, gasoline fraction (aliphatic) C10 – C12,	
		gasoline fraction (aromatic) C8 – C10, indeno(1,2,3-cd)pyrene, iron,	
		isopropylbenzene, lead, m,p-xylene, magnesium, manganese,	
		naphthalene, nickel, o-xylene, perchlorate, phenanthrene,	
		potassium, pyrene, sodium, toluene, DDx, total xylenes,	
		trichloroethene, vanadium, zinc	
	Tissue	4,4'-DDD, arsenic, BEHP, copper, DDx, total PCBs, TBT, zinc	Section 6-4

Table 9.10-2. COPCs Posing Potentially Unacceptable Ecological Risks within the Portland Harbor Study Area.

Assessment Endpoint	Exposure Pathway	COPCs with HQ ≥ 1.0	Section of the BERA with Additional Details
Fish	Surface water	4,4'-DDT, a benzo(a)anthracene, benzo(a)pyrene, BEHP, ethylbenzene, naphthalene, DDx, total PCBs, trichloroethene, zinc	Section 7-3
	TZW	1,1-Dichloroethene, 1,2,4-trimethylbenzene, 1,2-dichlorobenzene, 1,3,5-trimethylbenzene, 1,4-dichlorobenzene, 2-methylnaphthalene, 4,4'-DDT, acenaphthene, anthracene, barium, benzene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, beryllium, cadmium, carbon disulfide, chlorobenzene, chloroethane, chloroform, chrysene, cis-1,2-dichloroethene, cobalt, copper, cyanide, dibenzo(a,h)anthracene, dibenzofuran, ethylbenzene, fluoranthene, fluorene, gasoline fraction (aliphatic) C4 – C6, gasoline fraction (aliphatic) C6 – C8, gasoline fraction (aliphatic) C10 – C12, gasoline fraction (aromatic) C8 – C10, indeno(1,2,3-cd)pyrene, iron, isopropylbenzene, lead, m,p-xylene, magnesium, manganese, naphthalene, nickel, o-xylene, perchlorate, phenanthrene, potassium, pyrene, sodium, toluene, DDx, total xylenes, trichloroethene, vanadium, zinc	Section 7-4
	Fish tissue	Antimony, BEHP, copper, lead, DDx, total PCBs	Section 7-1
	Diet	Cadmium, copper, mercury, TBT	Section 7-2
Birds	Diet	Aldrin, benzo(a)pyrene, copper, dibutyl phthalate, lead, sum DDE, DDx, total dioxin/furan TEQ, total PCBs, total PCB TEQ, total TEQ	Section 8-1
	Bird egg tissue	Total dioxin/furan TEQ, total PCBs, total PCB TEQ, total TEQ	Section 8-2

Table 9.10-2. COPCs Posing Potentially Unacceptable Ecological Risks within the Portland Harbor Study Area.

Assessment Endpoint	Exposure Pathway	COPCs with $HQ \ge 1.0$	Section of the BERA with Additional Details
Mammals	Diet	Aluminum, lead, total dioxin/furan TEQ, total PCBs, total PCB TEQ, total TEQ	Section 8-1

AWQC - ambient water quality criteria

BEHP - bis(2-ethylhexyl) phthalate

COPC - chemical of potential concern

DDD - dichlorodiphenyldichloroethane

DDE - dichlorodiphenyldichloroethylene

DDT - dichlorodiphenyltrichloroethane

FPM - floating percentile model

HCH - hexachlorocyclohexane

HPAH - high-molecular-weight polycyclic aromatic hydrocarbon

HO - hazard quotient

LOE - line of evidence

LPAH - low-molecular-weight polycyclic aromatic hydrocarbon

LRM - logistic regression model

PCB - polychlorinated biphenyl

PEC - probable effects concentration

PEL - probable effects level

SL - screening level

SQG - sediment quality guideline

TBT - tributyltin

TEQ - toxic equivalent

TPH - total petroleum hydrocarbons

TRV - toxicity reference value

TZW - transition zone water

^a Identified as a COPC (HQ \geq 1.0) when the AWQC TRV was adopted; not identified as a COPC (HQ < 1.0) when the alternative TRV was adopted. These chemicals are not included in the total counts of COPCs with potentially unacceptable ecological risk unless they were identified as a COPC for another LOE.

b Ammonia and sulfide in bulk sediment exceeded SLs but are not included in the total counts of COPCs with potentially unacceptable ecological risk.

^c Identified as a COPC based on concentrations that exceeded the sediment PEC and/or PEL [BERA Section 6.3]; chemical was not identified as a COPC based on the FPM or LRM predicted toxicity LOE. These chemicals are not included in the total counts of COPCs with potentially unacceptable ecological risk unless they were identified as a COPC for another LOE (e.g., arsenic is identified as a COPC with potentially unacceptable risk for benthic invertebrates based on the tissue LOE and is, therefore, included in the total count of COPCs).

d Identified as a COPC based on concentrations that exceeded the TPH SQG (i.e., the chemical was not identified as a COPC for any other benthic sediment evaluation).

e Identified as a COPC based on concentrations that exceeded the TPH SQG; chemical was not included in the COPC counts if identified as a COPC based only on the TPH SQG exceedence.

Table 9.10-3. BERA LOEs for which No Potentially Unacceptable Ecological Risks Are Identified.

Assessment Endpoint	Measurement Endpoint	Line of Evidence
Survival, growth, reproduction of benthic invertebrates	Benthic invertebrate tissue data compared to tissue TRVs	Field-collected epibenthic macroinvertebrate tissue concentration (from Hester-Dendy samplers) relative to tissue TRVs
Survival, growth, reproduction of bivalves	Sediment toxicity testing to empirically assess adverse effects	Corbicula fluminea survival in 28-day bioaccumulation test
Survival, growth, reproduction of omnivorous fish	Concentrations in surface water compared with water TRVs	
Survival and growth of detritivorous fish	Concentrations in surface water compared with water TRVs	

BERA - baseline ecological risk assessment

LOE - line of evidence

TRV - toxicity reference value

Table 9.11-1. Contaminants of Ecological Significance.

PCBs	Dioxins and furans
PAHs	DDT and its metabolites
Total chlordanes	Mercury
Lead	Cadmium
Copper	ВЕНР
Zinc	Dieldrin
Lindane (γ-HCH)	Cyanide
Tributyltin	Ethylbenzene
Perchlorate	$C_{10} - C_{12}$ TPH
Manganese	Vanadium

 $BEHP-bis (2-ethylhexyl)\ phthalate$

PAH - polycyclic aromatic hydrocarbon

PCB - polychlorinated biphenyl

							Pathw	ay Summar	y	
				Groun	dwater	Dir	ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Study Area										
Anderson Brothers	970	8	West			H-a, C-d	OF19			
Burgard Ind. Park - NW Pipe	138	4	East			H-b, C-b ^b	WR-123 ^e			
Burgard Ind. Park - Schnitzer Steel, Calbag Metals	2355	4	East			H-a, C-b ^b				
Calbag Metals - Front Ave.	2454	8.5	West			H-a, C-a ^b	OF19			
Cascade General (Portland Shipyard/Vigor Industrial) - OU1	271	8.5	East			H-b, C-a ^{b,c}	OFS-1 ^e OFS-6 ^e			
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a*				
Columbia American Plating	29	9.5	West	_		H-a, C-a	OF18			
Consolidated Metco	3295	2.8	East			H-b, C-a	OF53A ^g			
Crawford Street Corp.	2363	6.5	East			H-b, C-c	OF50 ^e OF52 ^e		H-b, C-c	H-b, C-c
Evraz Oregon Steel Mills	141	2.4	East			H-a, C-c ^{b,c,d}	OF53A ^h			H-a, C-a

							Pathw	ay Summar	<u>y</u>		
				Groun	dwater	Dir	ect Dischar	ge	Overland Transport	Riverbank Erosion	
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status	
Freightliner TMP	2366	8.5	East			H-b, C-c ^b	OFM-1				
Front Avenue LP Properties (CMI NW, Hampton, Lonestar NW/Glacier NW, Tube Forging)	1239	8.3	West			H-b, C-c ^b	OF19 ^e				
GE Decommissioning	4003	9.5	West			H-a, C-a	OF17 ^g				
Gunderson	1155	8.8	West			H-a, C-a	OF18 ^e		H-a, C-a	H-b, C-a	
Kittridge Distribution Center	2442	8.4	West			H-a, C-d	OF19				
Linnton Plywood (Columbia River Sand and Gravel)	2373, 2351	4.7	West			H-b, C-d ^{b,c}			H-b, C-d		
Mar Com - North Parcel	4797	5.6	East						H-b, C-d		
Mar Com - South Parcel	2350	5.6	East			H-b, C-d			H-b, C-d		
McCall Oil	134	7.9	West			H-b, C-c	OF22 ^e				
Metro Central Transfer Station	1398	7.2	West			H-c, C-a	OF22B ^g				
Rhone Poulenc (Starlink)	155	7.2	West			H-a, C-d ^c	OF22B ^g				
Schnitzer Investment - Doane Lake (Aire Liquide)	395	7.3	West			H-a, C-a	OF22B ^g				
Swan Island Upland Facility - OU3	271	8.4	East			H-b, C-c	OFS-2 ^h				

Table 10.2-1. Upland Site Pathway Assessment Summary for PCBs. a

							Pathw	ay Summar	y	
				Groun	dwater	Dir	ect Dischar		Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Triangle Park (Riedel Env.)	277	7.4	East	H-c, C-a	N	H-b, C-a			H-b, C-a	H-b, C-a
Trumbull Asphalt Plant	1160	9.1	West			H-b, C-c	OF18			
UPRR Albina Yard	178	10 to 11	East			H-a, C-a	OF45 ^e OF46 ^e OF47 ^e			
Willamette Cove	2066	6.8	East							H-b, C-c
RM 11-11.8										
Tucker Building	3036	11.3	East			H-b, C-d	OF43 OF44			
Westinghouse	4497	11.5	East			H-b, C-d	OF43			
PacifiCorp Albina Riverlots	5117	11.3 to 11.5	East			H-b, C-b	OF44 ^g			
Other ECSI Sites within the Basins of Shar	ed Conveyance	Systems f								
ANRFS (aka AFB)	1820	9.5	West			H-b, C-d	OF18			
Ashland Chemical	1076	9.5	West			Н-ь, С-с	OF18			
Calbag-Nicolai	5059	10.3	West			H-b, C-a	OF16			
Carson Oil	1405	9.7	West			H-b, C-c	OF18			
Container Management	4784	9.5	West			H-b, C-c	OF18			

							Pathw	ay Summar	y	
				Groundwater		Direct Discharge			Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Container Recovery	4015	9.3	West			H-b, C-c	OF18			
Front Avenue MP	4008	9.9	West			H-b, C-d	OF16			
GE - NW 28th	No ECSI#	10	West			H-b, C-b	OF17			
Greenway Recycling	4655	8.4	West			H-b, C-d	OF19			
PGE - Forest Park	2406	8.3	West			H-b, C-c	OF19			
SFI	5103	10	West			Н-а, С-с	OF17			

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

Pathway - the potential for impacting in-water media rated as follows:

- a: the pathway is known to be a contaminant migration pathway the pathway discharges to the river and there are COIs associated with the pathway
- b: likely a complete pathway
- c: insufficient data to make determination
- d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^dEOSM's permitted discharge from their wastewater plant was not a complete pathway.

^e A portion of this site discharges stormwater to a shared conveyance system.

^f Stormwater COIs at these ECSI sites were identified based on independent investigations.

^g These sites have or had groundwater infiltration in the City storm sewer.

^h A non-operational portion of the facility drains to a shared conveyance system.

^{*} PCBs are not a COI for all outfalls covered under ECSI #2425.

				Pathway Summary								
				Groun	dwater	Direct Discharge		ge	Overland Transport	Riverbank Erosion		
		River	River	thway Status	NAPL	tormwater chway Status Shared conveyance System Overwater thway Status		rwate: ay Sta	thway Status	thway Status		
Site Name	ECSI#	Mile	Bank	Paï		S Pai)) Paj	Pa	Pai		

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

PCB - polychlorinated biphenyl

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

TSCA - Toxic Substances Control Act

USEPA - U.S. Environmental Protection Agency

							Path	way Summ	ary	
				Ground	water	Direct Discharge			Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			Н-а, С-а*				
Gould Electronics/NL Industries	49	7.2	West			H-a, C-d	OF22B ^{c,e}			
McCormick & Baxter Creosoting	74	7	East	H-a, C-d	Y	H-a, C-d		H-a, C-d	H-a, C-d	H-a, C-d
Rhone Poulenc (Starlink)	155	7.2	West			H-a, C-d ^{b,d}	OF22B ^e			
Triangle Park (Riedel Env.)	277	7.4	East			H-b, C-a			H-b, C-a	H-b, C-a

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

Pathway - the potential for impacting in-water media rated as follows:

- a: the pathway is known to be a contaminant migration pathway the pathway discharges to the river and there are COIs associated with the pathway
- b: likely a complete pathway
- c: insufficient data to make determination
- d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^c A portion of this site discharges stormwater to a shared conveyance system.

^d Stormwater discharges are related to groundwater infiltration into OF22B.

^e These sites have or had groundwater infiltration in the City storm sewer.

^{*} Total PCDD/Fs is not a COI for all outfalls covered under ECSI #2425.

				Pathway Summary							
				Ground	water	Direct Discharge			Overland Transport	Riverbank Erosion	
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status	

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

PCDD/F - dioxin/furan

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

USEPA - U.S. Environmental Protection Agency

·							Pathw	ay Summ	ary	
				Ground	water	Direct Discharge			Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Study Area										
Arkema	398	7.3	West	H-a, C-a	Y	H-a, C-a ^c	OF22B ^g			H-a, C-a
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a*				
Metro Central Transfer Station	1398	7.2	West			H-c, C-a	OF22B ^f			
Rhone Poulenc (Starlink)	155	7.2	West	H-b, C-d	Y	H-a, C-d ^{c, e}	OF22B ^f			
Willbridge Bulk Fuel Facility	1549	7.5	West			H-b, C-b ^b	Saltzman Creek ^d , OF22 ^{d,f}			Н-ь, С-с

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^d A portion of this site discharges stormwater to a shared conveyance system.

^e Stormwater discharges are related to groundwater infiltration into OF22B.

^f These sites have or had groundwater infiltration in the City storm sewer.

^g A non-operational portion of the facility drains to a shared conveyance system.

^{*} DDx is not a COI for all outfalls covered under ECSI #2425.

				Pathway Summary								
				Groundwater		Direct Discharge		Overland Transport	Riverbank Erosion			
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DDx - total of 2,4'- and 4,4'-DDD, DDE, and DDT

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

USEPA - U.S. Environmental Protection Agency

							Pathy	vay Summa	ry	
				Ground	water	Dire	ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Study Area										
Anderson Brothers	970	8	West			H-a, C-d	OF19			
ARCO	1528	4.9	West	H-a, C-b ^g	Y	H-b, C-c		H-a, C-a		
Burgard Ind. Park - NW Pipe	138	4	East			H-b, C-b ^b	WR-123 ^e			
Cascade General (Portland Shipyard/Vigor Industrial) - OU1	271	8.5	East			H-b, C-a ^{b,c}	OFS-1 ^e OFS-6 ^e	H-a, C-a		
Chevron Asphalt Refinery	1281	8	West			H-a, C-d ^b	OF19 ^e OF22 ^{e,h}			
Christenson Oil	2426	8.8	West			H-a, C-c ^b	OF18			
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a*				
Columbia American Plating	29	9.5	West			H-a, C-a	OF18			
Consolidated Metco	3295	2.8	East			H-b, C-a ^b	OF53A ^h			
Crawford Street Corp.	2363	6.5	East			Н-b,С-с	OF52 ^e OF50 ^e	H-b, C-d	H-b, C-c	H-b, C-c
Evraz Oregon Steel Mills	141	2.4	East			H-a, C-c ^{b,c,d}	OF53A ⁱ	H-a, C-d		

,	j						Pathv	vay Summa	ry	
				Ground	water	Dir	ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
ExxonMobil Oil Terminal	137	5	West	H-a, C-b ^g	Y	H-b, C-c ^b		H-a, C-a		
Foss Maritime/Brix Marine	2364	5.7	West	H-b,C-d				H-a, C-a		
Fred Devine Diving and Salvage	2365	8.4	East			H-b, C-d	OFM-1			
Freightliner TMP	2366	8.5	East			H-b, C-c ^b	OFM-1			
Front Avenue LP Properties (CMI NW, Hampton, Lonestar NW/Glacier NW, Tube Forging)	1239	8.3	West			H-b, C-c ^b	OF19 ^e			
Gasco (NW Natural, Koppers, Pacific Northern Oil)	84, 2348	6.5	West	H-a, C-a	Y	H-a, C-a ^c	OF22C ^e	H-a, C-b	H-a, C-b	H-a, C-a
GE Decommissioning	4003	9.5	West			H-a, C-a	OF17 ^h			
Goldendale Aluminum	2440	10	East			H-b, C-d		H-a, C-b		
Gould Electronics/NL Industries	49	7.2	West			H-a, C-d	OF22B ^{e,h}			
GS Roofing	117	7.5	West			H-b, C-c ^b	Saltzman Creek			
Gunderson	1155	8.8	West	H-b, C-b	N		OF18 ^e		H-a, C-a	H-b, C-a
Kinder Morgan Linnton Terminal (GATX)	1096	4.1	West	H-b, C-b ^g	Y			_	_	
Linnton Oil Fire Training Gds.	1189	3.5	West			H-a, C-d				
Linnton Plywood (Columbia River Sand and Gravel)	2373, 2351	4.7	West			H-b, C-d ^{b,c}			H-b, C-d	

							Pathv	yay Summa	ry	
				Ground	water	Dir	ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Mar Com - South Parcel	2350	5.6	East			H-b, C-d ^b		H-a, C-a	H-b, C-d	H-b, C-c
Marine Finance (Hendren Tow Boats)	2352	5.8	West			H-b, C-d		H-a, C-b	H-b, C-d	H-b, C-d
McCall Oil	134	7.9	West			Н-ь, С-с	OF22 ^e	H-a, C-a		
McCormick & Baxter Creosoting	74	7	East	H-a, C-d	Y	H-a, C-d		H-a, C-d	H-a, C-d	H-a, C-d
McWhorter Inc.	135	8.8	West			Н-а, С-с	OF18			
Owens Corning - Linnton	1036	3.8	West					H-b, C-d		
POP - Terminal 2	2769	10	West					H-a, C-a		
POP - Terminal 4, Slip 1	2356	~ 4.3	East			H-b, C-c		H-a, C-b		H-a, C-d
POP - Terminal 4, Slip 3	272	~ 4.7	East	H-a, C-d	Y	H-a, C-a		H-a, C-d		H-a, C-a
Premier Edible Oils	2013	3.6	East	H-c, C-a	Y	H-a, C-a			H-b, C-c	H-b, C-c
Siltronic	183, 84	6.6	West	H-a, C-a	Y	H-b, C-a ^{b,c}	OF22C ^{e,h}	H-b, C-d	H-b, C-d	H-b, C-c
Swan Island Upland Facility - OU3	271	8.4	East			Н-ь, С-с	OFS-2 ⁱ			
Sulzer Bingham Pumps	1235	10.3	West			H-a, C-c	OF15 ^e			H-b, C-c
Texaco/Equilon - Pipeline	2117	8.8	West				OF18	H-a, C-b		
Time Oil	170	3.5	East	H-a, C-d	Y	H-b, C-d ^b				
Triangle Park (Riedel Env.)	277	7.4	East	H-c, C-a	N	H-b, C-a		H-b, C-d	H-b, C-a	H-b, C-a

							Pathy	vay Summa	ry	
				Ground	water	Dir	ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Trumbull Asphalt Plant	1160	9.1	West			H-b, C-c	OF18			
UPRR Albina Yard	178	10 to 11	East			Н-а, С-а	OF45 ^e OF46 ^e OF47 ^e			
US Coast Guard - Marine Safety Station	1338	8	East			H-b, C-c		H-a, C-a		
Willamette Cove	2066	6.8	East							H-b, C-c
Willbridge Bulk Fuel Facility	1549	7.5	West	H-a, C-b ^g	Y	H-b, C-b	Saltzman Creek ^e , OF22 ^{e,h}	H-a, C-a		H-b, C-c
RM 11-11.8										
Tucker Building	3036	11.3	East			H-b, C-d	OF43 OF44			
Other ECSI Sites within the Basins of Sha	red Conveyanc	e Systems ³	f							
ANRFS (aka AFB)	1820	9.5	West			H-b, C-d	OF18			
Ashland Chemical	1076	9.5	West			H-b, C-c	OF18			
Calbag-Nicolai	5059	10.3	West			H-b, C-a	OF16			
Carson Oil	1405	9.7	West			Н-ь, С-с	OF18			
Container Management	4784	9.5	West			H-b, C-c	OF18			

							Pathv	vay Summa	ry	
				Groundwater		Direct Discharge		ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Container Recovery	4015	9.3	West			H-b, C-c	OF18			
Front Avenue MP	4008	9.9	West			H-b, C-d	OF16			
Galvanizers	1196	9.4	West			H-b, C-b	OF17 ^h			
SFI	5103	10	West			H-a, C-c	OF17			

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through June 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^dEOSM's permitted discharge from their wastewater plant was not a complete pathway.

^e A portion of this site discharges stormwater to a shared conveyance system.

^f Stormwater COIs at these ECSI sites were identified based on independent investigations.

^g PAH concentrations in TZW at this site currently appear to be controlled by direct chemical partitioning from PAH-contaminated sediment to pore water, suggesting that the role of the groundwater pathway, if any, is minor (see Appendix C2).

^h These sites have or had groundwater infiltration in the City storm sewer.

ⁱ A non-operational portion of the facility drains to a shared conveyance system.

^{*} PAHs are not a COI for all outfalls covered under ECSI #2425.

							Pathv	vay Summa	ry	
				Ground	lwater	Dir	ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

PAH - polycyclic aromatic hydrocarbon

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

TZW - transition zone water

USEPA - U.S. Environmental Protection Agency

			Pathway Summary Groundwater Direct Discharge Overland Transport Riverbank Erosion									
				Ground	lwater	Dir	ect Dischar		Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		
Study Area												
Anderson Brothers	970	8	West			H-a, C-d	OF19					
Calbag Metals - Front Ave.	2454	8.5	West			H-a, C-a ^b	OF19					
Cascade General (Portland Shipyard/Vigor Industrial) - OU1	271	8.5	East			H-b, C-a ^{b,c}	OFS-1 ^d OFS-6 ^d	H-a, C-a				
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a [*]						
Columbia American Plating	29	9.5	West			H-a, C-a	OF18					
Consolidated Metco	3295	2.8	East			H-b, C-a	OF53A ^f					
Crawford Street Corp.	2363	6.5	East							H-b, C-c		
Fred Devine Diving and Salvage	2365	8	East			H-b, C-d	OFM-1					
Front Avenue LP Properties (CMI NW, Hampton, Lonestar NW/Glacier NW, Tube Forging)	1239	8.3	West			H-b, C-c ^b	OF19 ^d					
Gunderson	1155	8.8	West			H-a, C-a	OF18 ^d					
Linnton Plywood (Columbia River Sand and Gravel)	2373, 2351	4.7	West			H-b, C-d ^{b,c}						

Table 10.2-3. Opiand Site I attiway Assessi							Path	way Summa	ary	
				Ground	lwater		ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Mar Com - South Parcel	2350	5.6	East			H-b, C-d ^b		H-a, C-a	H-b, C-d	H-b, C-c
McCall Oil	134	7.9	West			Н-ь, С-с	OF22 ^d			
McWhorter Inc.	135	8.8	West			Н-а, С-с	OF18			
Metro Central Transfer Station	1398	7.2	West			Н-с, С-а	OF22B ^f			
POP - Terminal 4, Slip 1	2356	~ 4.3	East			Н-ь, С-с				
POP - Terminal 4, Slip 3	272	~ 4.7	East			H-b, C-d				
Premier Edible Oils	2013	3.6	East	H-c, C-a	Y					
Siltronic	183, 84, 155	6.6	West			H-b, C-a	OF22C ^{d,f}			
Swan Island Upland Facility - OU3	271	8.4	East			H-b, C-c	OFS-2 ^g			
Triangle Park (Riedel Env.)	277	7.4	East	H-c, C-a	N					
Trumbull Asphalt Plant	1160	9.1	West			Н-ь, С-с	OF18			
UPRR Albina Yard	178	10 to 11	East			H-a, C-a	OF45 ^d OF46 ^d OF47 ^d			
Willbridge Bulk Fuel Facility	1549	7.5	West	H-a, C-b	Y	H-b, C-b ^b	Saltzman Creek ^d , OF22 ^{d,f}			

,			Pathway Summary Groundwater Direct Discharge Overland Transport Riverbank Erosion									
				Ground	lwater		ect Discharg	ge	Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		
Other ECSI Sites within the Basins of Shar	ed Conveyar	ice System	es e									
ANRFS (aka AFB)	1820	9.5	West			H-b, C-d	OF18					
Ashland Chemical	1076	9.5	West			H-b, C-c	OF18					
Carson Oil	1405	9.7	West			H-b, C-c	OF18					
Container Management	4784	9.5	West			H-b, C-c	OF18					
Container Recovery	4015	9.3	West			H-b, C-c	OF18					
Calbag-Nicolai	5059	10.3	West			H-b, C-a	OF16					
Galvanizers	1196	9.4	West			H-b, C-b	OF17 ^f					

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^d A portion of this site discharges stormwater to a shared conveyance system.

^eStormwater COIs at these ECSI sites were identified based on independent investigations.

^fThese sites have groundwater infiltration in the City storm sewer.

^g A non-operational portion of the facility drains to a shared conveyance system.

^{*} BEHP is not a COI for all outfalls covered under ECSI #2425.

							Path	way Summa	ıry	
				Ground	water	Dir	ect Discharg	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

N/A: pathway does not exist at site

BEHP - bis(2-ethylhexyl)phthalate

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

USEPA - U.S. Environmental Protection Agency

Table 10.2-6. Upland Site Pathway Assessment Summary for Total Chlordanes.^a

							Pathwa	ay Summary		
				Groun	dwater	Dire	ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8				H-a, C-a*				
Rhone Poulenc (Starlink)	155	7.2	West			H-a, C-d ^{b,c}	OF22B ^d			

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan USEPA - U.S. Environmental Protection Agency

a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEO Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^c Stormwater discharges are related to groundwater infiltration into OF22B.

^d These sites have or had groundwater infiltration in the City storm sewer.

^{*} Total chlordanes are not a COI for all outfalls covered under ECSI #2425.

Table 10.2-7. Upland Site Pathway Assessment Summary for Aldrin. a

							Path	way Sumn	nary	
				Ground	lwater	Dir	ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a*				
Rhone Poulenc (Starlink)	155	7.2	West			H-a, C-d ^{b,c}	OF22B ^d			

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

NPDES - National Pollutant Discharge Elimination System COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality RI/FS - remedial investigation/feasibility study

ECSI # - DEQ Environmental Cleanup Site Inventory number RM - river mile

LWG - Lower Willamette Group SWPCP - stormwater pollution control plan N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site) USEPA - U.S. Environmental Protection Agency

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^c Stormwater discharges are related to groundwater infiltration into OF22B.

^d These sites have or had groundwater infiltration in the City storm sewer.

^{*} Aldrin is not a COI for all outfalls covered under ECSI #2425.

				Pathway Summary									
				Ground	lwater	Direct Discharge			Overland Transport	Riverbank Erosion			
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status			
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a*							
Rhone Poulenc (Starlink)	155	7.2	West			H-a, C-d ^{b,c}	OF22B ^d						

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

 $NAPL - nonaqueous-phase \ liquid; \ available \ information \ indicates \ the \ presence \ of \ historical \ or \ current \ NAPL \ (Y/N) - ($

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^c Stormwater discharges are related to groundwater infiltration into OF22B.

^d These sites have or had groundwater infiltration in the City storm sewer.

^{*} Dieldrin is not a COI for all outfalls covered under ECSI #2425.

Table 10.2-9. Optand Site Faulway Assessin							Pathv	vay Summ	ary	
				Ground	lwater		ect Discharg		Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Study Area										
ACF Industries	794	3.7	West			H-b, C-d				
ARCO	1528	4.9	West	H-b ^g , C-b ^g	Y	Н-ь, С-с				
Burgard Ind. Park - Schnitzer Steel, Calbag Metals	2355	4	East	Н-а, С-с	N	H-a, C-b ^b	WR-121 ^e			
Chevron Asphalt Refinery	1281	8	West			H-a, C-d ^b	OF19 ^e OF22 ^{e,i}			
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a*				
Columbia American Plating	29	9.5	West			H-a, C-a	OF18			
Crawford Street Corp.	2363	6.5	East			H-b, C-c	OF52 ^e OF50 ^e		H-b, C-c	H-b, C-c
Evraz Oregon Steel Mills	141	2.4	East			H-a, C-c ^{b,c,d}	OF53A ^j			H-a, C-a
ExxonMobil Oil Terminal	137	5	West	H-b ^g , C-b ^g	Y					
Fred Devine Diving and Salvage	2365	8.4	East			H-b, C-d	OFM-1			
Front Avenue LP Properties (CMI NW, Hampton, Lonestar NW/Glacier NW, Tube Forging)	1239	8.3	West			H-b, C-c ^b	OF19 ^e			
Gasco (NW Natural, Koppers, Pacific Northern Oil)	84, 2348	6.5	West	H-b ^g , C-b ^g	Y	H-a, C-a ^c	OF22C ^e		H-a, C-b	H-a, C-a

Table 10.2-9. Upland Site Pathway Assessm			Pathway Summary Groundwater Direct Discharge Overland Transport Riverbank Erosion									
				Ground	lwater		ect Discharg	e	Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		
GE Decommissioning	4003	9.5	West			H-a, C-b	OF17 ⁱ					
Gould Electronics/NL Industries	49	7.2	West			H-a, C-d	OF22B ^{e,i}					
GS Roofing	117	7.5	West			H-b, C-c ^b	Saltzman Creek					
Gunderson	1155	8.8	West	H-b ^g , C-b ^g	N	H-a, C-a	OF18 ^e		H-a, C-a	H-b, C-a		
Mar Com - North Parcel	4797	5.6	East						H-b, C-d			
Mar Com - South Parcel	2350	5.6	East			H-b, C-d ^b			H-b, C-d	H-b, C-c		
Marine Finance (Hendren Tow Boats)	2352	5.8	West			H-b, C-d			H-b, C-d	H-b, C-d		
McCall Oil	134	7.9	West			H-b, C-c	OF22 ^e					
McCormick & Baxter Creosoting	74	7	East	H-a, C-d	Y	H-a, C-d		H-a, C-d	H-a, C-d	H-a, C-d		
Metro Central Transfer Station	1398	7.2	West			H-c, C-a	OF22B ⁱ					
POP - Terminal 4, Slip 1	2356	~ 4.3	East							H-a, C-d		
Rhone Poulenc (Starlink)	155	7.2	West			H-a, C-d ^{c,h}	OF22B ⁱ					
Schnitzer Investment - Doane Lake (Aire Liquide)	395	7.3	West			H-a, C-a	OF22B ⁱ					
Siltronic	183, 84	6.6	West	H-b ^g , C-b ^g	Y	H-b, C-a ^{b,c}	OF22C ^{e,i}		H-b, C-d	H-b, C-c		

Table 10.2-9. Upland Site Pathway Assessm							Pathv	vay Summ	ary	
				Ground	lwater		ect Discharg		Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Sulzer Bingham Pumps	1235	10.3	West			Н-а, С-с	OF15 ^e			H-b, C-c
Triangle Park (Riedel Env.)	277	7.4	East			H-b, C-a			H-b, C-a	H-b, C-a
Trumbull Asphalt Plant	1160	9.1	West			Н-ь, С-с	OF18	_		
UPRR Albina Yard	178	10 to 11	East			H-a, C-a	OF45 ^e OF46 ^e OF47 ^e			
Willamette Cove	2066	6.8	East							H-b, C-c
Willbridge Bulk Fuel Facility	1549	7.5	West			H-b, C-b ^b	Saltzman Creek ^e , OF22 ^{e,i}			H-b, C-c
Other ECSI Sites within the Basins of Shar	ed Conveyai	nce System	s^f						-	
ANRFS (aka AFB)	1820	9.5	West			H-b, C-d	OF18			
Ashland Chemical	1076	9.5	West	_		H-b, C-c	OF18	_		
Calbag-Nicolai	5059	10.3	West			H-b, C-a	OF16			
Carson Oil	1405	9.7	West			H-b, C-c	OF18			
Container Management	4784	9.5	West			Н-ь, С-с	OF18			

				Pathway Summary								
				Groundwater		Direct Discharge		e	Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		
Container Recovery	4015	9.3	West			H-b, C-c	OF18					
Front Avenue MP	4008	9.9	West			H-b, C-d	OF16					
Galvanizers	1196	9.4	West			H-b,C-b	OF17 ⁱ					
SFI	5103	10	West			Н-а, С-с	OF17					

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^d EOSM's permitted discharge from their wastewater plant was not a complete pathway.

^e A portion of this site discharges stormwater to a shared conveyance system.

^f Stormwater COIs at these ECSI sites were identified based on independent investigations.

^g Arsenic concentrations in TZW do not show systematic differences between groundwater discharge and non-discharge zones and are likely regulated by geochemical conditions in the TZW environment (see Appendix C2).

^h Stormwater discharges are related to groundwater infiltration into OF22B.

¹These sites have or had groundwater infiltration in the City storm sewer.

^j A non-operational portion of the facility drains to a shared conveyance system.

^{*} Arsenic is not a COI for all outfalls covered under ECSI #2425.

				Pathway Summary								
				Ground	lwater	Dire	ect Discharg	e	Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

TZW - transition zone water

						Pathy	vay Summ	ary		
				Ground	lwater	Dire	ect Discharg		Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Study Area										
ACF Industries	794	3.7	West			H-b, C-d				
Anderson Brothers	970	8	West			H-a, C-d	OF19			
ARCO	1528	4.9	West	H-b, C-b	Y	H-b, C-c				
Burgard Ind. Park - Schnitzer Steel, Calbag Metals	2355	4	East	H-a, C-c	N	H-a, C-b ^b	WR-121 ^e	H-a, C-a		
Calbag Metals - Front Ave.	2454	8.5	West			H-a, C-a ^b	OF19			
Cascade General (Portland Shipyard/Vigor Industrial) - OU1	271	8.5	East			H-b, C-a ^{b,c}	OFS-1 ^e OFS-6 ^e	H-a, C-a		
Chevron Asphalt Refinery	1281	8	West			H-a, C-d ^b	OF19 ^e OF22 ^{e,g}			
Christenson Oil	2426	8.8	West			H-a, C-c ^b	OF18			
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a [*]				
Columbia American Plating	29	9.5	West			H-a, C-a	OF18			
Consolidated Metco	3295	2.8	East			H-b, C-a	OF53A ^g			

				Ground	lwater		ect Dischar	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Crawford Street Corp.	2363	6.5	East			Н-ь, С-с	OF52 ^e OF50 ^e	H-b, C-d	H-b, C-c	H-b, C-c
Evraz Oregon Steel Mills	141	2.4	East			H-a, C-c ^{b,c,d}	OF53A ^h			H-a, C-a
ExxonMobil Oil Terminal	137	5	West	H-b, C-b	Y					
Fred Devine Diving and Salvage	2365	8.4	East			H-b, C-d	OFM-1			
Freightliner TMP	2366	8.5	East			H-b, C-c ^b	OFM-1			
Freightliner TMP2 (Parts Plant)	115	9.3	East			H-b, C-c ^b	OFM-3			
Front Avenue LP Properties (CMI NW, Hampton, Lonestar NW/Glacier NW, Tube Forging)	1239	8.3	West			H-b, C-c	OF19 ^e			
Gasco (NW Natural, Koppers, Pacific Northern Oil)	84, 2348	6.5	West	H-b, C-b	Y	H-a, C-a ^c	OF22C ^e		H-a, C-b	H-a, C-a
GE Decommissioning	4003	9.5	West			Н-а, С-а	OF17 ^g			
Gould Electronics/NL Industries	49	7.2	West			H-a, C-d	OF22B ^{e,g}			
GS Roofing	117	7.5	West			H-b, C-c ^b	Saltzman Creek			
Gunderson	1155	8.8	West	H-b, C-b	N	Н-а, С-а	OF18 ^e	H-a, C-b	H-a, C-a	H-b, C-a
Linnton Plywood (Columbia River Sand and Gravel)	2373, 2351	4.7	West			H-b, C-d ^{b,c}			H-b, C-d	

							Pathy	vay Summa	ary	
				Ground	water	Dir	ect Discharg	ge	Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Mar Com - North Parcel	4797	5.6	East						H-b, C-d	
Mar Com - South Parcel	2350	5.6	East			H-b, C-d ^b			H-b, C-d	
Marine Finance (Hendren Tow Boats)	2352	5.8	West			H-b, C-d			H-b, C-d	
McCall Oil	134	7.9	West			H-b, C-c	OF22 ^e			
McCormick & Baxter Creosoting	74	7	East	H-a, C-d	Y	H-a, C-d		H-a, C-d	H-a, C-d	H-a, C-d
Metro Central Transfer Station	1398	7.2	West			Н-с, С-а	OF22B ^g			
POP - Terminal 4, Slip 1	2356	~ 4.3	East			Н-ь, С-с				H-a, C-d
Siltronic	183, 84	6.6	West			H-b, C-a ^{b,c}	OF22C ^{e,g}			H-b, C-c
Sulzer Bingham Pumps	1235	10.3	West			Н-а, С-с	OF15 ^e			H-b, C-c
Swan Island Upland Facility - OU3	271	8.4	East			Н-ь, С-с	OFS-2 ^h			
Triangle Park (Riedel Env.)	277	7.4	East			H-b, C-a			H-b, C-a	H-b, C-a
Trumbull Asphalt Plant	1160	9.1	West	_		H-b, C-c	OF18			
UPRR Albina Yard	178	10 to 11	East			Н-а, С-а	OF45 ^e OF46 ^e OF47 ^e			
Willamette Cove	2066	6.8	East							H-b, C-c

			Pathway Summary Groundwater Direct Discharge Overland Transport Riverbank Erosion									
				Ground	lwater	Dire	ect Discharg	ge	Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		
Willbridge Bulk Fuel Facility	1549	7.5	West			H-b, C-b ^b	Saltzman Creek ^e , OF22 ^{e,g}			H-b, C-c		
Other ECSI Sites within the Basins of Sho	ıred Conveyai	nce Systems	\mathbf{s}^f									
ANRFS (aka AFB)	1820	9.5	West			H-b, C-d	OF18					
Ashland Chemical	1076	9.5	West			Н-ь, С-с	OF18					
Calbag-Nicolai	5059	10.3	West			H-b, C-a	OF16					
Carson Oil	1405	9.7	West			H-b, C-c	OF18					
Container Management	4784	9.5	West			Н-ь, С-с	OF18					
Container Recovery	4015	9.3	West			Н-ь, С-с	OF18					
Galvanizers	1196	9.6	West			H-b, C-b	OF17 ^g					

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^d EOSM's permitted discharge from their wastewater plant was not a complete pathway.

^e A portion of this site discharges stormwater to a shared conveyance system.

f Stormwater COIs at these ECSI sites were identified based on independent investigations.

				Pathway Summary								
				Groundwater Direct Discharge Overland Transport Riverbank Erosic								
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		

^g These sites have or had groundwater infiltration in the City storm sewer.

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI# - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

^h A non-operational portion of the facility drains to a shared conveyance system.

^{*} Copper is not a COI for all outfalls covered under ECSI #2425.

Table 10.2-11. Upland Site Pathway Assess											
				Ground	dwater	Dire	ect Discharg		Overland Transport	Riverbank Erosion	
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status	
Study Area											
ACF Industries	794	3.7	West			H-b, C-d					
Anderson Brothers	970	8	West			H-a, C-d	OF19				
Burgard Ind. Park - Schnitzer Steel, Calbag Metals	2355	4	East			H-a, C-b ^b	WR-121 ^e	H-a, C-a			
Calbag Metals - Front Ave.	2454	8.5	West			H-a, C-a ^b	OF19				
Cascade General (Portland Shipyard/Vigor Industrial) - OU1	271	8.5	East			H-b, C-a ^{b,c}	OFS-1 ^e OFS-6 ^e	H-a, C-a			
Chevron Asphalt Refinery	1281	8	West			H-a, C-d ^b	OF19 ^e OF22 ^{e,g}				
Christenson Oil	2426	8.8	West			H-a, C-c ^b	OF18				
City of Portland Outfalls	2425	Outfalls from RM 2.7 to 9.8	East/West			H-a, C-a*					
Columbia American Plating	29	9.5	West			Н-а, С-а	OF18				
Consolidated Metco	3295	2.8	East			H-b, C-a	OF53A ^g				
Crawford Street Corp.	2363	6.5	East			H-b, C-c	OF52 ^e OF50 ^e	H-b, C-d	H-b, C-c	H-b, C-c	
Evraz Oregon Steel Mills	141	2.4	East			H-a, C-c ^{b,c,d}	OF53A ^h				

Table 10.2-11. Upland Site Pathway Assess		- ,		Pathway Summary									
				Ground	lwater	Dire	ect Discharg	ge	Overland Transport	Riverbank Erosion			
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status			
ExxonMobil Oil Terminal	137	5	West	H-b, C-b	Y	H-b, C-c ^b							
Fred Devine Diving and Salvage	2365	8.4	East			H-b, C-d	OFM-1						
Freightliner TMP	2366	8.5	East			H-b, C-c ^b	OFM-1						
Freightliner TMP2 (Parts Plant)	115	9.3	East			H-b, C-c ^b	OFM-3						
Front Avenue LP Properties (CMI NW, Hampton, Lonestar NW/Glacier NW, Tube Forging)	1239	8.3	West			H-b, C-c	OF19 ^e						
Gasco (NW Natural, Koppers, Pacific Northern Oil)	84, 2348	6.5	West	H-a, C-a	Y	H-a, C-a ^c	OF22C ^e		H-a, C-b	H-a, C-a			
GE Decommissioning	4003	9.5	West			H-a, C-a	OF17 ^g						
Gould Electronics/NL Industries	49	7.2	West			H-a, C-d	OF22B ^{e,g}						
GS Roofing	117	7.5	West			H-b, C-c ^b	Saltzman Creek						
Gunderson	1155	8.8	West	H-a, C-a	N	H-a, C-a	OF18 ^e	H-a, C-b	H-a, C-a	H-b, C-a			
Kittridge Distribution Center	2442	8.4	West	_		H-a, C-d	OF19	_					
Linnton Plywood (Columbia River Sand and Gravel)	2373, 2351	4.7	West			H-b, C-d ^{b,c}			H-b, C-d				
Mar Com - North Parcel	4797	5.6	East						H-b, C-d				
Mar Com - South Parcel	2350	5.6	East			H-b, C-d ^b			H-b, C-d	Н-ь, С-с			

Table 10.2-11. Upland Site Pathway Assessi				Pathway Summary								
				Ground	lwater		ect Discharg		Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		
Marine Finance (Hendren Tow Boats)	2352	5.8	West			H-b, C-d			H-b, C-d	H-b, C-d		
McCall Oil	134	7.4	West			Н-ь, С-с	OF22 ^e					
McCormick & Baxter Creosoting	74	7	East	H-a, C-d	Y	H-a, C-d		H-a, C-d	H-a, C-d	H-a, C-d		
Metro Central Transfer Station	1398	7.2	West			Н-с, С-а	OF22B ^g					
POP - Terminal 4, Slip 1	2356	~ 4.3	East			Н-ь, С-с				H-a, C-d		
Rhone Poulenc (Starlink)	155	7.2	West			H-a, C-d ^c	OF22B ^g					
Siltronic	183, 84	6.6	West			H-b, C-a ^{b,c}	OF22C ^{e,g}			H-b, C-c		
Sulzer Bingham Pumps	1235	10.3	West			Н-а, С-с	OF15 ^e			H-b, C-c		
Swan Island Upland Facility - OU3	271	8.4	East			Н-ь, С-с	OFS-2 ^h					
Triangle Park (Riedel Env.)	277	7.4	East			H-b, C-a			H-b, C-a	H-b, C-a		
Trumbull Asphalt Plant	1160	9.1	West			Н-ь, С-с	OF18					
UPRR Albina Yard	178	10 to 11	East			H-a, C-a	OF45 ^e OF46 ^e OF47 ^e					
Willamette Cove	2066	6.8	East							H-b, C-c		

Table 10.2-11. Upland Site Pathway Assess		J		Pathway Summary								
				Ground	lwater	Dire	ect Discharg	je	Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		
Willbridge Bulk Fuel Facility	1549	7.5	West			H-b, C-b ^b	Saltzman Creek ^e , OF22 ^{e,g}			H-b, C-c		
Other ECSI Sites within the Basins of Shar	ed Conveyar	ice System	s^f									
ANRFS (aka AFB)	1820	9.5	West			H-b, C-d	OF18					
Ashland Chemical	1076	9.5	West			H-b, C-c	OF18					
Calbag-Nicolai	5059	10.3	West			H-b, C-a	OF16					
Carson Oil	1405	9.7	West			H-b, C-c	OF18					
Container Management	4784	9.5	West			H-b, C-c	OF18					
Container Recovery	4015	9.3	West			H-b, C-c	OF18					
Galvanizers	1196	9.6	West			H-b, C-b	OF17 ^g					

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^d EOSM's permitted discharge from their wastewater plant was not a complete pathway.

^e A portion of this site discharges stormwater to a shared conveyance system.

					Pathway Summary							
				Ground	lwater	Direct Discharge		Overland Transport	Riverbank Erosion			
		River	River	athway Status	NAPL	Stormwater ıthway Status	Shared Conveyance System	Overwater nthway Status	ıthway Status	ıthway Status		
Site Name	ECSI#	Mile	Bank	Ps		Pa	•	Ps	$\mathbf{P}_{\mathbf{s}}$	$\mathbf{P}_{\mathbf{z}}$		

^fStormwater COIs at these ECSI sites were identified based on independent investigations.

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

^g These sites have or had groundwater infiltration in the City storm sewer.

^h A non-operational portion of the facility drains to a shared conveyance system.

^{*} Zinc is not a COI for all outfalls covered under ECSI #2425.

Table 10.2-12. Upland Site Pathway Assess				Pathway Summary								
				Ground	lwater		ct Discharg	je	Overland Transport	Riverbank Erosion		
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status		
Study Area												
ACF Industries	794	3.7	West			H-b, C-d						
Anderson Brothers	970	8	West			H-a, C-d	OF19					
ARCO	1528	4.9	West	H-b, C-b	Y	H-b, C-c						
Arkema	398	7.3	West	H-a, C-a	Y							
Burgard Ind. Park - Schnitzer Steel, Calbag Metals	2355	4	East	Н-а, С-с	N	H-a, C-b ^b	WR-121 ^e	H-a, C-a				
Calbag Metals - Front Ave.	2454	8.5	West			H-a, C-a ^b	OF19					
Cascade General (Portland Shipyard/Vigor Industrial) - OU1	271	8.5	East			H-b, C-a ^{b,c}	OFS-1 ^e OFS-6 ^e	H-a, C-a				
Chevron Asphalt Refinery	1281	8	West			H-a, C-d ^b	OF19 ^e OF22 ^{e,g}					
City of Portland Outfalls	2425	Outfalls from RM 2.75 to 9.8	East/West			H-a, C-a*						
Columbia American Plating	29	9.5	West			H-a, C-a	OF18					
Crawford Street Corp.	2363	6.5	East			H-b, C-c	OF52 ^e OF50 ^e	H-b, C-d	H-b, C-c	H-b, C-c		
Evraz Oregon Steel Mills	141	2.4	East			H-a, C-c ^{b,c,d}	OF53A ^h			H-a, C-a		

, , ,				Pathway Summary									
						Ground	lwater	Dire	ct Discharg	je	Overland Transport	Riverbank Erosion	
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status			
Freightliner TMP	2366	8.5	East			H-b, C-c ^b	OFM-1						
Front Avenue LP Properties (CMI NW, Hampton, Lonestar NW/Glacier NW, Tube Forging)	1239	8.3	West			H-b, C-c ^b	OF19 ^e						
Gasco (NW Natural, Koppers, Pacific Northern Oil)	84, 2348	6.5	West	H-a, C-a	Y	H-a, C-a ^c	OF22C ^e		H-a, C-b	Н-а, С-а			
GE Decommissioning	4003	9.5	West			H-a, C-a	OF17 ^g						
Gould Electronics/NL Industries	49	7.2	West			Н-а, С-с	OF22B ^{e,g}						
Gunderson	1155	8.8	West	H-b, C-b	N	H-a, C-a	OF18 ^e		H-a, C-a	H-b, C-a			
Kinder Morgan Linnton Terminal (GATX)	1096	4.1	West	H-a, C-a	Y								
Linnton Plywood (Columbia River Sand and Gravel)	2373, 2351	4.7	West			H-b, C-d ^{b,c}			H-b, C-d				
Mar Com - North Parcel	4797	5.6	East						H-b, C-d				
Mar Com - South Parcel	2350	5.6	East			H-b, C-d ^b			H-b, C-d	H-b, C-c			
Marine Finance (Hendren Tow Boats)	2352	5.8	West			H-b, C-d		H-a, C-b	H-b, C-d				
McCall Oil	134	7.9	West			H-b, C-c	OF22 ^e						
McCormick & Baxter Creosoting	74	7	East	H-a, C-d	Y	H-a, C-d		H-a, C-d	H-a, C-d	H-a, C-d			

Table 10.2-12. Upland Site Pathway Assess				Pathway Summary									
				Groun	dwater	Dire	ect Discharg	e	Overland Transport	Riverbank Erosion			
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status			
Metro Central Transfer Station	1398	7.2	West			Н-с, С-а	OF22B ^g						
POP - Terminal 4, Slip 1	2356	~ 4.3	East							H-a, C-d			
Rhone Poulenc (Starlink)	155	7.2	West			H-a, C-d ^c	OF22B ^g						
Schnitzer Investment - Doane Lake (Aire Liquide)	395	7.3	West			Н-а, С-а	OF22B ^g						
Sulzer Bingham Pumps	1235	10.3	West			Н-а, С-с	OF15 ^e			Н-ь, С-с			
Swan Island Upland Facility - OU3	271	8.4	East			H-b, C-c	OFS-2 ^h						
Triangle Park (Riedel Env.)	277	7.4	East			H-b, C-a			H-b, C-a				
Trumbull Asphalt Plant	1160	9.1	West			Н-ь, С-с	OF18						
UPRR Albina Yard	178	10 to 11	East			H-a, C-a	OF45 ^e OF46 ^e OF47 ^e						
Willamette Cove	2066	6.8	East							H-b, C-c			
Willbridge Bulk Fuel Facility	1549	7.5	West			H-b, C-b ^b	Saltzman Creek ^e , OF22 ^{e,g}			H-b, C-c			

Table 10.2-12. Upland Site Pathway Assess	ment Summa	ily for Cino	mum.				Pathw	ay Summa	nry	
					dwater	Dire	ect Discharg		Overland Transport	Riverbank Erosion
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status
Other ECSI Sites within the Basins of Shar	red Conveyar	ice Systems	\mathbf{s}^f							
ANRFS (aka AFB)	1820	9.5	West			H-b, C-d	OF18			
Ashland Chemical	1076	9.5	West			H-b, C-c	OF18			
Carson Oil	1405	9.7	West			H-b, C-c	OF18			
Container Management	4784	9.5	West			H-b, C-c	OF18			
Container Recovery	4015	9.3	West			H-b, C-c	OF18			
Calbag-Nicolai	5059	10.3	West			H-b, C-a	OF16			
Galvanizers	1196	9.6	West			H-b,C-b	OF17 ^g			
SFI	5103	10	West			Н-а, С-с	OF17			

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^d EOSM's permitted discharge from their wastewater plant was not a complete pathway.

^e A portion of this site discharges stormwater to a shared conveyance system.

				Pathway Summary							
				Ground	lwater	Direct Discharge			Overland Transport	Riverbank Erosion	
		River	River	athway Status	NAPL	Stormwater ıthway Status	Shared Conveyance System	Overwater athway Status	ıthway Status	ıthway Status	
Site Name	ECSI#	Mile	Bank	Ps		P		Pa	Pɛ	Ps	

^fStormwater COIs at these ECSI sites were identified based on independent investigations.

Pathway - the potential for impacting in-water media rated as follows:

a: the pathway is known to be a contaminant migration pathway - the pathway discharges to the river and there are COIs associated with the pathway

b: likely a complete pathway

c: insufficient data to make determination

d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

^g These sites have or had groundwater infiltration in the City storm sewer.

^h A non-operational portion of the facility drains to a shared conveyance system.

^{*} Chromium is not a COI for all outfalls covered under ECSI #2425.

Table 10.2-13. Upland Site Pathway Assessment Summary for Tributyltin Ion.^a

				Pathway Summary							
				Ground	Groundwater		ect Dischar	rge	Overland Transport	Riverbank Erosion	
Site Name	ECSI#	River Mile	River Bank	Pathway Status	NAPL	Stormwater Pathway Status	Shared Conveyance System	Overwater Pathway Status	Pathway Status	Pathway Status	
Cascade General (Portland Shipyard/Vigor Industrial) - OU1	271	8.5	East			H-b, C-a ^{b,c}	OFS-1 ^d OFS-6 ^d	H-a, C-a			
Gunderson	1155	8.8	West			H-a, C-a	OF18 ^d				
Mar Com - South Parcel	2350	5.6	East		·	H-b, C-d ^b		H-a, C-d	H-b, C-d	H-b, C-c	
Marine Finance (Hendren Tow Boats)	2352	5.8	West			H-b, C-d			H-b, C-d	H-b, C-d	

Notes:

This table does not represent a complete inventory of sites and operations that contribute or have contributed to contamination in Portland Harbor, particularly operations at historical facilities. However, the understanding of current sources is adequate for the purposes of the RI/FS.

Pathway - the potential for impacting in-water media rated as follows:

- a: the pathway is known to be a contaminant migration pathway the pathway discharges to the river and there are COIs associated with the pathway
- b: likely a complete pathway
- c: insufficient data to make determination
- d: not a complete pathway

Historical/Current: Available information indicates if the predominant impact to in-water media is historical (H) or current (C).

COI - contaminant of interest

DEQ - Oregon Department of Environmental Quality

ECSI # - DEQ Environmental Cleanup Site Inventory number

LWG - Lower Willamette Group

N/A - not applicable, pathway is not present at site (e.g., riverbank at an inland site)

NAPL - nonaqueous-phase liquid; available information indicates the presence of historical or current NAPL (Y/N)

NPDES - National Pollutant Discharge Elimination System

RI/FS - remedial investigation/feasibility study

RM - river mile

SWPCP - stormwater pollution control plan

^a The information contained in this table is based on information obtained by LWG from DEQ files as of July 2006 and correspondence with USEPA reflecting conditions as of September 2008, USEPA comments on the Draft RI in July 2010, and information provided in the September 2010 DEQ Milestone Report. Some modifications have been made at sites with information provided by LWG through July 2011. Information on sites upriver of RM 11 is limited to LWG review of ECSI.

^b Sites for which SWPCP plans are on file with LWG, obtained from DEQ files in 2005.

^c This site has an active individual NPDES permit with a direct discharge to the river. See Table 4.4-5 for additional information.

^d A portion of this site discharges stormwater to a shared conveyance system.

Table 10.2-14a. Summary Statistics for Bulk Solids and OC-Normalized Sediment, Sediment Trap, and Particulate Surface Water Concentrations.

Analyte	Solids Type	Units	N	Mean	Median	Minimum	Maximum	Standard Deviation
OC-Normalized Concentration								
	Sediment Trap	mg/kg	65	12.9	0.871	0.00680	531	69.2
Total PCBs	Surface Sediment	mg/kg	968	18.6	1.15	0.0213	2910	138.00
	Surface Water Particles	mg/kg	81	0.664	0.390	0.0244	11.8	1.35
	Sediment Trap	mg/kg	55	0.0170	0.00752	0.000192	0.295	0.0404
Total PCDD/Fs	Surface Sediment	mg/kg	211	0.187	0.0316	0.000349	16.5	1.17
	Surface Water Particles	mg/kg	47	0.0946	0.0760	0.0107	0.349	0.0711
	Sediment Trap	mg/kg	64	0.432	0.215	0.0154	7.18	0.913
DDx	Surface Sediment	mg/kg	1034	9.65	0.425	0.00524	2290	88.6
	Surface Water Particles	mg/kg	53	0.746	0.202	0.0100	7.80	1.35
	Sediment Trap	mg/kg	64	98.7	22.3	1.88	2200	317
Total PAHs	Surface Sediment	mg/kg	1162	1190	69.2	0.465	192000	7550
	Surface Water Particles	mg/kg	48	27.5	18.5	0.480	255	43.1
	Sediment Trap	mg/kg	62	9.56	6.39	1.62	49.4	9.25
Bis(2-ethylhexyl)phthalate	Surface Sediment	mg/kg	1121	43.6	5.08	0.0470	22700	683
	Surface Water Particles	mg/kg	13	11.7	10.7	5.85	19.8	4.76
	Sediment Trap	mg/kg	57	0.288	0.0257	0.00279	11.0	1.48
Total Chlordanes	Surface Sediment	mg/kg	1029	0.438	0.0429	0.000446	87.5	3.35
	Surface Water Particles	mg/kg	48	0.0412	0.0201	0.000337	0.434	0.0711
	Sediment Trap	mg/kg	58	0.0108	0.00677	0.00110	0.0567	0.0114
Aldrin	Surface Sediment	mg/kg	980	0.114	0.00989	0.000224	27.4	0.955
	Surface Water Particles	mg/kg	53	0.00348	0.00255	0.000357	0.0175	0.00347
	Sediment Trap	mg/kg	57	0.0219	0.0137	0.000872	0.244	0.0404
Dieldrin	Surface Sediment	mg/kg	1024	0.0758	0.0105	0.000596	8.44	0.453
	Surface Water Particles	mg/kg	53	0.0267	0.00760	0.000320	0.258	0.0505
Bulk Solids Concentrations								
	Sediment Trap	mg/kg	69	0.281	0.0225	0.000925	11.1	1.45
Total PCBs	Surface Sediment	mg/kg	1137	0.185	0.0195	0.00065	35.4	1.26
	Surface Water Particles	mg/kg	107	0.0334	0.0142	0.000564	0.740	0.0752
	Sediment Trap	mg/kg	56	0.000415	0.000212	0.00000516	0.00610	0.000844
Total PCDD/Fs	Surface Sediment	mg/kg	216	0.00248	0.000391	0.00000248	0.264	0.0181
	Surface Water Particles	mg/kg	70	0.00418	0.00264	0.000246	0.0273	0.00478

Table 10.2-14a. Summary Statistics for Bulk Solids and OC-Normalized Sediment, Sediment Trap, and Particulate Surface Water Concentrations.

								Standard
Analyte	Solids Type	Units	N	Mean	Median	Minimum	Maximum	Deviation
	Sediment Trap	mg/kg	67	0.0109	0.00600	0.000355	0.150	0.0192
DDx	Surface Sediment	mg/kg	1162	0.259	0.00651	0.0000270	84.9	2.90
	Surface Water Particles	mg/kg	79	0.0246	0.0121	0.00100	0.446	0.0608
	Sediment Trap	mg/kg	66	2.71	0.494	0.0770	58.1	8.63
Total PAHs	Surface Sediment	mg/kg	1549	26.6	1.10	0.00330	7260	230
	Surface Water Particles	mg/kg	71	1.31	0.524	0.0111	12.4	1.85
	Sediment Trap	mg/kg	65	0.270	0.180	0.0350	1.70	0.302
Bis(2-ethylhexyl)phthalate	Surface Sediment	mg/kg	1135	0.798	0.0820	0.00100	440	13.2
	Surface Water Particles	mg/kg	13	0.559	0.486	0.190	1.48	0.337
	Sediment Trap	mg/kg	59	0.00629	0.000650	0.000150	0.230	0.0308
Total Chlordanes	Surface Sediment	mg/kg	1136	0.00477	0.000850	0.0000176	0.669	0.0319
	Surface Water Particles	mg/kg	72	0.00134	0.00121	0.0000126	0.00545	0.000894
	Sediment Trap	mg/kg	59	0.000263	0.000205	0.0000325	0.00110	0.000228
Aldrin	Surface Sediment	mg/kg	986	0.00159	0.000135	0.00000333	0.691	0.0226
	Surface Water Particles	mg/kg	79	0.000188	0.0000738	0.0000134	0.00278	0.000383
	Sediment Trap	mg/kg	59	0.000557	0.000340	0.0000225	0.00650	0.00109
Dieldrin	Surface Sediment	mg/kg	1030	0.00105	0.000165	0.00000834	0.356	0.0121
	Surface Water Particles	mg/kg	79	0.000586	0.000480	0.0000120	0.00208	0.000425
	Sediment Trap	mg/kg	66	4.43	4.40	1.48	9.09	1.28
Arsenic	Surface Sediment	mg/kg	1182	4.98	3.68	0.700	132	7.40
	Surface Water Particles	mg/kg	146	15.9	7.35	1.25	131	23.0
	Sediment Trap	mg/kg	66	32.1	32.0	10.8	59.5	8.30
Chromium	Surface Sediment	mg/kg	1179	36.1	29.0	4.07	819	52.8
	Surface Water Particles	mg/kg	143	30.4	27.5	3.24	82.9	16.9
	Sediment Trap	mg/kg	66	44.2	43.3	15.2	93.6	12.1
Copper	Surface Sediment	mg/kg	1195	62.3	37.8	6.19	2830	128
	Surface Water Particles	mg/kg	145	67.4	62.2	8.75	185	29.9
	Sediment Trap	mg/kg	66	132	115	63.4	332	56.4
Zinc	Surface Sediment	mg/kg	1199	151	107	9.70	4220	197
	Surface Water Particles	mg/kg	132	190	162	8.24	923	131

Table 10.2-14a. Summary Statistics for Bulk Solids and OC-Normalized Sediment, Sediment Trap, and Particulate Surface Water Concentrations.

								Standard
Analyte	Solids Type	Units	N	Mean	Median	Minimum	Maximum	Deviation
	Sediment Trap	mg/kg	56	0.00627	0.00245	0.0000600	0.0810	0.0149
Tributyltin Ion	Surface Sediment	mg/kg	227	0.343	0.0170	0.0000395	46.0	3.12
	Surface Water Particles	mg/kg	147	0.1203	0.0500	0.00500	2.20	0.234

Notes:

All statistical analyses performed using software package Statistica version 7.1.

Table 10.2-14b. Study Area-Wide Statistical Comparison of OC-Normalized Sediment, Sediment Trap, and Particulate Surface Water Concentrations.

•	•	OC-Normalized Sediment, Sed	•						
Analyte	Group 1	Group 2	Group 1	Sum Group 2	U	Z	p-level	Interpretation	
	Surface Sediment	Surface Water Particles	531370	19356	16035	8.85	0.00	Reject H0 (concentrations are not equivalent)	
Total PCBs (OC-Normalized)	Surface Water Particles	Sediment Trap	4798	5933	1477	-4.55	0.000005	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	507180	26882	24737	2.89	0.0039	Reject H0 (concentrations are not equivalent)	
Total PCDD/Fs (OC-Normalized)	Surface Sediment	Surface Water Particles	25440	7971	3074	-4.07	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	3593	1660	120	7.87	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	31410	4101	2561	6.38	0.00	Reject H0 (concentrations are not equivalent)	
DDx (OC-Normalized)	Surface Sediment	Surface Water Particles	570500	20828	19397	3.59	0.000	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	3205	3698	1618	0.43	0.66932	Accept H0 (concentrations are equivalent)	
	Surface Sediment	Sediment Trap	580742	22610	20530	5.10	0.00000	Reject H0 (concentrations are not equivalent)	
Total PAHs (OC-Normalized)	Surface Sediment	Surface Water Particles	719189	13466	12290	6.57	0.000000	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	2420	3908	1244	-1.72	0.086	Accept H0 (concentrations are equivalent)	
	Surface Sediment	Sediment Trap	728337	23815	21735	5.60	0.000000	Reject H0 (concentrations are not equivalent)	
Bis(2-ethylhexyl)phthalate (OC-Normalized)	Surface Sediment	Surface Water Particles	632941	10604	4060	-2.75	0.0060	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	674	2176	223	2.52	0.0118	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	658290	42046	29409	-2.04	0.0414	Reject H0 (concentrations are not equivalent)	
Total Chlordanes (OC-Normalized)	Surface Sediment	Surface Water Particles	564872	15632	14456	4.86	0.0000	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	2329	3236	1153	-1.38	0.167	Accept H0 (concentrations are equivalent)	
	Surface Sediment	Sediment Trap	567356	22886	21233	3.51	0.0004	Reject H0 (concentrations are not equivalent)	
Aldrin (OC-Normalized)	Surface Sediment	Surface Water Particles	522458	11604	10173	7.47	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	1987	4229	556	-5.79	0.000000	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	514295	24946	23235	2.34	0.0194	Accept H0 (concentrations are equivalent)	

Table 10.2-14b. Study Area-Wide Statistical Comparison of OC-Normalized Sediment, Sediment Trap, and Particulate Surface Water Concentrations.

		, , , , , , , , , , , , , , , , , , , ,	Mann-Whitney U Statistics						
Analyte	Group 1	Group 2	Rank Group 1	x Sum Group 2	U	${f z}$	p-level	Interpretation	
22100.500	Surface Sediment	Surface Water Particles	554205	26298	24867	1.03	0.3041	Reject H0 (concentrations are not equivalent)	
Dieldrin (OC-Normalized)	Surface Water Particles	Sediment Trap	2669	3436	1238	-1.63	0.103	Accept H0 (concentrations are equivalent)	
	Surface Sediment	Sediment Trap	553737	31085	28937	-0.11	0.914	Accept H0 (concentrations are equivalent)	
Arsenic (Bulk)	Surface Sediment	Surface Water Particles	730670	151787	31517	-12.5	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	18435	4143	1932	7.0	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	728114	51262	28961	-3.53	0.00042	Reject H0 (concentrations are not equivalent)	
Chromium (Bulk)	Surface Sediment	Surface Water Particles	782997	91506	81210	0.72	0.4737680000	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	14302	7643	4006	-1.75	0.0794	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	726790	48845	31180	-2.72	0.0066	Reject H0 (concentrations are not equivalent)	
Copper (Bulk)	Surface Sediment	Surface Water Particles	752908	145562	38298	-11.0	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	18251	4115	1904	7.0	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	744865	50826	30255	-3.19	0.0014	Reject H0 (concentrations are not equivalent)	
Zinc (Bulk)	Surface Sediment	Surface Water Particles	768427	118019	49027	-7.2	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	14632	5070	2859	3.94	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	752954	47791	33554	-2.08	0.037	Reject H0 (concentrations are not equivalent)	
Tributyltin Ion (Bulk)	Surface Sediment	Surface Water Particles	35817	34308	9939	-6.6	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Water Particles	Sediment Trap	18816	1890	294	10.2	0.00	Reject H0 (concentrations are not equivalent)	
	Surface Sediment	Sediment Trap	36117	4069	2473	7.08	0.00	Reject H0 (concentrations are not equivalent)	

Notes:

All statistical tests performed using software package Statistica version 7.1.

The non-parametric Mann-Whitney U tests used for concentration comparisons for all analytes.

 H_0 (null hypothesis): the distributions of two populations are equal.

 $\alpha = 0.05$ (reject H₀ for p < 0.05)